1
|
Hara Y, Ichiraku A, Matsuda T, Sakane A, Sasaki T, Nagai T, Horikawa K. High-affinity tuning of single fluorescent protein-type indicators by flexible linker length optimization in topology mutant. Commun Biol 2024; 7:705. [PMID: 38851844 PMCID: PMC11162441 DOI: 10.1038/s42003-024-06394-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 05/29/2024] [Indexed: 06/10/2024] Open
Abstract
Genetically encoded Ca2+ indicators (GECIs) are versatile for live imaging of cellular activities. Besides the brightness and dynamic range of signal change of GECIs, Ca2+ affinity is another critical parameter for successful Ca2+ imaging, as the concentration range of Ca2+ dynamics differs from low nanomolar to sub-millimolar depending on the celltype and organism. However, ultrahigh-affinity GECIs, particularly the single fluorescent protein (1FP)-type, are lacking. Here, we report a simple strategy that increases Ca2+ affinity through the linker length optimization in topology mutants of existing 1FP-type GECIs. The resulting ultrahigh-affinity GECIs, CaMPARI-nano, BGECO-nano, and RCaMP-nano (Kd = 17-25 nM), enable unique biological applications, including the detection of low nanomolar Ca2+ dynamics, highlighting active signaling cells, and multi-functional imaging with other second messengers. The linker length optimization in topology mutants could be applied to other 1FP-type indicators of glutamate and potassium, rendering it a widely applicable technique for modulating indicator affinity.
Collapse
Affiliation(s)
- Yusuke Hara
- Department of Optical Imaging, Advanced Research Promotion Center, Tokushima University, 3-18-15 Kuramoto, Tokushima, Tokushima, 770-8503, Japan
| | - Aya Ichiraku
- Department of Optical Imaging, Advanced Research Promotion Center, Tokushima University, 3-18-15 Kuramoto, Tokushima, Tokushima, 770-8503, Japan
| | - Tomoki Matsuda
- Department of Biomolecular Science and Engineering, SANKEN, Osaka University, Mihogaoka 8-1, Ibaraki, Osaka, 567-0047, Japan
| | - Ayuko Sakane
- Department of Biochemistry, Tokushima University Graduate School of Medicine, 3-18-15 Kuramoto, Tokushima, Tokushima, 770-8503, Japan
- Division of Interdisciplinary Researches for Medicine and Photonics, Institute of Post-LED Photonics (pLED), Tokushima University, 3-18-15 Kuramoto, Tokushima, Tokushima, 770-8503, Japan
| | - Takuya Sasaki
- Department of Biochemistry, Tokushima University Graduate School of Medicine, 3-18-15 Kuramoto, Tokushima, Tokushima, 770-8503, Japan
| | - Takeharu Nagai
- Department of Biomolecular Science and Engineering, SANKEN, Osaka University, Mihogaoka 8-1, Ibaraki, Osaka, 567-0047, Japan
- Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Yamadaoka 2-1, Suita, Osaka, 565-0871, Japan
| | - Kazuki Horikawa
- Department of Optical Imaging, Advanced Research Promotion Center, Tokushima University, 3-18-15 Kuramoto, Tokushima, Tokushima, 770-8503, Japan.
| |
Collapse
|
2
|
Unraveling adaptation in eukaryotic pathways: lessons from protocells. PLoS Comput Biol 2013; 9:e1003300. [PMID: 24204235 PMCID: PMC3812047 DOI: 10.1371/journal.pcbi.1003300] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2013] [Accepted: 09/08/2013] [Indexed: 12/11/2022] Open
Abstract
Eukaryotic adaptation pathways operate within wide-ranging environmental conditions without stimulus saturation. Despite numerous differences in the adaptation mechanisms employed by bacteria and eukaryotes, all require energy consumption. Here, we present two minimal models showing that expenditure of energy by the cell is not essential for adaptation. Both models share important features with large eukaryotic cells: they employ small diffusible molecules and involve receptor subunits resembling highly conserved G-protein cascades. Analyzing the drawbacks of these models helps us understand the benefits of energy consumption, in terms of adjustability of response and adaptation times as well as separation of cell-external sensing and cell-internal signaling. Our work thus sheds new light on the evolution of adaptation mechanisms in complex systems. Adaptation is a common feature in sensory systems, well familiar to us from light and dark adaptation of our visual system. Biological cells, ranging from bacteria to complex eukaryotes, including single-cell organisms and human sensory receptors, adopt different strategies to fulfill this property. However, all of them require substantial amounts of energy to adapt. Here, we compare the different biological strategies and design two minimal models which allow adaptation without requiring energy consumption. Schemes similar to the ones we proposed in our minimal models could have been adopted by ancient protocells, that have evolved into the pathways we now know and study. Analyzing our models can thus help elucidate the advantages brought to the cells by consumption of energy, including the bypassing of hard-wired cell parameters such as diffusion constants with increased control over time scales.
Collapse
|
3
|
Valeyev NV, Heslop-Harrison P, Postlethwaite I, Gizatullina AN, Kotov NV, Bates DG. Crosstalk between G-protein and Ca2+ pathways switches intracellular cAMP levels. MOLECULAR BIOSYSTEMS 2008; 5:43-51. [PMID: 19081930 DOI: 10.1039/b807993e] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cyclic adenosine monophosphate and cyclic guanosine monophosphate are universal intracellular messengers whose concentrations are regulated by molecular networks comprised of different isoforms of the synthases adenylate cyclase or guanylate cyclase and the phosphodiesterases which degrade these compounds. In this paper, we employ a systems biology approach to develop mathematical models of these networks that, for the first time, take into account the different biochemical properties of the isoforms involved. To investigate the mechanisms underlying the joint regulation of cAMP and cGMP, we apply our models to analyse the regulation of cilia beat frequency in Paramecium by Ca(2+). Based on our analysis of these models, we propose that the diversity of isoform combinations that occurs in living cells provides an explanation for the huge variety of intracellular processes that are dependent on these networks. The inclusion of both G-protein receptor and Ca(2+)-dependent regulation of AC in our models allows us to propose a new explanation for the switching properties of G-protein subunits involved in nucleotide regulation. Analysis of the models suggests that, depending on whether the G-protein subunit is bound to AC, Ca(2+) can either activate or inhibit AC in a concentration-dependent manner. The resulting analysis provides an explanation for previous experimental results that showed that alterations in Ca(2+) concentrations can either increase or decrease cilia beat frequency over particular Ca(2+) concentration ranges.
Collapse
Affiliation(s)
- Najl V Valeyev
- Systems Biology Lab, Department of Engineering, University of Leicester, University Road, Leicester, UKLE1 7RH.
| | | | | | | | | | | |
Collapse
|
4
|
Shpakov AO, Pertseva MN. Chapter 4 Signaling Systems of Lower Eukaryotes and Their Evolution. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2008; 269:151-282. [DOI: 10.1016/s1937-6448(08)01004-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
5
|
Postma M, Bosgraaf L, Loovers HM, Van Haastert PJ. Chemotaxis: signalling modules join hands at front and tail. EMBO Rep 2004; 5:35-40. [PMID: 14710184 PMCID: PMC1298962 DOI: 10.1038/sj.embor.7400051] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2003] [Accepted: 11/07/2003] [Indexed: 01/15/2023] Open
Abstract
Chemotaxis is the result of a refined interplay among various intracellular molecules that process spatial and temporal information. Here we present a modular scheme of the complex interactions between the front and the back of cells that allows them to navigate. First, at the front of the cell, activated Rho-type GTPases induce actin polymerization and pseudopod formation. Second, phosphatidylinositol-3,4,5-trisphosphate (PtdIns(3,4,5)P(3)) is produced in a patch at the leading edge, where it binds pleckstrin-homology-domain-containing proteins, which enhance actin polymerization and translocation of the pseudopod. Third, in Dictyostelium amoebae, a cyclic-GMP-signalling cascade has been identified that regulates myosin filament formation in the posterior of the cell, thereby inhibiting the formation of lateral pseudopodia that could misdirect the cell.
Collapse
Affiliation(s)
- Marten Postma
- Department of Biochemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, the Netherlands
| | - Leonard Bosgraaf
- Department of Biochemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, the Netherlands
| | - Harriët M. Loovers
- Department of Biochemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, the Netherlands
| | - Peter J.M. Van Haastert
- Department of Biochemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, the Netherlands
- Tel: +31 50 363 4172; Fax: +31 50 363 4165;
| |
Collapse
|
6
|
Abstract
During random locomotion, human neutrophils and Dictyostelium discoideum amoebae repeatedly extend and retract cytoplasmic processes. During directed cell migration--chemotaxis--these pseudopodia form predominantly at the leading edge in response to the local accumulation of certain signalling molecules. Concurrent changes in actin and myosin enable the cell to move towards the stimulus. Recent studies are beginning to identify an intricate network of signalling molecules that mediate these processes, and how these molecules become localized in the cell is now becoming clear.
Collapse
Affiliation(s)
- Peter J M Van Haastert
- Department of Biochemistry, University of Groningen, Nijenborgh 4, 9747AG Groningen, The Netherlands.
| | | |
Collapse
|
7
|
Nebl T, Kotsifas M, Schaap P, Fisher PR. Multiple signalling pathways connect chemoattractant receptors and calcium channels in Dictyostelium. J Muscle Res Cell Motil 2003; 23:853-65. [PMID: 12952083 DOI: 10.1023/a:1024496232604] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Dictyostelium mutants expressing aequorin were used to study and compare the roles of heterotrimeric G-proteins and the second messengers IP3 and cGMP in regulating folate- and cAMP receptor-activated [Ca2+]i signals. The calcium responses of vegetative cells to folate were dramatically impaired in Gbeta and Galpha4 null mutants but were restored with altered kinetics and temperature-sensitivity in Gbeta null mutants overexpressing wild type and temperature-sensitive Gbeta isoforms. Folic acid receptors thus mediate changes in [Ca2+]i via a Galpha4betagamma-dependent pathway. Neither folate nor cAMP-induced [Ca2+]i signals were significantly altered in PLC null transformants, but [Ca2+]i changes elicited by both attractants were significantly prolonged in two stmF mutants lacking cGMP-specific phosphodiesterase activity. This confirms an important role of cGMP in regulating receptor-activated Ca2+ uptake and/or extrusion systems. This cGMP-dependent part of the Ca2+ response to cAMP stimuli was developmentally down-regulated and all but disappeared by the time the cells reached full aggregation competence after 8 h of starvation. The results suggest that folate and cAMP receptor-activated [Ca2+]i signals are regulated in a complex manner via multiple signalling pathways, one that is G-protein- and cGMP-dependent (present at the vegetative and early poststarvation stage) and another that is G-protein-independent (dominant in fully aggregation-competent cells at approximately 8 h poststarvation).
Collapse
Affiliation(s)
- Thomas Nebl
- Department of Microbiology, La Trobe University, Bundoora, Victoria 3083, Australia
| | | | | | | |
Collapse
|
8
|
Bosgraaf L, Van Haastert PJM. A model for cGMP signal transduction in Dictyostelium in perspective of 25 years of cGMP research. J Muscle Res Cell Motil 2003; 23:781-91. [PMID: 12952076 DOI: 10.1023/a:1024431813040] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The chemoattactant mediated cGMP response of Dictyostelium cells was discovered about twenty-five years ago. Shortly thereafter, guanylyl cyclases, cGMP-phosphodiesterases and cGMP-binding proteins were detected already in lysates, but the encoding genes were discovered only very recently. The deduced proteins appear to be very different from proteins with the same function in metazoa. In this review we discuss these new findings in perspective of the previously obtained biochemical and functional data on cGMP in Dictyostelium.
Collapse
Affiliation(s)
- Leonard Bosgraaf
- Department of Biochemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | | |
Collapse
|
9
|
|
10
|
|
11
|
Cell-Cell Communication in Dictyostelium. Development 1999. [DOI: 10.1007/978-3-642-59828-9_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
12
|
Ma H, Gamper M, Parent C, Firtel RA. The Dictyostelium MAP kinase kinase DdMEK1 regulates chemotaxis and is essential for chemoattractant-mediated activation of guanylyl cyclase. EMBO J 1997; 16:4317-32. [PMID: 9250676 PMCID: PMC1170058 DOI: 10.1093/emboj/16.14.4317] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
We have identified a MAP kinase kinase (DdMEK1) that is required for proper aggregation in Dictyostelium. Null mutations produce extremely small aggregate sizes, resulting in the formation of slugs and terminal fruiting bodies that are significantly smaller than those of wild-type cells. Time-lapse video microscopy and in vitro assays indicate that the cells are able to produce cAMP waves that move through the aggregation domains. However, these cells are unable to undergo chemotaxis properly during aggregation in response to the chemoattractant cAMP or activate guanylyl cyclase, a known regulator of chemotaxis in Dictyostelium. The activation of guanylyl cyclase in response to osmotic stress is, however, normal. Expression of putative constitutively active forms of DdMEK1 in a ddmek1 null background is capable, at least partially, of complementing the small aggregate size defect and the ability to activate guanylyl cyclase. However, this does not result in constitutive activation of guanylyl cyclase, suggesting that DdMEK1 activity is necessary, but not sufficient, for cAMP activation of guanylyl cyclase. Analysis of a temperature-sensitive DdMEK1 mutant suggests that DdMEK1 activity is required throughout aggregation at the time of guanylyl cyclase activation, but is not essential for proper morphogenesis during the later multicellular stages. The activation of the MAP kinase ERK2, which is essential for chemoattractant activation of adenylyl cyclase, is not affected in ddmek1 null strains, indicating that DdMEK1 does not regulate ERK2 and suggesting that at least two independent MAP kinase cascades control aggregation in Dictyostelium.
Collapse
Affiliation(s)
- H Ma
- Department of Biology, Center for Molecular Genetics, University of California, San Diego, La Jolla 92093-0634, USA
| | | | | | | |
Collapse
|
13
|
Abstract
The chemoattractant cAMP induces directed cell locomotion in Dictyostelium cells. Several second messenger pathways are activated upon binding of cAMP to G-protein-coupled receptors, including adenylyl cyclase, guanylyl cyclase, phospholipase C, and the opening of plasma membrane Ca2+ channels. These second messenger responses are unaltered in many chemotactic mutants, except for the cGMP response. Activation of guanylyl cyclase depends on G-proteins and is regulated by a cGMP-binding protein in a complex manner. This cGMP-binding protein also mediates intracellular functions of cGMP to activate a PKC-related kinase that phosphorylates myosin II heavy chain, thereby allowing myosin filaments to rearrange during cell movement.
Collapse
Affiliation(s)
- P J van Haastert
- Department of Biochemistry, University of Groningen, The Netherlands
| | | |
Collapse
|
14
|
Dallon JC, Othmer HG. A discrete cell model with adaptive signalling for aggregation of Dictyostelium discoideum. Philos Trans R Soc Lond B Biol Sci 1997; 352:391-417. [PMID: 9134569 PMCID: PMC1691935 DOI: 10.1098/rstb.1997.0029] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Dictyostelium discoideum (Dd) is a widely studied model system from which fundamental insights into cell movement, chemotaxis, aggregation and pattern formation can be gained. In this system aggregation results from the chemotactic response by dispersed amoebae to a travelling wave of the chemoattractant cAMP. We have developed a model in which the cells are treated as discrete points in a continuum field of the chemoattractant, and transduction of the extracellular cAMP signal into the intracellular signal is based on the G protein model developed by Tang & Othmer. The model reproduces a number of experimental observations and gives further insight into the aggregation process. We investigate different rules for cell movement the factors that influence stream formation the effect on aggregation of noise in the choice of the direction of movement and when spiral waves of chemoattractant and cell density are likely to occur. Our results give new insight into the origin of spiral waves and suggest that streaming is due to a finite amplitude instability.
Collapse
Affiliation(s)
- J C Dallon
- Department of Mathematics, University of Utah, Salt Lake City 84112 USA
| | | |
Collapse
|
15
|
Van Haastert PJ. Transduction of the chemotactic cAMP signal across the plasma membrane of Dictyostelium cells. EXPERIENTIA 1995; 51:1144-54. [PMID: 8536802 DOI: 10.1007/bf01944732] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Aggregating Dictyostelium cells secrete cAMP during cell aggregation. cAMP induces two fast responses, the production of more cAMP (relay) and directed cell locomotion (chemotaxis). Extracellular cAMP binds to G-protein-coupled receptors leading to the activation of second messenger pathways, including the activation of adenylyl cyclase, guanylyl cyclase, phospholipase C and the opening of plasma membrane Ca2+ channels. Many genes encoding these sensory transduction proteins have been cloned and null mutants of nearly all components have been characterized in detail. Undoubtedly, activation of adenylyl cyclase is the most complex, involving G-proteins, a soluble protein called CRAC and components of the MAP kinase pathway. Null mutants in this pathway do not aggregate, but can exhibit chemotaxis and develop normally when supplied with exogenous cAMP. The pathways leading to the activation of phospholipase C were identified, but unexpectedly, deletion of the phospholipase C gene has no effect on chemotaxis and development, nor on intracellular Ins(1,4,5)P3 levels; the metabolism of this second messenger will be discussed in some detail. Activation of guanylyl cyclase is G-protein-dependent and essential for chemotaxis. Analysis of a collection of chemotactic mutants reveals that most mutants are defective in either the production or intracellular detection of cGMP, thereby placing this second messenger at the center of chemotactic signal transduction. Analysis of the cAMP-mediated opening of plasma membrane calcium channels in signal transduction mutants suggests that it has two components, one that depends on G-proteins and intracellular cGMP and one that is G-protein-independent.
Collapse
Affiliation(s)
- P J Van Haastert
- Department of Biochemistry, University of Groningen, The Netherlands
| |
Collapse
|