1
|
Fan X, Okada K, Lin H, Ori-McKenney KM, McKenney RJ. A pathological phosphorylation pattern enhances tau cooperativity on microtubules and facilitates tau filament assembly. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.29.635117. [PMID: 39974960 PMCID: PMC11838361 DOI: 10.1101/2025.01.29.635117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Phosphorylation plays a crucial role in both normal and disease processes involving the microtubule-associated protein tau. Physiologically, phosphorylation regulates tau's subcellular localization within neurons and is involved in fetal development and animal hibernation. However, abnormal phosphorylation of tau is linked to the formation of neurofibrillary tangles (NFTs) in various human tauopathies. Interestingly, the patterns of tau phosphorylation are similar in both normal and abnormal processes, leaving unclear whether phosphorylated tau retains its functional role in normal processes. The relationship between tau phosphorylation and NFT assembly in tauopathies is also still debated. To address these questions, we investigated the effects of tau phosphorylation on microtubule binding, cooperative protein envelope formation, and NFT filament assembly relevant to tauopathies. Consistent with previous results, our findings show that tau phosphorylation decreases tau's overall affinity for microtubules, but we reveal that phosphorylation more dramatically impacts the cooperativity between tau molecules during tau envelope formation along microtubules. Additionally, we observed that the specific pattern of phosphorylation, rather than overall phosphorylation level, strongly impacts the assembly of tau filaments in vitro . Our results reveal new insights into how tau phosphorylation impacts tau's physiological roles on microtubules and its pathoconversion into NFTs.
Collapse
|
2
|
Kolling LJ, Chimenti MS, Marcinkiewcz CA. Spatial differences in gene expression across the dorsal raphe nucleus in a model of early Alzheimer's disease. J Alzheimers Dis 2025; 103:133-148. [PMID: 39584353 DOI: 10.1177/13872877241299119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Abstract
BACKGROUND Persons with Alzheimer's disease (AD) present with changes in mood, sleep, and arousal that may precede the clinical manifestation of cognitive decline. These early symptoms can be driven by changes in the serotonergic (5-HT) nuclei of the brainstem, particularly the dorsal raphe nucleus (DRN). It is unclear why all 5-HT neurons do not simultaneously develop AD pathology that progresses at the same rate. OBJECTIVE We sought to identify any underlying genetic components associated with susceptibility or resistance of 5-HT neurons to AD pathology. METHODS The Visium Spatial Gene Expression platform was used to identify transcriptomic changes across the DRN in a preclinical model of early AD, human tau-overexpressing mice (htau mice). We further used RNAscope and immunohistochemical assessment to validate findings of primary interest. RESULTS We find that the DRN of htau mice differentially expresses AD-related genes, including those related to kinase binding, ion channel activity, ligand-receptor interactions, and regulation of serine/threonine kinases. We further find that computational sub-clustering of the DRN is consistent with previous circuitry-driven characterizations, allowing for spatial bounding of distinct subregions within the DRN. Of these, we find the dorsolateral DRN is preferentially impacted by 5-HT neuron loss and development of tau pathology, which coincides with increased expression of the long noncoding RNA Map2k3os. CONCLUSIONS Map2k3os may serve regulatory roles relevant for tau phosphorylation and warrants further investigation to characterize its interactions. Overall, this report demonstrates the power of large-scale spatial transcriptomics technologies, while underscoring the need for convergent-data validation to overcome their limitations.
Collapse
Affiliation(s)
- Louis J Kolling
- Department of Neuroscience and Pharmacology, University of Iowa, Iowa City, IA, USA
| | - Michael S Chimenti
- Iowa Institute of Human Genetics Bioinformatics Division, University of Iowa, IA City, IA, USA
| | | |
Collapse
|
3
|
Böken D, Wu Y, Zhang Z, Klenerman D. Detecting the Undetectable: Advances in Methods for Identifying Small Tau Aggregates in Neurodegenerative Diseases. Chembiochem 2024:e202400877. [PMID: 39688878 DOI: 10.1002/cbic.202400877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/16/2024] [Accepted: 12/17/2024] [Indexed: 12/18/2024]
Abstract
Tau, a microtubule-associated protein, plays a critical role in maintaining neuronal structure and function. However, in neurodegenerative diseases such as Alzheimer's disease and other tauopathies, tau misfolds and aggregates into oligomers and fibrils, leading to neuronal damage. Tau oligomers are increasingly recognised as the most neurotoxic species, inducing synaptic dysfunction and contributing to disease progression. Detecting these early-stage aggregates is challenging due to their low concentration and high heterogeneity in biological samples. Traditional methods such as immunostaining and enzyme-linked immunosorbent assay (ELISA) lack the sensitivity and specificity to reliably detect small tau aggregates. Advanced single-molecule approaches, including single-molecule fluorescence resonance energy transfer (smFRET) and single-molecule pull-down (SiMPull), offer improved sensitivity for studying tau aggregation at the molecular level. These emerging tools provide critical insights into tau pathology, enabling earlier detection and characterisation of disease-relevant aggregates, thereby offering potential for the development of targeted therapies and diagnostic approaches for tauopathies.
Collapse
Affiliation(s)
- Dorothea Böken
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
- UK Dementia Research Institute, University of Cambridge, Cambridge, CB2 0AH, UK
| | - Yunzhao Wu
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
- UK Dementia Research Institute, University of Cambridge, Cambridge, CB2 0AH, UK
| | - Ziwei Zhang
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
- UK Dementia Research Institute, University of Cambridge, Cambridge, CB2 0AH, UK
| | - David Klenerman
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
- UK Dementia Research Institute, University of Cambridge, Cambridge, CB2 0AH, UK
| |
Collapse
|
4
|
García-Cruz VM, Arias C. Palmitic Acid Induces Posttranslational Modifications of Tau Protein in Alzheimer's Disease-Related Epitopes and Increases Intraneuronal Tau Levels. Mol Neurobiol 2024; 61:5129-5141. [PMID: 38167971 PMCID: PMC11249523 DOI: 10.1007/s12035-023-03886-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 12/14/2023] [Indexed: 01/05/2024]
Abstract
Metabolic diseases derived from an unhealthy lifestyle have been linked with an increased risk for developing cognitive impairment and even Alzheimer's disease (AD). Although high consumption of saturated fatty acids such as palmitic acid (PA) has been associated with the development of obesity and type II diabetes, the mechanisms connecting elevated neuronal PA levels and increased AD marker expression remain unclear. Among other effects, PA induces insulin resistance, increases intracellular calcium and reactive oxygen species (ROS) production, and reduces the NAD+/NADH ratio, resulting in decreased activity of the deacetylase Sirtuin1 (SIRT1) in neurons. These mechanisms may affect signaling pathways that impact the posttranslational modifications (PTMs) of the tau protein. To analyze the role played by PA in inducing the phosphorylation and acetylation of tau, we examined PTM changes in human tau in differentiated neurons from human neuroblastoma cells. We found changes in the phosphorylation state of several AD-related sites, namely, S199/202 and S214, that were mediated by a mechanism associated with the dysregulated activity of the kinases GSK3β and mTOR. PA also increased the acetylation of residue K280 and elevated total tau level after long exposure time. These findings provide information about the mechanisms by which saturated fatty acids cause tau PTMs that are similar to those observed in association with AD biochemical changes.
Collapse
Affiliation(s)
- Valeria Melissa García-Cruz
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, CDMX, 04510, México
| | - Clorinda Arias
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, CDMX, 04510, México.
| |
Collapse
|
5
|
Wu Y, Shi Z, Zhou X, Zhang P, Yang X, Ding J, Wu H. scHiCyclePred: a deep learning framework for predicting cell cycle phases from single-cell Hi-C data using multi-scale interaction information. Commun Biol 2024; 7:923. [PMID: 39085477 PMCID: PMC11291681 DOI: 10.1038/s42003-024-06626-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 07/24/2024] [Indexed: 08/02/2024] Open
Abstract
The emergence of single-cell Hi-C (scHi-C) technology has provided unprecedented opportunities for investigating the intricate relationship between cell cycle phases and the three-dimensional (3D) structure of chromatin. However, accurately predicting cell cycle phases based on scHi-C data remains a formidable challenge. Here, we present scHiCyclePred, a prediction model that integrates multiple feature sets to leverage scHi-C data for predicting cell cycle phases. scHiCyclePred extracts 3D chromatin structure features by incorporating multi-scale interaction information. The comparative analysis illustrates that scHiCyclePred surpasses existing methods such as Nagano_method and CIRCLET across various metrics including accuracy (ACC), F1 score, Precision, Recall, and balanced accuracy (BACC). In addition, we evaluate scHiCyclePred against the previously published CIRCLET using the dataset of complex tissues (Liu_dataset). Experimental results reveal significant improvements with scHiCyclePred exhibiting improvements of 0.39, 0.52, 0.52, and 0.39 over the CIRCLET in terms of ACC, F1 score, Precision, and Recall metrics, respectively. Furthermore, we conduct analyses on three-dimensional chromatin dynamics and gene features during the cell cycle, providing a more comprehensive understanding of cell cycle dynamics through chromatin structure. scHiCyclePred not only offers insights into cell biology but also holds promise for catalyzing breakthroughs in disease research. Access scHiCyclePred on GitHub at https:// github.com/HaoWuLab-Bioinformatics/ scHiCyclePred .
Collapse
Affiliation(s)
- Yingfu Wu
- School of Software, Shandong University, Jinan, Shandong, China
- Shenzhen Research Institute of Shandong University, Shenzhen, Guangdong, China
- College of Information Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Zhenqi Shi
- School of Software, Shandong University, Jinan, Shandong, China
| | - Xiangfei Zhou
- School of Software, Shandong University, Jinan, Shandong, China
| | - Pengyu Zhang
- College of Information Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiuhui Yang
- School of Software, Shandong University, Jinan, Shandong, China
| | - Jun Ding
- Department of Medicine, Meakins-Christie Laboratories, McGill University, Montreal, QC, Canada.
| | - Hao Wu
- School of Software, Shandong University, Jinan, Shandong, China.
- Shenzhen Research Institute of Shandong University, Shenzhen, Guangdong, China.
| |
Collapse
|
6
|
Yu K, Yao KR, Aguinaga MA, Choquette JM, Liu C, Wang Y, Liao D. G272V and P301L Mutations Induce Isoform Specific Tau Mislocalization to Dendritic Spines and Synaptic Dysfunctions in Cellular Models of 3R and 4R Tau Frontotemporal Dementia. J Neurosci 2024; 44:e1215232024. [PMID: 38858079 PMCID: PMC11236579 DOI: 10.1523/jneurosci.1215-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 05/10/2024] [Accepted: 05/16/2024] [Indexed: 06/12/2024] Open
Abstract
Tau pathologies are detected in the brains of some of the most common neurodegenerative diseases including Alzheimer's disease (AD), Lewy body dementia (LBD), chronic traumatic encephalopathy (CTE), and frontotemporal dementia (FTD). Tau proteins are expressed in six isoforms with either three or four microtubule-binding repeats (3R tau or 4R tau) due to alternative RNA splicing. AD, LBD, and CTE brains contain pathological deposits of both 3R and 4R tau. FTD patients can exhibit either 4R tau pathologies in most cases or 3R tau pathologies less commonly in Pick's disease, which is a subfamily of FTD. Here, we report the isoform-specific roles of tau in FTD. The P301L mutation, linked to familial 4R tau FTD, induces mislocalization of 4R tau to dendritic spines in primary hippocampal cultures that were prepared from neonatal rat pups of both sexes. Contrastingly, the G272V mutation, linked to familial Pick's disease, induces phosphorylation-dependent mislocalization of 3R tau but not 4R tau proteins to dendritic spines. The overexpression of G272V 3R tau but not 4R tau proteins leads to the reduction of dendritic spine density and suppression of mEPSCs in 5-week-old primary rat hippocampal cultures. The decrease in mEPSC amplitude caused by G272V 3R tau is dynamin-dependent whereas that caused by P301L 4R tau is dynamin-independent, indicating that the two tau isoforms activate different signaling pathways responsible for excitatory synaptic dysfunction. Our 3R and 4R tau studies here will shed new light on diverse mechanisms underlying FTD, AD, LBD, and CTE.
Collapse
Affiliation(s)
- Ke Yu
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455
- Department of General Practice, The General Hospital of Western Theater Command, Chengdu 610083, China
| | - Katherine R Yao
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455
- College of Biological Sciences, University of Minnesota, St Paul, Minnesota 55108
| | - Miguel A Aguinaga
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455
- College of Biological Sciences, University of Minnesota, St Paul, Minnesota 55108
| | - Jessica M Choquette
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455
| | - Chengliang Liu
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455
| | - Yuxin Wang
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455
| | - Dezhi Liao
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455
| |
Collapse
|
7
|
Jain U, Johari S, Srivastava P. Current Insights of Nanocarrier-Mediated Gene Therapeutics to Treat Potential Impairment of Amyloid Beta Protein and Tau Protein in Alzheimer's Disease. Mol Neurobiol 2024; 61:1969-1989. [PMID: 37831361 DOI: 10.1007/s12035-023-03671-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 09/20/2023] [Indexed: 10/14/2023]
Abstract
Alzheimer's disease (AD), is the major type of dementia and most progressive, irreversible widespread neurodegenerative disorder affecting the elderly worldwide. The prime hallmarks of Alzheimer's disease (AD) are beta-amyloid plaques (Aβ) and neurofibrillary tangles (NFT). In spite of recent advances and developments in targeting the hallmarks of AD, symptomatic medications that promise neuroprotective activity against AD are currently unable to treat degenerating brain clinically or therapeutically and show little efficacy. The extensive progress of AD therapies over time has resulted in the advent of disease-modifying medications with the potential to alleviate AD. However, due to the presence of a defensive connection between the vascular system and the neural tissues known as the blood-brain barrier (BBB), directing these medications to the site of action in the degenerating brain is the key problem. BBB acts as a highly selective semipermeable membrane that prevents any type of foreign substance from entering the microenvironment of neurons. To overcome this limitation, the revolutionary approach of nanoparticle(NP)/nanocarrier-mediated drug delivery system has marked the era with its unique property to cross, avoid, or disrupt the defensive BBB efficiently and release the modified drug at the target site of action. After comprehensive data mining, this review focuses on the detailed understanding of different types of nanoparticle(NP)/nanocarrier-mediated drug delivery system like liposomes, micelles, gold nanoparticles(NP), polymeric NPs, etc. which have promising potential in carrying the desired drug(cargo) to the location in the degenerated brain thus mitigating the Alzheimer's disease.
Collapse
Affiliation(s)
- Unnati Jain
- School of Biosciences, Institute of Management Studies Ghaziabad (University Courses Campus), Adhyatmik Nagar, NH09, Ghaziabad, Uttar Pradesh, India
| | - Surabhi Johari
- School of Biosciences, Institute of Management Studies Ghaziabad (University Courses Campus), Adhyatmik Nagar, NH09, Ghaziabad, Uttar Pradesh, India.
| | - Priyanka Srivastava
- School of Biosciences, Institute of Management Studies Ghaziabad (University Courses Campus), Adhyatmik Nagar, NH09, Ghaziabad, Uttar Pradesh, India.
| |
Collapse
|
8
|
Zafar S, Fatima SI, Schmitz M, Zerr I. Current Technologies Unraveling the Significance of Post-Translational Modifications (PTMs) as Crucial Players in Neurodegeneration. Biomolecules 2024; 14:118. [PMID: 38254718 PMCID: PMC10813409 DOI: 10.3390/biom14010118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/09/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
Neurodegenerative disorders, such as Parkinson's disease, Alzheimer's disease, and Huntington's disease, are identified and characterized by the progressive loss of neurons and neuronal dysfunction, resulting in cognitive and motor impairment. Recent research has shown the importance of PTMs, such as phosphorylation, acetylation, methylation, ubiquitination, sumoylation, nitration, truncation, O-GlcNAcylation, and hydroxylation, in the progression of neurodegenerative disorders. PTMs can alter protein structure and function, affecting protein stability, localization, interactions, and enzymatic activity. Aberrant PTMs can lead to protein misfolding and aggregation, impaired degradation, and clearance, and ultimately, to neuronal dysfunction and death. The main objective of this review is to provide an overview of the PTMs involved in neurodegeneration, their underlying mechanisms, methods to isolate PTMs, and the potential therapeutic targets for these disorders. The PTMs discussed in this article include tau phosphorylation, α-synuclein and Huntingtin ubiquitination, histone acetylation and methylation, and RNA modifications. Understanding the role of PTMs in neurodegenerative diseases may provide new therapeutic strategies for these devastating disorders.
Collapse
Affiliation(s)
- Saima Zafar
- Department of Neurology, Clinical Dementia Center and DZNE, University Medical Center Goettingen (UMG), Georg-August University, Robert-Koch-Str. 40, 37075 Goettingen, Germany
- Biomedical Engineering and Sciences Department, School of Mechanical and Manufacturing Engineering (SMME), National University of Sciences and Technology (NUST), Bolan Road, H-12, Islamabad 44000, Pakistan
| | - Shehzadi Irum Fatima
- Department of Neurology, Clinical Dementia Center and DZNE, University Medical Center Goettingen (UMG), Georg-August University, Robert-Koch-Str. 40, 37075 Goettingen, Germany
| | - Matthias Schmitz
- Department of Neurology, Clinical Dementia Center and DZNE, University Medical Center Goettingen (UMG), Georg-August University, Robert-Koch-Str. 40, 37075 Goettingen, Germany
| | - Inga Zerr
- Department of Neurology, Clinical Dementia Center and DZNE, University Medical Center Goettingen (UMG), Georg-August University, Robert-Koch-Str. 40, 37075 Goettingen, Germany
| |
Collapse
|
9
|
Shukla D, Suryavanshi A, Bharti SK, Asati V, Mahapatra DK. Recent Advances in the Treatment and Management of Alzheimer's Disease: A Precision Medicine Perspective. Curr Top Med Chem 2024; 24:1699-1737. [PMID: 38566385 DOI: 10.2174/0115680266299847240328045737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/20/2024] [Accepted: 02/29/2024] [Indexed: 04/04/2024]
Abstract
About 60% to 70% of people with dementia have Alzheimer's Disease (AD), a neurodegenerative illness. One reason for this disorder is the misfolding of naturally occurring proteins in the human brain, specifically β-amyloid (Aβ) and tau. Certain diagnostic imaging techniques, such as amyloid PET imaging, tau PET imaging, Magnetic Resonance Imaging (MRI), Computerized Tomography (CT), and others, can detect biomarkers in blood, plasma, and cerebral spinal fluids, like an increased level of β-amyloid, plaques, and tangles. In order to create new pharmacotherapeutics for Alzheimer's disease, researchers must have a thorough and detailed knowledge of amyloid beta misfolding and other related aspects. Donepezil, rivastigmine, galantamine, and other acetylcholinesterase inhibitors are among the medications now used to treat Alzheimer's disease. Another medication that can temporarily alleviate dementia symptoms is memantine, which blocks the N-methyl-D-aspartate (NMDA) receptor. However, it is not able to halt or reverse the progression of the disease. Medication now on the market can only halt its advancement, not reverse it. Interventions to alleviate behavioral and psychological symptoms, exhibit anti- neuroinflammation and anti-tau effects, induce neurotransmitter alteration and cognitive enhancement, and provide other targets have recently been developed. For some Alzheimer's patients, the FDA-approved monoclonal antibody, aducanumab, is an option; for others, phase 3 clinical studies are underway for drugs, like lecanemab and donanemab, which have demonstrated potential in eliminating amyloid protein. However, additional study is required to identify and address these limitations in order to reduce the likelihood of side effects and maximize the therapeutic efficacy.
Collapse
Affiliation(s)
- Deepali Shukla
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, Chhattisgarh, India
| | - Anjali Suryavanshi
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, Chhattisgarh, India
| | - Sanjay Kumar Bharti
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, Chhattisgarh, India
| | - Vivek Asati
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, Punjab, India
| | - Debarshi Kar Mahapatra
- Department of Pharmaceutical Chemistry, Dr. D.Y. Patil Institute of Pharmaceutical Sciences and Research, Pimpri, Pune, Maharashtra, India
| |
Collapse
|
10
|
Ayoub CA, Moore KI, Kuret J. Quantification of Methylation and Phosphorylation Stoichiometry. Methods Mol Biol 2024; 2754:221-235. [PMID: 38512670 DOI: 10.1007/978-1-0716-3629-9_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
Tauopathies including Alzheimer's disease (AD) are neurodegenerative disorders accompanied by the conversion of functional forms of the microtubule associated protein Tau into non-functional aggregates. A variety of post-translational modifications (PTMs) on Tau precede or accompany the conversion, placing them in position to modulate Tau function as well as its propensity to aggregate. Although Tau PTMs can be characterized by their sites of modification, their total stoichiometry when summed over all sites also is an important metric of their potential impact on function. Here we provide a protocol for rapidly producing recombinant Tau with enzyme-specific PTMs at high stoichiometry in vitro and demonstrate its utility in the context of hyperphosphorylation. Additionally, protocols for estimating phosphorylation and methylation stoichiometry on Tau proteins isolated from any source are presented. Together these methods support experimentation on Tau PTM function over a wide range of experimental conditions.
Collapse
Affiliation(s)
- Christopher A Ayoub
- Medical Scientist Training Program, Ohio State University College of Medicine, Columbus, OH, USA
| | - Khadijah I Moore
- Interdisciplinary Biophysics Graduate Program, Ohio State University College of Medicine, Columbus, OH, USA
| | - Jeff Kuret
- Department of Biological Chemistry and Pharmacology, The Ohio State University College of Medicine, Columbus, OH, USA.
| |
Collapse
|
11
|
Cario A, Berger CL. Tau, microtubule dynamics, and axonal transport: New paradigms for neurodegenerative disease. Bioessays 2023; 45:e2200138. [PMID: 37489532 PMCID: PMC10630968 DOI: 10.1002/bies.202200138] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 05/04/2023] [Accepted: 05/23/2023] [Indexed: 07/26/2023]
Abstract
The etiology of Tauopathies, a diverse class of neurodegenerative diseases associated with the Microtubule Associated Protein (MAP) Tau, is usually described by a common mechanism in which Tau dysfunction results in the loss of axonal microtubule stability. Here, we reexamine and build upon the canonical disease model to encompass other Tau functions. In addition to regulating microtubule dynamics, Tau acts as a modulator of motor proteins, a signaling hub, and a scaffolding protein. This diverse array of functions is related to the dynamic nature of Tau isoform expression, post-translational modification (PTM), and conformational flexibility. Thus, there is no single mechanism that can describe Tau dysfunction. The effects of specific pathogenic mutations or aberrant PTMs need to be examined on all of the various functions of Tau in order to understand the unique etiology of each disease state.
Collapse
Affiliation(s)
- Alisa Cario
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, VT 05405
| | - Christopher L. Berger
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, VT 05405
| |
Collapse
|
12
|
Malter JS. Pin1 and Alzheimer's disease. Transl Res 2023; 254:24-33. [PMID: 36162703 PMCID: PMC10111655 DOI: 10.1016/j.trsl.2022.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/29/2022] [Accepted: 09/19/2022] [Indexed: 10/14/2022]
Abstract
Alzheimer's disease (AD) is an immense and growing public health crisis. Despite over 100 years of investigation, the etiology remains elusive and therapy ineffective. Despite current gaps in knowledge, recent studies have identified dysfunction or loss-of-function of Pin1, a unique cis-trans peptidyl prolyl isomerase, as an important step in AD pathogenesis. Here I review the functionality of Pin1 and its role in neurodegeneration.
Collapse
Affiliation(s)
- James S Malter
- Department of Pathology, UT Southwestern Medical Center, 5333 Harry Hines Blvd, Dallas, TX 75390.
| |
Collapse
|
13
|
Denechaud M, Geurs S, Comptdaer T, Bégard S, Garcia-Núñez A, Pechereau LA, Bouillet T, Vermeiren Y, De Deyn PP, Perbet R, Deramecourt V, Maurage CA, Vanderhaegen M, Vanuytven S, Lefebvre B, Bogaert E, Déglon N, Voet T, Colin M, Buée L, Dermaut B, Galas MC. Tau promotes oxidative stress-associated cycling neurons in S phase as a pro-survival mechanism: Possible implication for Alzheimer's disease. Prog Neurobiol 2023; 223:102386. [PMID: 36481386 DOI: 10.1016/j.pneurobio.2022.102386] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 11/24/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022]
Abstract
Multiple lines of evidence have linked oxidative stress, tau pathology and neuronal cell cycle re-activation to Alzheimer's disease (AD). While a prevailing idea is that oxidative stress-induced neuronal cell cycle reactivation acts as an upstream trigger for pathological tau phosphorylation, others have identified tau as an inducer of cell cycle abnormalities in both mitotic and postmitotic conditions. In addition, nuclear hypophosphorylated tau has been identified as a key player in the DNA damage response to oxidative stress. Whether and to what extent these observations are causally linked remains unclear. Using immunofluorescence, fluorescence-activated nucleus sorting and single-nucleus sequencing, we report an oxidative stress-associated accumulation of nuclear hypophosphorylated tau in a subpopulation of cycling neurons confined in S phase in AD brains, near amyloid plaques. Tau downregulation in murine neurons revealed an essential role for tau to promote cell cycle progression to S phase and prevent apoptosis in response to oxidative stress. Our results suggest that tau holds oxidative stress-associated cycling neurons in S phase to escape cell death. Together, this study proposes a tau-dependent protective effect of neuronal cell cycle reactivation in AD brains and challenges the current view that the neuronal cell cycle is an early mediator of tau pathology.
Collapse
Affiliation(s)
- Marine Denechaud
- University of Lille, Inserm, CHU Lille, CNRS, LilNCog - Lille Neuroscience & Cognition, F-59000 Lille, France.
| | - Sarah Geurs
- Department of Biomolecular Medicine, Faculty of Medicine and Health Sciences, Ghent University, 9000 Ghent, Belgium; Department of Human Genetics, University of Leuven (KU Leuven), 3000 Leuven, Belgium.
| | - Thomas Comptdaer
- University of Lille, Inserm, CHU Lille, CNRS, LilNCog - Lille Neuroscience & Cognition, F-59000 Lille, France.
| | - Séverine Bégard
- University of Lille, Inserm, CHU Lille, CNRS, LilNCog - Lille Neuroscience & Cognition, F-59000 Lille, France.
| | - Alejandro Garcia-Núñez
- University of Lille, Inserm, CHU Lille, CNRS, LilNCog - Lille Neuroscience & Cognition, F-59000 Lille, France.
| | - Louis-Adrien Pechereau
- University of Lille, Inserm, CHU Lille, CNRS, LilNCog - Lille Neuroscience & Cognition, F-59000 Lille, France.
| | - Thomas Bouillet
- University of Lille, Inserm, CHU Lille, CNRS, LilNCog - Lille Neuroscience & Cognition, F-59000 Lille, France.
| | - Yannick Vermeiren
- Laboratory of Neurochemistry and Behavior, and Biobank, Institute Born-Bunge, University of Antwerp, Universiteitsplein 1, BE-2610 Antwerpen, Belgium.
| | - Peter P De Deyn
- Laboratory of Neurochemistry and Behavior, and Biobank, Institute Born-Bunge, University of Antwerp, Universiteitsplein 1, BE-2610 Antwerpen, Belgium; Department of Neurology and Memory Clinic, Hospital Network Antwerp (ZNA) Middelheim and Hoge Beuken, eindendreef 1, 2020 Antwerpen, Belgium.
| | - Romain Perbet
- University of Lille, Inserm, CHU Lille, CNRS, LilNCog - Lille Neuroscience & Cognition, F-59000 Lille, France.
| | - Vincent Deramecourt
- University of Lille, Inserm, CHU Lille, CNRS, LilNCog - Lille Neuroscience & Cognition, F-59000 Lille, France; Department of Pathological Anatomy, University of Lille, CHU Lille, Lille, France.
| | - Claude-Alain Maurage
- University of Lille, Inserm, CHU Lille, CNRS, LilNCog - Lille Neuroscience & Cognition, F-59000 Lille, France; Department of Pathological Anatomy, University of Lille, CHU Lille, Lille, France.
| | - Michiel Vanderhaegen
- Department of Human Genetics, University of Leuven (KU Leuven), 3000 Leuven, Belgium.
| | - Sebastiaan Vanuytven
- Department of Human Genetics, University of Leuven (KU Leuven), 3000 Leuven, Belgium.
| | - Bruno Lefebvre
- University of Lille, Inserm, CHU Lille, CNRS, LilNCog - Lille Neuroscience & Cognition, F-59000 Lille, France.
| | - Elke Bogaert
- Department of Biomolecular Medicine, Faculty of Medicine and Health Sciences, Ghent University, 9000 Ghent, Belgium.
| | - Nicole Déglon
- Lausanne University Hospital (CHUV) and University of Lausanne, Neuroscience Research Center (CRN), Laboratory of Cellular and Molecular Neurotherapies, 1011 Lausanne, Switzerland.
| | - Thierry Voet
- Department of Human Genetics, University of Leuven (KU Leuven), 3000 Leuven, Belgium; KU Leuven, Institute for Single Cell Omics (LISCO), KU Leuven, 3000 Leuven, Belgium.
| | - Morvane Colin
- University of Lille, Inserm, CHU Lille, CNRS, LilNCog - Lille Neuroscience & Cognition, F-59000 Lille, France.
| | - Luc Buée
- University of Lille, Inserm, CHU Lille, CNRS, LilNCog - Lille Neuroscience & Cognition, F-59000 Lille, France.
| | - Bart Dermaut
- Center for Medical Genetics, Ghent University Hospital, 9000 Ghent, Belgium; Department of Biomolecular Medicine, Faculty of Medicine and Health Sciences, Ghent University, 9000 Ghent, Belgium.
| | - Marie-Christine Galas
- University of Lille, Inserm, CHU Lille, CNRS, LilNCog - Lille Neuroscience & Cognition, F-59000 Lille, France.
| |
Collapse
|
14
|
ElHady AK, El-Gamil DS, Abadi AH, Abdel-Halim M, Engel M. An overview of cdc2-like kinase 1 (Clk1) inhibitors and their therapeutic indications. Med Res Rev 2023; 43:343-398. [PMID: 36262046 DOI: 10.1002/med.21928] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 06/07/2022] [Accepted: 09/11/2022] [Indexed: 02/05/2023]
Abstract
Over the past decade, Clk1 has been identified as a promising target for the treatment of various diseases, in which deregulated alternative splicing plays a role. First small molecules targeting Clk1 are in clinical trials for the treatment of solid cancer, where variants of oncogenic proteins derived from alternative splicing promote tumor progression. Since many infectious pathogens hi-jack the host cell's splicing machinery to ensure efficient replication, further indications in this area are under investigation, such as Influenza A, HIV-1 virus, and Trypanosoma infections, and more will likely be discovered in the future. In addition, Clk1 was found to contribute to the progression of Alzheimer's disease through causing an imbalance of tau splicing products. Interestingly, homozygous Clk1 knockout mice showed a rather mild phenotype, opposed to what might be expected in view of the profound role of Clk1 in alternative splicing. A major drawback of most Clk1 inhibitors is their insufficient selectivity; in particular, Dyrk kinases and haspin were frequently identified as off-targets, besides the other Clk isoforms. Only few inhibitors were shown to be selective over Dyrk1A and haspin, whereas no Clk1 inhibitor so far achieved selectivity over the Clk4 isoform. In this review, we carefully compiled all Clk1 inhibitors from the scientific literature and summarized their structure-activity relationships (SAR). In addition, we critically discuss the available selectivity data and describe the inhibitor's efficacy in cellular models, if reported. Thus, we provide a comprehensive overview on the current state of Clk1 drug discovery and highlight the most promising chemotypes.
Collapse
Affiliation(s)
- Ahmed K ElHady
- Department of Organic and Pharmaceutical Chemistry, School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation, New Administrative Capital, Cairo, Egypt.,Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - Dalia S El-Gamil
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt.,Department of Chemistry, Faculty of Pharmacy, Ahram Canadian University, Cairo, Egypt
| | - Ashraf H Abadi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - Mohammad Abdel-Halim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - Matthias Engel
- Department of Pharmaceutical and Medicinal Chemistry, Saarland University, Saarbrücken, Germany
| |
Collapse
|
15
|
Montalto G, Ricciarelli R. Tau, tau kinases, and tauopathies: An updated overview. Biofactors 2023. [PMID: 36688478 DOI: 10.1002/biof.1930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 12/13/2022] [Indexed: 01/24/2023]
Abstract
Tau is a macrotubule-associated protein primarily involved in the stabilization of the cytoskeleton. Under normal conditions, phosphorylation reduces the affinity of tau for tubulin, allowing the protein to detach from microtubules and ensuring the system dynamics in neuronal cells. However, hyperphosphorylated tau aggregates into paired helical filaments, the main constituents of neurofibrillary tangles found in the brains of patients with Alzheimer's disease and other tauopathies. In this review, we provide an overview of the structure of tau and the pathophysiological roles of tau phosphorylation. We also evaluate the major protein kinases involved and discuss the progress made in the development of drug therapies aimed at inhibiting tau kinases.
Collapse
Affiliation(s)
- Giulia Montalto
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | - Roberta Ricciarelli
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| |
Collapse
|
16
|
Zheng J, Wang Y, Liu Y, Han S, Zhang Y, Luo Y, Yan Y, Li J, Zhao L. cPKCγ Deficiency Exacerbates Autophagy Impairment and Hyperphosphorylated Tau Buildup through the AMPK/mTOR Pathway in Mice with Type 1 Diabetes Mellitus. Neurosci Bull 2022; 38:1153-1169. [PMID: 35596894 PMCID: PMC9554100 DOI: 10.1007/s12264-022-00863-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 02/03/2022] [Indexed: 01/26/2023] Open
Abstract
Type 1 diabetes mellitus (T1DM)-induced cognitive dysfunction is common, but its underlying mechanisms are still poorly understood. In this study, we found that knockout of conventional protein kinase C (cPKC)γ significantly increased the phosphorylation of Tau at Ser214 and neurofibrillary tangles, but did not affect the activities of GSK-3β and PP2A in the hippocampal neurons of T1DM mice. cPKCγ deficiency significantly decreased the level of autophagy in the hippocampal neurons of T1DM mice. Activation of autophagy greatly alleviated the cognitive impairment induced by cPKCγ deficiency in T1DM mice. Moreover, cPKCγ deficiency reduced the AMPK phosphorylation levels and increased the phosphorylation levels of mTOR in vivo and in vitro. The high glucose-induced Tau phosphorylation at Ser214 was further increased by the autophagy inhibitor and was significantly decreased by an mTOR inhibitor. In conclusion, these results indicated that cPKCγ promotes autophagy through the AMPK/mTOR signaling pathway, thus reducing the level of phosphorylated Tau at Ser214 and neurofibrillary tangles.
Collapse
Affiliation(s)
- Jiayin Zheng
- Department of Neurobiology and Center of Stroke, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, 100069, China
| | - Yue Wang
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, 100088, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100088, China
| | - Yue Liu
- Department of Neurobiology and Center of Stroke, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, 100069, China
| | - Song Han
- Department of Neurobiology and Center of Stroke, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, 100069, China
| | - Ying Zhang
- Department of Neurobiology and Center of Stroke, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, 100069, China
| | - Yanlin Luo
- Department of Neurobiology and Center of Stroke, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, 100069, China
| | - Yi Yan
- Department of Neurobiology and Center of Stroke, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, 100069, China
| | - Junfa Li
- Department of Neurobiology and Center of Stroke, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, 100069, China.
| | - Li Zhao
- Department of Neurobiology and Center of Stroke, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
17
|
Specific phosphorylation of microtubule-associated protein 2c by extracellular signal-regulated kinase reduces interactions at its Pro-rich regions. J Biol Chem 2022; 298:102384. [PMID: 35987383 PMCID: PMC9520037 DOI: 10.1016/j.jbc.2022.102384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 08/09/2022] [Accepted: 08/11/2022] [Indexed: 11/24/2022] Open
Abstract
Microtubule-associated protein 2 (MAP2) is an important neuronal target of extracellular signal-regulated kinase 2 (ERK2) involved in Raf signaling pathways, but mechanistic details of MAP2 phosphorylation are unclear. Here, we used NMR spectroscopy to quantitatively describe the kinetics of phosphorylation of individual serines and threonines in the embryonic MAP2 variant MAP2c. We carried out real-time monitoring of phosphorylation to discover major phosphorylation sites that were not identified in previous studies relying on specific antibodies. Our comparison with phosphorylation of MAP2c by a model cyclin-dependent kinase CDK2 and with phosphorylation of the MAP2c homolog Tau revealed differences in phosphorylation profiles that explain specificity of regulation of biological functions of MAP2c and Tau. To probe the molecular basis of the regulatory effect of ERK2, we investigated the interactions of phosphorylated and unphosphorylated MAP2c by NMR with single-residue resolution. As ERK2 phosphorylates mostly outside the regions binding microtubules, we studied the binding of proteins other than tubulin, namely regulatory subunit RIIα of cAMP-dependent protein kinase (PKA), adaptor protein Grb2, Src homology domain 3 of tyrosine kinases Fyn and Abl, and ERK2 itself. We found ERK2 phosphorylation interfered mostly with binding to proline-rich regions of MAP2c. Furthermore, our NMR experiments in SH-SY5Y neuroblastoma cell lysates showed that the kinetics of dephosphorylation are compatible with in-cell NMR studies and that residues targeted by ERK2 and PKA are efficiently phosphorylated in the cell lysates. Taken together, our results provide a deeper characterization of MAP2c phosphorylation and its effects on interactions with other proteins.
Collapse
|
18
|
Mashal Y, Abdelhady H, Iyer AK. Comparison of Tau and Amyloid-β Targeted Immunotherapy Nanoparticles for Alzheimer’s Disease. Biomolecules 2022; 12:biom12071001. [PMID: 35883556 PMCID: PMC9313310 DOI: 10.3390/biom12071001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/06/2022] [Accepted: 07/12/2022] [Indexed: 02/04/2023] Open
Abstract
Alzheimer’s disease (AD) is a rapidly growing global concern associated with the accumulation of amyloid-β plaques and intracellular neurofibrillary tangles in the brain combined with a high acetylcholinesterase activity. AD diagnosis is usually made too late, when patients have an extensive neuronal death, and brain damage is irreversible. Several therapeutic targets have been defined mainly related to two hypotheses of AD: the tau hypothesis and the amyloid-β hypothesis. Here, we intend to investigate and to compare different therapeutic approaches for AD, mainly based on nanoparticles (NPs) targeted at the brain and at the pathological hallmarks of the disease. We analyzed preclinical trials that have successfully improved drug bioavailability in the brain by using targeted nanocarriers towards either tau, amyloid-β, or both. We then compared these trials to find out which protein is more efficient in therapeutic targeting. We found that the search for a cure was mostly based on the amyloid-β hypothesis, with Aβ dysplasia emerging as the most confirmed and convincing therapeutic target. Targeted NPs have proven useful to enhance both the bioavailability and the performance of therapies against AD in animal models. A better understanding of AD mechanisms will help the successful application of targeted NPs for combined therapies.
Collapse
Affiliation(s)
- Yara Mashal
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA;
- International Academy East, Troy, MI 48085, USA
| | - Hosam Abdelhady
- Department of Physiology & Pharmacology, College of Osteopathic Medicine, Sam Houston State University, Conroe, TX 77304, USA
- Correspondence: (H.A.); (A.K.I.); Tel.: +1-936-202-5221 (H.A.); +1-313-577-5875 (A.K.I.)
| | - Arun K. Iyer
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA;
- Correspondence: (H.A.); (A.K.I.); Tel.: +1-936-202-5221 (H.A.); +1-313-577-5875 (A.K.I.)
| |
Collapse
|
19
|
Roth A, Sander A, Oswald MS, Gärtner F, Knippschild U, Bischof J. Comprehensive Characterization of CK1δ-Mediated Tau Phosphorylation in Alzheimer’s Disease. Front Mol Biosci 2022; 9:872171. [PMID: 36203870 PMCID: PMC9531328 DOI: 10.3389/fmolb.2022.872171] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 05/31/2022] [Indexed: 11/13/2022] Open
Abstract
A main pathological event in Alzheimer’s disease is the generation of neurofibrillary tangles originating from hyperphosphorylated and subsequently aggregated tau proteins. Previous reports demonstrated the critical involvement of members of the protein kinase family CK1 in the pathogenesis of Alzheimer’s disease by hyperphosphorylation of tau. However, precise mechanisms and effects of CK1-mediated tau phosphorylation are still not fully understood. In this study, we analyzed recombinant tau441 phosphorylated by CK1δ in vitro via mass spectrometry and identified ten potential phosphorylation sites, five of them are associated to Alzheimer’s disease. To confirm these results, in vitro kinase assays and two-dimensional phosphopeptide analyses were performed with tau441 phosphomutants confirming Alzheimer’s disease-associated residues Ser68/Thr71 and Ser289 as CK1δ-specific phosphorylation sites. Treatment of differentiated human neural progenitor cells with PF-670462 and Western blot analysis identified Ser214 as CK1δ-targeted phosphorylation site. The use of an in vitro tau aggregation assay demonstrated a possible role of CK1δ in tau aggregation. Results obtained in this study highlight the potential of CK1δ to be a promising target in the treatment of Alzheimer’s disease.
Collapse
|
20
|
Pasapera AM, Heissler SM, Eto M, Nishimura Y, Fischer RS, Thiam HR, Waterman CM. MARK2 regulates directed cell migration through modulation of myosin II contractility and focal adhesion organization. Curr Biol 2022; 32:2704-2718.e6. [PMID: 35594862 DOI: 10.1016/j.cub.2022.04.088] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 02/23/2022] [Accepted: 04/28/2022] [Indexed: 12/11/2022]
Abstract
Cancer cell migration during metastasis is mediated by a highly polarized cytoskeleton. MARK2 and its invertebrate homolog Par1B are kinases that regulate the microtubule cytoskeleton to mediate polarization of neurons in mammals and embryos in invertebrates. However, the role of MARK2 in cancer cell migration is unclear. Using osteosarcoma cells, we found that in addition to its known localizations on microtubules and the plasma membrane, MARK2 also associates with the actomyosin cytoskeleton and focal adhesions. Cells depleted of MARK proteins demonstrated that MARK2 promotes phosphorylation of both myosin II and the myosin phosphatase targeting subunit MYPT1 to synergistically drive myosin II contractility and stress fiber formation in cells. Studies with isolated proteins showed that MARK2 directly phosphorylates myosin II regulatory light chain, while its effects on MYPT1 phosphorylation are indirect. Using a mutant lacking the membrane-binding domain, we found that membrane association is required for focal adhesion targeting of MARK2, where it specifically enhances cell protrusion by promoting FAK phosphorylation and formation of focal adhesions oriented in the direction of migration to mediate directionally persistent cell motility. Together, our results define MARK2 as a master regulator of the actomyosin and microtubule cytoskeletal systems and focal adhesions to mediate directional cancer cell migration.
Collapse
Affiliation(s)
- Ana M Pasapera
- Cell Biology and Physiology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Building 50, South Drive, Room 4537, MSC 8019, Bethesda, MD 20892, USA
| | - Sarah M Heissler
- Cell Biology and Physiology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Building 50, South Drive, Room 4537, MSC 8019, Bethesda, MD 20892, USA; Department of Physiology and Cell Biology, The Ohio State University College of Medicine, 370 W. 9th Avenue, Columbus, OH 43210, USA
| | - Masumi Eto
- Department of Veterinary Medicine, Okayama University of Science, 1-3 Ikoino-oka, Imabari, Ehime 794-8555, Japan
| | - Yukako Nishimura
- Cell Biology and Physiology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Building 50, South Drive, Room 4537, MSC 8019, Bethesda, MD 20892, USA; Division of Developmental Physiology, Institute for Genetic Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-Ku, Sapporo, Hokkaido 060-0815, Japan
| | - Robert S Fischer
- Cell Biology and Physiology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Building 50, South Drive, Room 4537, MSC 8019, Bethesda, MD 20892, USA
| | - Hawa R Thiam
- Cell Biology and Physiology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Building 50, South Drive, Room 4537, MSC 8019, Bethesda, MD 20892, USA
| | - Clare M Waterman
- Cell Biology and Physiology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Building 50, South Drive, Room 4537, MSC 8019, Bethesda, MD 20892, USA.
| |
Collapse
|
21
|
Piazzi M, Bavelloni A, Cenni V, Faenza I, Blalock WL. Revisiting the Role of GSK3, A Modulator of Innate Immunity, in Idiopathic Inclusion Body Myositis. Cells 2021; 10:cells10113255. [PMID: 34831477 PMCID: PMC8625526 DOI: 10.3390/cells10113255] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/18/2021] [Accepted: 11/19/2021] [Indexed: 12/13/2022] Open
Abstract
Idiopathic or sporadic inclusion body myositis (IBM) is the leading age-related (onset >50 years of age) autoimmune muscular pathology, resulting in significant debilitation in affected individuals. Once viewed as primarily a degenerative disorder, it is now evident that much like several other neuro-muscular degenerative disorders, IBM has a major autoinflammatory component resulting in chronic inflammation-induced muscle destruction. Thus, IBM is now considered primarily an inflammatory pathology. To date, there is no effective treatment for sporadic inclusion body myositis, and little is understood about the pathology at the molecular level, which would offer the best hopes of at least slowing down the degenerative process. Among the previously examined potential molecular players in IBM is glycogen synthase kinase (GSK)-3, whose role in promoting TAU phosphorylation and inclusion bodies in Alzheimer’s disease is well known. This review looks to re-examine the role of GSK3 in IBM, not strictly as a promoter of TAU and Abeta inclusions, but as a novel player in the innate immune system, discussing some of the recent roles discovered for this well-studied kinase in inflammatory-mediated pathology.
Collapse
Affiliation(s)
- Manuela Piazzi
- “Luigi Luca Cavalli-Sforza” Istituto di Genetica Molecolare-Consiglio Nazionale delle Ricerche (IGM-CNR), 40136 Bologna, Italy; (M.P.); (V.C.)
- IRCCS, Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Alberto Bavelloni
- Laboratorio di Oncologia Sperimentale, Istituto Ortopedico Rizzoli, 40136 Bologna, Italy;
| | - Vittoria Cenni
- “Luigi Luca Cavalli-Sforza” Istituto di Genetica Molecolare-Consiglio Nazionale delle Ricerche (IGM-CNR), 40136 Bologna, Italy; (M.P.); (V.C.)
- IRCCS, Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Irene Faenza
- Dipartimento di Scienze Biomediche and Neuromotorie, Università di Bologna, 40136 Bologna, Italy;
| | - William L. Blalock
- “Luigi Luca Cavalli-Sforza” Istituto di Genetica Molecolare-Consiglio Nazionale delle Ricerche (IGM-CNR), 40136 Bologna, Italy; (M.P.); (V.C.)
- IRCCS, Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
- Correspondence:
| |
Collapse
|
22
|
Gupta R, Jha A, Ambasta RK, Kumar P. Regulatory mechanism of cyclins and cyclin-dependent kinases in post-mitotic neuronal cell division. Life Sci 2021; 285:120006. [PMID: 34606852 DOI: 10.1016/j.lfs.2021.120006] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 09/24/2021] [Accepted: 09/25/2021] [Indexed: 12/18/2022]
Abstract
Neurodegenerative diseases (NDDs) are the most common life-threatening disease of the central nervous system and it cause the progressive loss of neuronal cells. The exact mechanism of the disease's progression is not clear and thus line of treatment for NDDs is a baffling issue. During the progression of NDDs, oxidative stress and DNA damage play an important regulatory function, and ultimately induces neurodegeneration. Recently, aberrant cell cycle events have been demonstrated in the progression of different NDDs. However, the pertinent role of signaling mechanism, for instance, post-translational modifications, oxidative stress, DNA damage response pathway, JNK/p38 MAPK, MEK/ERK cascade, actively participated in the aberrant cell cycle reentry induced neuronal cell death. Mounting evidence has demonstrated that aberrant cell cycle re-entry is a major contributing factor in the pathogenesis of NDDs rather than a secondary phenomenon. In the brain of AD patients with mild cognitive impairment, post miotic cell division can be seen in the early stage of the disease. However, in the brain of PD patients, response to various neurotoxic signals, the cell cycle re-entry has been observed that causes neuronal apoptosis. On contrary, the contributing factors that leads to the induction of cell cycle events in mature neurons in HD and ALS brain pathology is remain unclear. Various pharmacological drugs have been developed to reduce the pathogenesis of NDDs, but they are still not helpful in eliminating the cause of these NDDs.
Collapse
Affiliation(s)
- Rohan Gupta
- Molecular Neuroscience and Functional Genomics Laboratory, Delhi Technological University (Formerly Delhi College of Engineering), India
| | - Ankita Jha
- Molecular Neuroscience and Functional Genomics Laboratory, Delhi Technological University (Formerly Delhi College of Engineering), India
| | - Rashmi K Ambasta
- Molecular Neuroscience and Functional Genomics Laboratory, Delhi Technological University (Formerly Delhi College of Engineering), India
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Delhi Technological University (Formerly Delhi College of Engineering), India.
| |
Collapse
|
23
|
Neurotoxicity of oligomers of phosphorylated Tau protein carrying tauopathy-associated mutation is inhibited by prion protein. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166209. [PMID: 34246750 DOI: 10.1016/j.bbadis.2021.166209] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 06/24/2021] [Accepted: 07/06/2021] [Indexed: 01/03/2023]
Abstract
Tauopathies, including Alzheimer's disease (AD), are manifested by the deposition of well-characterized amyloid aggregates of Tau protein in the brain. However, it is rather unlikely that these aggregates constitute the major form of Tau responsible for neurodegenerative changes. Currently, it is postulated that the intermediates termed as soluble oligomers, assembled on the amyloidogenic pathway, are the most neurotoxic form of Tau. However, Tau oligomers reported so far represent a population of poorly characterized, heterogeneous and unstable assemblies. In this study, to obtain the oligomers, we employed the aggregation-prone K18 fragment of Tau protein with deletion of Lys280 (K18Δ280) linked to a hereditary tauopathy. We have described a new procedure of inducing aggregation of mutated K18 which leads either to the formation of nontoxic amyloid fibrils or neurotoxic globular oligomers, depending on its phosphorylation status. We demonstrate that PKA-phosphorylated K18Δ280 oligomers are toxic to hippocampal neurons, which is manifested by loss of dendritic spines and neurites, and impairment of cell-membrane integrity leading to cell death. We also show that N1, the soluble N-terminal fragment of prion protein (PrP), protects neurons from the oligomers-induced cytotoxicity. Our findings support the hypothesis on the neurotoxicity of Tau oligomers and neuroprotective role of PrP-derived fragments in AD and other tauopathies. These observations could be useful in the development of therapeutic strategies for these diseases.
Collapse
|
24
|
Gyparaki MT, Arab A, Sorokina EM, Santiago-Ruiz AN, Bohrer CH, Xiao J, Lakadamyali M. Tau forms oligomeric complexes on microtubules that are distinct from tau aggregates. Proc Natl Acad Sci U S A 2021; 118:e2021461118. [PMID: 33952699 PMCID: PMC8126857 DOI: 10.1073/pnas.2021461118] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Tau is a microtubule-associated protein, which promotes neuronal microtubule assembly and stability. Accumulation of tau into insoluble aggregates known as neurofibrillary tangles (NFTs) is a pathological hallmark of several neurodegenerative diseases. The current hypothesis is that small, soluble oligomeric tau species preceding NFT formation cause toxicity. However, thus far, visualizing the spatial distribution of tau monomers and oligomers inside cells under physiological or pathological conditions has not been possible. Here, using single-molecule localization microscopy, we show that tau forms small oligomers on microtubules ex vivo. These oligomers are distinct from those found in cells exhibiting tau aggregation and could be precursors of aggregated tau in pathology. Furthermore, using an unsupervised shape classification algorithm that we developed, we show that different tau phosphorylation states are associated with distinct tau aggregate species. Our work elucidates tau's nanoscale composition under nonaggregated and aggregated conditions ex vivo.
Collapse
Affiliation(s)
- Melina Theoni Gyparaki
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104
| | - Arian Arab
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Elena M Sorokina
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Adriana N Santiago-Ruiz
- Department of Biochemistry and Molecular Biophysics, University of Pennsylvania, Philadelphia, PA 19104
| | - Christopher H Bohrer
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, Baltimore, MD 21205
- Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218
| | - Jie Xiao
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, Baltimore, MD 21205
| | - Melike Lakadamyali
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104;
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
25
|
Jangampalli Adi P, Reddy PH. Phosphorylated tau targeted small-molecule PROTACs for the treatment of Alzheimer's disease and tauopathies. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166162. [PMID: 33940164 DOI: 10.1016/j.bbadis.2021.166162] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/24/2021] [Accepted: 04/26/2021] [Indexed: 10/21/2022]
Abstract
Tau is a microtubule-stabilizing protein that plays an important role in the formation of axonal microtubules in neurons. Phosphorylated tau (p-Tau) has received great attention in the field of Alzheimer's disease (AD) as a potential therapeutic target due to its involvement with synaptic damage and neuronal dysfunction. Mounting evidence suggests that amyloid beta (Aβ)-targeted clinical trials continuously failed; therefore, it is important to consider alternative therapeutic strategies such as p-tau-PROTACs targeted small molecules for AD and other tauopathies. The present article describes the characteristics of tau biology, structure, and function in both healthy and pathological states in AD. It also explains data from studies that have identified the involvement of p-tau in neuronal damage and synaptic and cognitive functions in AD. Current article also covers several aspects, including small molecule inhibitors, and the development of p-tau-PROTACs targeted drug molecules to treat patients with AD and other tauopathies.
Collapse
Affiliation(s)
| | - P Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Neurology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Public Health, Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Speech, Language, and Hearing Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| |
Collapse
|
26
|
Agarwal M, Alam MR, Haider MK, Malik MZ, Kim DK. Alzheimer's Disease: An Overview of Major Hypotheses and Therapeutic Options in Nanotechnology. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 11:E59. [PMID: 33383712 PMCID: PMC7823376 DOI: 10.3390/nano11010059] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/18/2020] [Accepted: 12/24/2020] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD), a progressively fatal neurodegenerative disorder, is the most prominent form of dementia found today. Patients suffering from Alzheimer's begin to show the signs and symptoms, like decline in memory and cognition, long after the cellular damage has been initiated in their brain. There are several hypothesis for the neurodegeneration process; however, the lack of availability of in vivo models makes the recapitulation of AD in humans impossible. Moreover, the drugs currently available in the market serve to alleviate the symptoms and there is no cure for the disease. There have been two major hurdles in the process of finding the same-the inefficiency in cracking the complexity of the disease pathogenesis and the inefficiency in delivery of drugs targeted for AD. This review discusses the different drugs that have been designed over the recent years and the drug delivery options in the field of nanotechnology that have been found most feasible in surpassing the blood-brain barrier (BBB) and reaching the brain.
Collapse
Affiliation(s)
- Mugdha Agarwal
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida 201309, India;
| | - Mohammad Rizwan Alam
- Department of Medical Genetics, School of Medicine, Keimyung University, Daegu 42601, Korea;
| | | | - Md. Zubbair Malik
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Dae-Kwang Kim
- Department of Medical Genetics, School of Medicine, Keimyung University, Daegu 42601, Korea;
- Hanvit Institute for Medical Genetics, Daegu 42601, Korea
| |
Collapse
|
27
|
Drepper F, Biernat J, Kaniyappan S, Meyer HE, Mandelkow EM, Warscheid B, Mandelkow E. A combinatorial native MS and LC-MS/MS approach reveals high intrinsic phosphorylation of human Tau but minimal levels of other key modifications. J Biol Chem 2020; 295:18213-18225. [PMID: 33106314 PMCID: PMC7939451 DOI: 10.1074/jbc.ra120.015882] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/21/2020] [Indexed: 12/22/2022] Open
Abstract
Abnormal changes of neuronal Tau protein, such as phosphorylation and aggregation, are considered hallmarks of cognitive deficits in Alzheimer's disease. Abnormal phosphorylation is thought to precede aggregation and therefore to promote aggregation, but the nature and extent of phosphorylation remain ill-defined. Tau contains ∼85 potential phosphorylation sites, which can be phosphorylated by various kinases because the unfolded structure of Tau makes them accessible. However, methodological limitations (e.g. in MS of phosphopeptides, or antibodies against phosphoepitopes) led to conflicting results regarding the extent of Tau phosphorylation in cells. Here we present results from a new approach based on native MS of intact Tau expressed in eukaryotic cells (Sf9). The extent of phosphorylation is heterogeneous, up to ∼20 phosphates per molecule distributed over 51 sites. The medium phosphorylated fraction Pm showed overall occupancies of ∼8 Pi (± 5) with a bell-shaped distribution; the highly phosphorylated fraction Ph had 14 Pi (± 6). The distribution of sites was highly asymmetric (with 71% of all P-sites in the C-terminal half of Tau). All sites were on Ser or Thr residues, but none were on Tyr. Other known posttranslational modifications were near or below our detection limit (e.g. acetylation, ubiquitination). These findings suggest that normal cellular Tau shows a remarkably high extent of phosphorylation, whereas other modifications are nearly absent. This implies that abnormal phosphorylations at certain sites may not affect the extent of phosphorylation significantly and do not represent hyperphosphorylation. By implication, the pathological aggregation of Tau is not likely a consequence of high phosphorylation.
Collapse
Affiliation(s)
- Friedel Drepper
- Group of Biochemistry and Functional Proteomics, Institute of Biology II, University of Freiburg, Freiburg, Germany; Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Jacek Biernat
- DZNE (German Center for Neurodegenerative Diseases), Bonn, Germany
| | - Senthilvelrajan Kaniyappan
- DZNE (German Center for Neurodegenerative Diseases), Bonn, Germany; Department of Neurodegenerative Diseases and Geriatric Psychiatry, University of Bonn, Bonn, Germany
| | - Helmut E Meyer
- Medical Proteome Center, Ruhr-University Bochum, Bochum, Germany; Department of Biomedical Research, Leibniz-Institute for Analytical Sciences (ISAS), Dortmund, Germany
| | - Eva Maria Mandelkow
- DZNE (German Center for Neurodegenerative Diseases), Bonn, Germany; CAESAR Research Center, Bonn, Germany
| | - Bettina Warscheid
- Group of Biochemistry and Functional Proteomics, Institute of Biology II, University of Freiburg, Freiburg, Germany; Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany.
| | - Eckhard Mandelkow
- DZNE (German Center for Neurodegenerative Diseases), Bonn, Germany; CAESAR Research Center, Bonn, Germany.
| |
Collapse
|
28
|
Leslie SN, Datta D, Christensen KR, van Dyck CH, Arnsten AFT, Nairn AC. Phosphodiesterase PDE4D Is Decreased in Frontal Cortex of Aged Rats and Positively Correlated With Working Memory Performance and Inversely Correlated With PKA Phosphorylation of Tau. Front Aging Neurosci 2020; 12:576723. [PMID: 33192469 PMCID: PMC7655962 DOI: 10.3389/fnagi.2020.576723] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 09/24/2020] [Indexed: 01/16/2023] Open
Abstract
Age is the largest risk factor for Alzheimer’s disease (AD) and contributes to cognitive impairment in otherwise healthy individuals. Thus, it is critical that we better understand the risk aging presents to vulnerable regions of the brain and carefully design therapeutics to address those effects. In this study we examined age-related changes in cAMP-regulatory protein, phosphodiesterase 4D (PDE4D). Inhibition of PDE4D is currently under investigation as a therapeutic target for AD based on memory-enhancing effects in rodent hippocampus. Therefore, it is important to understand the role of PDE4D in brain regions particularly vulnerable to disease such as the frontal association cortex (FC), where cAMP signaling can impair working memory via opening of potassium channels. We found that PDE4D protein level was decreased in the FC of both moderately and extremely aged rats, and that PDE4D level was correlated with performance on a FC-dependent working memory task. In extremely aged rats, PDE4D was also inversely correlated with levels of phosphorylated tau at serine 214 (S214), a site phosphorylated by protein kinase A. In vitro studies of the PDE4D inhibitor, GEBR-7b, further illustrated that inhibition of PDE4D activity enhanced phosphorylation of tau. pS214-tau phosphorylation is associated with early AD tau pathology, promotes tau dissociation from microtubules and primes subsequent tau hyperphosphorylation at other critical AD-related sites. Age-related loss of PDE4D may thus contribute to the specific vulnerability of the FC to degeneration in AD, and play a critical role in normal cAMP regulation, cautioning against the use of pan-PDE4D inhibitors as therapeutics.
Collapse
Affiliation(s)
- Shannon N Leslie
- Interdepartmental Neuroscience Program, Yale University, School of Medicine, New Haven, CT, United States.,Department of Psychiatry, Yale University, School of Medicine, New Haven, CT, United States
| | - Dibyadeep Datta
- Department of Neuroscience, Yale University, School of Medicine, New Haven, CT, United States
| | - Kyle R Christensen
- Department of Psychiatry, Yale University, School of Medicine, New Haven, CT, United States
| | - Christopher H van Dyck
- Department of Psychiatry, Yale University, School of Medicine, New Haven, CT, United States.,Department of Neuroscience, Yale University, School of Medicine, New Haven, CT, United States.,Department of Neurology, Yale University, School of Medicine, New Haven, CT, United States
| | - Amy F T Arnsten
- Department of Neuroscience, Yale University, School of Medicine, New Haven, CT, United States
| | - Angus C Nairn
- Department of Psychiatry, Yale University, School of Medicine, New Haven, CT, United States
| |
Collapse
|
29
|
Regalado-Reyes M, Furcila D, Hernández F, Ávila J, DeFelipe J, León-Espinosa G. Phospho-Tau Changes in the Human CA1 During Alzheimer's Disease Progression. J Alzheimers Dis 2020; 69:277-288. [PMID: 30958368 PMCID: PMC6598029 DOI: 10.3233/jad-181263] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Despite extensive studies regarding tau phosphorylation progression in both human Alzheimer's disease cases and animal models, the molecular and structural changes responsible for neurofibrillary tangle development are still not well understood. Here, by using the antibodies AT100 (recognizes tau protein phosphorylated at Thr212 and Ser214 in the proline-rich region) and pS396 (recognizes tau protein phosphorylated at serine residue 396 in the C-terminal region), we examined phospho-tau immunostaining in neurons from the hippocampal CA1 region of 21 human cases with tau pathology ranging from Braak stage I to VI. Our results indicate that the AT100/pS396 ratio decreases in CA1 in accordance with the severity of the disease, along with its colocalization. We therefore propose the AT100/pS396 ratio as a new tool to analyze the tau pathology progression. Our findings also suggest a conformational modification in tau protein that may cause the disappearance of the AT100 epitope in the late stages of tau pathology, which may play a role in the toxic tangle aggregation. Thus, this study provides new insights underlying the stages for the formation of neurofibrillary tangles in Alzheimer's disease.
Collapse
Affiliation(s)
- Mamen Regalado-Reyes
- Laboratorio Cajal de Circuitos Corticales (CTB), Universidad Politécnica de Madrid, Madrid, Spain
| | - Diana Furcila
- Laboratorio Cajal de Circuitos Corticales (CTB), Universidad Politécnica de Madrid, Madrid, Spain
| | - Félix Hernández
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Madrid, Spain.,CIBERNED, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Spain
| | - Jesús Ávila
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Madrid, Spain.,CIBERNED, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Spain
| | - Javier DeFelipe
- Instituto Cajal, CSIC, Madrid, Spain.,Laboratorio Cajal de Circuitos Corticales (CTB), Universidad Politécnica de Madrid, Madrid, Spain.,CIBERNED, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Spain
| | - Gonzalo León-Espinosa
- Laboratorio Cajal de Circuitos Corticales (CTB), Universidad Politécnica de Madrid, Madrid, Spain.,Departamento de Química y Bioquímica, Facultad de Farmacia, CEU San Pablo University - CEU Universities, Madrid, Spain
| |
Collapse
|
30
|
Stevens CH, Guthrie NJ, van Roijen M, Halliday GM, Ooi L. Increased Tau Phosphorylation in Motor Neurons From Clinically Pure Sporadic Amyotrophic Lateral Sclerosis Patients. J Neuropathol Exp Neurol 2020; 78:605-614. [PMID: 31131395 DOI: 10.1093/jnen/nlz041] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is characterized by the progressive degeneration of motor neurons. There is a pathological and genetic link between ALS and frontotemporal lobar degeneration (FTLD). Although FTLD is characterized by abnormal phosphorylated tau deposition, it is unknown whether tau is phosphorylated in ALS motor neurons. Therefore, this study assessed tau epitopes that are commonly phosphorylated in FTLD, including serine 396 (pS396), 214 (pS214), and 404 (pS404) in motor neurons from clinically pure sporadic ALS cases compared with controls. In ALS lower motor neurons, tau pS396 was observed in the nucleus or the nucleus and cytoplasm. In ALS upper motor neurons, tau pS396 was observed in the nucleus, cytoplasm, or both the nucleus and cytoplasm. Tau pS214 and pS404 was observed only in the cytoplasm of upper and lower motor neurons in ALS. The number of motor neurons (per mm2) positive for tau pS396 and pS214, but not pS404, was significantly increased in ALS. Furthermore, there was a significant loss of phosphorylated tau-negative motor neurons in ALS compared with controls. Together, our data identified a complex relationship between motor neurons positive for tau phosphorylated at specific residues and disease duration, suggesting that tau phosphorylation plays a role in ALS.
Collapse
Affiliation(s)
- Claire H Stevens
- School of Chemistry and Molecular Bioscience, University of Wollongong.,Illawarra Health and Medical Research Institute, Wollongong, New South Wales, Australia
| | - Natalie J Guthrie
- School of Chemistry and Molecular Bioscience, University of Wollongong.,Illawarra Health and Medical Research Institute, Wollongong, New South Wales, Australia
| | | | - Glenda M Halliday
- Brain and Mind Centre, Sydney Medical School, The University of Sydney, Camperdown, New South Wales, Australia
| | - Lezanne Ooi
- School of Chemistry and Molecular Bioscience, University of Wollongong.,Illawarra Health and Medical Research Institute, Wollongong, New South Wales, Australia
| |
Collapse
|
31
|
Piazzi M, Bavelloni A, Faenza I, Blalock W. Glycogen synthase kinase (GSK)-3 and the double-strand RNA-dependent kinase, PKR: When two kinases for the common good turn bad. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118769. [PMID: 32512016 PMCID: PMC7273171 DOI: 10.1016/j.bbamcr.2020.118769] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/29/2020] [Accepted: 05/31/2020] [Indexed: 01/08/2023]
Abstract
Glycogen synthase kinase (GSK)-3α/β and the double-stranded RNA-dependent kinase PKR are two sentinel kinases that carry-out multiple similar yet distinct functions in both the cytosol and the nucleus. While these kinases belong to separate signal transduction cascades, they demonstrate an uncanny propensity to regulate many of the same proteins either through direct phosphorylation or by altering transcription/translation, including: c-MYC, NF-κB, p53 and TAU, as well as each another. A significant number of studies centered on the GSK3 kinases have led to the identification of the GSK3 interactome and a number of substrates, which link GSK3 activity to metabolic control, translation, RNA splicing, ribosome biogenesis, cellular division, DNA repair and stress/inflammatory signaling. Interestingly, many of these same pathways and processes are controlled by PKR, but unlike the GSK3 kinases, a clear picture of proteins interacting with PKR and a complete listing of its substrates is still missing. In this review, we take a detailed look at what is known about the PKR and GSK3 kinases, how these kinases interact to influence common cellular processes (innate immunity, alternative splicing, translation, glucose metabolism) and how aberrant activation of these kinases leads to diseases such as Alzheimer's disease (AD), diabetes mellitus (DM) and cancer. GSK3α/β and PKR are major regulators of cellular homeostasis and the response to stress/inflammation and infection. GSK3α/β and PKR interact with and/or modify many of the same proteins and affect the expression of similar genes. A balance between AKT and PKR nuclear signaling may be responsible for regulating the activation of nuclear GSK3β. GSK3α/β- and PKR-dependent signaling influence major molecular mechanisms of the cell through similar intermediates. Aberrant activation of GSK3α/β and PKR is highly involved in cancer, metabolic disorders, and neurodegenerative diseases.
Collapse
Affiliation(s)
- Manuela Piazzi
- Istituto di Genetica Molecolare "Luigi Luca Cavalli-Sforza", Consiglio Nazionale delle Ricerche (IGM-CNR), Bologna, Italy; IRCCS, Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Alberto Bavelloni
- Laboratoria di Oncologia Sperimentale, IRCCS, Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Irene Faenza
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - William Blalock
- Istituto di Genetica Molecolare "Luigi Luca Cavalli-Sforza", Consiglio Nazionale delle Ricerche (IGM-CNR), Bologna, Italy; IRCCS, Istituto Ortopedico Rizzoli, Bologna, Italy.
| |
Collapse
|
32
|
Butler VJ, Salazar DA, Soriano-Castell D, Alves-Ferreira M, Dennissen FJA, Vohra M, Oses-Prieto JA, Li KH, Wang AL, Jing B, Li B, Groisman A, Gutierrez E, Mooney S, Burlingame AL, Ashrafi K, Mandelkow EM, Encalada SE, Kao AW. Tau/MAPT disease-associated variant A152T alters tau function and toxicity via impaired retrograde axonal transport. Hum Mol Genet 2020; 28:1498-1514. [PMID: 30590647 PMCID: PMC6489414 DOI: 10.1093/hmg/ddy442] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 11/19/2018] [Accepted: 12/17/2018] [Indexed: 12/17/2022] Open
Abstract
Mutations in the microtubule-associated protein tau (MAPT) underlie multiple neurodegenerative disorders, yet the pathophysiological mechanisms are unclear. A novel variant in MAPT resulting in an alanine to threonine substitution at position 152 (A152T tau) has recently been described as a significant risk factor for both frontotemporal lobar degeneration and Alzheimer’s disease. Here we use complementary computational, biochemical, molecular, genetic and imaging approaches in Caenorhabditis elegans and mouse models to interrogate the effects of the A152T variant on tau function. In silico analysis suggests that a threonine at position 152 of tau confers a new phosphorylation site. This finding is borne out by mass spectrometric survey of A152T tau phosphorylation in C. elegans and mouse. Optical pulse-chase experiments of Dendra2-tau demonstrate that A152T tau and phosphomimetic A152E tau exhibit increased diffusion kinetics and the ability to traverse across the axon initial segment more efficiently than wild-type (WT) tau. A C. elegans model of tauopathy reveals that A152T and A152E tau confer patterns of developmental toxicity distinct from WT tau, likely due to differential effects on retrograde axonal transport. These data support a role for phosphorylation of the variant threonine in A152T tau toxicity and suggest a mechanism involving impaired retrograde axonal transport contributing to human neurodegenerative disease.
Collapse
Affiliation(s)
- Victoria J Butler
- Memory and Aging Center, Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Dominique A Salazar
- Memory and Aging Center, Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - David Soriano-Castell
- Departments of Molecular Medicine and Molecular and Cellular Neuroscience, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA, USA
| | - Miguel Alves-Ferreira
- Departments of Molecular Medicine and Molecular and Cellular Neuroscience, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA, USA.,Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal.,Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Frank J A Dennissen
- German Center for Neurodegenerative Diseases (DZNE), Ludwig-Erhard-Allee 2, Bonn, Germany.,MPI for Neurological Research, Hamburg Outstation, c/o Deutsches Elektronen-Synchrotron, Notkestrasse 85, Hamburg, Germany.,The Center of Advanced European Studies and Research, Ludwig-Erhard-Allee 2, Bonn, Germany
| | - Mihir Vohra
- Department of Physiology, University of California San Francisco, San Francisco, CA, USA
| | - Juan A Oses-Prieto
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, USA
| | - Kathy H Li
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, USA
| | - Austin L Wang
- Memory and Aging Center, Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Beibei Jing
- Memory and Aging Center, Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Biao Li
- The Buck Institute for Research on Aging, Novato, CA, USA
| | - Alex Groisman
- Department of Physics, University of California San Diego, La Jolla, CA, USA
| | - Edgar Gutierrez
- Department of Physics, University of California San Diego, La Jolla, CA, USA
| | - Sean Mooney
- The Buck Institute for Research on Aging, Novato, CA, USA
| | - Alma L Burlingame
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, USA
| | - Kaveh Ashrafi
- Department of Physiology, University of California San Francisco, San Francisco, CA, USA
| | - Eva-Maria Mandelkow
- German Center for Neurodegenerative Diseases (DZNE), Ludwig-Erhard-Allee 2, Bonn, Germany.,MPI for Neurological Research, Hamburg Outstation, c/o Deutsches Elektronen-Synchrotron, Notkestrasse 85, Hamburg, Germany.,The Center of Advanced European Studies and Research, Ludwig-Erhard-Allee 2, Bonn, Germany
| | - Sandra E Encalada
- Departments of Molecular Medicine and Molecular and Cellular Neuroscience, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA, USA
| | - Aimee W Kao
- Memory and Aging Center, Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
33
|
S-Nitrosylation at the active site decreases the ubiquitin-conjugating activity of ubiquitin-conjugating enzyme E2 D1 (UBE2D1), an ERAD-associated protein. Biochem Biophys Res Commun 2020; 524:910-915. [PMID: 32051088 DOI: 10.1016/j.bbrc.2020.02.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 02/03/2020] [Indexed: 01/08/2023]
Abstract
S-Nitrosylation of protein cysteine thiol is a post-translational modification mediated by nitric oxide (NO). The overproduction of NO causes nitrosative stress, which is known to induce endoplasmic reticulum (ER) stress. We previously reported that S-nitrosylation of protein disulfide isomerase (PDI) and the ER stress sensor inositol-requiring enzyme 1 (IRE1) decreases their enzymatic activities. However, it remains unclear whether nitrosative stress affects ER-associated degradation (ERAD), a separate ER stress regulatory system responsible for the degradation of substrates via the ubiquitin-proteasomal pathway. In the present study, we found that the ubiquitination of a known ERAD substrate, serine/threonine-protein kinase 1 (SGK1), is attenuated by nitrosative stress. C-terminus of Hsc70-interacting protein (CHIP) together with ubiquitin-conjugating enzyme E2 D1 (UBE2D1) are involved in this modification. We detected that UBE2D1 is S-nitrosylated at its active site, Cys85 by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Furthermore, in vitro and cell-based experiments revealed that S-nitrosylated UBE2D1 has decreased ubiquitin-conjugating activity. Our results suggested that nitrosative stress interferes with ERAD, leading to prolongation of ER stress by co-disruption of various pathways, including the molecular chaperone and ER stress sensor pathways. Given that nitrosative stress and ER stress are upregulated in the brains of patient with Parkinson's disease (PD) and of those with Alzheimer's disease (AD), our findings may provide further insights into the pathogenesis of these neurodegenerative disorders.
Collapse
|
34
|
Teixeira JP, de Castro AA, Soares FV, da Cunha EFF, Ramalho TC. Future Therapeutic Perspectives into the Alzheimer's Disease Targeting the Oxidative Stress Hypothesis. Molecules 2019; 24:E4410. [PMID: 31816853 PMCID: PMC6930470 DOI: 10.3390/molecules24234410] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 11/27/2019] [Accepted: 11/30/2019] [Indexed: 01/12/2023] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease that is usually accompanied by aging, increasingly being the most common cause of dementia in the elderly. This disorder is characterized by the accumulation of beta amyloid plaques (Aβ) resulting from impaired amyloid precursor protein (APP) metabolism, together with the formation of neurofibrillary tangles and tau protein hyperphosphorylation. The exacerbated production of reactive oxygen species (ROS) triggers the process called oxidative stress, which increases neuronal cell abnormalities, most often followed by apoptosis, leading to cognitive dysfunction and dementia. In this context, the development of new therapies for the AD treatment is necessary. Antioxidants, for instance, are promising species for prevention and treatment because they are capable of disrupting the radical chain reaction, reducing the production of ROS. These species have also proven to be adjunctive to conventional treatments making them more effective. In this sense, several recently published works have focused their attention on oxidative stress and antioxidant species. Therefore, this review seeks to show the most relevant findings of these studies.
Collapse
Affiliation(s)
- Jéssika P. Teixeira
- Department of Chemistry, Federal University of Lavras, 37200-000 Lavras, Minas Gerais, Brazil; (J.P.T.); (A.A.d.C.); (F.V.S.); (E.F.F.d.C.)
| | - Alexandre A. de Castro
- Department of Chemistry, Federal University of Lavras, 37200-000 Lavras, Minas Gerais, Brazil; (J.P.T.); (A.A.d.C.); (F.V.S.); (E.F.F.d.C.)
| | - Flávia V. Soares
- Department of Chemistry, Federal University of Lavras, 37200-000 Lavras, Minas Gerais, Brazil; (J.P.T.); (A.A.d.C.); (F.V.S.); (E.F.F.d.C.)
| | - Elaine F. F. da Cunha
- Department of Chemistry, Federal University of Lavras, 37200-000 Lavras, Minas Gerais, Brazil; (J.P.T.); (A.A.d.C.); (F.V.S.); (E.F.F.d.C.)
| | - Teodorico C. Ramalho
- Department of Chemistry, Federal University of Lavras, 37200-000 Lavras, Minas Gerais, Brazil; (J.P.T.); (A.A.d.C.); (F.V.S.); (E.F.F.d.C.)
- Center for Basic and Applied Research, Faculty of Informatics and Management, University of Hradec Kralove, 500 03 Hradec Kralove, Czech Republic
| |
Collapse
|
35
|
Teravskis PJ, Oxnard BR, Miller EC, Kemper L, Ashe KH, Liao D. Phosphorylation in two discrete tau domains regulates a stepwise process leading to postsynaptic dysfunction. J Physiol 2019; 599:2483-2498. [PMID: 31194886 DOI: 10.1113/jp277459] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 06/11/2019] [Indexed: 12/21/2022] Open
Abstract
KEY POINTS Tau mislocalization to dendritic spines and associated postsynaptic deficits are mediated through different and non-overlapping phosphorylation sites. Tau mislocalization to dendritic spines depends upon the phosphorylation of either Ser396 or Ser404 in the C-terminus. Postsynaptic dysfunction instead depends upon the phosphorylation of at least one of five residues in the proline-rich region of tau. The blockade of both glycogen synthetase kinase 3β and cyclin-dependent kinase 5 is required to prevent P301L-induced tau mislocalization to dendritic spines, supporting redundant pathways that control tau mislocalization to spines. ABSTRACT Tau protein consists of an N-terminal projection domain, a microtubule-binding domain and a C-terminal domain. In neurodegenerative diseases, including Alzheimer's disease and frontotemporal dementia, the hyperphosphorylation of tau changes its shape, binding partners and resulting function. An early consequence of tau phosphorylation by proline-directed kinases is postsynaptic dysfunction associated with the mislocalization of tau to dendritic spines. The specific phosphorylation sites leading to these abnormalities have not been elucidated. Here, using imaging and electrophysiological techniques to study cultured rat hippocampal neurons, we show that postsynaptic dysfunction results from a sequential process involving differential phosphorylation in the N-terminal and C-terminal domains. First, tau mislocalizes to dendritic spines, in a manner that depends upon the phosphorylation of either Ser396 or Ser404 in the C-terminal domain. The blockade of both glycogen synthetase kinase 3β and cyclin-dependent kinase 5 prevents tau mislocalization to dendritic spines. Second, a reduction of functional AMPA receptors depends upon the phosphorylation of at least one of five residues (Ser202, Thr205, Thr212, Thr217 and Thr231) in the proline-rich region of the N-terminal domain. This is the first report of differential phosphorylation in distinct tau domains governing separate, but linked, steps leading to synaptic dysfunction.
Collapse
Affiliation(s)
- Peter J Teravskis
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, 55455, USA.,School of Medicine, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Breeta R Oxnard
- College of Biological Sciences, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Eric C Miller
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Lisa Kemper
- Department of Neurology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Karen H Ashe
- Department of Neurology, University of Minnesota, Minneapolis, MN, 55455, USA.,N. Bud Grossman Center for Memory Research and Care, Minneapolis, MN, 55455, USA.,GRECC, Minneapolis VA Medical Center, Minneapolis, MN, 55417, USA
| | - Dezhi Liao
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, 55455, USA
| |
Collapse
|
36
|
Cao LL, Guan PP, Liang YY, Huang XS, Wang P. Calcium Ions Stimulate the Hyperphosphorylation of Tau by Activating Microsomal Prostaglandin E Synthase 1. Front Aging Neurosci 2019; 11:108. [PMID: 31143112 PMCID: PMC6521221 DOI: 10.3389/fnagi.2019.00108] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 04/25/2019] [Indexed: 01/07/2023] Open
Abstract
Alzheimer’s disease (AD) is reportedly associated with the accumulation of calcium ions (Ca2+), and this accumulation is responsible for the phosphorylation of tau. Although several lines of evidence demonstrate the above phenomenon, the inherent mechanisms remain unknown. Using APP/PS1 Tg mice and neuroblastoma (N)2a cells as in vivo and in vitro experimental models, we observed that Ca2+ stimulated the phosphorylation of tau by activating microsomal PGE synthase 1 (mPGES1) in a prostaglandin (PG) E2-dependent EP receptor-activating manner. Specifically, the highly accumulated Ca2+ stimulated the expression of mPGES1 and the synthesis of PGE2. Treatment with the inhibitor of Ca2+ transporter, NMDAR, attenuated the expression of mPGES1 and the production of PGE2 were attenuated in S(+)-ketamine-treated APP/PS1 Tg mice. Elevated levels of PGE2 were responsible for the hyperphosphorylation of tau in an EP-1-, EP-2-, and EP-3-dependent but not EP4-dependent cyclin-dependent kinase (Cdk) 5-activating manner. Reciprocally, the knockdown of the expression of mPGES1 ameliorated the expected cognitive decline by inhibiting the phosphorylation of tau in APP/PS1 Tg mice. Moreover, CDK5 was found to be located downstream of EP1-3 to regulate the phosphorylation of tau though the cleavage of p35 to p25. Finally, the phosphorylation of tau by Ca2+ contributed to the cognitive decline of APP/PS1 Tg mice.
Collapse
Affiliation(s)
- Long-Long Cao
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Pei-Pei Guan
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Yun-Yue Liang
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Xue-Shi Huang
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Pu Wang
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| |
Collapse
|
37
|
Lin L, Jadoon SS, Liu SZ, Zhang RY, Li F, Zhang MY, Ai-Hua T, You QY, Wang P. Tanshinone IIA Ameliorates Spatial Learning and Memory Deficits by Inhibiting the Activity of ERK and GSK-3β. J Geriatr Psychiatry Neurol 2019; 32:152-163. [PMID: 30885037 DOI: 10.1177/0891988719837373] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND Alzheimer disease (AD) is the most common type of dementia which is becoming a primary problem in the present society, but it lacks effective treatment methods and means of AD. Tanshinone IIA (Tan IIA) has been reported to have neuroprotective effects to restrain the Aβ25-35-mediated apoptosis. However, few studies try to understand how Aβ1-42 affects hyperphosphorylation of tau and how Tan IIA regulates this process at the molecular level. METHODS Fifty male Sprague-Dawley rats were randomly divided into 5 groups and infused through the lateral ventricle with Aβ1-42 except the control group. Then the rats were treated with Tan IIA through intragastric administration for 4 weeks. After the ability of learning and memory being measured, histomorphological examination and Western blot were used to detect the possible mechanism in the AD-associated model rats. RESULTS We observed that Aβ1-42 infusion could induce spatial learning and memory deficits in rats. Simultaneously, Aβ1-42 also could reduce the neuron in cornu ammonis 1 and dentate gyrus of hippocampus, as well as increase the levels of cleaved caspase 3, hyperphosphorylated tau at the sites Ser396, Ser404, and Thr205 with enhancing staining of black granules in brain. We also found that Aβ1-42 could increase the activity of extracellular signal-regulated protein kinase (ERK) and glycogen synthase kinase-3β (GSK-3β). Meanwhile, these phenomena could be ameliorated when Tan IIA was used. CONCLUSION We concluded that Tan IIA might have neuroprotective effect and improving learning and memory ability to be a viable candidate in AD therapy with mechanisms involving the ERK and GSK-3β signal pathway.
Collapse
Affiliation(s)
- Li Lin
- 1 Cell Molecular Biology Laboratory of Basic Medical College, Hubei University of Chinese Medicine, Wuhan, China.,2 Hubei Research Institute of Geriatrics, Collaborative Innovation Center of Hubei Province, Hubei University of Chinese Medicine, Wuhan, China
| | - Sarmad Sheraz Jadoon
- 1 Cell Molecular Biology Laboratory of Basic Medical College, Hubei University of Chinese Medicine, Wuhan, China.,3 Department of Pharmacology, College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Shang-Zhi Liu
- 1 Cell Molecular Biology Laboratory of Basic Medical College, Hubei University of Chinese Medicine, Wuhan, China
| | - Ru-Yi Zhang
- 3 Department of Pharmacology, College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Fan Li
- 3 Department of Pharmacology, College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Mei-Ya Zhang
- 3 Department of Pharmacology, College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Tan Ai-Hua
- 1 Cell Molecular Biology Laboratory of Basic Medical College, Hubei University of Chinese Medicine, Wuhan, China.,2 Hubei Research Institute of Geriatrics, Collaborative Innovation Center of Hubei Province, Hubei University of Chinese Medicine, Wuhan, China
| | - Qiu-Yun You
- 3 Department of Pharmacology, College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Ping Wang
- 2 Hubei Research Institute of Geriatrics, Collaborative Innovation Center of Hubei Province, Hubei University of Chinese Medicine, Wuhan, China
| |
Collapse
|
38
|
de Castro AA, Soares FV, Pereira AF, Polisel DA, Caetano MS, Leal DHS, da Cunha EFF, Nepovimova E, Kuca K, Ramalho TC. Non-conventional compounds with potential therapeutic effects against Alzheimer’s disease. Expert Rev Neurother 2019; 19:375-395. [DOI: 10.1080/14737175.2019.1608823] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Alexandre A. de Castro
- Laboratory of Molecular Modeling, Department of Chemistry, Federal University of Lavras, Lavras, Brazil
| | - Flávia V. Soares
- Laboratory of Molecular Modeling, Department of Chemistry, Federal University of Lavras, Lavras, Brazil
| | - Ander F. Pereira
- Laboratory of Molecular Modeling, Department of Chemistry, Federal University of Lavras, Lavras, Brazil
| | - Daniel A. Polisel
- Laboratory of Molecular Modeling, Department of Chemistry, Federal University of Lavras, Lavras, Brazil
| | - Melissa S. Caetano
- Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Ouro Preto, Brazil
| | - Daniel H. S. Leal
- Laboratory of Molecular Modeling, Department of Chemistry, Federal University of Lavras, Lavras, Brazil
- Department of Health Sciences, Federal University of Espírito Santo, São Mateus, Brazil
| | - Elaine F. F. da Cunha
- Laboratory of Molecular Modeling, Department of Chemistry, Federal University of Lavras, Lavras, Brazil
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
| | - Teodorico C. Ramalho
- Laboratory of Molecular Modeling, Department of Chemistry, Federal University of Lavras, Lavras, Brazil
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
| |
Collapse
|
39
|
Melková K, Zapletal V, Narasimhan S, Jansen S, Hritz J, Škrabana R, Zweckstetter M, Ringkjøbing Jensen M, Blackledge M, Žídek L. Structure and Functions of Microtubule Associated Proteins Tau and MAP2c: Similarities and Differences. Biomolecules 2019; 9:biom9030105. [PMID: 30884818 PMCID: PMC6468450 DOI: 10.3390/biom9030105] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 03/09/2019] [Accepted: 03/13/2019] [Indexed: 12/16/2022] Open
Abstract
The stability and dynamics of cytoskeleton in brain nerve cells are regulated by microtubule associated proteins (MAPs), tau and MAP2. Both proteins are intrinsically disordered and involved in multiple molecular interactions important for normal physiology and pathology of chronic neurodegenerative diseases. Nuclear magnetic resonance and cryo-electron microscopy recently revealed propensities of MAPs to form transient local structures and long-range contacts in the free state, and conformations adopted in complexes with microtubules and filamentous actin, as well as in pathological aggregates. In this paper, we compare the longest, 441-residue brain isoform of tau (tau40), and a 467-residue isoform of MAP2, known as MAP2c. For both molecules, we present transient structural motifs revealed by conformational analysis of experimental data obtained for free soluble forms of the proteins. We show that many of the short sequence motifs that exhibit transient structural features are linked to functional properties, manifested by specific interactions. The transient structural motifs can be therefore classified as molecular recognition elements of tau40 and MAP2c. Their interactions are further regulated by post-translational modifications, in particular phosphorylation. The structure-function analysis also explains differences between biological activities of tau40 and MAP2c.
Collapse
Affiliation(s)
- Kateřina Melková
- Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic.
- Faculty of Science, National Centre for Biomolecular Research, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic.
| | - Vojtěch Zapletal
- Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic.
- Faculty of Science, National Centre for Biomolecular Research, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic.
| | - Subhash Narasimhan
- Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic.
| | - Séverine Jansen
- Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic.
| | - Jozef Hritz
- Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic.
| | - Rostislav Škrabana
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dúbravská cesta 9, 845 10 Bratislava, Slovakia.
- Axon Neuroscience R&D Services SE, Dvořákovo nábrežie 10, 811 02 Bratislava, Slovakia.
| | - Markus Zweckstetter
- German Center for Neurodegenerative Diseases (DZNE), Von-Siebold-Str. 3a, 37075 Göttingen, Germany.
- Department of NMR-Based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany.
| | | | | | - Lukáš Žídek
- Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic.
- Faculty of Science, National Centre for Biomolecular Research, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic.
| |
Collapse
|
40
|
Huang F, Wang M, Liu R, Wang JZ, Schadt E, Haroutunian V, Katsel P, Zhang B, Wang X. CDT2-controlled cell cycle reentry regulates the pathogenesis of Alzheimer's disease. Alzheimers Dement 2019; 15:217-231. [PMID: 30321504 PMCID: PMC6758558 DOI: 10.1016/j.jalz.2018.08.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 07/07/2018] [Accepted: 08/31/2018] [Indexed: 12/29/2022]
Abstract
INTRODUCTION Altered cell cycle reentry has been observed in Alzheimer's disease (AD). Denticleless (DTL) was predicted as the top driver of a cell cycle subnetwork associated with AD. METHODS We systematically investigated DTL expression in AD and studied the molecular, cellular, and behavioral endophenotypes triggered by DTL overexpression. RESULTS We experimentally validated that CDT2, the protein encoded by DTL, activated cyclin-dependent kinases through downregulating P21, which induced tau hyperphosphorylation and Aβ toxicity, two hallmarks of AD. We demonstrated that cyclin-dependent kinases inhibition by roscovitine not only rescued CDT2-induced cognitive defects but also reversed expression changes induced by DTL overexpression. RNA-seq data from the DTL overexpression experiments revealed the molecular mechanisms underlying CDT2 controlled cell cycle reentry in AD. DISCUSSION These findings provide new insights into the molecular mechanisms of AD pathogenesis and thus pave a way for developing novel therapeutics for AD by targeting AD specific cell cycle networks and drivers.
Collapse
Affiliation(s)
- Fang Huang
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Minghui Wang
- Department of Genetics and Genomic Sciences, Mount Sinai Center for Transformative Disease Modeling, Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, NY, USA
| | - Rong Liu
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jian-Zhi Wang
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Eric Schadt
- Department of Genetics and Genomic Sciences, Mount Sinai Center for Transformative Disease Modeling, Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, NY, USA
| | - Vahram Haroutunian
- Departments of Psychiatry and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Psychiatry, JJ Peters VA Medical Center, Bronx, NY, USA; Fishberg Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA; The Alzheimer's Disease Research Center, Icahn School of Medicine at Mount Sinai, New York NY, USA
| | - Pavel Katsel
- Departments of Psychiatry and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Bin Zhang
- Department of Genetics and Genomic Sciences, Mount Sinai Center for Transformative Disease Modeling, Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, NY, USA.
| | - Xiaochuan Wang
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Co-innovation Center of Neuroregeneration, Nantong University, Nantong, JS, China.
| |
Collapse
|
41
|
Jain AK, Karthikeyan C, McIntosh KD, Tiwari AK, Trivedi P, DuttKonar A. Unravelling the potency of 4,5-diamino-4H-1,2,4 triazole-3-thiol derivatives for kinase inhibition using a rational approach. NEW J CHEM 2019. [DOI: 10.1039/c8nj04205e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
This report describes the design of potent kinase inhibitors by simply fine tuning the surroundings of triazole core with diversified derivatization.
Collapse
Affiliation(s)
- Arvind Kumar Jain
- School of Pharmaceutical Sciences
- Rajiv Gandhi Technological University
- Bhopal
- Gandhinagar
- India
| | - C. Karthikeyan
- School of Pharmaceutical Sciences
- Rajiv Gandhi Technological University
- Bhopal
- Gandhinagar
- India
| | - Kyle Douglas McIntosh
- Department of Pharmacology and Experimental Therapeutics
- College of Pharmacy and Pharmaceutical Sciences
- University of Toledo
- USA
| | - Amit K. Tiwari
- Department of Pharmacology and Experimental Therapeutics
- College of Pharmacy and Pharmaceutical Sciences
- University of Toledo
- USA
| | - Piyush Trivedi
- School of Pharmaceutical Sciences
- Rajiv Gandhi Technological University
- Bhopal
- Gandhinagar
- India
| | - Anita DuttKonar
- School of Pharmaceutical Sciences
- Rajiv Gandhi Technological University
- Bhopal
- Gandhinagar
- India
| |
Collapse
|
42
|
Zhao Y, Chen X, Wu Y, Wang Y, Li Y, Xiang C. Transplantation of Human Menstrual Blood-Derived Mesenchymal Stem Cells Alleviates Alzheimer's Disease-Like Pathology in APP/PS1 Transgenic Mice. Front Mol Neurosci 2018; 11:140. [PMID: 29740283 PMCID: PMC5928234 DOI: 10.3389/fnmol.2018.00140] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Accepted: 04/06/2018] [Indexed: 12/11/2022] Open
Abstract
Extracellular β-amyloid (Aβ) plaques and neurofibrillary tangles (NFTs) are the pathological hallmarks of Alzheimer’s disease (AD). Mesenchymal stem cells (MSCs) have shown therapeutic efficacy in many neurodegenerative diseases, including AD. Human menstrual blood-derived stem cells (MenSCs) are a novel source of MSCs advantageous for their higher proliferation rate and because they are easy to obtain without ethical concerns. Although MenSCs have exhibited therapeutic efficacy in some diseases, their effects on AD remain elusive. In the present study, we showed that intracerebral transplantation of MenSCs dramatically improved the spatial learning and memory of APP/PS1 mice. In addition, MenSCs significantly ameliorated amyloid plaques and reduced tau hyperphosphorylation in APP/PS1 mice. Remarkably, we also found that intracerebral transplantation of MenSCs markedly increased several Aβ degrading enzymes and modulated a panel of proinflammatory cytokines associated with an altered microglial phenotype, suggesting an Aβ degrading and anti-inflammatory impact of MenSCs in the brains of APP/PS1 mice. In conclusion, these findings suggest that MenSCs are a promising therapeutic candidate for AD.
Collapse
Affiliation(s)
- Yongjia Zhao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Xin Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yichen Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yanling Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yifei Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Charlie Xiang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
43
|
Haj-Yahya M, Lashuel HA. Protein Semisynthesis Provides Access to Tau Disease-Associated Post-translational Modifications (PTMs) and Paves the Way to Deciphering the Tau PTM Code in Health and Diseased States. J Am Chem Soc 2018; 140:6611-6621. [DOI: 10.1021/jacs.8b02668] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Mahmood Haj-Yahya
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Hilal A. Lashuel
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
44
|
Bai B. U1 snRNP Alteration and Neuronal Cell Cycle Reentry in Alzheimer Disease. Front Aging Neurosci 2018; 10:75. [PMID: 29628886 PMCID: PMC5876301 DOI: 10.3389/fnagi.2018.00075 10.12075/j.issn.1004-4051.2018.08.034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 03/06/2018] [Indexed: 06/29/2024] Open
Abstract
The aberrancy of U1 small nuclear ribonucleoprotein (snRNP) complex and RNA splicing has been demonstrated in Alzheimer's disease (AD). Importantly, the U1 proteopathy is AD-specific, widespread and early-occurring, thus providing a very unique clue to the AD pathogenesis. The prominent feature of U1 histopathology is its nuclear depletion and redistribution in the neuronal cytoplasm. According to the preliminary data, the initial U1 cytoplasmic distribution pattern is similar to the subcellular translocation of the spliceosome in cells undergoing mitosis. This implies that the U1 mislocalization might reflect the neuronal cell cycle-reentry (CCR) which has been extensively evidenced in AD brains. The CCR phenomenon explains the major molecular and cellular events in AD brains, such as Tau and amyloid precursor protein (APP) phosphorylation, and the possible neuronal death through mitotic catastrophe (MC). Furthermore, the CCR might be mechanistically linked to inflammation, a critical factor in the AD etiology according to the genetic evidence. Therefore, the discovery of U1 aberrancy might strengthen the involvement of CCR in the AD neuronal degeneration.
Collapse
Affiliation(s)
- Bing Bai
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| |
Collapse
|
45
|
Bai B. U1 snRNP Alteration and Neuronal Cell Cycle Reentry in Alzheimer Disease. Front Aging Neurosci 2018; 10:75. [PMID: 29628886 PMCID: PMC5876301 DOI: 10.3389/fnagi.2018.00075] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 03/06/2018] [Indexed: 12/12/2022] Open
Abstract
The aberrancy of U1 small nuclear ribonucleoprotein (snRNP) complex and RNA splicing has been demonstrated in Alzheimer’s disease (AD). Importantly, the U1 proteopathy is AD-specific, widespread and early-occurring, thus providing a very unique clue to the AD pathogenesis. The prominent feature of U1 histopathology is its nuclear depletion and redistribution in the neuronal cytoplasm. According to the preliminary data, the initial U1 cytoplasmic distribution pattern is similar to the subcellular translocation of the spliceosome in cells undergoing mitosis. This implies that the U1 mislocalization might reflect the neuronal cell cycle-reentry (CCR) which has been extensively evidenced in AD brains. The CCR phenomenon explains the major molecular and cellular events in AD brains, such as Tau and amyloid precursor protein (APP) phosphorylation, and the possible neuronal death through mitotic catastrophe (MC). Furthermore, the CCR might be mechanistically linked to inflammation, a critical factor in the AD etiology according to the genetic evidence. Therefore, the discovery of U1 aberrancy might strengthen the involvement of CCR in the AD neuronal degeneration.
Collapse
Affiliation(s)
- Bing Bai
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| |
Collapse
|
46
|
Kimura T, Sharma G, Ishiguro K, Hisanaga SI. Phospho-Tau Bar Code: Analysis of Phosphoisotypes of Tau and Its Application to Tauopathy. Front Neurosci 2018; 12:44. [PMID: 29467609 PMCID: PMC5808175 DOI: 10.3389/fnins.2018.00044] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 01/18/2018] [Indexed: 11/13/2022] Open
Abstract
Tau is a microtubule-associated protein which regulates the assembly and stability of microtubules in the axons of neurons. Tau is also a major component of neurofibrillary tangles (NFTs), a pathological hallmark in Alzheimer's disease (AD). A characteristic of AD tau is hyperphosphorylation with more than 40 phosphorylation sites. Aggregates of hyperphosphorylated tau are also found in other neurodegenerative diseases which are collectively called tauopathies. Although a large number of studies have been performed on the phosphorylation of AD tau, it is not known if there is disease-specific phosphorylation among tauopathies. This is due to the lack of a proper method for analyzing tau phosphorylation in vivo. Most previous phosphorylation studies were conducted using a range of phosphorylation site-specific antibodies. These studies describe relative changes of different phosphorylation sites, however, it is hard to estimate total, absolute and collective changes in phosphorylation. To overcome these problems, we have recently applied the Phos-Tag technique to the analysis of tau phosphorylation in vitro and in vivo. This method separates tau into many bands during SDS-PAGE depending on its phosphorylation states, creating a bar code appearance. We propose calling this banding pattern of tau the "phospho-tau bar code." In this review article, we describe what is newly discovered regarding tau phosphorylation through the use of the Phos-Tag. We would like to propose its use for the postmortem diagnosis of tauopathy which is presently done by immunostaining diseased brains with anti-phospho-antibodies. While Phos-tag SDS-PAGE, like other biochemical assays, will lose morphological information, it could provide other types of valuable information such as disease-specific phosphorylation.
Collapse
Affiliation(s)
- Taeko Kimura
- Laboratory of Molecular Neuroscience, Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, Japan
| | - Govinda Sharma
- Laboratory of Molecular Neuroscience, Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, Japan
| | - Koichi Ishiguro
- Department of Neurology, Graduate School of Medicine, Juntendo University, Bunkyo, Japan
| | - Shin-Ichi Hisanaga
- Laboratory of Molecular Neuroscience, Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, Japan
| |
Collapse
|
47
|
Song FX, Wang L, Liu H, Wang YL, Zou Y. Brain cell apoptosis inhibition by butylphthalide in Alzheimer's disease model in rats. Exp Ther Med 2017; 13:2771-2774. [PMID: 28587340 PMCID: PMC5450572 DOI: 10.3892/etm.2017.4322] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 03/03/2017] [Indexed: 11/05/2022] Open
Abstract
The present study was designed to test the hypothesis that butylphthalide protects the brain of Alzheimer's disease (AD) model rats by inhibiting apoptosis. Ninety Sprague-Dawley rats were randomly divided into drug, control and blank groups of 30 rats in each. The rats in the drug and control groups were treated to induce AD. Then, the rats in the drug group were administered with butylphthalide daily, the rats in the AD control group were given normal saline, and the rats in the healthy group were fed routinely. All rats were sacrificed after 30 days; the brain tissues were used for testing for apoptosis by the terminal deoxynucleotidyl-transferase-mediated dUTP nick end labelling (TUNEL) staining method, for determining mitogen-activated protein kinase (MAPK), ERK and P21 protein by western blot analysis, and their cognate mRNA levels by RT-PCR. The results of the TUNEL staining indicated that apoptosis of the brain tissues of rats in the drug group was significantly less than that in the control group and blank group. The protein expression levels of MAPK in the drug group were significantly lower than that in the control group, but higher than that in the normal healthy group (P<0.05). The mRNA expression levels of MAPK in the drug group were significantly lower than those in the control group, but higher than those in the normal healthy group (P<0.05). Based on these results, butylphthalide showed a protective apoptosis-inhibition effect on the brain tissues of the AD rats and this seems to be a consequence of its inhibition of the expressions of MAPK mRNA and MAPK protein in the brain of the rat.
Collapse
Affiliation(s)
- Fu-Xia Song
- Department of Neurology, Yantai Yuhuangding Hospital, Yantai, Shandong 264000, P.R. China
| | - Li Wang
- Department of Integrated Traditional and Western Medicine, Yantai Yuhuangding Hospital, Yantai, Shandong 264000, P.R. China
| | - Hong Liu
- Department of Neurology, Yantai Yuhuangding Hospital, Yantai, Shandong 264000, P.R. China
| | - Ying-Li Wang
- Department of Ophthalmology, Yantai Yeda Hospital, Yantai, Shandong 264000, P.R. China
| | - Yong Zou
- Department of Integrated Traditional and Western Medicine, Yantai Yuhuangding Hospital, Yantai, Shandong 264000, P.R. China
| |
Collapse
|
48
|
Milenkovic I, Jarc J, Dassler E, Aronica E, Iyer A, Adle-Biassette H, Scharrer A, Reischer T, Hainfellner JA, Kovacs GG. The physiological phosphorylation of tau is critically changed in fetal brains of individuals with Down syndrome. Neuropathol Appl Neurobiol 2017; 44:314-327. [PMID: 28455903 DOI: 10.1111/nan.12406] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 03/17/2017] [Accepted: 04/15/2017] [Indexed: 01/15/2023]
Abstract
AIMS Down syndrome (DS) is a common cause of mental retardation accompanied by cognitive impairment. Comprehensive studies suggested a link between development and ageing, as nearly all individuals with DS develop Alzheimer disease (AD)-like pathology. However, there is still a paucity of data on tau in early DS to support this notion. METHODS Using morphometric immunohistochemistry we compared tau phosphorylation in normal brains and in brains of individuals with DS from early development until early postnatal life. RESULTS We observed in DS a critical loss of physiological phosphorylation of tau. Rhombencephalic structures showed prominent differences between controls and DS using antibodies AT8 (Ser-202/Thr-205) and AT180 (Thr-231). In contrast, in the subiculum only a small portion of controls deviated from DS using antibodies AT100 (Thr-212/Ser-214) and AT270 (Thr-181). With exception of the subiculum, phosphorylation-independent tau did not differ between groups, as confirmed by immunostaining for the HT-7 antibody (epitope between 159 and 163 of the human tau) as well. DISCUSSION Our observations suggest functional tau disturbance in DS brains during development, rather than axonal loss. This supports the role of tau as a further important player in the pathophysiology of cognitive impairment in DS and related AD.
Collapse
Affiliation(s)
- I Milenkovic
- Department of Neurology, Medical University of Vienna, Vienna, Austria.,Institute of Neurology, Neurodegeneration Research Group, Medical University of Vienna, Vienna, Austria
| | - J Jarc
- Institute of Neurology, Neurodegeneration Research Group, Medical University of Vienna, Vienna, Austria
| | - E Dassler
- Institute of Neurology, Neurodegeneration Research Group, Medical University of Vienna, Vienna, Austria
| | - E Aronica
- Department of (Neuro)Pathology, Academic Medical Center, University of Amsterdam, The Netherlands.,SEIN - Stichting Epilepsie Instellingen Nederland, Heemstede, The Netherlands.,Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, The Netherlands
| | - A Iyer
- Department of (Neuro)Pathology, Academic Medical Center, University of Amsterdam, The Netherlands
| | - H Adle-Biassette
- Inserm U1141, Paris, France.,Univ Paris Diderot, Sorbonne Paris Cité, UMRS 676, Paris, France.,Lariboisière Hospital, APHP, Paris, France
| | - A Scharrer
- Department of Pathology, Medical University of Vienna, Vienna, Austria
| | - T Reischer
- Department of Obstetrics and Gynecology, Medical University of Vienna, Vienna, Austria
| | - J A Hainfellner
- Institute of Neurology, Neurodegeneration Research Group, Medical University of Vienna, Vienna, Austria
| | - G G Kovacs
- Institute of Neurology, Neurodegeneration Research Group, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
49
|
Jansen S, Melková K, Trošanová Z, Hanáková K, Zachrdla M, Nováček J, Župa E, Zdráhal Z, Hritz J, Žídek L. Quantitative mapping of microtubule-associated protein 2c (MAP2c) phosphorylation and regulatory protein 14-3-3ζ-binding sites reveals key differences between MAP2c and its homolog Tau. J Biol Chem 2017; 292:6715-6727. [PMID: 28258221 DOI: 10.1074/jbc.m116.771097] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 03/01/2017] [Indexed: 11/06/2022] Open
Abstract
Microtubule-associated protein 2c (MAP2c) is involved in neuronal development and is less characterized than its homolog Tau, which has various roles in neurodegeneration. Using NMR methods providing single-residue resolution and quantitative comparison, we investigated molecular interactions important for the regulatory roles of MAP2c in microtubule dynamics. We found that MAP2c and Tau significantly differ in the position and kinetics of sites that are phosphorylated by cAMP-dependent protein kinase (PKA), even in highly homologous regions. We determined the binding sites of unphosphorylated and phosphorylated MAP2c responsible for interactions with the regulatory protein 14-3-3ζ. Differences in phosphorylation and in charge distribution between MAP2c and Tau suggested that both MAP2c and Tau respond to the same signal (phosphorylation by PKA) but have different downstream effects, indicating a signaling branch point for controlling microtubule stability. Although the interactions of phosphorylated Tau with 14-3-3ζ are supposed to be a major factor in microtubule destabilization, the binding of 14-3-3ζ to MAP2c enhanced by PKA-mediated phosphorylation is likely to influence microtubule-MAP2c binding much less, in agreement with the results of our tubulin co-sedimentation measurements. The specific location of the major MAP2c phosphorylation site in a region homologous to the muscarinic receptor-binding site of Tau suggests that MAP2c also may regulate processes other than microtubule dynamics.
Collapse
Affiliation(s)
- Séverine Jansen
- From the National Centre for Biomolecular Research, Faculty of Science, and.,the Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-62500 Brno, Czech Republic
| | - Kateřina Melková
- From the National Centre for Biomolecular Research, Faculty of Science, and.,the Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-62500 Brno, Czech Republic
| | - Zuzana Trošanová
- From the National Centre for Biomolecular Research, Faculty of Science, and.,the Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-62500 Brno, Czech Republic
| | - Kateřina Hanáková
- the Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-62500 Brno, Czech Republic
| | - Milan Zachrdla
- From the National Centre for Biomolecular Research, Faculty of Science, and.,the Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-62500 Brno, Czech Republic
| | - Jiří Nováček
- the Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-62500 Brno, Czech Republic
| | - Erik Župa
- From the National Centre for Biomolecular Research, Faculty of Science, and.,the Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-62500 Brno, Czech Republic
| | - Zbyněk Zdráhal
- the Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-62500 Brno, Czech Republic
| | - Jozef Hritz
- From the National Centre for Biomolecular Research, Faculty of Science, and .,the Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-62500 Brno, Czech Republic
| | - Lukáš Žídek
- From the National Centre for Biomolecular Research, Faculty of Science, and .,the Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-62500 Brno, Czech Republic
| |
Collapse
|
50
|
Gorantla NV, Shkumatov AV, Chinnathambi S. Conformational Dynamics of Intracellular Tau Protein Revealed by CD and SAXS. Methods Mol Biol 2017; 1523:3-20. [PMID: 27975241 DOI: 10.1007/978-1-4939-6598-4_1] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A native conformation of a protein is essential for its biological role. In certain conditions, some proteins show non-native conformations, leading to aggregation, which in turn may produce severe pathologies. Such physiological conditions are classified as protein misfolding diseases. Alzheimer's disease (AD) is the most common form of dementia. Extracellular senile plaques formed by Amyloid β and intracellular aggregates formed by microtubule-associated protein Tau (MAPT) are the hallmarks of AD. Physiological role of MAPT is to maintain the integrity and stability of microtubules, however it tends to self-aggregate forming intracellular paired helical filaments (PHFs) during AD. MAPT is also subjected to various post-translational modifications such as phosphorylation, glycosylation, truncation, and acetylation. Being natively unfolded, MAPT is prone to full characterization at atomic level. Small-angle X-ray scattering (SAXS) is often applied in combination with other biophysical methods, like nuclear magnetic resonance (NMR), circular dichroism (CD), fluorescence spectroscopy, analytical ultracentrifugation (AUC), or dynamic light scattering (DLS) to characterize natively unfolded systems. Here we describe the practical aspects of MAPT characterization by SAXS and CD in detail as well as outline the inferred structural and functional implications.
Collapse
Affiliation(s)
- Nalini Vijay Gorantla
- Neurobiology Group, Division of Biochemical Sciences, National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, 411008, Pune, Maharashtra, India.,Academy of Scientific and Innovative Research (AcSIR), 10025, New Delhi, India
| | | | - Subashchandrabose Chinnathambi
- Neurobiology Group, Division of Biochemical Sciences, National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, 411008, Pune, Maharashtra, India. .,Academy of Scientific and Innovative Research (AcSIR), 10025, New Delhi, India.
| |
Collapse
|