1
|
Chowdhury P, Sinha D, Poddar A, Chetluru M, Chen Q. The Mechanosensitive Pkd2 Channel Modulates the Recruitment of Myosin II and Actin to the Cytokinetic Contractile Ring. J Fungi (Basel) 2024; 10:455. [PMID: 39057340 PMCID: PMC11277609 DOI: 10.3390/jof10070455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 06/19/2024] [Accepted: 06/21/2024] [Indexed: 07/28/2024] Open
Abstract
Cytokinesis, the last step in cell division, separates daughter cells through mechanical force. This is often through the force produced by an actomyosin contractile ring. In fission yeast cells, the ring helps recruit a mechanosensitive ion channel, Pkd2, to the cleavage furrow, whose activation by membrane tension promotes calcium influx and daughter cell separation. However, it is unclear how the activities of Pkd2 may affect the actomyosin ring. Here, through both microscopic and genetic analyses of a hypomorphic pkd2 mutant, we examined the potential role of this essential gene in assembling the contractile ring. The pkd2-81KD mutation significantly increased the counts of the type II myosin heavy chain Myo2 (+18%), its regulatory light chain Rlc1 (+37%) and actin (+100%) molecules in the ring, compared to the wild type. Consistent with a regulatory role of Pkd2 in the ring assembly, we identified a strong negative genetic interaction between pkd2-81KD and the temperature-sensitive mutant myo2-E1. The pkd2-81KD myo2-E1 cells often failed to assemble a complete contractile ring. We conclude that Pkd2 modulates the recruitment of type II myosin and actin to the contractile ring, suggesting a novel calcium-dependent mechanism regulating the actin cytoskeletal structures during cytokinesis.
Collapse
Affiliation(s)
| | | | | | | | - Qian Chen
- Department of Biological Sciences, The University of Toledo, 2801 Bancroft St, Toledo, OH 43606, USA; (P.C.); (D.S.); (M.C.)
| |
Collapse
|
2
|
Otsubo Y, Yamashita A, Goto Y, Sakai K, Iida T, Yoshimura S, Johzuka K. Cellular responses to compound stress induced by atmospheric-pressure plasma in fission yeast. J Cell Sci 2023; 136:jcs261292. [PMID: 37990810 DOI: 10.1242/jcs.261292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 11/13/2023] [Indexed: 11/23/2023] Open
Abstract
The stress response is one of the most fundamental cellular processes. Although the molecular mechanisms underlying responses to a single stressor have been extensively studied, cellular responses to multiple stresses remain largely unknown. Here, we characterized fission yeast cellular responses to a novel stress inducer, non-thermal atmospheric-pressure plasma. Plasma irradiation generates ultraviolet radiation, electromagnetic fields and a variety of chemically reactive species simultaneously, and thus can impose multiple stresses on cells. We applied direct plasma irradiation to fission yeast and showed that strong plasma irradiation inhibited fission yeast growth. We demonstrated that mutants lacking sep1 and ace2, both of which encode transcription factors required for proper cell separation, were resistant to plasma irradiation. Sep1-target transcripts were downregulated by mild plasma irradiation. We also demonstrated that plasma irradiation inhibited the target of rapamycin kinase complex 1 (TORC1). These observations indicate that two pathways, namely the Sep1-Ace2 cell separation pathway and TORC1 pathway, operate when fission yeast cope with multiple stresses induced by plasma irradiation.
Collapse
Affiliation(s)
- Yoko Otsubo
- Interdisciplinary Research Unit, National Institute for Basic Biology, Nishigonaka 38, Myodaiji, Okazaki, Aichi 444-8585, Japan
| | - Akira Yamashita
- Interdisciplinary Research Unit, National Institute for Basic Biology, Nishigonaka 38, Myodaiji, Okazaki, Aichi 444-8585, Japan
- Center for Low-temperature Plasma Sciences, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Yuhei Goto
- Quantitative Biology Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan
- Division of Quantitative Biology, National Institute for Basic Biology, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan
- Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Nishigonaka 38, Myodaiji, Okazaki, Aichi 444-8585, Japan
| | - Keiichiro Sakai
- Quantitative Biology Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan
- Division of Quantitative Biology, National Institute for Basic Biology, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan
- Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Nishigonaka 38, Myodaiji, Okazaki, Aichi 444-8585, Japan
| | - Tetsushi Iida
- Gene Engineering Division, RIKEN BioResource Research Center (BRC), 3-1-1 Koyadai, Tsukuba-shi, Ibaraki 305-0074, Japan
| | - Shinji Yoshimura
- Center for Low-temperature Plasma Sciences, Nagoya University, Nagoya, Aichi 464-8601, Japan
- National Institute for Fusion Science, 322-6 Oroshi, Toki, Gifu 509-5292, Japan
| | - Katsuki Johzuka
- Interdisciplinary Research Unit, National Institute for Basic Biology, Nishigonaka 38, Myodaiji, Okazaki, Aichi 444-8585, Japan
- Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Nishigonaka 38, Myodaiji, Okazaki, Aichi 444-8585, Japan
- Astrobiology Center, National Institutes of Natural Sciences, Nishigonaka 38, Myodaiji, Aichi 444-8585, Japan
| |
Collapse
|
3
|
McDargh Z, Zhu T, Zhu H, O'Shaughnessy B. Actin turnover protects the cytokinetic contractile ring from structural instability. J Cell Sci 2023; 136:jcs259969. [PMID: 36052670 PMCID: PMC10660070 DOI: 10.1242/jcs.259969] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 08/17/2022] [Indexed: 11/20/2022] Open
Abstract
In common with other actomyosin contractile cellular machineries, actin turnover is required for normal function of the cytokinetic contractile ring. Cofilin is an actin-binding protein contributing to turnover by severing actin filaments, required for cytokinesis by many organisms. In fission yeast cofilin mutants, contractile rings suffer bridging instabilities in which segments of the ring peel away from the plasma membrane, forming straight bridges whose ends remain attached to the membrane. The origin of bridging instability is unclear. Here, we used molecularly explicit simulations of contractile rings to examine the role of cofilin. Simulations reproduced the experimentally observed cycles of bridging and reassembly during constriction, and the occurrence of bridging in ring segments with low density of the myosin II protein Myo2. The lack of cofilin severing produced ∼2-fold longer filaments and, consequently, ∼2-fold higher ring tensions. Simulations identified bridging as originating in the boosted ring tension, which increased centripetal forces that detached actin from Myo2, which was anchoring actin to the membrane. Thus, cofilin serves a critical role in cytokinesis by providing protection from bridging, the principal structural threat to contractile rings.
Collapse
Affiliation(s)
- Zachary McDargh
- Department of Chemical Engineering, Columbia University, New York, NY 10027, USA
| | - Tianyi Zhu
- Department of Chemical Engineering, Columbia University, New York, NY 10027, USA
| | - Hongkang Zhu
- Department of Chemical Engineering, Columbia University, New York, NY 10027, USA
| | - Ben O'Shaughnessy
- Department of Chemical Engineering, Columbia University, New York, NY 10027, USA
| |
Collapse
|
4
|
Johnson CA, Behbehani R, Buss F. Unconventional Myosins from Caenorhabditis elegans as a Probe to Study Human Orthologues. Biomolecules 2022; 12:biom12121889. [PMID: 36551317 PMCID: PMC9775386 DOI: 10.3390/biom12121889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/09/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Unconventional myosins are a superfamily of actin-based motor proteins that perform a number of roles in fundamental cellular processes, including (but not limited to) intracellular trafficking, cell motility, endocytosis, exocytosis and cytokinesis. 40 myosins genes have been identified in humans, which belong to different 12 classes based on their domain structure and organisation. These genes are widely expressed in different tissues, and mutations leading to loss of function are associated with a wide variety of pathologies while over-expression often results in cancer. Caenorhabditis elegans (C. elegans) is a small, free-living, non-parasitic nematode. ~38% of the genome of C. elegans has predicted orthologues in the human genome, making it a valuable tool to study the function of human counterparts and human diseases. To date, 8 unconventional myosin genes have been identified in the nematode, from 6 different classes with high homology to human paralogues. The hum-1 and hum-5 (heavy chain of an unconventional myosin) genes encode myosin of class I, hum-2 of class V, hum-3 and hum-8 of class VI, hum-6 of class VII and hum-7 of class IX. The hum-4 gene encodes a high molecular mass myosin (307 kDa) that is one of the most highly divergent myosins and is a member of class XII. Mutations in many of the human orthologues are lethal, indicating their essential properties. However, a functional characterisation for many of these genes in C. elegans has not yet been performed. This article reviews the current knowledge of unconventional myosin genes in C. elegans and explores the potential use of the nematode to study the function and regulation of myosin motors to provide valuable insights into their role in diseases.
Collapse
|
5
|
Gibbs E, Hsu J, Barth K, Goss JW. Characterization of the nanomechanical properties of the fission yeast (Schizosaccharomyces pombe) cell surface by atomic force microscopy. Yeast 2021; 38:480-492. [PMID: 33913187 PMCID: PMC9291503 DOI: 10.1002/yea.3564] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 04/14/2021] [Accepted: 04/23/2021] [Indexed: 11/11/2022] Open
Abstract
Variations in cell wall composition and biomechanical properties can contribute to the cellular plasticity required during complex processes such as polarized growth and elongation in microbial cells. This study utilizes atomic force microscopy (AFM) to map the cell surface topography of fission yeast, Schizosaccharomyces pombe, at the pole regions and to characterize the biophysical properties within these regions under physiological, hydrated conditions. High-resolution images acquired from AFM topographic scanning reveal decreased surface roughness at the cell poles. Force extension curves acquired by nanoindentation probing with AFM cantilever tips under low applied force revealed increased cell wall deformation and decreased cellular stiffness (cellular spring constant) at cell poles (17 ± 4 mN/m) relative to the main body of the cell that is not undergoing growth and expansion (44 ± 10 mN/m). These findings suggest that the increased deformation and decreased stiffness at regions of polarized growth at fission yeast cell poles provide the plasticity necessary for cellular extension. This study provides a direct biophysical characterization of the S. pombe cell surface by AFM, and it provides a foundation for future investigation of how the surface topography and local nanomechanical properties vary during different cellular processes.
Collapse
Affiliation(s)
- Ellie Gibbs
- Department of Biological Sciences, Wellesley College, Wellesley, MA, USA
| | - Justine Hsu
- Biochemistry Program, Wellesley College, Wellesley, MA, USA
| | - Kathryn Barth
- Biochemistry Program, Wellesley College, Wellesley, MA, USA
| | - John W Goss
- Department of Biological Sciences, Wellesley College, Wellesley, MA, USA.,Biochemistry Program, Wellesley College, Wellesley, MA, USA
| |
Collapse
|
6
|
Kamnev A, Palani S, Zambon P, Cheffings T, Burroughs N, Balasubramanian MK. Time-varying mobility and turnover of actomyosin ring components during cytokinesis in Schizosaccharomyces pombe. Mol Biol Cell 2021; 32:237-246. [PMID: 33326250 PMCID: PMC8098825 DOI: 10.1091/mbc.e20-09-0588] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 12/01/2020] [Accepted: 12/07/2020] [Indexed: 01/01/2023] Open
Abstract
Cytokinesis in many eukaryotes is dependent on a contractile actomyosin ring (AMR), composed of F-actin, myosin II, and other actin and myosin II regulators. Through fluorescence recovery after photobleaching experiments, many components of the AMR have been shown to be mobile and to undergo constant exchange with the cytosolic pools. However, how the mobility of its components changes at distinct stages of mitosis and cytokinesis has not been addressed. Here, we describe the mobility of eight Schizosaccharomyces pombe AMR proteins at different stages of mitosis and cytokinesis using an approach we have developed. We identified three classes of proteins, which showed 1) high (Ain1, Myo2, Myo51), 2) low (Rng2, Mid1, Myp2, Cdc12), and 3) cell cycle-dependent (Cdc15) mobile fractions. We observed that the F-BAR protein Cdc15 undergoes a 20-30% reduction in its mobile fraction after spindle breakdown and initiation of AMR contraction. Moreover, our data indicate that this change in Cdc15 mobility is dependent on the septation initiation network (SIN). Our work offers a novel strategy for estimating cell cycle-dependent mobile protein fractions in cellular structures and provides a valuable dataset, that is of interest to researchers working on cytokinesis.
Collapse
Affiliation(s)
- Anton Kamnev
- Centre for Mechanochemical Cell Biology and Division of Biomedical Sciences, Warwick Medical School, and
| | - Saravanan Palani
- Centre for Mechanochemical Cell Biology and Division of Biomedical Sciences, Warwick Medical School, and
| | - Paola Zambon
- Centre for Mechanochemical Cell Biology and Division of Biomedical Sciences, Warwick Medical School, and
| | - Tom Cheffings
- Centre for Mechanochemical Cell Biology and Division of Biomedical Sciences, Warwick Medical School, and
| | - Nigel Burroughs
- Centre for Mechanochemical Cell Biology and Division of Biomedical Sciences, Warwick Medical School, and
- Department of Mathematics, University of Warwick, Coventry CV4 7AL, UK
| | - Mohan K. Balasubramanian
- Centre for Mechanochemical Cell Biology and Division of Biomedical Sciences, Warwick Medical School, and
| |
Collapse
|
7
|
Wang K, Okada H, Bi E. Comparative Analysis of the Roles of Non-muscle Myosin-IIs in Cytokinesis in Budding Yeast, Fission Yeast, and Mammalian Cells. Front Cell Dev Biol 2020; 8:593400. [PMID: 33330476 PMCID: PMC7710916 DOI: 10.3389/fcell.2020.593400] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 10/30/2020] [Indexed: 12/31/2022] Open
Abstract
The contractile ring, which plays critical roles in cytokinesis in fungal and animal cells, has fascinated biologists for decades. However, the basic question of how the non-muscle myosin-II and actin filaments are assembled into a ring structure to drive cytokinesis remains poorly understood. It is even more mysterious why and how the budding yeast Saccharomyces cerevisiae, the fission yeast Schizosaccharomyces pombe, and humans construct the ring structure with one, two, and three myosin-II isoforms, respectively. Here, we provide a comparative analysis of the roles of the non-muscle myosin-IIs in cytokinesis in these three model systems, with the goal of defining the common and unique features and highlighting the major questions regarding this family of proteins.
Collapse
Affiliation(s)
- Kangji Wang
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Hiroki Okada
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Erfei Bi
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
8
|
Dundon SER, Pollard TD. Microtubule nucleation promoters Mto1 and Mto2 regulate cytokinesis in fission yeast. Mol Biol Cell 2020; 31:1846-1856. [PMID: 32520628 PMCID: PMC7525812 DOI: 10.1091/mbc.e19-12-0686] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 05/26/2020] [Accepted: 06/04/2020] [Indexed: 01/16/2023] Open
Abstract
Microtubules of the mitotic spindle direct cytokinesis in metazoans but this has not been documented in fungi. We report evidence that microtubule nucleators at the spindle pole body help coordinate cytokinetic furrow formation in fission yeast. The temperature-sensitive cps1-191 strain (Liu et al., 1999) with a D277N substitution in β-glucan synthase 1 (Cps1/Bgs1) was reported to arrest with an unconstricted contractile ring. We discovered that contractile rings in cps1-191 cells constrict slowly and that an mto2S338N mutation is required with the bgs1D277Nmutation to reproduce the cps1-191 phenotype. Complexes of Mto2 and Mto1 with γ-tubulin regulate microtubule assembly. Deletion of Mto1 along with the bgs1D277N mutation also gives the cps1-191 phenotype, which is not observed in mto2S338N or mto1Δ cells expressing bgs1+. Both mto2S338N and mto1Δ cells nucleate fewer astral microtubules than normal and have higher levels of Rho1-GTP at the division site than wild-type cells. We report multiple conditions that sensitize mto1Δ and mto2S338N cells to furrow ingression phenotypes.
Collapse
Affiliation(s)
- Samantha E. R. Dundon
- Departments of Molecular Cellular and Developmental Biology, Yale University, New Haven, CT 06520-8103
| | - Thomas D. Pollard
- Departments of Molecular Cellular and Developmental Biology, Yale University, New Haven, CT 06520-8103
- Departments of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8103
- Department of Cell Biology, Yale University, New Haven, CT 06520-8103
| |
Collapse
|
9
|
Zambon P, Palani S, Jadhav SS, Gayathri P, Balasubramanian MK. Genetic suppression of defective profilin by attenuated Myosin II reveals a potential role for Myosin II in actin dynamics in vivo in fission yeast. Mol Biol Cell 2020; 31:2107-2114. [PMID: 32614646 PMCID: PMC7530902 DOI: 10.1091/mbc.e20-04-0224] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The actin cytoskeleton plays a variety of roles in eukaryotic cell physiology, ranging from cell polarity and migration to cytokinesis. Key to the function of the actin cytoskeleton is the mechanisms that control its assembly, stability, and turnover. Through genetic analyses in Schizosaccharomyces pombe, we found that myo2-S1 (myo2-G515D), a Myosin II mutant allele, was capable of rescuing lethality caused by partial defects in actin nucleation/stability caused, for example, through compromised function of the actin-binding protein Cdc3-profilin. The mutation in myo2-S1 affects the activation loop of Myosin II, which is involved in physical interaction with subdomain 1 of actin and in stimulating the ATPase activity of Myosin. Consistently, actomyosin rings in myo2-S1 cell ghosts were unstable and severely compromised in contraction on ATP addition. These studies strongly suggest a role for Myo2 in actin cytoskeletal disassembly and turnover in vivo, and that compromise of this activity leads to genetic suppression of mutants defective in actin filament assembly/stability at the division site.
Collapse
Affiliation(s)
- Paola Zambon
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Saravanan Palani
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Shekhar Sanjay Jadhav
- Biology Division, Indian Institute of Science Education and Research, Pune, Maharashtra 411008, India
| | - Pananghat Gayathri
- Biology Division, Indian Institute of Science Education and Research, Pune, Maharashtra 411008, India
| | - Mohan K Balasubramanian
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry CV4 7AL, United Kingdom
| |
Collapse
|
10
|
Pollard TD. Myosins in Cytokinesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1239:233-244. [DOI: 10.1007/978-3-030-38062-5_11] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
11
|
Alonso-Matilla R, Thiyagarajan S, O'Shaughnessy B. Sliding filament and fixed filament mechanisms contribute to ring tension in the cytokinetic contractile ring. Cytoskeleton (Hoboken) 2019; 76:611-625. [PMID: 31443136 DOI: 10.1002/cm.21558] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 08/06/2019] [Accepted: 08/14/2019] [Indexed: 11/11/2022]
Abstract
A fundamental challenge in cell biology is to understand how cells generate actomyosin-based contractile force. Here we study the actomyosin contractile ring that divides cells during cytokinesis and generates tension by a mechanism that remains poorly understood. Long ago a muscle-like sliding filament mechanism was proposed, but evidence for sarcomeric organization in contractile rings is lacking. We develop a coarse-grained model of the fission yeast cytokinetic ring, incorporating the two myosin-II isoforms Myo2 and Myp2 and severely constrained by experimental data. The model predicts that ring tension is indeed generated by a sliding filament mechanism, but a spatially and temporally homogeneous version of that in muscle. In this mechanism all pairs of oppositely oriented actin filaments are rendered tense as they are pulled toward one another and slide through clusters of myosin-II. The mechanism relies on anchoring of actin filament barbed ends to the plasma membrane, which resists lateral motion and enables filaments to become tense when pulled by myosin-II. A second fixed filament component is independent of lateral anchoring, generated by chains of like-oriented actin filaments. Myo2 contributes to both components, while Myp2 contributes to the sliding filament component only. In the face of instabilities inherent to actomyosin contractility, organizational homeostasis is maintained by rapid turnover of Myo2 and Myp2, and by drag forces that resist lateral motion of actin, Myo2 and Myp2. Thus, sliding and fixed filament mechanisms contribute to tension in the disordered contractile ring without the need for the sarcomeric architecture of muscle.
Collapse
Affiliation(s)
| | | | - Ben O'Shaughnessy
- Department of Chemical Engineering, Columbia University, New York, New York
| |
Collapse
|
12
|
Pollard TD. Cell Motility and Cytokinesis: From Mysteries to Molecular Mechanisms in Five Decades. Annu Rev Cell Dev Biol 2019; 35:1-28. [PMID: 31394047 DOI: 10.1146/annurev-cellbio-100818-125427] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
This is the story of someone who has been fortunate to work in a field of research where essentially nothing was known at the outset but that blossomed with the discovery of profound insights about two basic biological processes: cell motility and cytokinesis. The field started with no molecules, just a few people, and primitive methods. Over time, technological advances in biophysics, biochemistry, and microscopy allowed the combined efforts of scientists in hundreds of laboratories to explain mysterious processes with molecular mechanisms that can be embodied in mathematical equations and simulated by computers. The success of this field is a tribute to the power of the reductionist strategy for understanding biology.
Collapse
Affiliation(s)
- Thomas D Pollard
- Departments of Molecular, Cellular and Developmental Biology; Molecular Biophysics and Biochemistry; and Cell Biology, Yale University, New Haven, Connecticut 06520-8103, USA;
| |
Collapse
|
13
|
Okada H, Wloka C, Wu JQ, Bi E. Distinct Roles of Myosin-II Isoforms in Cytokinesis under Normal and Stressed Conditions. iScience 2019; 14:69-87. [PMID: 30928696 PMCID: PMC6441717 DOI: 10.1016/j.isci.2019.03.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 01/30/2019] [Accepted: 03/12/2019] [Indexed: 12/31/2022] Open
Abstract
To address the question of why more than one myosin-II isoform is expressed in a single cell to drive cytokinesis, we analyzed the roles of the myosin-II isoforms, Myo2 and Myp2, of the fission yeast Schizosaccharomyces pombe, in cytokinesis under normal and stressed conditions. We found that Myp2 controls the disassembly, stability, and constriction initiation of the Myo2 ring in response to high-salt stress. A C-terminal coiled-coil domain of Myp2 is required for its immobility and contractility during cytokinesis, and when fused to the tail of the dynamic Myo2, renders the chimera the low-turnover property. We also found, by following distinct processes in real time at the single-cell level, that Myo2 and Myp2 are differentially required but collectively essential for guiding extracellular matrix remodeling during cytokinesis. These results suggest that the dynamic and immobile myosin-II isoforms are evolved to carry out cytokinesis with robustness under different growth conditions. The myosin-II isoforms Myo2 and Myp2 display distinct responses to cellular stress Myp2 controls the constriction initiation of Myo2 during stress response A C-terminal region of Myp2 is required for its immobility during cytokinesis Myo2 and Myp2 are differentially required for guiding ECM remodeling during cytokinesis
Collapse
Affiliation(s)
- Hiroki Okada
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6058, USA
| | - Carsten Wloka
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6058, USA; Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AE Groningen, The Netherlands
| | - Jian-Qiu Wu
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, USA
| | - Erfei Bi
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6058, USA.
| |
Collapse
|
14
|
Ueda EI, Kashiwazaki J, Inoué S, Mabuchi I. Fission yeast Adf1 is necessary for reassembly of actin filaments into the contractile ring during cytokinesis. Biochem Biophys Res Commun 2018; 506:330-338. [DOI: 10.1016/j.bbrc.2018.07.156] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 07/31/2018] [Indexed: 01/27/2023]
|
15
|
Nguyen LT, Swulius MT, Aich S, Mishra M, Jensen GJ. Coarse-grained simulations of actomyosin rings point to a nodeless model involving both unipolar and bipolar myosins. Mol Biol Cell 2018; 29:1318-1331. [PMID: 29851561 PMCID: PMC5994903 DOI: 10.1091/mbc.e17-12-0736] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Cytokinesis in many eukaryotic cells is orchestrated by a contractile actomyosin ring. While many of the proteins involved are known, the mechanism of constriction remains unclear. Informed by the existing literature and new three-dimensional (3D) molecular details from electron cryotomography, here we develop 3D coarse-grained models of actin filaments, unipolar and bipolar myosins, actin cross-linkers, and membranes and simulate their interactions. Assuming that local force on the membrane results in inward growth of the cell wall, we explored a matrix of possible actomyosin configurations and found that node-based architectures like those presently described for ring assembly result in membrane puckers not seen in electron microscope images of real cells. Instead, the model that best matches data from fluorescence microscopy, electron cryotomography, and biochemical experiments is one in which actin filaments transmit force to the membrane through evenly distributed, membrane-attached, unipolar myosins, with bipolar myosins in the ring driving contraction. While at this point this model is only favored (not proven), the work highlights the power of coarse-grained biophysical simulations to compare complex mechanistic hypotheses.
Collapse
Affiliation(s)
- Lam T Nguyen
- California Institute of Technology, Pasadena, CA 91125.,Howard Hughes Medical Institute, Chevy Chase, MD 20815
| | - Matthew T Swulius
- California Institute of Technology, Pasadena, CA 91125.,Howard Hughes Medical Institute, Chevy Chase, MD 20815
| | - Samya Aich
- Tata Institute of Fundamental Research, Mumbai 400005, India
| | | | - Grant J Jensen
- California Institute of Technology, Pasadena, CA 91125.,Howard Hughes Medical Institute, Chevy Chase, MD 20815
| |
Collapse
|
16
|
Palani S, Srinivasan R, Zambon P, Kamnev A, Gayathri P, Balasubramanian MK. Steric hindrance in the upper 50 kDa domain of the motor Myo2p leads to cytokinesis defects in fission yeast. J Cell Sci 2018; 131:jcs.205625. [PMID: 29162650 PMCID: PMC5818058 DOI: 10.1242/jcs.205625] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 11/06/2017] [Indexed: 02/05/2023] Open
Abstract
Cytokinesis in many eukaryotes requires a contractile actomyosin ring that is placed at the division site. In fission yeast, which is an attractive organism for the study of cytokinesis, actomyosin ring assembly and contraction requires the myosin II heavy chain Myo2p. Although myo2-E1, a temperature-sensitive mutant defective in the upper 50 kDa domain of Myo2p, has been studied extensively, the molecular basis of the cytokinesis defect is not understood. Here, we isolate myo2-E1-Sup2, an intragenic suppressor that contains the original mutation in myo2-E1 (G345R) and a second mutation in the upper 50 kDa domain (Y297C). Unlike myo2-E1-Sup1, a previously characterized myo2-E1 suppressor, myo2-E1-Sup2 reverses actomyosin ring contraction defects in vitro and in vivo Structural analysis of available myosin motor domain conformations suggests that a steric clash in myo2-E1, which is caused by the replacement of a glycine with a bulky arginine, is relieved in myo2-E1-Sup2 by mutation of a tyrosine to a smaller cysteine. Our work provides insight into the function of the upper 50 kDa domain of Myo2p, informs a molecular basis for the cytokinesis defect in myo2-E1, and may be relevant to the understanding of certain cardiomyopathies.
Collapse
Affiliation(s)
- Saravanan Palani
- Centre for Mechanochemical Cell Biology and Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
| | - Ramanujam Srinivasan
- School of Biological Sciences, National Institute of Science Engineering and Research (NISER), Bhubaneswar, Odisha 752050, India
| | - Paola Zambon
- Centre for Mechanochemical Cell Biology and Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
| | - Anton Kamnev
- Centre for Mechanochemical Cell Biology and Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
| | - Pananghat Gayathri
- Biology Division, Indian Institute of Science Education and Research (IISER), Pune 411 008, India
| | - Mohan K Balasubramanian
- Centre for Mechanochemical Cell Biology and Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
| |
Collapse
|
17
|
Friend JE, Sayyad WA, Arasada R, McCormick CD, Heuser JE, Pollard TD. Fission yeast Myo2: Molecular organization and diffusion in the cytoplasm. Cytoskeleton (Hoboken) 2017; 75:164-173. [PMID: 29205883 DOI: 10.1002/cm.21425] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 11/22/2017] [Accepted: 11/27/2017] [Indexed: 12/20/2022]
Abstract
Myosin-II is required for the assembly and constriction of cytokinetic contractile rings in fungi and animals. We used electron microscopy, fluorescence recovery after photobleaching (FRAP), and fluorescence correlation spectroscopy (FCS) to characterize the physical properties of Myo2 from fission yeast Schizosaccharomyces pombe. By electron microscopy, Myo2 has two heads and a coiled-coiled tail like myosin-II from other species. The first 65 nm of the tail is a stiff rod, followed by a flexible, less-ordered region up to 30 nm long. Myo2 sediments as a 7 S molecule in high salt, but aggregates rather than forming minifilaments at lower salt concentrations; this is unaffected by heavy chain phosphorylation. We used FRAP and FCS to observe the dynamics of Myo2 in live S. pombe cells and in cell extracts at different salt concentrations; both show that Myo2 with an N-terminal mEGFP tag has a diffusion coefficient of ∼ 3 µm2 s-1 in the cytoplasm of live cells during interphase and mitosis. Photon counting histogram analysis of the FCS data confirmed that Myo2 diffuses as doubled-headed molecules in the cytoplasm. FCS measurements on diluted cell extracts showed that mEGFP-Myo2 has a diffusion coefficient of ∼ 30 µm2 s-1 in 50 to 400 mM KCl concentrations.
Collapse
Affiliation(s)
- Janice E Friend
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06520-8103
| | - Wasim A Sayyad
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06520-8103
| | - Rajesh Arasada
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06520-8103
| | - Chad D McCormick
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520-8103.,Section on Integrative Biophysics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, Maryland 20892-1855
| | - John E Heuser
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520-8103
| | - Thomas D Pollard
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06520-8103.,Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520-8103.,Department of Cell Biology, Yale University, New Haven, Connecticut 06520-8103
| |
Collapse
|
18
|
McDonald NA, Lind AL, Smith SE, Li R, Gould KL. Nanoscale architecture of the Schizosaccharomyces pombe contractile ring. eLife 2017; 6:28865. [PMID: 28914606 PMCID: PMC5779233 DOI: 10.7554/elife.28865] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 09/14/2017] [Indexed: 12/13/2022] Open
Abstract
The contractile ring is a complex molecular apparatus which physically divides many eukaryotic cells. Despite knowledge of its protein composition, the molecular architecture of the ring is not known. Here we have applied super-resolution microscopy and FRET to determine the nanoscale spatial organization of Schizosaccharomyces pombe contractile ring components relative to the plasma membrane. Similar to other membrane-tethered actin structures, we find proteins localize in specific layers relative to the membrane. The most membrane-proximal layer (0–80 nm) is composed of membrane-binding scaffolds, formin, and the tail of the essential myosin-II. An intermediate layer (80–160 nm) consists of a network of cytokinesis accessory proteins as well as multiple signaling components which influence cell division. Farthest from the membrane (160–350 nm) we find F-actin, the motor domains of myosins, and a major F-actin crosslinker. Circumferentially within the ring, multiple proteins proximal to the membrane form clusters of different sizes, while components farther from the membrane are uniformly distributed. This comprehensive organizational map provides a framework for understanding contractile ring function.
Collapse
Affiliation(s)
- Nathan A McDonald
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, United States
| | - Abigail L Lind
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, United States
| | - Sarah E Smith
- Stowers Institute for Medical Research, Kansas City, United States
| | - Rong Li
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Kathleen L Gould
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, United States
| |
Collapse
|
19
|
Antagonistic Behaviors of NMY-1 and NMY-2 Maintain Ring Channels in the C. elegans Gonad. Biophys J 2017; 111:2202-2213. [PMID: 27851943 DOI: 10.1016/j.bpj.2016.10.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 09/30/2016] [Accepted: 10/05/2016] [Indexed: 11/23/2022] Open
Abstract
Contractile rings play critical roles in a number of biological processes, including oogenesis, wound healing, and cytokinesis. In many cases, the activity of motor proteins such as nonmuscle myosins is required for appropriate constriction of these contractile rings. In the gonad of the nematode worm Caenorhabditis elegans, ring channels are a specialized form of contractile ring that are maintained at a constant diameter before oogenesis. We propose a model of ring channel maintenance that explicitly incorporates force generation by motor proteins that can act normally or tangentially to the ring channel opening. We find that both modes of force generation are needed to maintain the ring channels. We demonstrate experimentally that the type II myosins NMY-1 and NMY-2 antagonize each other in the ring channels by producing force in perpendicular directions: the experimental depletion of NMY-1/theoretical decrease in orthogonal force allows premature ring constriction and cellularization, whereas the experimental depletion of NMY-2/theoretical decrease in tangential force opens the ring channels and prevents cellularization. Together, our experimental and theoretical results show that both forces, mediated by NMY-1 and NMY-2, are crucial for maintaining the appropriate ring channel diameter and dynamics throughout the gonad.
Collapse
|
20
|
Guo M, Tan L, Nie X, Zhang Z. A class-II myosin is required for growth, conidiation, cell wall integrity and pathogenicity of Magnaporthe oryzae. Virulence 2017; 8:1335-1354. [PMID: 28448785 DOI: 10.1080/21505594.2017.1323156] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
In eukaryotic organisms, myosin proteins are the major ring components that are involved in cytokinesis. To date, little is known about the biologic functions of myosin proteins in Magnaporthe oryzae. In this study, insertional mutagenesis conducted in M. oryzae led to identification of Momyo2, a pathogenicity gene predicted to encode a class-II myosin protein homologous to Saccharomyces cerevisiae Myo1. According to qRT-PCR, Momyo2 is highly expressed during early infectious stage. When this gene was disrupted, the resultant mutant isolates were attenuated in virulence on rice and barley. These were likely caused by defective mycelial growth and frequent emergence of branch hyphae and septum. The Momyo2 mutants were also defective in conidial and appressorial development, characterized by abnormal conidia and appressoria. These consequently resulted in plant tissue penetration defects that the wild type strain lacked, and mutants being less pathogenic. Cytorrhysis assay, CFW staining of appressorium and monitoring of protoplast release suggested that appressorial wall was altered, presumably affecting the level of turgor pressure within appressorium. Furthermore, impairments in conidial germination, glycogen metabolites, tolerance to exogenous stresses and scavenging of host-derived reactive oxygen species were associated with defects on appressorium mediated penetration, and therefore attenuated the virulence of Momyo2 mutants. Taken together, these results suggest that Momyo2 plays pleiotropic roles in fungal development, and is required for the full pathogenicity of M. oryzae.
Collapse
Affiliation(s)
- Min Guo
- a Department of Plant Pathology , College of Plant Protection, Anhui Agricultural University , Hefei , China
| | - Leyong Tan
- a Department of Plant Pathology , College of Plant Protection, Anhui Agricultural University , Hefei , China
| | - Xiang Nie
- a Department of Plant Pathology , College of Plant Protection, Anhui Agricultural University , Hefei , China
| | - Zhengguang Zhang
- b Department of Plant Pathology , College of Plant Protection, Nanjing Agricultural University , Nanjing , China
| |
Collapse
|
21
|
Palani S, Chew TG, Ramanujam S, Kamnev A, Harne S, Chapa-Y-Lazo B, Hogg R, Sevugan M, Mishra M, Gayathri P, Balasubramanian MK. Motor Activity Dependent and Independent Functions of Myosin II Contribute to Actomyosin Ring Assembly and Contraction in Schizosaccharomyces pombe. Curr Biol 2017; 27:751-757. [PMID: 28238661 PMCID: PMC5344676 DOI: 10.1016/j.cub.2017.01.028] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 11/21/2016] [Accepted: 01/16/2017] [Indexed: 01/03/2023]
Abstract
Cytokinesis depends on a contractile actomyosin ring in many eukaryotes [1, 2, 3]. Myosin II is a key component of the actomyosin ring, although whether it functions as a motor or as an actin cross-linker to exert its essential role is disputed [1, 4, 5]. In Schizosaccharomyces pombe, the myo2-E1 mutation affects the upper 50 kDa sub-domain of the myosin II heavy chain, and cells carrying this lethal mutation are defective in actomyosin ring assembly at the non-permissive temperature [6, 7]. myo2-E1 also affects actomyosin ring contraction when rings isolated from permissive temperature-grown cells are incubated with ATP [8]. Here we report isolation of a compensatory suppressor mutation in the lower 50 kDa sub-domain (myo2-E1-Sup1) that reverses the inability of myo2-E1 to form colonies at the restrictive temperature. myo2-E1-Sup1 is capable of assembling normal actomyosin rings, although rings isolated from myo2-E1-Sup1 are defective in ATP-dependent contraction in vitro. Furthermore, the product of myo2-E1-Sup1 does not translocate actin filaments in motility assays in vitro. Superimposition of myo2-E1 and myo2-E1-Sup1 on available rigor and blebbistatin-bound myosin II structures suggests that myo2-E1-Sup1 may represent a novel actin translocation-defective allele. Actomyosin ring contraction and viability of myo2-E1-Sup1 cells depend on the late cytokinetic S. pombe myosin II isoform, Myp2p, a non-essential protein that is normally dispensable for actomyosin ring assembly and contraction. Our work reveals that Myo2p may function in two different and essential modes during cytokinesis: a motor activity-independent form that can promote actomyosin ring assembly and a motor activity-dependent form that supports ring contraction. In many eukaryotes, cytokinesis requires an actomyosin-based contractile ring The role of motor activity of myosin II in cytokinesis is a topic of active debate We isolate a new allele of S. pombe Myo2, an essential myosin heavy chain We show motor activity-dependent and -independent roles for Myo2
Collapse
Affiliation(s)
- Saravanan Palani
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK.
| | - Ting Gang Chew
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
| | - Srinivasan Ramanujam
- School of Biological Sciences, National Institute of Science Education and Research (NISER), Odisha 752050, India
| | - Anton Kamnev
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
| | - Shrikant Harne
- Biology Division, Indian Institute of Science Education and Research (IISER), Pune, Maharashtra 411008, India
| | - Bernardo Chapa-Y-Lazo
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
| | - Rebecca Hogg
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
| | - Mayalagu Sevugan
- Temasek Life Sciences Laboratory, 1. Research Link, National University of Singapore, Singapore 117604, Singapore
| | - Mithilesh Mishra
- Temasek Life Sciences Laboratory, 1. Research Link, National University of Singapore, Singapore 117604, Singapore; Department of Biological Sciences, Tata Institute of Fundamental Research (TIFR), Mumbai, Maharashtra 400005, India
| | - Pananghat Gayathri
- Biology Division, Indian Institute of Science Education and Research (IISER), Pune, Maharashtra 411008, India
| | - Mohan K Balasubramanian
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK.
| |
Collapse
|
22
|
Altamirano S, Chandrasekaran S, Kozubowski L. Mechanisms of Cytokinesis in Basidiomycetous Yeasts. FUNGAL BIOL REV 2017; 31:73-87. [PMID: 28943887 DOI: 10.1016/j.fbr.2016.12.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
While mechanisms of cytokinesis exhibit considerable plasticity, it is difficult to precisely define the level of conservation of this essential part of cell division in fungi, as majority of our knowledge is based on ascomycetous yeasts. However, in the last decade more details have been uncovered regarding cytokinesis in the second largest fungal phylum, basidiomycetes, specifically in two yeasts, Cryptococcus neoformans and Ustilago maydis. Based on these findings, and current sequenced genomes, we summarize cytokinesis in basidiomycetous yeasts, indicating features that may be unique to this phylum, species-specific characteristics, as well as mechanisms that may be common to all eukaryotes.
Collapse
Affiliation(s)
- Sophie Altamirano
- Department of Genetics and Biochemistry, Clemson University, Clemson, South Carolina, USA
| | | | - Lukasz Kozubowski
- Department of Genetics and Biochemistry, Clemson University, Clemson, South Carolina, USA
| |
Collapse
|
23
|
Measurements of Myosin-II Motor Activity During Cytokinesis in Fission Yeast. Methods Mol Biol 2016; 1369:137-50. [PMID: 26519311 DOI: 10.1007/978-1-4939-3145-3_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Fission yeast myosin-II (Myo2p) represents the critical actin-based motor protein that drives actomyosin ring assembly and constriction during cytokinesis. We detail three different methods to measure Myo2p motor function. Actin-activated ATPases provide a readout of actomyosin ATPase motor activity in a bulk assay; actin filament motility assays reveal the speed and efficiency of myosin-driven actin filament gliding (when motors are anchored); myosin-bead motility assays reveal the speed and efficiency of myosin ensembles traveling along actin filaments (when actin is anchored). Collectively, these methods allow us to combine the standard in vivo approaches common to fission yeast with in vitro biochemical methods to learn more about the mechanistic action of myosin-II during cytokinesis.
Collapse
|
24
|
Baker K, Kirkham S, Halova L, Atkin J, Franz-Wachtel M, Cobley D, Krug K, Maček B, Mulvihill DP, Petersen J. TOR complex 2 localises to the cytokinetic actomyosin ring and controls the fidelity of cytokinesis. J Cell Sci 2016; 129:2613-24. [PMID: 27206859 PMCID: PMC4958305 DOI: 10.1242/jcs.190124] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 05/06/2016] [Indexed: 01/30/2023] Open
Abstract
The timing of cell division is controlled by the coupled regulation of growth and division. The target of rapamycin (TOR) signalling network synchronises these processes with the environmental setting. Here, we describe a novel interaction of the fission yeast TOR complex 2 (TORC2) with the cytokinetic actomyosin ring (CAR), and a novel role for TORC2 in regulating the timing and fidelity of cytokinesis. Disruption of TORC2 or its localisation results in defects in CAR morphology and constriction. We provide evidence that the myosin II protein Myp2 and the myosin V protein Myo51 play roles in recruiting TORC2 to the CAR. We show that Myp2 and TORC2 are co-dependent upon each other for their normal localisation to the cytokinetic machinery. We go on to show that TORC2-dependent phosphorylation of actin-capping protein 1 (Acp1, a known regulator of cytokinesis) controls CAR stability, modulates Acp1-Acp2 (the equivalent of the mammalian CAPZA-CAPZB) heterodimer formation and is essential for survival upon stress. Thus, TORC2 localisation to the CAR, and TORC2-dependent Acp1 phosphorylation contributes to timely control and the fidelity of cytokinesis and cell division.
Collapse
Affiliation(s)
- Karen Baker
- School of Biosciences, University of Kent, Giles Lane, Canterbury, Kent CT2 7NJ, UK
| | - Sara Kirkham
- Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Lenka Halova
- Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Jane Atkin
- Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | | | - David Cobley
- Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Karsten Krug
- Proteome Center Tübingen, Auf der Morgenstelle 15, Tübingen 72076, Germany
| | - Boris Maček
- Proteome Center Tübingen, Auf der Morgenstelle 15, Tübingen 72076, Germany
| | - Daniel P Mulvihill
- School of Biosciences, University of Kent, Giles Lane, Canterbury, Kent CT2 7NJ, UK
| | - Janni Petersen
- Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, UK Flinders Centre for Innovation in Cancer, School of Medicine, Flinders University, Adelaide, SA 5001, Australia South Australia Health and Medical Research Institute, North Terrace, PO Box 11060, Adelaide, SA 5000, Australia
| |
Collapse
|
25
|
Laplante C, Berro J, Karatekin E, Hernandez-Leyva A, Lee R, Pollard TD. Three myosins contribute uniquely to the assembly and constriction of the fission yeast cytokinetic contractile ring. Curr Biol 2015; 25:1955-65. [PMID: 26144970 DOI: 10.1016/j.cub.2015.06.018] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2014] [Revised: 05/16/2015] [Accepted: 06/05/2015] [Indexed: 11/30/2022]
Abstract
Cytokinesis in fission yeast cells depends on conventional myosin-II (Myo2) to assemble and constrict a contractile ring of actin filaments. Less is known about the functions of an unconventional myosin-II (Myp2) and a myosin-V (Myo51) that are also present in the contractile ring. Myo2 appears in cytokinetic nodes around the equator 10 min before spindle pole body separation (cell-cycle time, -10 min) independent of actin filaments, followed by Myo51 at time zero and Myp2 at time +20 min, both located between nodes and dependent on actin filaments. We investigated the contributions of these three myosins to cytokinesis using a severely disabled mutation of the essential myosin-II heavy-chain gene (myo2-E1) and deletion mutations of the other myosin heavy-chain genes. Cells with only Myo2 assemble contractile rings normally. Cells with either Myp2 or Myo51 alone can assemble nodes and actin filaments into contractile rings but complete assembly later than normal. Both Myp2 and Myo2 contribute to constriction of fully assembled rings at rates 55% that of normal in cells relying on Myp2 alone and 25% that of normal in cells with Myo2 alone. Myo51 alone cannot constrict rings but increases the constriction rate by Myo2 in Δmyp2 cells or Myp2 in myo2-E1 cells. Three myosins function in a hierarchal, complementary manner to accomplish cytokinesis, with Myo2 and Myo51 taking the lead during contractile ring assembly and Myp2 making the greatest contribution to constriction.
Collapse
Affiliation(s)
- Caroline Laplante
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520, USA
| | - Julien Berro
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA; Nanobiology Institute, Yale University, West Haven, CT 06516, USA
| | - Erdem Karatekin
- Nanobiology Institute, Yale University, West Haven, CT 06516, USA; Department of Cellular and Molecular Physiology, Yale University, New Haven, CT 06520, USA; Institut des Sciences Biologiques, Centre National de la Recherche Scientifique (CNRS), Délégation Paris Michel-Ange, 3 rue Michel-Ange, 75794 Paris Cedex 16, France
| | - Ariel Hernandez-Leyva
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520, USA
| | - Rachel Lee
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520, USA
| | - Thomas D Pollard
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520, USA; Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA; Department of Cell Biology, Yale University, New Haven, CT 06520, USA.
| |
Collapse
|
26
|
Takaine M, Numata O, Nakano K. An actin-myosin-II interaction is involved in maintaining the contractile ring in fission yeast. J Cell Sci 2015; 128:2903-18. [PMID: 26092938 DOI: 10.1242/jcs.171264] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 06/12/2015] [Indexed: 01/26/2023] Open
Abstract
The actomyosin-based contractile ring, which assembles at the cell equator, maintains its circularity during cytokinesis in many eukaryotic cells, ensuring its efficient constriction. Although consistent maintenance of the ring is one of the mechanisms underpinning cytokinesis, it has not yet been fully addressed. We here investigated the roles of fission yeast myosin-II proteins [Myo2 and Myo3 (also known as Myp2)] in ring maintenance during cytokinesis, with a focus on Myo3. A site-directed mutational analysis showed that the motor properties of Myo3 were involved in its accumulation in the contractile ring. The assembled ring was often deformed and not properly maintained under conditions in which the activities of myosin-II proteins localizing to the contractile ring were decreased, leading to inefficient cell division. Moreover, Myo3 appeared to form motile clusters on the ring. We propose that large assemblies of myosin-II proteins consolidate the contractile ring by continuously binding to F-actin in the ring, thereby contributing to its maintenance.
Collapse
Affiliation(s)
- Masak Takaine
- Department of Biological Sciences, Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennohdai, Tsukuba, Ibaraki 305-8577, Japan
| | - Osamu Numata
- Department of Biological Sciences, Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennohdai, Tsukuba, Ibaraki 305-8577, Japan
| | - Kentaro Nakano
- Department of Biological Sciences, Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennohdai, Tsukuba, Ibaraki 305-8577, Japan
| |
Collapse
|
27
|
Zhou Z, Munteanu EL, He J, Ursell T, Bathe M, Huang KC, Chang F. The contractile ring coordinates curvature-dependent septum assembly during fission yeast cytokinesis. Mol Biol Cell 2014; 26:78-90. [PMID: 25355954 PMCID: PMC4279231 DOI: 10.1091/mbc.e14-10-1441] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Cytokinesis in fission yeast is accomplished by inward growth of the cell wall septum guided by the contractile ring. The ring promotes local septum growth in a curvature-dependent manner, allowing even a misshapen septum to grow into a more regular shape. This suggests that the ring regulates cell wall assembly through a mechanosensitive mechanism. The functions of the actin-myosin–based contractile ring in cytokinesis remain to be elucidated. Recent findings show that in the fission yeast Schizosaccharomyces pombe, cleavage furrow ingression is driven by polymerization of cell wall fibers outside the plasma membrane, not by the contractile ring. Here we show that one function of the ring is to spatially coordinate septum cell wall assembly. We develop an improved method for live-cell imaging of the division apparatus by orienting the rod-shaped cells vertically using microfabricated wells. We observe that the septum hole and ring are circular and centered in wild-type cells and that in the absence of a functional ring, the septum continues to ingress but in a disorganized and asymmetric manner. By manipulating the cleavage furrow into different shapes, we show that the ring promotes local septum growth in a curvature-dependent manner, allowing even a misshapen septum to grow into a more regular shape. This curvature-dependent growth suggests a model in which contractile forces of the ring shape the septum cell wall by stimulating the cell wall machinery in a mechanosensitive manner. Mechanical regulation of the cell wall assembly may have general relevance to the morphogenesis of walled cells.
Collapse
Affiliation(s)
- Zhou Zhou
- Department of Microbiology and Immunology, Columbia University College of Physicians and Surgeons, New York, NY 10032
| | - Emilia Laura Munteanu
- Department of Microbiology and Immunology, Columbia University College of Physicians and Surgeons, New York, NY 10032
| | - Jun He
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Tristan Ursell
- Department of Bioengineering, Stanford University, Stanford, CA 94305
| | - Mark Bathe
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Kerwyn Casey Huang
- Department of Bioengineering, Stanford University, Stanford, CA 94305 Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305
| | - Fred Chang
- Department of Microbiology and Immunology, Columbia University College of Physicians and Surgeons, New York, NY 10032
| |
Collapse
|
28
|
Tao EY, Calvert M, Balasubramanian MK. Rewiring Mid1p-independent medial division in fission yeast. Curr Biol 2014; 24:2181-2188. [PMID: 25176634 DOI: 10.1016/j.cub.2014.07.074] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Revised: 06/27/2014] [Accepted: 07/25/2014] [Indexed: 10/24/2022]
Abstract
Correct positioning of the cell division machinery is key to genome stability. Schizosaccharomyces pombe is an attractive organism to study cytokinesis as it, like higher eukaryotes, divides using a contractile actomyosin ring. In S. pombe, many actomyosin ring components assemble at the medial cortex into node-like structures before coalescing into a ring [1, 2]. Assembly of cytokinetic nodes requires Mid1p, which recruits IQGAP-related Rng2p to the division site, after which other node components accumulate at the division site in a characteristic sequence [3-6]. How cytokinetic nodes assemble, whether the order of assembly of ring components is important, and whether Mid1p solely participates in ring positioning are poorly understood. Here, we show that synthetic targeting of IQGAP-related Rng2p, formin-Cdc12p, and myosin II (Myo2p) restores medial division in mid1 mutants, suggesting that ring proteins need not assemble at the division site in an invariant order. Unlike in wild-type cells, actomyosin rings in cells rewired to divide medially in the absence of Mid1p assemble late in anaphase. Furthermore, the rewiring process affects the ability of the actomyosin ring to track the nucleus upon perturbation of nuclear position. Our work reveals the power of synthetic rewiring studies in deciphering roles performed by multifunctional proteins.
Collapse
Affiliation(s)
- Evelyn Yaqiong Tao
- Department of Biological Sciences, The National University of Singapore, 1 Research Link, Singapore 117604, Republic of Singapore
| | - Meredith Calvert
- Temasek Life Sciences Laboratory, 1 Research Link, Singapore 117604, Republic of Singapore
| | - Mohan K Balasubramanian
- Department of Biological Sciences, The National University of Singapore, 1 Research Link, Singapore 117604, Republic of Singapore; Temasek Life Sciences Laboratory, 1 Research Link, Singapore 117604, Republic of Singapore; Mechanobiology Institute, The National University of Singapore, 1 Research Link, Singapore 117604, Republic of Singapore; Division of Biomedical Cell Biology, Warwick Medical School, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK.
| |
Collapse
|
29
|
Wang N, Lo Presti L, Zhu YH, Kang M, Wu Z, Martin SG, Wu JQ. The novel proteins Rng8 and Rng9 regulate the myosin-V Myo51 during fission yeast cytokinesis. ACTA ACUST UNITED AC 2014; 205:357-75. [PMID: 24798735 PMCID: PMC4018781 DOI: 10.1083/jcb.201308146] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The myosin-V family of molecular motors is known to be under sophisticated regulation, but our knowledge of the roles and regulation of myosin-Vs in cytokinesis is limited. Here, we report that the myosin-V Myo51 affects contractile ring assembly and stability during fission yeast cytokinesis, and is regulated by two novel coiled-coil proteins, Rng8 and Rng9. Both rng8Δ and rng9Δ cells display similar defects as myo51Δ in cytokinesis. Rng8 and Rng9 are required for Myo51's localizations to cytoplasmic puncta, actin cables, and the contractile ring. Myo51 puncta contain multiple Myo51 molecules and walk continuously on actin filaments in rng8(+) cells, whereas Myo51 forms speckles containing only one dimer and does not move efficiently on actin tracks in rng8Δ. Consistently, Myo51 transports artificial cargos efficiently in vivo, and this activity is regulated by Rng8. Purified Rng8 and Rng9 form stable higher-order complexes. Collectively, we propose that Rng8 and Rng9 form oligomers and cluster multiple Myo51 dimers to regulate Myo51 localization and functions.
Collapse
Affiliation(s)
- Ning Wang
- Department of Molecular Genetics, 2 Department of Molecular and Cellular Biochemistry, and 3 Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210
| | | | | | | | | | | | | |
Collapse
|
30
|
Goss JW, Kim S, Bledsoe H, Pollard TD. Characterization of the roles of Blt1p in fission yeast cytokinesis. Mol Biol Cell 2014; 25:1946-57. [PMID: 24790095 PMCID: PMC4072569 DOI: 10.1091/mbc.e13-06-0300] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Spatial and temporal regulation of cytokinesis is essential for cell division, yet the mechanisms that control the formation and constriction of the contractile ring are incompletely understood. In the fission yeast Schizosaccharomyces pombe proteins that contribute to the cytokinetic contractile ring accumulate during interphase in nodes-precursor structures around the equatorial cortex. During mitosis, additional proteins join these nodes, which condense to form the contractile ring. The cytokinesis protein Blt1p is unique in being present continuously in nodes from early interphase through to the contractile ring until cell separation. Blt1p was shown to stabilize interphase nodes, but its functions later in mitosis were unclear. We use analytical ultracentrifugation to show that purified Blt1p is a tetramer. We find that Blt1p interacts physically with Sid2p and Mob1p, a protein kinase complex of the septation initiation network, and confirm known interactions with F-BAR protein Cdc15p. Contractile rings assemble normally in blt1∆ cells, but the initiation of ring constriction and completion of cell division are delayed. We find three defects that likely contribute to this delay. Without Blt1p, contractile rings recruited and retained less Sid2p/Mob1p and Clp1p phosphatase, and β-glucan synthase Bgs1p accumulated slowly at the cleavage site.
Collapse
Affiliation(s)
- John W Goss
- Department of Molecular Cellular and Developmental Biology, Yale University, New Haven, CT 06520-8103Department of Biological Sciences, Wellesley College, Wellesley, MA 02481-8203
| | - Sunhee Kim
- Department of Molecular Cellular and Developmental Biology, Yale University, New Haven, CT 06520-8103
| | - Hannah Bledsoe
- Department of Biological Sciences, Wellesley College, Wellesley, MA 02481-8203
| | - Thomas D Pollard
- Department of Molecular Cellular and Developmental Biology, Yale University, New Haven, CT 06520-8103Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8103Department of Cell Biology, Yale University, New Haven, CT 06520-8103
| |
Collapse
|
31
|
Takaine M, Numata O, Nakano K. Fission yeast IQGAP maintains F-actin-independent localization of myosin-II in the contractile ring. Genes Cells 2013; 19:161-76. [DOI: 10.1111/gtc.12120] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 11/02/2013] [Indexed: 11/29/2022]
Affiliation(s)
- Masak Takaine
- Department of Biological Sciences; Graduate School of Life and Environmental Sciences; University of Tsukuba; 1-1-1 Tennohdai Tsukuba Ibaraki 305-8577 Japan
| | - Osamu Numata
- Department of Biological Sciences; Graduate School of Life and Environmental Sciences; University of Tsukuba; 1-1-1 Tennohdai Tsukuba Ibaraki 305-8577 Japan
| | - Kentaro Nakano
- Department of Biological Sciences; Graduate School of Life and Environmental Sciences; University of Tsukuba; 1-1-1 Tennohdai Tsukuba Ibaraki 305-8577 Japan
| |
Collapse
|
32
|
Stark BC, James ML, Pollard LW, Sirotkin V, Lord M. UCS protein Rng3p is essential for myosin-II motor activity during cytokinesis in fission yeast. PLoS One 2013; 8:e79593. [PMID: 24244528 PMCID: PMC3828377 DOI: 10.1371/journal.pone.0079593] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Accepted: 09/27/2013] [Indexed: 12/25/2022] Open
Abstract
UCS proteins have been proposed to operate as co-chaperones that work with Hsp90 in the de novo folding of myosin motors. The fission yeast UCS protein Rng3p is essential for actomyosin ring assembly and cytokinesis. Here we investigated the role of Rng3p in fission yeast myosin-II (Myo2p) motor activity. Myo2p isolated from an arrested rng3-65 mutant was capable of binding actin, yet lacked stability and activity based on its expression levels and inactivity in ATPase and actin filament gliding assays. Myo2p isolated from a myo2-E1 mutant (a mutant hyper-sensitive to perturbation of Rng3p function) showed similar behavior in the same assays and exhibited an altered motor conformation based on limited proteolysis experiments. We propose that Rng3p is not required for the folding of motors per se, but instead works to ensure the activity of intrinsically unstable myosin-II motors. Rng3p is specific to conventional myosin-II and the actomyosin ring, and is not required for unconventional myosin motor function at other actin structures. However, artificial destabilization of myosin-I motors at endocytic actin patches (using a myo1-E1 mutant) led to recruitment of Rng3p to patches. Thus, while Rng3p is specific to myosin-II, UCS proteins are adaptable and can respond to changes in the stability of other myosin motors.
Collapse
Affiliation(s)
- Benjamin C. Stark
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, Vermont, United States of America
| | - Michael L. James
- Department of Cell and Developmental Biology, State University of New York - Upstate Medical University, Syracuse, New York, United States of America
| | - Luther W. Pollard
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, Vermont, United States of America
| | - Vladimir Sirotkin
- Department of Cell and Developmental Biology, State University of New York - Upstate Medical University, Syracuse, New York, United States of America
| | - Matthew Lord
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, Vermont, United States of America
- * E-mail:
| |
Collapse
|
33
|
Zhu YH, Ye Y, Wu Z, Wu JQ. Cooperation between Rho-GEF Gef2 and its binding partner Nod1 in the regulation of fission yeast cytokinesis. Mol Biol Cell 2013; 24:3187-204. [PMID: 23966468 PMCID: PMC3806657 DOI: 10.1091/mbc.e13-06-0301] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Previous results showed that putative Rho-GEF Gef2 regulates division-site positioning during early cytokinesis in fission yeast. Here Nod1 is identified as a binding partner of Gef2. The two proteins form a complex to regulate division-site positioning and contractile-ring maintenance. In addition, Gef2 binds to GTPases Rho1, Rho4, and Rho5 in vitro. Cytokinesis is the last step of the cell-division cycle, which requires precise spatial and temporal regulation to ensure genetic stability. Rho guanine nucleotide exchange factors (Rho GEFs) and Rho GTPases are among the key regulators of cytokinesis. We previously found that putative Rho-GEF Gef2 coordinates with Polo kinase Plo1 to control the medial cortical localization of anillin-like protein Mid1 in fission yeast. Here we show that an adaptor protein, Nod1, colocalizes with Gef2 in the contractile ring and its precursor cortical nodes. Like gef2∆, nod1∆ has strong genetic interactions with various cytokinesis mutants involved in division-site positioning, suggesting a role of Nod1 in early cytokinesis. We find that Nod1 and Gef2 interact through the C-termini, which is important for their localization. The contractile-ring localization of Nod1 and Gef2 also depends on the interaction between Nod1 and the F-BAR protein Cdc15, where the Nod1/Gef2 complex plays a role in contractile-ring maintenance and affects the septation initiation network. Moreover, Gef2 binds to purified GTPases Rho1, Rho4, and Rho5 in vitro. Taken together, our data indicate that Nod1 and Gef2 function cooperatively in a protein complex to regulate fission yeast cytokinesis.
Collapse
Affiliation(s)
- Yi-Hua Zhu
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210 Department of Molecular and Cellular Biochemistry, The Ohio State University, Columbus, OH 43210 Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210
| | | | | | | |
Collapse
|
34
|
Ikai N, Nakazawa N, Hayashi T, Yanagida M. The reverse, but coordinated, roles of Tor2 (TORC1) and Tor1 (TORC2) kinases for growth, cell cycle and separase-mediated mitosis in Schizosaccharomyces pombe. Open Biol 2013; 1:110007. [PMID: 22645648 PMCID: PMC3352084 DOI: 10.1098/rsob.110007] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Accepted: 10/20/2011] [Indexed: 11/12/2022] Open
Abstract
Target of rapamycin complexes (TORCs), which are vital for nutrient utilization, contain a catalytic subunit with the phosphatidyl inositol kinase-related kinase (PIKK) motif. TORC1 is required for cell growth, while the functions of TORC2 are less well understood. We show here that the fission yeast Schizosaccharomyces pombe TORC2 has a cell cycle role through determining the proper timing of Cdc2 Tyr15 dephosphorylation and the cell size under limited glucose, whereas TORC1 restrains mitosis and opposes securin–separase, which are essential for chromosome segregation. These results were obtained using the previously isolated TORC1 mutant tor2-L2048S in the phosphatidyl inositol kinase (PIK) domain and a new TORC2 mutant tor1-L2045D, which harbours a mutation in the same site. While mutated TORC1 and TORC2 displayed diminished kinase activity and FKBP12/Fkh1-dependent rapamycin sensitivity, their phenotypes were nearly opposite in mitosis. Premature mitosis and the G2–M delay occurred in TORC1 and TORC2 mutants, respectively. Surprisingly, separase/cut1—securin/cut2 mutants were rescued by TORC1/tor2-L2048S mutation or rapamycin addition or even Fkh1 deletion, whereas these mutants showed synthetic defect with TORC2/tor1-L2045D. TORC1 and TORC2 coordinate growth, mitosis and cell size control, such as Wee1 and Cdc25 do for the entry into mitosis.
Collapse
Affiliation(s)
- Nobuyasu Ikai
- Okinawa Institute of Science and Technology Promotion Corporation, 1919-1 Tancha, Onna, Okinawa 904-0412, Japan
| | | | | | | |
Collapse
|
35
|
In vitro contraction of cytokinetic ring depends on myosin II but not on actin dynamics. Nat Cell Biol 2013; 15:853-9. [PMID: 23770677 DOI: 10.1038/ncb2781] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Accepted: 05/09/2013] [Indexed: 01/17/2023]
Abstract
Cytokinesis in many eukaryotes involves the contraction of an actomyosin-based contractile ring. However, the detailed mechanism of contractile ring contraction is not fully understood. Here, we establish an experimental system to study contraction of the ring to completion in vitro. We show that the contractile ring of permeabilized fission yeast cells undergoes rapid contraction in an ATP- and myosin-II-dependent manner in the absence of other cytoplasmic constituents. Surprisingly, neither actin polymerization nor its disassembly is required for contraction of the contractile ring, although addition of exogenous actin-crosslinking proteins blocks ring contraction. Using contractile rings generated from fission yeast cytokinesis mutants, we show that not all proteins required for assembly of the ring are required for its contraction in vitro. Our work provides the beginnings of the definition of a minimal contraction-competent cytokinetic ring apparatus.
Collapse
|
36
|
Tebbs IR, Pollard TD. Separate roles of IQGAP Rng2p in forming and constricting the Schizosaccharomyces pombe cytokinetic contractile ring. Mol Biol Cell 2013; 24:1904-17. [PMID: 23615450 PMCID: PMC3681696 DOI: 10.1091/mbc.e12-10-0775] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Rng2p is required for both the normal process of contractile ring formation from precursor nodes and an alternative mechanism by which rings form from strands of actin filaments, as well as for ring constriction. Systematic analysis of domain deletion mutants establishes how the four domains of Rng2p contribute to cytokinesis. Eukaryotic cells require IQGAP family multidomain adapter proteins for cytokinesis, but many questions remain about how IQGAPs contribute to the process. Here we show that fission yeast IQGAP Rng2p is required for both the normal process of contractile ring formation from precursor nodes and an alternative mechanism by which rings form from strands of actin filaments. Our work adds to previous studies suggesting a role for Rng2p in node and ring formation. We demonstrate that Rng2p is also required for normal ring constriction and septum formation. Systematic analysis of domain-deletion mutants established how the four domains of Rng2p contribute to cytokinesis. Contrary to a previous report, the actin-binding calponin homology domain of Rng2p is not required for viability, ring formation, or ring constriction. The IQ motifs are not required for ring formation but are important for ring constriction and septum formation. The GTPase-activating protein (GAP)–related domain is required for node-based ring formation. The Rng2p C-terminal domain is the only domain essential for viability. Our studies identified several distinct functions of Rng2 at multiple stages of cytokinesis.
Collapse
Affiliation(s)
- Irene R Tebbs
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520-8103, USA
| | | |
Collapse
|
37
|
Song B, Li HP, Zhang JB, Wang JH, Gong AD, Song XS, Chen T, Liao YC. Type II myosin gene in Fusarium graminearum is required for septation, development, mycotoxin biosynthesis and pathogenicity. Fungal Genet Biol 2013; 54:60-70. [PMID: 23507542 DOI: 10.1016/j.fgb.2013.02.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Revised: 02/26/2013] [Accepted: 02/28/2013] [Indexed: 12/01/2022]
Abstract
Type II myosin is required for cytokinesis/septation in yeast and filamentous fungi, including Fusarium graminearum, a prevalent cause of Fusarium head blight in China. A type II myosin gene from the Chinese F. graminearum strain 5035, isolated from infected wheat spikes, was identified by screening a mutant library generated by restriction enzyme-mediated integration. Disruption of the Myo2 gene reduced mycelial growth by 50% and conidiation by 76-fold, and abolished sexual reproduction on wheat kernels. The Δmyo2 mutants also had a 97% decrease in their pathogenicity on wheat, and mycotoxin production fell to just 3.4% of the normal level. The distribution of nuclei and septa was abnormal in the mutants, and the septal ultrastructure appeared disorganized. Time-lapse imaging of septation provided direct evidence that Myo2 is required for septum initiation and formation, and revealed the dynamic behavior of GFP-tagged Myo2 during hyphal and macroconidia development, particularly in the delimiting septum of phialides and macroconidial spores. Microarray analysis identified many genes with altered expression profiles in the Δmyo2 mutant, indicating that Myo2 is required for several F. graminearum developmental processes and biological activities.
Collapse
Affiliation(s)
- Bo Song
- Molecular Biotechnology Laboratory of Triticeae Crops, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Transcriptional regulation of the copper transporter mfc1 in meiotic cells. EUKARYOTIC CELL 2013; 12:575-90. [PMID: 23397571 DOI: 10.1128/ec.00019-13] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Mfc1 is a meiosis-specific protein that mediates copper transport during the meiotic program in Schizosaccharomyces pombe. Although the mfc1(+) gene is induced at the transcriptional level in response to copper deprivation, the molecular determinants that are required for its copper starvation-dependent induction are unknown. Promoter deletion and site-directed mutagenesis have allowed identification of a new cis-regulatory element in the promoter region of the mfc1(+) gene. This cis-acting regulatory sequence containing the sequence TCGGCG is responsible for transcriptional activation of mfc1(+) under low-copper conditions. The TCGGCG sequence contains a CGG triplet known to serve as a binding site for members of the Zn(2)Cys(6) binuclear cluster transcriptional regulator family. In agreement with this fact, one member of this group of regulators, denoted Mca1, was found to be required for maximum induction of mfc1(+) gene expression. Analysis of Mca1 cellular distribution during meiosis revealed that it colocalizes with both chromosomes and sister chromatids during early, middle, and late phases of the meiotic program. Cells lacking Mca1 exhibited a meiotic arrest at metaphase I under low-copper conditions. Binding studies revealed that the N-terminal 150-residue segment of Mca1 expressed as a fusion protein in Escherichia coli specifically interacts with the TCGGCG sequence of the mfc1(+) promoter. Taken together, these results identify the cis-regulatory TCGGCG sequence and the transcription factor Mca1 as critical components for activation of the meiotic copper transport mfc1(+) gene in response to copper starvation.
Collapse
|
39
|
Cadou A, Couturier A, Le Goff C, Xie L, Paulson JR, Le Goff X. The Kin1 kinase and the calcineurin phosphatase cooperate to link actin ring assembly and septum synthesis in fission yeast. Biol Cell 2013; 105:129-48. [PMID: 23294323 DOI: 10.1111/boc.201200042] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Accepted: 01/03/2013] [Indexed: 11/28/2022]
Abstract
BACKGROUND INFORMATION The Kin1 protein kinase of fission yeast, which regulates cell surface cohesiveness during interphase cell growth, is also present at the cell division site during mitosis; however, its function in cell division has remained elusive. RESULTS In FK506-mediated calcineurin deficient cells, mitosis is extended and ring formation is transiently compromised but septation remains normal. Here, we show that Kin1 inhibition in these cells leads to polyseptation and defects in membrane closure. Actomyosin ring disassembly is prevented and ultimately the daughter cells fail to separate. We show that the Pmk1 MAP kinase pathway and the type V myosin Myo4 act downstream of the cytokinetic function of Kin1. Kin1 inhibition also promotes polyseptation in myo3Δ, a type II myosin heavy-chain mutant defective in ring assembly. In contrast, Kin1 inactivation rescues septation in a myosin light-chain cdc4-8 thermosensitive mutant. A structure/function analysis of the Kin1 protein sequence identified a novel motif outside the kinase domain that is important for its polarised localisation and its catalytic activity. This motif is remarkably conserved in all fungal Kin1 homologues but is absent in related kinases of metazoans. CONCLUSIONS We conclude that calcineurin and Kin1 activities must be tightly coordinated to link actomyosin ring assembly with septum synthesis and membrane closure and to ensure separation of the daughter cells.
Collapse
Affiliation(s)
- Angela Cadou
- CNRS UMR6290 Institut de Génétique et Développement de Rennes, France
| | | | | | | | | | | |
Collapse
|
40
|
Lee IJ, Coffman VC, Wu JQ. Contractile-ring assembly in fission yeast cytokinesis: Recent advances and new perspectives. Cytoskeleton (Hoboken) 2012; 69:751-63. [PMID: 22887981 DOI: 10.1002/cm.21052] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Accepted: 07/16/2012] [Indexed: 11/07/2022]
Abstract
The fission yeast Schizosaccharomyces pombe is an excellent model organism to study cytokinesis. Here, we review recent advances on contractile-ring assembly in fission yeast. First, we summarize the assembly of cytokinesis nodes, the precursors of a normal contractile ring. IQGAP Rng2 and myosin essential light chain Cdc4 are recruited by the anillin-like protein Mid1, followed by the addition of other cytokinesis node proteins. Mid1 localization on the plasma membrane is stabilized by interphase node proteins. Second, we discuss proteins and processes that contribute to the search, capture, pull, and release mechanism of contractile-ring assembly. Actin filaments nucleated by formin Cdc12, the motor activity of myosin-II, the stiffness of the actin network, and severing of actin filaments by cofilin all play essential roles in contractile-ring assembly. Finally, we discuss the Mid1-independent pathway for ring assembly, and the possible mechanisms underlying the ring maturation and constriction. Collectively, we provide an overview of the current understanding of contractile-ring assembly and uncover future directions in studying cytokinesis in fission yeast.
Collapse
Affiliation(s)
- I-Ju Lee
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio, USA
| | | | | |
Collapse
|
41
|
Rincon SA, Paoletti A. Mid1/anillin and the spatial regulation of cytokinesis in fission yeast. Cytoskeleton (Hoboken) 2012; 69:764-77. [DOI: 10.1002/cm.21056] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Revised: 07/13/2012] [Accepted: 07/20/2012] [Indexed: 12/20/2022]
|
42
|
Pollard LW, Onishi M, Pringle JR, Lord M. Fission yeast Cyk3p is a transglutaminase-like protein that participates in cytokinesis and cell morphogenesis. Mol Biol Cell 2012; 23:2433-44. [PMID: 22573890 PMCID: PMC3386208 DOI: 10.1091/mbc.e11-07-0656] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
We have identified a fission yeast morphogenesis factor (Cyk3p) that functions with myosin II and chitin synthase during cytokinesis. Cyk3p possesses a novel transglutaminase domain that lacks an active site yet is essential for function. Our work demonstrates the physiological importance of such domains, which are found throughout eukaryotes. Cell morphogenesis is a complex process that relies on a diverse array of proteins and pathways. We have identified a transglutaminase-like protein (Cyk3p) that functions in fission yeast morphogenesis. The phenotype of a cyk3 knockout strain indicates a primary role for Cyk3p in cytokinesis. Correspondingly, Cyk3p localizes both to the actomyosin contractile ring and the division septum, promoting ring constriction, septation, and subsequent cell separation following ring disassembly. In addition, Cyk3p localizes to polarized growth sites and plays a role in cell shape determination, and it also appears to contribute to cell integrity during stationary phase, given its accumulation as dynamic puncta at the cortex of such cells. Our results and the conservation of Cyk3p across fungi point to a role in cell wall synthesis and remodeling. Cyk3p possesses a transglutaminase domain that is essential for function, even though it lacks the catalytic active site. In a wider sense, our work illustrates the physiological importance of inactive members of the transglutaminase family, which are found throughout eukaryotes. We suggest that the proposed evolution of animal transglutaminase cross-linking activity from ancestral bacterial thiol proteases was accompanied by the emergence of a subclass whose function does not depend on enzymatic activity.
Collapse
Affiliation(s)
- Luther W Pollard
- Department of Molecular Physiology & Biophysics, University of Vermont, Burlington, VT 05405, USA
| | | | | | | |
Collapse
|
43
|
Hsp90 interaction with Cdc2 and Plo1 kinases contributes to actomyosin ring condensation in fission yeast. Curr Genet 2012; 58:191-203. [DOI: 10.1007/s00294-012-0376-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Revised: 04/02/2012] [Accepted: 04/13/2012] [Indexed: 12/13/2022]
|
44
|
Ye Y, Lee IJ, Runge KW, Wu JQ. Roles of putative Rho-GEF Gef2 in division-site positioning and contractile-ring function in fission yeast cytokinesis. Mol Biol Cell 2012; 23:1181-95. [PMID: 22298427 PMCID: PMC3315812 DOI: 10.1091/mbc.e11-09-0800] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
How Rho-GEFs and Rho GTPases regulate division-site selection during cytokinesis in fission yeast is unknown. The Rho-GEF Gef2 interacts with the anillin Mid1 to regulate contractile-ring positioning and assembly in coordination with the polo kinase Plo1. In addition, Gef2 is involved in contractile-ring stability and disassembly. Cytokinesis is crucial for integrating genome inheritance and cell functions. In multicellular organisms, Rho-guanine nucleotide exchange factors (GEFs) and Rho GTPases are key regulators of division-plane specification and contractile-ring formation during cytokinesis, but how they regulate early steps of cytokinesis in fission yeast remains largely unknown. Here we show that putative Rho-GEF Gef2 and Polo kinase Plo1 coordinate to control the medial cortical localization and function of anillin-related protein Mid1. The division-site positioning defects of gef2∆ plo1-ts18 double mutant can be partially rescued by increasing Mid1 levels. We find that Gef2 physically interacts with the Mid1 N-terminus and modulates Mid1 cortical binding. Gef2 localization to cortical nodes and the contractile ring depends on its last 145 residues, and the DBL-homology domain is important for its function in cytokinesis. Our data suggest the interaction between Rho-GEFs and anillins is an important step in the signaling pathways during cytokinesis. In addition, Gef2 also regulates contractile-ring function late in cytokinesis and may negatively regulate the septation initiation network. Collectively, we propose that Gef2 facilitates and stabilizes Mid1 binding to the medial cortex, where the localized Mid1 specifies the division site and induces contractile-ring assembly.
Collapse
Affiliation(s)
- Yanfang Ye
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | |
Collapse
|
45
|
Beaudoin J, Ioannoni R, López-Maury L, Bähler J, Ait-Mohand S, Guérin B, Dodani SC, Chang CJ, Labbé S. Mfc1 is a novel forespore membrane copper transporter in meiotic and sporulating cells. J Biol Chem 2011; 286:34356-72. [PMID: 21828039 DOI: 10.1074/jbc.m111.280396] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To gain insight in the molecular basis of copper homeostasis during meiosis, we have used DNA microarrays to analyze meiotic gene expression in the model yeast Schizosaccharomyces pombe. Profiling data identified a novel meiosis-specific gene, termed mfc1(+), that encodes a putative major facilitator superfamily-type transporter. Although Mfc1 does not exhibit any significant sequence homology with the copper permease Ctr4, it contains four putative copper-binding motifs that are typically found in members of the copper transporter family of copper transporters. Similarly to the ctr4(+) gene, the transcription of mfc1(+) was induced by low concentrations of copper. However, its temporal expression profile during meiosis was distinct to ctr4(+). Whereas Ctr4 was observed at the plasma membrane shortly after induction of meiosis, Mfc1 appeared later in precursor vesicles and, subsequently, at the forespore membrane of ascospores. Using the fluorescent copper-binding tracker Coppersensor-1 (CS1), labile cellular copper was primarily detected in the forespores in an mfc1(+)/mfc1(+) strain, whereas an mfc1Δ/mfc1Δ mutant exhibited an intracellular dispersed punctate distribution of labile copper ions. In addition, the copper amine oxidase Cao1, which localized primarily in the forespores of asci, was fully active in mfc1(+)/mfc1(+) cells, but its activity was drastically reduced in an mfc1Δ/mfc1Δ strain. Furthermore, our data showed that meiotic cells that express the mfc1(+) gene have a distinct developmental advantage over mfc1Δ/mfc1Δ mutant cells when copper is limiting. Taken together, the data reveal that Mfc1 serves to transport copper for accurate and timely meiotic differentiation under copper-limiting conditions.
Collapse
Affiliation(s)
- Jude Beaudoin
- Départements de Biochimie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Quebec J1H 5N4, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
East DA, Mulvihill DP. Regulation and function of the fission yeast myosins. J Cell Sci 2011; 124:1383-90. [PMID: 21502135 DOI: 10.1242/jcs.078527] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
It is now quarter of a century since the actin cytoskeleton was first described in the fission yeast, Schizosaccharomyces pombe. Since then, a substantial body of research has been undertaken on this tractable model organism, extending our knowledge of the organisation and function of the actomyosin cytoskeleton in fission yeast and eukaryotes in general. Yeast represents one of the simplest eukaryotic model systems that has been characterised to date, and its genome encodes genes for homologues of the majority of actin regulators and actin-binding proteins found in metazoan cells. The ease with which diverse methodologies can be used, together with the small number of myosins, makes fission yeast an attractive model system for actomyosin research and provides the opportunity to fully understand the biochemical and functional characteristics of all myosins within a single cell type. In this Commentary, we examine the differences between the five S. pombe myosins, and focus on how these reflect the diversity of their functions. We go on to examine the role that the actin cytoskeleton plays in regulating the myosin motor activity and function, and finally explore how research in this simple unicellular organism is providing insights into the substantial impacts these motors can have on development and viability in multicellular higher-order eukaryotes.
Collapse
Affiliation(s)
- Daniel A East
- School of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, UK
| | | |
Collapse
|
47
|
Beaudoin J, Thiele DJ, Labbé S, Puig S. Dissection of the relative contribution of the Schizosaccharomyces pombe Ctr4 and Ctr5 proteins to the copper transport and cell surface delivery functions. MICROBIOLOGY (READING, ENGLAND) 2011; 157:1021-1031. [PMID: 21273250 DOI: 10.1099/mic.0.046854-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The Ctr1 family of proteins mediates high-affinity copper (Cu) acquisition in eukaryotic organisms. In the fission yeast Schizosaccharomyces pombe, Cu uptake is carried out by a heteromeric complex formed by the Ctr4 and Ctr5 proteins. Unlike human and Saccharomyces cerevisiae Ctr1 proteins, Ctr4 and Ctr5 are unable to function independently in Cu acquisition. Instead, both proteins physically interact with each other to form a Ctr4-Ctr5 heteromeric complex, and are interdependent for secretion to the plasma membrane and Cu transport activity. In this study, we used S. cerevisiae mutants that are defective in high-affinity Cu uptake to dissect the relative contribution of Ctr4 and Ctr5 to the Cu transport function. Functional complementation and localization assays show that the conserved Met-X(3)-Met motif in transmembrane domain 2 of the Ctr5 protein is dispensable for the functionality of the Ctr4-Ctr5 complex, whereas the Met-X(3)-Met motif in the Ctr4 protein is essential for function and for localization of the hetero-complex to the plasma membrane. Moreover, Ctr4/Ctr5 chimeric proteins reveal unique properties found either in Ctr4 or in Ctr5, and are sufficient for Cu uptake on the cell surface of Sch. pombe cells. Functional chimeras contain the Ctr4 central and Ctr5 carboxyl-terminal domains (CTDs). We propose that the Ctr4 central domain mediates Cu transport in this hetero-complex, whereas the Ctr5 CTD functions in the regulation of trafficking of the Cu transport complex to the cell surface.
Collapse
Affiliation(s)
- Jude Beaudoin
- Département de Biochimie, Faculté de Médecine, Université de Sherbrooke, 3001 12e Ave Nord, Sherbrooke, QC J1H 5N4, Canada
| | - Dennis J Thiele
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Research Drive-LSRC-C134, Durham, NC 27710, USA
| | - Simon Labbé
- Département de Biochimie, Faculté de Médecine, Université de Sherbrooke, 3001 12e Ave Nord, Sherbrooke, QC J1H 5N4, Canada
| | - Sergi Puig
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), PO Box 73, E-46100 Burjassot, Valencia, Spain
| |
Collapse
|
48
|
The fungal type II myosin in Penicillium marneffei, MyoB, is essential for chitin deposition at nascent septation sites but not actin localization. EUKARYOTIC CELL 2010; 10:302-12. [PMID: 21131434 DOI: 10.1128/ec.00201-10] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Cytokinesis is essential for proliferative growth but also plays equally important roles during morphogenesis and development. The human pathogen Penicillium marneffei is capable of dimorphic switching in response to temperature, growing in a multicellular filamentous hyphal form at 25°C and in a unicellular yeast form at 37°C. P. marneffei also undergoes asexual development at 25°C to produce multicellular differentiated conidiophores. Thus, P. marneffei exhibits cell division with and without cytokinesis and division by budding and fission, depending on the cell type. The type II myosin gene, myoB, from P. marneffei plays important roles in the morphogenesis of these cell types. Deletion of myoB leads to chitin deposition defects at sites of cell division without perturbing actin localization. In addition to aberrant hyphal cells, distinct conidiophore cell types are lacking due to malformed septa and nuclear division defects. At 37°C, deletion of myoB prevents uninucleate yeast cell formation, instead producing long filaments resembling hyphae at 25°C. The ΔmyoB cells also often lyse due to defects in cell wall biogenesis. Thus, MyoB is essential for correct morphogenesis of all cell types regardless of division mode (budding or fission) and defines differences between the different types of growth.
Collapse
|
49
|
Samejima I, Miller VJ, Rincon SA, Sawin KE. Fission yeast Mto1 regulates diversity of cytoplasmic microtubule organizing centers. Curr Biol 2010; 20:1959-65. [PMID: 20970338 PMCID: PMC2989437 DOI: 10.1016/j.cub.2010.10.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2010] [Revised: 09/08/2010] [Accepted: 10/04/2010] [Indexed: 11/06/2022]
Abstract
Microtubule nucleation by the γ-tubulin complex occurs primarily at centrosomes, but more diverse types of microtubule organizing centers (MTOCs) also exist, especially in differentiated cells [1–4]. Mechanisms generating MTOC diversity are poorly understood. Fission yeast Schizosaccharomyces pombe has multiple types of cytoplasmic MTOCs, and these vary through the cell cycle [5, 6]. Cytoplasmic microtubule nucleation in fission yeast depends on a complex of proteins Mto1 and Mto2 (Mto1/2), which localizes to MTOCs and interacts with the γ-tubulin complex [7–12]. Localization of Mto1 to prospective MTOC sites has been proposed as a key step in γ-tubulin complex recruitment and MTOC formation [9, 13], but how Mto1 localizes to such sites has not been investigated. Here we identify a short conserved C-terminal sequence in Mto1, termed MASC, important for targeting Mto1 to multiple distinct MTOCs. Different subregions of MASC target Mto1 to different MTOCs, and multimerization of MASC is important for efficient targeting. Mto1 targeting to the cell equator during division depends on direct interaction with unconventional type II myosin Myp2. Targeting to the spindle pole body during mitosis depends on Sid4 and Cdc11, components of the septation initiation network (SIN), but not on other SIN components.
Collapse
Affiliation(s)
- Itaru Samejima
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Swann Building, Mayfield Road, Edinburgh EH9 3JR, UK
| | | | | | | |
Collapse
|
50
|
Coulton AT, East DA, Galinska-Rakoczy A, Lehman W, Mulvihill DP. The recruitment of acetylated and unacetylated tropomyosin to distinct actin polymers permits the discrete regulation of specific myosins in fission yeast. J Cell Sci 2010; 123:3235-43. [PMID: 20807799 DOI: 10.1242/jcs.069971] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Tropomyosin (Tm) is a conserved dimeric coiled-coil protein, which forms polymers that curl around actin filaments in order to regulate actomyosin function. Acetylation of the Tm N-terminal methionine strengthens end-to-end bonds, which enhances actin binding as well as the ability of Tm to regulate myosin motor activity in both muscle and non-muscle cells. In this study we explore the function of each Tm form within fission yeast cells. Electron microscopy and live cell imaging revealed that acetylated and unacetylated Tm associate with distinct actin structures within the cell, and that each form has a profound effect upon the shape and integrity of the polymeric actin filament. We show that, whereas Tm acetylation is required to regulate the in vivo motility of class II myosins, acetylated Tm had no effect on the motility of class I and V myosins. These findings illustrate a novel Tm-acetylation-state-dependent mechanism for regulating specific actomyosin cytoskeletal interactions.
Collapse
Affiliation(s)
- Arthur T Coulton
- School of Biosciences, University of Kent, Canterbury, Kent, CT2 7NJ, UK
| | | | | | | | | |
Collapse
|