1
|
Yang Z, Zhang Z, Zhu Y, Yuan G, Yang J, Yu W. Mendelian Randomization and Transcriptome-Wide Association Analysis Identified Genes That Were Pleiotropically Associated with Intraocular Pressure. Genes (Basel) 2023; 14:genes14051027. [PMID: 37239387 DOI: 10.3390/genes14051027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/21/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023] Open
Abstract
BACKGROUND Intraocular pressure (IOP) is a major modifiable risk factor for glaucoma. However, the mechanisms underlying the controlling of IOP remain to be elucidated. OBJECTIVE To prioritize genes that are pleiotropically associated with IOP. METHODS We adopted a two-sample Mendelian randomization method, named summary-based Mendelian randomization (SMR), to examine the pleiotropic effect of gene expression on IOP. The SMR analyses were based on summarized data from a genome-wide association study (GWAS) on IOP. We conducted separate SMR analyses using Genotype-Tissue Expression (GTEx) and Consortium for the Architecture of Gene Expression (CAGE) expression quantitative trait loci (eQTL) data. Additionally, we performed a transcriptome-wide association study (TWAS) to identify genes whose cis-regulated expression levels were associated with IOP. RESULTS We identified 19 and 25 genes showing pleiotropic association with IOP using the GTEx and CAGE eQTL data, respectively. RP11-259G18.3 (PSMR = 2.66 × 10-6), KANSL1-AS1 (PSMR = 2.78 × 10-6), and RP11-259G18.2 (PSMR = 2.91 × 10-6) were the top three genes using the GTEx eQTL data. LRRC37A4 (PSMR = 1.19 × 10-5), MGC57346 (PSMR = 1.19 × 10-5), and RNF167 (PSMR = 1.53 × 10-5) were the top three genes using the CAGE eQTL data. Most of the identified genes were found in or near the 17q21.31 genomic region. Additionally, our TWAS analysis identified 18 significant genes whose expression was associated with IOP. Of these, 12 and 4 were also identified by the SMR analysis using the GTEx and CAGE eQTL data, respectively. CONCLUSIONS Our findings suggest that the 17q21.31 genomic region may play a critical role in the regulation of IOP.
Collapse
Affiliation(s)
- Zhikun Yang
- Department of Ophthalmology, Peking Union Medical College Hospital, Key Laboratory of Ocular Fundus Diseases, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Zhewei Zhang
- Department of Statistics, The Pennsylvania State University, State College, PA 16802, USA
| | - Yining Zhu
- School of Mathematical Sciences, Fudan University, Shanghai 200433, China
| | - Guangwei Yuan
- College of Professional Studies, Northeastern University, Boston, MA 02115, USA
| | - Jingyun Yang
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL 60612, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612, USA
| | - Weihong Yu
- Department of Ophthalmology, Peking Union Medical College Hospital, Key Laboratory of Ocular Fundus Diseases, Chinese Academy of Medical Sciences, Beijing 100730, China
| |
Collapse
|
2
|
Cheah JS, Jacobs KA, Lai TW, Caballelo R, Yee JL, Ueda S, Heinrich V, Yamada S. Spatial proximity of proteins surrounding zyxin under force-bearing conditions. Mol Biol Cell 2021; 32:1221-1228. [PMID: 33909446 PMCID: PMC8351546 DOI: 10.1091/mbc.e19-10-0568] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Sensing physical forces is a critical first step in mechano-transduction of cells. Zyxin, a LIM domain-containing protein, is recruited to force-bearing actin filaments and is thought to repair and strengthen them. Yet, the precise force-induced protein interactions surrounding zyxin remain unclear. Using BioID analysis, we identified proximal proteins surrounding zyxin under normal and force-bearing conditions by label-free mass spectrometry analysis. Under force-bearing conditions, increased biotinylation of α-actinin 1, α-actinin 4, and AFAP1 were detected, and these proteins accumulated along force-bearing actin fibers independently from zyxin, albeit at a lower intensity than zyxin. VASP also accumulated along force-bearing actin fibers in a zyxin-dependent manner, but the biotinylation of VASP remained constant regardless of force, supporting the model of a free zyxin-VASP complex in the cytoplasm being corecruited to tensed actin fibers. In addition, ARHGAP42, a RhoA GAP, was also identified as a proximal protein of zyxin and colocalized with zyxin along contractile actin bundles. The overexpression of ARHGAP42 reduced the rate of small wound closure, a zyxin-dependent process. These results demonstrate that the application of proximal biotinylation can resolve the proximity and composition of protein complexes as a function of force, which had not been possible with traditional biochemical analysis.
Collapse
Affiliation(s)
- Joleen S Cheah
- Biomedical Engineering Department, University of California Davis, Davis, CA 95616.,Biosciences Program, Stanford University, Stanford, CA 94305
| | - Kyle A Jacobs
- Biomedical Engineering Department, University of California Davis, Davis, CA 95616
| | - Tzu Wei Lai
- Biomedical Engineering Department, University of California Davis, Davis, CA 95616
| | - Reca Caballelo
- Biomedical Engineering Department, University of California Davis, Davis, CA 95616
| | - Jacqueline L Yee
- Biomedical Engineering Department, University of California Davis, Davis, CA 95616
| | - Shuji Ueda
- Graduate School of Agricultural Science, Kobe University, Kobe, Japan 657
| | - Volkmar Heinrich
- Biomedical Engineering Department, University of California Davis, Davis, CA 95616
| | - Soichiro Yamada
- Biomedical Engineering Department, University of California Davis, Davis, CA 95616
| |
Collapse
|
3
|
Mir SS, Bhat HF, Bhat ZF. Dynamic actin remodeling in response to lysophosphatidic acid. J Biomol Struct Dyn 2020; 38:5253-5265. [PMID: 31920158 DOI: 10.1080/07391102.2019.1696230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Lysophosphatidic acid (LPA) is a multifunctional regulator of actin cytoskeleton that exerts a dramatic impact on the actin cytoskeleton to build a platform for diverse cellular processes including growth cone guidance, neurite retraction and cell motility. It has been implicated in the formation and dissociation of complexes between actin and actin binding proteins, supporting its role in actin remodeling. Several studies point towards its ability to facilitate formation of special cellular structures including focal adhesions and actin stress fibres by phosphoregulation of several actin associated proteins and their multiple regulatory kinases and phosphatases. In addition, multiple levels of crosstalk among the signaling cascades activated by LPA, affect actin cytoskeleton-mediated cell migration and chemotaxis which in turn play a crucial role in cancer metastasis. In the current review, we have attempted to highlight the role of LPA as an actin modulator which functions by controlling activities of specific cellular proteins that underlie mechanisms employed in cytoskeletal and pathophysiological events within the cell. Further studies on the actin affecting/remodeling activity of LPA in different cell types will no doubt throw up many surprises essential to gain a full understanding of its contribution in physiological processes as well as in diseases.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Saima S Mir
- Department of Biotechnology, University of Kashmir, Srinagar, Jammu And Kashmir, India.,Division of Animal Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir (SKUAST-K), Srinagar, Jammu And Kashmir, India
| | - Hina F Bhat
- Division of Animal Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir (SKUAST-K), Srinagar, Jammu And Kashmir, India
| | - Zuhaib F Bhat
- Department of Wine, Food & Molecular Biosciences, Lincoln University, Lincoln, New Zealand.,Division of Livestock Products and Technology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu (SKUAST-J), R.S. Pora, Jammu And Kashmir, India
| |
Collapse
|
4
|
Zhang F, Li J, Xiao H, Zou Y, Liu Y, Huang W. AFAP1-AS1: A novel oncogenic long non-coding RNA in human cancers. Cell Prolif 2018; 51:e12397. [PMID: 29057544 PMCID: PMC6528908 DOI: 10.1111/cpr.12397] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 09/24/2017] [Indexed: 02/05/2023] Open
Abstract
Long non-coding RNAs (lncRNAs), a group of non-protein-coding RNAs with more than 200 nucleotides in length, are involved in multiple biological processes, such as the proliferation, apoptosis, migration and invasion. Moreover, numerous studies have shown that lncRNAs play important roles as oncogenes or tumour suppressor genes in human cancers. In this paper, we concentrate on actin filament-associated protein 1-antisense RNA 1 (AFAP1-AS1), a well-known long non-coding RNA that is overexpressed in various tumour tissues and cell lines, including oesophageal cancer, pancreatic ductal adenocarcinoma, nasopharyngeal carcinoma, lung cancer, hepatocellular carcinoma, ovarian cancer, colorectal cancer, biliary tract cancer and gastric cancer. Moreover, high expression of AFAP1-AS1 was associated with the clinicopathological features and cancer progression. In this review, we sum up the current studies on the characteristics of AFAP1-AS1 in the biological function and mechanism of human cancers.
Collapse
Affiliation(s)
- Fuyou Zhang
- Key Laboratory of Medical Reprogramming TechnologyShenzhen Second People's HospitalFirst Affiliated Hospital of Shenzhen UniversityShenzhen518039Guangdong ProvinceChina
| | - Jianfa Li
- Key Laboratory of Medical Reprogramming TechnologyShenzhen Second People's HospitalFirst Affiliated Hospital of Shenzhen UniversityShenzhen518039Guangdong ProvinceChina
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and GeneticsInstitute of UrologyPeking University Shenzhen HospitalShenzhen PKU‐HKUST Medical CenterShenzhen518036China
| | - Huizhong Xiao
- Key Laboratory of Medical Reprogramming TechnologyShenzhen Second People's HospitalFirst Affiliated Hospital of Shenzhen UniversityShenzhen518039Guangdong ProvinceChina
- University of South ChinaHengyangHunan421001China
| | - Yifan Zou
- Key Laboratory of Medical Reprogramming TechnologyShenzhen Second People's HospitalFirst Affiliated Hospital of Shenzhen UniversityShenzhen518039Guangdong ProvinceChina
- Shantou University Medical CollegeShantou515041Guangdong ProvinceChina
| | - Yuchen Liu
- Key Laboratory of Medical Reprogramming TechnologyShenzhen Second People's HospitalFirst Affiliated Hospital of Shenzhen UniversityShenzhen518039Guangdong ProvinceChina
| | - Weiren Huang
- Key Laboratory of Medical Reprogramming TechnologyShenzhen Second People's HospitalFirst Affiliated Hospital of Shenzhen UniversityShenzhen518039Guangdong ProvinceChina
- University of South ChinaHengyangHunan421001China
- Shantou University Medical CollegeShantou515041Guangdong ProvinceChina
| |
Collapse
|
5
|
Hoshi Y, Uchida Y, Tachikawa M, Ohtsuki S, Terasaki T. Actin filament-associated protein 1 (AFAP-1) is a key mediator in inflammatory signaling-induced rapid attenuation of intrinsic P-gp function in human brain capillary endothelial cells. J Neurochem 2017; 141:247-262. [PMID: 28112407 DOI: 10.1111/jnc.13960] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 01/16/2017] [Accepted: 01/17/2017] [Indexed: 01/20/2023]
Abstract
The purpose of this study was to identify regulatory molecule(s) involved in the inflammatory signaling-induced decrease in P-glycoprotein (P-gp) efflux function at the blood-brain barrier (BBB) that may occur in brain diseases. We confirmed that in vivo P-gp efflux activity at the BBB was decreased without any change in P-gp protein expression level in a mouse model of acute inflammation induced by 3 mg/kg lipopolysaccharide. In a human BBB model cell line (human brain capillary endothelial cells; hCMEC/D3), 1-h treatment with 10 ng/mL tumor necrosis factor-α (TNF-α; an inflammatory mediator) rapidly reduced P-gp efflux activity, but had no effect on P-gp protein expression level. To clarify the non-transcriptional mechanism that causes the decrease in intrinsic efflux activity of P-gp in acute inflammation, we applied comprehensive quantitative phosphoproteomics to compare hCMEC/D3 cells treated with TNF-α and vehicle (control). Actin filament-associated protein-1 (AFAP-1), MAPK1, and transcription factor AP-1 (AP-1) were significantly phosphorylated in TNF-α-treated cells, and were selected as candidate proteins. In validation experiments, knockdown of AFAP-1 expression blocked the reduction in P-gp efflux activity by TNF-α treatment, whereas inhibition of MAPK function or knockdown of AP-1 expression did not. Quantitative targeted absolute proteomics revealed that the reduction in P-gp activity by TNF-α did not require any change in P-gp protein expression levels in the plasma membrane. Our results demonstrate that AFAP-1 is a key mediator in the inflammatory signaling-induced, translocation-independent rapid attenuation of P-gp efflux activity in human brain capillary endothelial cells.
Collapse
Affiliation(s)
- Yutaro Hoshi
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Yasuo Uchida
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Masanori Tachikawa
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Sumio Ohtsuki
- Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan.,Japan Agency for Medical Research and Development (AMED) CREST, Tokyo, Japan
| | - Tetsuya Terasaki
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| |
Collapse
|
6
|
Cui XJ, Zhao AG, Wang XL. Correlations of AFAP1
,GMDS
and PTGFR
gene polymorphisms with intra-ocular pressure response to latanoprost in patients with primary open-angle glaucoma. J Clin Pharm Ther 2016; 42:87-92. [PMID: 27862086 DOI: 10.1111/jcpt.12468] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 09/20/2016] [Indexed: 01/20/2023]
Affiliation(s)
- X.-J. Cui
- Department of Ophthalmology; Linyi People's Hospital; Linyi Shandong China
| | - A.-G. Zhao
- Department of Ophthalmology; Feixian County People's Hospital; Linyi Shandong China
| | - X.-L. Wang
- Department of Ophthalmology; Linyi People's Hospital; Linyi Shandong China
| |
Collapse
|
7
|
Significance of kinase activity in the dynamic invadosome. Eur J Cell Biol 2016; 95:483-492. [PMID: 27465307 DOI: 10.1016/j.ejcb.2016.07.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 07/08/2016] [Accepted: 07/13/2016] [Indexed: 12/19/2022] Open
Abstract
Invadosomes are actin rich protrusive structures that facilitate invasive migration in multiple cell types. Comprised of invadopodia and podosomes, these highly dynamic structures adhere to and degrade the extracellular matrix, and are also thought to play a role in mechanosensing. Many extracellular signals have been implicated in invadosome stimulation, activating complex signalling cascades to drive the formation, activity and turnover of invadosomes. While the structural components of invadosomes have been well studied, the regulation of invadosome dynamics is still poorly understood. Protein kinases are essential to this regulation, affecting all stages of invadosome dynamics and allowing tight spatiotemporal control of their activity. Invadosome organisation and function have been linked to pathophysiological states such as cancer invasion and metastasis; therapeutic targeting of invadosome regulatory components is thus warranted. In this review, we discuss the involvement of kinase signalling in every stage of the invadosome life cycle and evaluate its significance.
Collapse
|
8
|
Chen Y, Liu Y, Guo J, Tang T, Gao J, Huang T, Wang B, Liu S. Preparation and Characterization of a Polyclonal Antibody against Human Actin Filament-Associated Protein-120 kD. Int J Mol Sci 2016; 17:ijms17060942. [PMID: 27322249 PMCID: PMC4926475 DOI: 10.3390/ijms17060942] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 06/02/2016] [Accepted: 06/08/2016] [Indexed: 12/17/2022] Open
Abstract
Actin filament-associated protein-120kD (AFAP-120) is an alternatively spliced isoform of actin filament-associated protein-110kD (AFAP-110) and contains an additional neuronal insert (NINS) fragment in addition to identical domains to the AFAP-110. Unlike AFAP-110 widely expressed in tissues, AFAP-120 is specifically expressed in the nervous system and plays a role in organizing dynamic actin structures during neuronal differentiation. However, anti-AFAP-120 antibody is still commercially unavailable, and this may hinder the function research for AFAP-120. In this study, we simultaneously used the ABCpred online server and the BepiPred 1.0 server to predict B-cell epitopes in the exclusive NINS sequence of human AFAP-120 protein, and found that a 16aa-peptide sequence was the consensus epitope predicted by both tools. This peptide was chemically synthesized and used as an immunogen to develop polyclonal antibody against AFAP-120 (anti-AFAP-120). The sensitivity and specificity of anti-AFAP-120 were analyzed with immunoblotting, immunoprecipitation, and immunofluorescence assays. Our results indicated that anti-AFAP-120 could react with over-expressed and endogenous human AFAP-120 protein under denatured condition, but not with human AFAP-110 protein. Moreover, native human AFAP-120 protein could also be recognized by the anti-AFAP-120 antibody. These results suggested that the prepared anit-AFAP-120 antibody would be a useful tool for studying the biochemical and biological functions of AFAP-120.
Collapse
Affiliation(s)
- Yujian Chen
- Department of Neurobiology, Institute of Basic Medical Sciences, Beijing 100850, China.
| | - Yong Liu
- Department of Neurobiology, Institute of Basic Medical Sciences, Beijing 100850, China.
| | - Jiayu Guo
- Department of Neurobiology, Institute of Basic Medical Sciences, Beijing 100850, China.
| | - Tao Tang
- Department of Neurobiology, Institute of Basic Medical Sciences, Beijing 100850, China.
| | - Jian Gao
- Department of Neurobiology, Institute of Basic Medical Sciences, Beijing 100850, China.
| | - Tao Huang
- Department of Neurobiology, Institute of Basic Medical Sciences, Beijing 100850, China.
| | - Bin Wang
- Department of Neurobiology, Institute of Basic Medical Sciences, Beijing 100850, China.
| | - Shaojun Liu
- Department of Neurobiology, Institute of Basic Medical Sciences, Beijing 100850, China.
| |
Collapse
|
9
|
Yamanaka D, Akama T, Chida K, Minami S, Ito K, Hakuno F, Takahashi SI. Phosphatidylinositol 3-Kinase-Associated Protein (PI3KAP)/XB130 Crosslinks Actin Filaments through Its Actin Binding and Multimerization Properties In Vitro and Enhances Endocytosis in HEK293 Cells. Front Endocrinol (Lausanne) 2016; 7:89. [PMID: 27462298 PMCID: PMC4939424 DOI: 10.3389/fendo.2016.00089] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 06/28/2016] [Indexed: 12/29/2022] Open
Abstract
Actin-crosslinking proteins control actin filament networks and bundles and contribute to various cellular functions including regulation of cell migration, cell morphology, and endocytosis. Phosphatidylinositol 3-kinase-associated protein (PI3KAP)/XB130 has been reported to be localized to actin filaments (F-actin) and required for cell migration in thyroid carcinoma cells. Here, we show a role for PI3KAP/XB130 as an actin-crosslinking protein. First, we found that the carboxyl terminal region of PI3KAP/XB130 containing amino acid residues 830-840 was required and sufficient for localization to F-actin in NIH3T3 cells, and this region is directly bound to F-actin in vitro. Moreover, actin-crosslinking assay revealed that recombinant PI3KAP/XB130 crosslinked F-actin. In general, actin-crosslinking proteins often multimerize to assemble multiple actin-binding sites. We then investigated whether PI3KAP/XB130 could form a multimer. Blue native-PAGE analysis showed that recombinant PI3KAP/XB130 was detected at 250-1200 kDa although the molecular mass was approximately 125 kDa, suggesting that PI3KAP/XB130 formed multimers. Furthermore, we found that the amino terminal 40 amino acids were required for this multimerization by co-immunoprecipitation assay in HEK293T cells. Deletion mutants of PI3KAP/XB130 lacking the actin-binding region or the multimerizing region did not crosslink actin filaments, indicating that actin binding and multimerization of PI3KAP/XB130 were necessary to crosslink F-actin. Finally, we examined roles of PI3KAP/XB130 on endocytosis, an actin-related biological process. Overexpression of PI3KAP/XB130 enhanced dextran uptake in HEK 293 cells. However, most of the cells transfected with the deletion mutant lacking the actin-binding region incorporated dextran to a similar extent as control cells. Taken together, these results demonstrate that PI3KAP/XB130 crosslinks F-actin through both its actin-binding region and multimerizing region and plays an important role in endocytosis.
Collapse
Affiliation(s)
- Daisuke Yamanaka
- Laboratory of Cell Regulation, Department of Animal Resource Sciences, Graduate School of Agriculture and Life Science, The University of Tokyo, Bunkyo-ku, Japan
- Laboratory of Food and Physiological Models, Department of Veterinary Medical Sciences, Graduate School of Agriculture and Life Science, The University of Tokyo, Kasama, Japan
- Department of Bioregulation, Nippon Medical School, Kawasaki, Japan
| | - Takeshi Akama
- Laboratory of Cell Regulation, Department of Animal Resource Sciences, Graduate School of Agriculture and Life Science, The University of Tokyo, Bunkyo-ku, Japan
| | - Kazuhiro Chida
- Laboratory of Cell Regulation, Department of Animal Resource Sciences, Graduate School of Agriculture and Life Science, The University of Tokyo, Bunkyo-ku, Japan
| | - Shiro Minami
- Department of Bioregulation, Nippon Medical School, Kawasaki, Japan
| | - Koichi Ito
- Laboratory of Food and Physiological Models, Department of Veterinary Medical Sciences, Graduate School of Agriculture and Life Science, The University of Tokyo, Kasama, Japan
| | - Fumihiko Hakuno
- Laboratory of Cell Regulation, Department of Animal Resource Sciences, Graduate School of Agriculture and Life Science, The University of Tokyo, Bunkyo-ku, Japan
- *Correspondence: Fumihiko Hakuno, ; Shin-Ichiro Takahashi,
| | - Shin-Ichiro Takahashi
- Laboratory of Cell Regulation, Department of Animal Resource Sciences, Graduate School of Agriculture and Life Science, The University of Tokyo, Bunkyo-ku, Japan
- *Correspondence: Fumihiko Hakuno, ; Shin-Ichiro Takahashi,
| |
Collapse
|
10
|
AFAP1 Is a Novel Downstream Mediator of TGF-β1 for CCN2 Induction in Osteoblasts. PLoS One 2015; 10:e0136712. [PMID: 26340021 PMCID: PMC4560384 DOI: 10.1371/journal.pone.0136712] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 08/07/2015] [Indexed: 02/06/2023] Open
Abstract
Background CCN2 acts as an anabolic growth factor to regulate osteoblast differentiation and function. CCN2 is induced by TGF-β1 and acts as a mediator of TGF-β1 induced matrix production in osteoblasts and Src is required for CCN2 induction by TGF-β1; however, the molecular mechanisms that control CCN2 induction in osteoblasts are poorly understood. AFAP1 binds activated forms of Src and can direct the activation of Src in certain cell types, however a role for AFAP1 downstream of TGF-β1 or in osteoblats is undefined. In this study, we investigated the role of AFAP1 for CCN2 induction by TGF-β1 in primary osteoblasts. Results We demonstrated that AFAP1 expression in osteoblasts occurs in a biphasic pattern with maximal expression levels occurring during osteoblast proliferation (~day 3), reduced expression during matrix production/maturation (~day 14–21), an a further increase in expression during mineralization (~day 21). AFAP1 expression is induced by TGF-β1 treatment in osteoblasts during days 7, 14 and 21. In osteoblasts, AFAP1 binds to Src and is required for Src activation by TGF-β1 and CCN2 promoter activity and protein induction by TGF-β1 treatment was impaired using AFAP1 siRNA, indicating the requirement of AFAP1 for CCN2 induction by TGF-β1. We also demonstrated that TGF-β1 induction of extracellular matrix protein collagen XIIa occurs in an AFAP1 dependent fashion. Conclusions This study demonstrates that AFAP1 is an essential downstream signaling component of TGF-β1 for Src activation, CCN2 induction and collagen XIIa in osteoblasts.
Collapse
|
11
|
Gharahkhani P, Burdon KP, Fogarty R, Sharma S, Hewitt AW, Martin S, Law MH, Cremin K, Bailey JNC, Loomis SJ, Pasquale LR, Haines JL, Hauser MA, Viswanathan AC, McGuffin P, Topouzis F, Foster PJ, Graham SL, Casson RJ, Chehade M, White AJ, Zhou T, Souzeau E, Landers J, Fitzgerald JT, Klebe S, Ruddle JB, Goldberg I, Healey PR, Mills RA, Wang JJ, Montgomery GW, Martin NG, RadfordSmith G, Whiteman DC, Brown MA, Wiggs JL, Mackey DA, Mitchell P, MacGregor S, Craig JE. Common variants near ABCA1, AFAP1 and GMDS confer risk of primary open-angle glaucoma. Nat Genet 2014; 46:1120-1125. [PMID: 25173105 PMCID: PMC4177327 DOI: 10.1038/ng.3079] [Citation(s) in RCA: 148] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 08/04/2014] [Indexed: 12/13/2022]
Abstract
Primary open-angle glaucoma (POAG) is a major cause of irreversible blindness worldwide. We performed a genome-wide association study in an Australian discovery cohort comprising 1,155 cases with advanced POAG and 1,992 controls. We investigated the association of the top SNPs from the discovery stage in two Australian replication cohorts (932 cases and 6,862 controls total) and two US replication cohorts (2,616 cases and 2,634 controls total). Meta-analysis of all cohorts identified three loci newly associated with development of POAG. These loci are located upstream of ABCA1 (rs2472493[G], odds ratio (OR) = 1.31, P = 2.1 × 10(-19)), within AFAP1 (rs4619890[G], OR = 1.20, P = 7.0 × 10(-10)) and within GMDS (rs11969985[G], OR = 1.31, P = 7.7 × 10(-10)). Using RT-PCR and immunolabeling, we show that these genes are expressed within human retina, optic nerve and trabecular meshwork and that ABCA1 and AFAP1 are also expressed in retinal ganglion cells.
Collapse
Affiliation(s)
- Puya Gharahkhani
- QIMR Berghofer Medical Research Institute, Brisbane, QLD 4029, Australia
| | - Kathryn P Burdon
- Department of Ophthalmology, Flinders University, Adelaide, SA 5042, Australia
- Menzies Research Institute Tasmania, University of Tasmania, Hobart, TAS, 7000, Australia
| | - Rhys Fogarty
- Department of Ophthalmology, Flinders University, Adelaide, SA 5042, Australia
| | - Shiwani Sharma
- Department of Ophthalmology, Flinders University, Adelaide, SA 5042, Australia
| | - Alex W. Hewitt
- Centre for Eye Research Australia (CERA), University of Melbourne, Royal Victorian Eye and Ear Hospital, Melbourne, Victoria, Australia
| | - Sarah Martin
- Department of Ophthalmology, Flinders University, Adelaide, SA 5042, Australia
| | - Matthew H. Law
- QIMR Berghofer Medical Research Institute, Brisbane, QLD 4029, Australia
| | - Katie Cremin
- University of Queensland Diamantina Institute, Brisbane, QLD 4102, Australia
| | - Jessica N. Cooke Bailey
- Center for Human Genetics Research, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Epidemiology and Biostatistics, Case Western Reserve University, Cleveland, Ohio, USA
| | - Stephanie J. Loomis
- Department of Ophthalmology, Harvard Medical School and Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, USA
| | - Louis R. Pasquale
- Department of Ophthalmology, Harvard Medical School and Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, USA
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Jonathan L. Haines
- Center for Human Genetics Research, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Epidemiology and Biostatistics, Case Western Reserve University, Cleveland, Ohio, USA
| | - Michael A. Hauser
- Department of Ophthalmology, Duke University Medical Center, Durham, North Carolina, USA
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA
| | - Ananth C. Viswanathan
- NIHR Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, UK
| | - Peter McGuffin
- MRC Social Genetic and Developmental Psychiatry Research Centre, Institute of Psychiatry, King's College, De Crespigny Park, London, UK
| | - Fotis Topouzis
- Department of Ophthalmology, School of Medicine, Aristotle University of Thessaloniki, AHEPA Hospital, Thessaloniki, Greece
| | - Paul J. Foster
- NIHR Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, UK
| | - Stuart L Graham
- Ophthalmology and Vision Science, Macquarie University, Sydney, New South Wales, Australia
| | - Robert J Casson
- South Australian Institute of Ophthalmology, University of Adelaide, Adelaide, South Australia, Australia
| | - Mark Chehade
- South Australian Institute of Ophthalmology, University of Adelaide, Adelaide, South Australia, Australia
| | - Andrew J White
- Centre for Vision Research, Westmead Millennium Institute, University of Sydney, Westmead, NSW 2145, Australia
| | - Tiger Zhou
- Department of Ophthalmology, Flinders University, Adelaide, SA 5042, Australia
| | - Emmanuelle Souzeau
- Department of Ophthalmology, Flinders University, Adelaide, SA 5042, Australia
| | - John Landers
- Department of Ophthalmology, Flinders University, Adelaide, SA 5042, Australia
| | - Jude T Fitzgerald
- Department of Ophthalmology, Flinders University, Adelaide, SA 5042, Australia
| | - Sonja Klebe
- Department of Anatomical Pathology, Flinders University, Flinders Medical Centre, South Australia
| | - Jonathan B Ruddle
- Centre for Eye Research Australia (CERA), University of Melbourne, Royal Victorian Eye and Ear Hospital, Melbourne, Victoria, Australia
| | - Ivan Goldberg
- Department of Ophthalmology, University of Sydney, Sydney Eye Hospital, Sydney, Australia
| | - Paul R Healey
- Centre for Vision Research, Westmead Millennium Institute, University of Sydney, Westmead, NSW 2145, Australia
| | | | - Richard A. Mills
- Department of Ophthalmology, Flinders University, Adelaide, SA 5042, Australia
| | - Jie Jin Wang
- Centre for Vision Research, Westmead Millennium Institute, University of Sydney, Westmead, NSW 2145, Australia
| | | | - Nicholas G. Martin
- QIMR Berghofer Medical Research Institute, Brisbane, QLD 4029, Australia
| | - Graham RadfordSmith
- QIMR Berghofer Medical Research Institute, Brisbane, QLD 4029, Australia
- School of Medicine, University of Queensland, Herston Campus, Brisbane, QLD, Australia
| | - David C. Whiteman
- QIMR Berghofer Medical Research Institute, Brisbane, QLD 4029, Australia
| | - Matthew A. Brown
- University of Queensland Diamantina Institute, Brisbane, QLD 4102, Australia
| | - Janey L. Wiggs
- Department of Ophthalmology, Harvard Medical School and Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, USA
| | - David A Mackey
- Menzies Research Institute Tasmania, University of Tasmania, Hobart, TAS, 7000, Australia
- Centre for Ophthalmology and Visual Science, Lions Eye Institute, University of Western Australia, Perth, Australia
| | - Paul Mitchell
- Centre for Vision Research, Westmead Millennium Institute, University of Sydney, Westmead, NSW 2145, Australia
| | - Stuart MacGregor
- QIMR Berghofer Medical Research Institute, Brisbane, QLD 4029, Australia
| | - Jamie E. Craig
- Department of Ophthalmology, Flinders University, Adelaide, SA 5042, Australia
- South Australian Health and Medical Research Institute, Adelaide, South Australia
| |
Collapse
|
12
|
Biase FH, Cao X, Zhong S. Cell fate inclination within 2-cell and 4-cell mouse embryos revealed by single-cell RNA sequencing. Genome Res 2014; 24:1787-96. [PMID: 25096407 PMCID: PMC4216920 DOI: 10.1101/gr.177725.114] [Citation(s) in RCA: 191] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
It remains an open question when and how the first cell fate decision is made in mammals. Using deep single-cell RNA-seq of matched sister blastomeres, we report highly reproducible inter-blastomere differences among 10 2-cell and five 4-cell mouse embryos. Inter-blastomere gene expression differences dominated between-embryo differences and noise, and were sufficient to cluster sister blastomeres into distinct groups. Dozens of protein-coding genes exhibited reproducible bimodal expression in sister blastomeres, which cannot be explained by random fluctuations. The protein expression of one gene out of four of these bimodal genes tested, Gadd45a, exhibited clear inter-blastomeric contrasts. We traced some of the bimodal mRNA expressions to embryonic genome activation, and others to blastomere-specific RNA depletion. Inter-blastomere differences created coexpression gene networks that were much stronger and larger than those that can possibly be created by random noise. The highly correlated gene pairs at the 4-cell stage overlapped with those showing the same directions of differential expression between inner cell mass (ICM) and trophectoderm (TE). These data substantiate the hypothesis of inter-blastomere differences in 2- and 4-cell mouse embryos, and associate these differences with ICM/TE differences.
Collapse
Affiliation(s)
- Fernando H Biase
- Department of Bioengineering, University of California San Diego, La Jolla, California 92093, USA
| | - Xiaoyi Cao
- Department of Bioengineering, University of California San Diego, La Jolla, California 92093, USA
| | - Sheng Zhong
- Department of Bioengineering, University of California San Diego, La Jolla, California 92093, USA
| |
Collapse
|
13
|
Cunnick JM, Kim S, Hadsell J, Collins S, Cerra C, Reiser P, Flynn DC, Cho Y. Actin filament-associated protein 1 is required for cSrc activity and secretory activation in the lactating mammary gland. Oncogene 2014; 34:2640-9. [PMID: 25043309 PMCID: PMC4302073 DOI: 10.1038/onc.2014.205] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Revised: 04/25/2014] [Accepted: 06/09/2014] [Indexed: 12/12/2022]
Abstract
Actin filament-associated protein 1 (AFAP1) is an adaptor protein of cSrc that binds to filamentous actin and regulates the activity of this tyrosine kinase to affect changes to the organization of the actin cytoskeleton. In breast and prostate cancer cells, AFAP1 has been shown to regulate cellular responses requiring actin cytoskeletal changes such as adhesion, invadopodia formation and invasion. However, a normal physiologic role for AFAP1 has remained elusive. In this study, we generated an AFAP1 knockout mouse model that establishes a novel physiologic role for AFAP1 in lactation. Specifically, these animals displayed a defect in lactation that resulted in an inability to nurse efficiently. Histologically, the mammary glands of the lactating knockout mice were distinguished by the accumulation of large cytoplasmic lipid droplets in the alveolar epithelial cells. There was a reduction in lipid synthesis and the expression of lipogenic genes without a corresponding reduction in the production of β-casein, a milk protein. Furthermore, these defects were associated with histologic and biochemical signs of precocious involution. This study also demonstrated that AFAP1 responds to prolactin, a lactogenic hormone, by forming a complex with cSrc and becoming tyrosine phosphorylated. Taken together, these observations pointed to a defect in secretory activation. Certain characteristics of this phenotype mirrored the defect in secretory activation in the cSrc knockout mouse, but most importantly, the activity of cSrc in the mammary gland was reduced during early lactation in the AFAP1-null mouse and the localization of active cSrc at the apical surface of luminal epithelial cells during lactation was selectively lost in the absence of AFAP1. These data define, for the first time, the requirement of AFAP1 for the spatial and temporal regulation of cSrc activity in the normal breast, specifically for milk production.
Collapse
Affiliation(s)
- J M Cunnick
- Department of Basic Sciences, The Commonwealth Medical College, Scranton, PA, USA
| | - S Kim
- Graduate School of Medicine, The Commonwealth Medical College, Scranton, PA, USA
| | - J Hadsell
- Fortis Institute Scranton, Scranton, PA, USA
| | - S Collins
- Department of Basic Sciences, The Commonwealth Medical College, Scranton, PA, USA
| | - C Cerra
- Department of Pathology, Pocono Health System, East Stroudsburg, PA, USA
| | - P Reiser
- Department of Pathology, Pocono Health System, East Stroudsburg, PA, USA
| | - D C Flynn
- College of Health Science, University of Delaware, Newark, DE, USA
| | - Y Cho
- Department of Basic Sciences, The Commonwealth Medical College, Scranton, PA, USA
| |
Collapse
|
14
|
Hippocampal protein kinase C family members in spatial memory retrieval in the mouse. Behav Brain Res 2013; 258:202-7. [PMID: 24075976 DOI: 10.1016/j.bbr.2013.09.039] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 09/20/2013] [Accepted: 09/23/2013] [Indexed: 01/11/2023]
Abstract
Although a few individual members of the protein kinase C (PKC) family were studied in spatial memory no systematic approach was carried out to concomitantly determine all described PKC family members in spatial memory of the mouse. It was therefore the aim of the current study to link hippocampal PKCs to memory retrieval in the Morris water maze (MWM). CD1 mice were trained (n=9) or untrained (n=9) in the MWM, hippocampi were taken 6h following the test for memory retrieval and PKCs were determined in mouse hippocampi by immunoblotting. The trained animals learned the spatial memory task and kept memory at the probe trial. PKCs alpha and epsilon were comparable between groups while PKCs beta, delta, gamma (two forms, i.e. two bands on Western blotting), zeta (2 forms) were higher in trained mice and theta (2 forms) were lower in trained mice. PKC gamma (1 form) was significantly correlating with the time spent in the target quadrant (r=0.7933; P=0.0188). Changes of hippocampal levels of PKCs beta, delta, gamma, zeta and theta were paralleling memory retrieval of the MWM task but correlations revealed that spatial memory retrieval was only linked to one form of PKC gamma. Results are also in agreement with a recent publication showing that PKM zeta is not required for memory formation. These findings may be relevant for the interpretation of previous work and the design of future work on the protein kinase C family in spatial memory of the mouse.
Collapse
|
15
|
Ditlev JA, Mayer BJ, Loew LM. There is more than one way to model an elephant. Experiment-driven modeling of the actin cytoskeleton. Biophys J 2013; 104:520-32. [PMID: 23442903 DOI: 10.1016/j.bpj.2012.12.044] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Revised: 12/20/2012] [Accepted: 12/21/2012] [Indexed: 10/27/2022] Open
Abstract
Mathematical modeling has established its value for investigating the interplay of biochemical and mechanical mechanisms underlying actin-based motility. Because of the complex nature of actin dynamics and its regulation, many of these models are phenomenological or conceptual, providing a general understanding of the physics at play. But the wealth of carefully measured kinetic data on the interactions of many of the players in actin biochemistry cries out for the creation of more detailed and accurate models that could permit investigators to dissect interdependent roles of individual molecular components. Moreover, no human mind can assimilate all of the mechanisms underlying complex protein networks; so an additional benefit of a detailed kinetic model is that the numerous binding proteins, signaling mechanisms, and biochemical reactions can be computationally organized in a fully explicit, accessible, visualizable, and reusable structure. In this review, we will focus on how comprehensive and adaptable modeling allows investigators to explain experimental observations and develop testable hypotheses on the intracellular dynamics of the actin cytoskeleton.
Collapse
Affiliation(s)
- Jonathon A Ditlev
- Richard D. Berlin Center for Cell Analysis and Modeling, University of Connecticut Health Center, Farmington, Connecticut, USA
| | | | | |
Collapse
|
16
|
Junctional adhesion molecules 2 and 3 may potentially be involved in progression of gastric adenocarcinoma tumors. Med Oncol 2013; 30:380. [PMID: 23277282 DOI: 10.1007/s12032-012-0380-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Accepted: 12/03/2012] [Indexed: 12/13/2022]
Abstract
Tight junctions (TJs) of epithelia are responsible for integrity of polarized epithelial cells. It is now well established that the deregulation of their functions and expressions contribute to initiation and progression of cancer through activation of cytoskeleton machinery. The aim of this study was to examine the expression level of two genes encoding tight junction-associated proteins of Jam2 and Jam3 in gastric adenocarcinoma and compare with normal gastric tissues dissected from same patients. Significant difference of expression level for these genes was observed between tumor and adjacent normal tissues. Also, we analyzed the expression level of actin filament-associated protein gene that appears to be a downstream factor of JAM2 and JAM3. The expression level of this gene was significantly higher in tumor tissues. Some correlations between the expression level of these genes with each other and with pathological features were observed. These data brought new evidences for the role of these three genes in progression of gastric adenocarcinoma.
Collapse
|
17
|
Spatiotemporal regulation of Src and its substrates at invadosomes. Eur J Cell Biol 2012; 91:878-88. [PMID: 22823952 DOI: 10.1016/j.ejcb.2012.06.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Revised: 06/19/2012] [Accepted: 06/19/2012] [Indexed: 01/07/2023] Open
Abstract
In the past decade, substantial progress has been made in understanding how Src family kinases regulate the formation and function of invadosomes. Invadosomes are organized actin-rich structures that contain an F-actin core surrounded by an adhesive ring and mediate invasive migration. Src kinases orchestrate, either directly or indirectly, each phase of the invadosome life cycle including invadosome assembly, maturation and matrix degradation and disassembly. Complex arrays of Src effector proteins are involved at different stages of invadosome maturation and their spatiotemporal activity must be tightly regulated to achieve effective invasive migration. In this review, we highlight some recent progress and the challenges of understanding how Src is regulated temporally and spatially to orchestrate the dynamics of invadosomes and mediate cell invasion.
Collapse
|
18
|
Xiao H, Han B, Lodyga M, Bai XH, Wang Y, Liu M. The actin-binding domain of actin filament-associated protein (AFAP) is involved in the regulation of cytoskeletal structure. Cell Mol Life Sci 2012; 69:1137-51. [PMID: 21984596 PMCID: PMC11114525 DOI: 10.1007/s00018-011-0812-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Revised: 08/15/2011] [Accepted: 09/01/2011] [Indexed: 11/26/2022]
Abstract
Actin filament-associated protein (AFAP) plays a critical role in the regulation of actin filament integrity, formation and maintenance of the actin network, function of focal contacts, and cell migration. Here, we show that endogenous AFAP was present not only in the cytoskeletal but also in the cytosolic fraction. Depolymerization of actin filaments with cytochalasin D or latrunculin A increased AFAP in the cytosolic fraction. AFAP harbors an actin-binding domain (ABD) in its C-terminus. AFAPΔABD, an AFAP mutant with selective ABD deletion, was mainly in the cytosolic fraction when overexpressed in the cells, which was associated with a disorganized cytoskeleton with reduced stress fibers, accumulation of F-actin on cellular membrane, and formation of actin-rich small dots. Cortactin, a well-known podosome marker, was colocalized with AFAPΔABD in these small dots at the ventral surface of the cell, indicating that these small dots fulfill certain criteria of podosomes. However, these podosome-like small dots did not digest gelatin matrix. This may be due to the reduced interaction between AFAPΔABD and c-Src. When AFAPΔABD-transfected cells were stimulated with phorbol ester, they formed podosome-like structures with larger sizes, less numerous and longer life span, in comparison with wild-type AFAP-transfected cells. These results indicate that the association of AFAP with F-actin through ABD is crucial for AFAP to regulate cytoskeletal structures. The AFAPΔABD, as cytosolic proteins, may be more accessible to the cellular membrane, podosome-like structures, and thus be more interactive for the regulation of cellular functions.
Collapse
Affiliation(s)
- Helan Xiao
- Division of Cellular and Molecular Biology, University Health Network Toronto General Research Institute, Toronto, ON Canada
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON Canada
| | - Bing Han
- Division of Cellular and Molecular Biology, University Health Network Toronto General Research Institute, Toronto, ON Canada
| | - Monika Lodyga
- Division of Cellular and Molecular Biology, University Health Network Toronto General Research Institute, Toronto, ON Canada
| | - Xiao-Hui Bai
- Division of Cellular and Molecular Biology, University Health Network Toronto General Research Institute, Toronto, ON Canada
| | - Yingchun Wang
- Division of Cellular and Molecular Biology, University Health Network Toronto General Research Institute, Toronto, ON Canada
| | - Mingyao Liu
- Division of Cellular and Molecular Biology, University Health Network Toronto General Research Institute, Toronto, ON Canada
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON Canada
- Department of Surgery, Faculty of Medicine, University of Toronto, Room TMDT 2-814, 101 College Street, Toronto, ON M5G 1L7 Canada
| |
Collapse
|
19
|
Snyder BN, Cho Y, Qian Y, Coad JE, Flynn DC, Cunnick JM. AFAP1L1 is a novel adaptor protein of the AFAP family that interacts with cortactin and localizes to invadosomes. Eur J Cell Biol 2011; 90:376-89. [PMID: 21333378 DOI: 10.1016/j.ejcb.2010.11.016] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2010] [Revised: 11/23/2010] [Accepted: 11/24/2010] [Indexed: 11/26/2022] Open
Abstract
The actin-filament associated protein (AFAP) family of adaptor proteins consists of three members: AFAP1, AFAP1L1, and AFAP1L2/XB130 with AFAP1 being the best described as a cSrc binding partner and actin cross-linking protein. A homology search of AFAP1 recently identified AFAP1L1 which has a similar sequence, domain structure and cellular localization; however, based upon sequence variations, AFAP1L1 is hypothesized to have unique functions that are distinct from AFAP1. While AFAP1 has the ability to bind to the SH3 domain of the nonreceptor tyrosine kinase cSrc via an N-terminal SH3 binding motif, it was unable to bind cortactin. However, the SH3 binding motif of AFAP1L1 was more efficient at interacting with the SH3 domain of cortactin and not cSrc. AFAP1L1 was shown by fluorescence microscopy to decorate actin filaments and move to punctate actin structures and colocalize with cortactin, consistent with localization to invadosomes. Upon overexpression in A7r5 cells, AFAP1L1 had the ability to induce podosome formation and move to podosomes without stimulation. Immunohistochemical analysis of AFAP1L1 in human tissues shows differential expression when contrasted with AFAP1 with localization of AFAP1L1 to unique sites in muscle and the dentate nucleus of the brain where AFAP1 was not detectable. We hypothesize AFAP1L1 may play a similar role to AFAP1 in affecting changes in actin filaments and bridging interactions with binding partners, but we hypothesize that AFAP1L1 may forge unique protein interactions in which AFAP1 is less efficient, and these interactions may allow AFAP1L1 to affect invadosome formation.
Collapse
Affiliation(s)
- Brandi N Snyder
- The Mary Babb Randolph Cancer Center and the Department of Cancer Cell Biology, West Virginia University, Morgantown, WV 26505, USA
| | | | | | | | | | | |
Collapse
|
20
|
Han B, Xiao H, Xu J, Lodyga M, Bai XH, Jin T, Liu M. Actin filament associated protein mediates c-Src related SRE/AP-1 transcriptional activation. FEBS Lett 2011; 585:471-7. [PMID: 21236256 DOI: 10.1016/j.febslet.2011.01.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2010] [Revised: 12/26/2010] [Accepted: 01/03/2011] [Indexed: 10/18/2022]
Abstract
AFAP is an adaptor protein involved in cytoskeletal organization and intracellular signaling. AFAP binds and activates c-Src; however, the downstream signals of this interaction remain unknown. Here we show that co-expression of AFAP and c-Src induce transcriptional activation of SRE and AP-1 in a c-Src activity dependent fashion. Structural-functional studies suggest that the proline-rich motif in the N-terminus of AFAP is critical for c-Src activation, and subsequent SRE/AP-1 transactivation and the actin-binding domain in the AFAP C-terminus is negatively involved in the regulation of AFAP/c-Src mediated SRE/AP-1 transactivation. Selective deletion of this domain enhances transactivation of SRE. We conclude that in addition to its role in the regulation of cytoskeletal structures, AFAP may also be involved in the c-Src related transcriptional activities.
Collapse
Affiliation(s)
- Bing Han
- Division of Cellular and Molecular Biology, University Health Network Toronto General Research Institute, Toronto, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
21
|
A Polymorphic Variant of AFAP-110 Enhances cSrc Activity. Transl Oncol 2010; 3:276-85. [PMID: 20689769 DOI: 10.1593/tlo.10106] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2010] [Revised: 03/18/2010] [Accepted: 03/31/2010] [Indexed: 12/27/2022] Open
Abstract
Enhanced expression and activity of cSrc are associated with ovarian cancer progression. Generally, cSrc does not contain activating mutations; rather, its activity is increased in response to signals that affect a conformational change that releases its autoinhibition. In this report, we analyzed ovarian cancer tissues for the expression of a cSrc-activating protein, AFAP-110. AFAP-110 activates cSrc through a direct interaction that releases it from its autoinhibited conformation. Immunohistochemical analysis revealed a concomitant increase of AFAP-110 and cSrc in ovarian cancer tissues. An analysis of the AFAP-110 coding sequence revealed the presence of a nonsynonymous, single-nucleotide polymorphism that resulted in a change of Ser403 to Cys403. In cells that express enhanced levels of cSrc, AFAP-110(403C) directed the activation of cSrc and the formation of podosomes independently of input signals, in contrast to wild-type AFAP-110. We therefore propose that, under conditions of cSrc overexpression, the polymorphic variant of AFAP-110 promotes cSrc activation. Further, these data indicate amechanismby which an inherited genetic variation could influence ovarian cancer progression and could be used to predict the response to targeted therapy.
Collapse
|
22
|
Qian Y, Ducatman A, Ward R, Leonard S, Bukowski V, Lan Guo N, Shi X, Vallyathan V, Castranova V. Perfluorooctane sulfonate (PFOS) induces reactive oxygen species (ROS) production in human microvascular endothelial cells: role in endothelial permeability. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH-PART A 2010; 73:819-36. [PMID: 20391123 DOI: 10.1080/15287391003689317] [Citation(s) in RCA: 131] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Perfluorooctane sulfonate (PFOS) is a member of the perfluoroalkyl acids (PFAA) containing an eight-carbon backbone. PFOS is a man-made chemical with carbon-fluorine bonds that are among the strongest in organic chemistry, and PFOS is widely used in industry. Human occupational and environmental exposure to PFOS occurs globally. PFOS is non-biodegradable and is persistent in the human body and environment. In this study, data demonstrated that exposure of human microvascular endothelial cells (HMVEC) to PFOS induced the production of reactive oxygen species (ROS) at both high and low concentrations. Morphologically, it was found that exposure to PFOS induced actin filament remodeling and endothelial permeability changes in HMVEC. Furthermore, data demonstrated that the production of ROS plays a regulatory role in PFOS-induced actin filament remodeling and the increase in endothelial permeability. Our results indicate that the generation of ROS may play a role in PFOS-induced aberrations of the endothelial permeability barrier. The results generated from this study may provide a new insight into the potential adverse effects of PFOS exposure on humans at the cellular level.
Collapse
Affiliation(s)
- Yong Qian
- Pathology and Physiology Research Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, West Virginia 26505-2888, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Tenan M, Aurrand-Lions M, Widmer V, Alimenti A, Burkhardt K, Lazeyras F, Belkouch MC, Hammel P, Walker PR, Duchosal MA, Imhof BA, Dietrich PY. Cooperative expression of junctional adhesion molecule-C and -B supports growth and invasion of glioma. Glia 2010; 58:524-37. [PMID: 19795504 DOI: 10.1002/glia.20941] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Brain invasion is a biological hallmark of glioma that contributes to its aggressiveness and limits the potential of surgery and irradiation. Deregulated expression of adhesion molecules on glioma cells is thought to contribute to this process. Junctional adhesion molecules (JAMs) include several IgSF members involved in leukocyte trafficking, angiogenesis, and cell polarity. They are expressed mainly by endothelial cells, white blood cells, and platelets. Here, we report JAM-C expression by human gliomas, but not by their normal cellular counterpart. This expression correlates with the expression of genes involved in cytoskeleton remodeling and cell migration. These genes, identified by a transcriptomic approach, include poliovirus receptor and cystein-rich 61, both known to promote glioma invasion, as well as actin filament associated protein, a c-Src binding partner. Gliomas also aberrantly express JAM-B, a high affinity JAM-C ligand. Their interaction activates the c-Src proto-oncogene, a central upstream molecule in the pathways regulating cell migration and invasion. In the tumor microenvironment, this co-expression may thus promote glioma invasion through paracrine stimuli from both tumor cells and endothelial cells. Accordingly, JAM-C/B blocking antibodies impair in vivo glioma growth and invasion, highlighting the potential of JAM-C and JAM-B as new targets for the treatment of human gliomas.
Collapse
Affiliation(s)
- Mirna Tenan
- Service of Oncology, Laboratory of Tumor Immunology, Geneva University Hospitals and University of Geneva, 1211 Geneva 14, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Amplification of transducer gain by angiotensin II-mediated enhancement of cortical actin density in osmosensory neurons. J Neurosci 2008; 28:9536-44. [PMID: 18799685 DOI: 10.1523/jneurosci.1495-08.2008] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Osmosensory neurons transduce osmotic signals into a neural spike code that commands behavioral and endocrine responses that mediate body fluid homeostasis. Although changes in osmoregulatory reflex gain are known to occur under physiological and pathological conditions, the basis for this modulation is unknown. Here, we show that angiotensin II amplifies osmosensory transduction by enhancing the proportional relationship between osmolality, receptor potential, and action potential firing in rat supraoptic nucleus neurons. This effect is mediated by a phospholipase C- and protein kinase C-dependent increase in cellular mechanosensitivity that is associated with a rapid increase in cortical actin filament density. Preventing this increase with cytochalasin D eliminated the enhancement of mechanosensitivity, whereas enhancing actin filament density with jasplakinolide potentiated mechanosensitivity and occluded the effects of angiotensin II. These results indicate that a receptor-mediated increase in cortical actin density can enhance osmosensitivity in acutely isolated supraoptic neurons.
Collapse
|
25
|
Dorfleutner A, Cho Y, Vincent D, Cunnick J, Lin H, Weed SA, Stehlik C, Flynn DC. Phosphorylation of AFAP-110 affects podosome lifespan in A7r5 cells. J Cell Sci 2008; 121:2394-405. [PMID: 18577577 DOI: 10.1242/jcs.026187] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
AFAP-110 is an actin-binding and -crosslinking protein that is enriched in Src and phorbol ester (PE)-induced podosomes. In vascular smooth muscle cells endogenous AFAP-110 localized to actin stress fibers and, in response to treatment with phorbol-12,13-dibutyrate (PDBu), to actin-rich podosomes. Since PEs can activate PKCalpha, AFAP-110 is a substrate of PKCalpha and PKCalpha-AFAP-110 interactions direct podosome formation, we sought to identify a PE-induced phosphorylation site in AFAP-110 and determine whether phosphorylation is linked to the formation of podosomes. Mutational analysis revealed Ser277 of AFAP-110 to be phosphorylated in PE-treated cells. The use of a newly generated, phospho-specific antibody directed against phosphorylated Ser277 revealed that PKCalpha activation is associated with PE-induced AFAP-110 phosphorylation. In PDBu-treated A7r5 rat vascular smooth muscle cells, immunolabeling using the phospho-specific antibody showed that phospho-AFAP-110 is primarily associated with actin in podosomes. Although mutation of Ser at position 277 to Ala (AFAP-110(S277A)) did not alter the ability of AFAP-110 to localize to podosomes, overexpression of AFAP-110(S277A) in treated and untreated A7r5 cells resulted in an increased number of cells that display podosomes. Video microscopy demonstrated that AFAP-110(S277A) expression correlates with an increased number of long-lived podosomes. Therefore, we hypothesize that AFAP-110 phosphorylation and/or dephosphorylation is involved in the regulation of podosome stability and lifespan.
Collapse
Affiliation(s)
- Andrea Dorfleutner
- The Mary Babb Randolph Cancer Center and Department of Microbiology, Immunology and Cell Biology, West Virginia University, Morgantown, WV 26506-9300, USA
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Dorfleutner A, Stehlik C, Zhang J, Gallick GE, Flynn DC. AFAP-110 is required for actin stress fiber formation and cell adhesion in MDA-MB-231 breast cancer cells. J Cell Physiol 2007; 213:740-9. [PMID: 17520695 DOI: 10.1002/jcp.21143] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Regulation of actin organization and dynamics is a highly complex process that involves a number of actin-binding proteins, including capping, branching, severing, sequestering, and cross-linking proteins. The actin-binding and cross-linking protein AFAP-110 is expressed in normal myoepithelial cells. Screening of different breast epithelial cell lines revealed high expression levels of AFAP-110 in the human breast cancer cell lines MDA-MB-231 and MDA-MB-435. Knockdown of AFAP-110 expression in MDA-MB-231 cells does not result in any changes in cell proliferation but did result in a loss of actin stress fiber cross-linking and decreased adhesion to fibronectin. An inducible knockdown approach confirms that MDA-MB-231 breast cancer cells require AFAP-110 expression for stress fiber formation and adhesion. Thus, AFAP-110 may provide cytoskeletal tension through stress fiber formation, which is required for focal adhesion formation. Indeed, we could not detect any focal contacts or focal adhesions in AFAP-110 knockdown cells after adhesion to fibronectin. Although expression levels of crucial focal adhesion components were not influenced by AFAP-110 expression levels, treatment of AFAP-110 knockdown cells with LPA did not result in induction of actin stress fibers and focal adhesions. In summary, AFAP-110 plays an important role in MDA-MB-231 breast cancer cell adhesion possibly by regulating stress filament cross-linking which would promote focal adhesion formation.
Collapse
Affiliation(s)
- Andrea Dorfleutner
- The Mary Babb Randolph Cancer Center and the Department of Microbiology, Immunology and Cell Biology, West Virginia University, Morgantown, West Virginia 26505-9300, USA
| | | | | | | | | |
Collapse
|
27
|
Zhang J, Park SI, Artime MC, Summy JM, Shah AN, Bomser JA, Dorfleutner A, Flynn DC, Gallick GE. AFAP-110 is overexpressed in prostate cancer and contributes to tumorigenic growth by regulating focal contacts. J Clin Invest 2007; 117:2962-73. [PMID: 17885682 PMCID: PMC1978423 DOI: 10.1172/jci30710] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2006] [Accepted: 07/09/2007] [Indexed: 01/07/2023] Open
Abstract
The actin filament-associated protein AFAP-110 is an actin cross-linking protein first identified as a substrate of the viral oncogene v-Src. AFAP-110 regulates actin cytoskeleton integrity but also functions as an adaptor protein that affects crosstalk between Src and PKC. Here we investigated the roles of AFAP-110 in the tumorigenic process of prostate carcinoma. Using immunohistochemistry of human tissue arrays, we found that AFAP-110 was absent or expressed at very low levels in normal prostatic epithelium and benign prostatic hyperplasia but significantly increased in prostate carcinomas. The level of AFAP-110 in carcinomas correlated with the Gleason scores. Downregulation of AFAP-110 in PC3 prostate cancer cells inhibited cell proliferation in vitro and tumorigenicity and growth in orthotopic nude mouse models. Furthermore, downmodulation of AFAP-110 resulted in decreased cell-matrix adhesion and cell migration, defective focal adhesions, and reduced integrin beta1 expression. Reintroduction of avian AFAP-110 or a mutant disabling its interaction with Src restored these properties. However, expression of an AFAP-110 lacking the PKC-interacting domain failed to restore properties of parental cells. Thus, increased expression of AFAP-110 is associated with progressive stages of prostate cancer and is critical for tumorigenic growth, in part by regulating focal contacts in a PKC-dependent mechanism.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.
Program in Cancer Biology, The University of Texas Graduate School of Biomedical Sciences, Houston, Texas, USA.
Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.
Department of Human Nutrition, The Ohio State University, Columbus, Ohio, USA.
Mary Babb Randolph Cancer Center and Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, West Virginia, USA
| | - Serk In Park
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.
Program in Cancer Biology, The University of Texas Graduate School of Biomedical Sciences, Houston, Texas, USA.
Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.
Department of Human Nutrition, The Ohio State University, Columbus, Ohio, USA.
Mary Babb Randolph Cancer Center and Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, West Virginia, USA
| | - Marlene C. Artime
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.
Program in Cancer Biology, The University of Texas Graduate School of Biomedical Sciences, Houston, Texas, USA.
Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.
Department of Human Nutrition, The Ohio State University, Columbus, Ohio, USA.
Mary Babb Randolph Cancer Center and Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, West Virginia, USA
| | - Justin M. Summy
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.
Program in Cancer Biology, The University of Texas Graduate School of Biomedical Sciences, Houston, Texas, USA.
Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.
Department of Human Nutrition, The Ohio State University, Columbus, Ohio, USA.
Mary Babb Randolph Cancer Center and Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, West Virginia, USA
| | - Ami N. Shah
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.
Program in Cancer Biology, The University of Texas Graduate School of Biomedical Sciences, Houston, Texas, USA.
Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.
Department of Human Nutrition, The Ohio State University, Columbus, Ohio, USA.
Mary Babb Randolph Cancer Center and Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, West Virginia, USA
| | - Joshua A. Bomser
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.
Program in Cancer Biology, The University of Texas Graduate School of Biomedical Sciences, Houston, Texas, USA.
Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.
Department of Human Nutrition, The Ohio State University, Columbus, Ohio, USA.
Mary Babb Randolph Cancer Center and Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, West Virginia, USA
| | - Andrea Dorfleutner
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.
Program in Cancer Biology, The University of Texas Graduate School of Biomedical Sciences, Houston, Texas, USA.
Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.
Department of Human Nutrition, The Ohio State University, Columbus, Ohio, USA.
Mary Babb Randolph Cancer Center and Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, West Virginia, USA
| | - Daniel C. Flynn
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.
Program in Cancer Biology, The University of Texas Graduate School of Biomedical Sciences, Houston, Texas, USA.
Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.
Department of Human Nutrition, The Ohio State University, Columbus, Ohio, USA.
Mary Babb Randolph Cancer Center and Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, West Virginia, USA
| | - Gary E. Gallick
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.
Program in Cancer Biology, The University of Texas Graduate School of Biomedical Sciences, Houston, Texas, USA.
Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.
Department of Human Nutrition, The Ohio State University, Columbus, Ohio, USA.
Mary Babb Randolph Cancer Center and Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, West Virginia, USA
| |
Collapse
|
28
|
Walker VG, Ammer A, Cao Z, Clump AC, Jiang BH, Kelley LC, Weed SA, Zot H, Flynn DC. PI3K activation is required for PMA-directed activation of cSrc by AFAP-110. Am J Physiol Cell Physiol 2007; 293:C119-32. [PMID: 17360811 DOI: 10.1152/ajpcell.00525.2006] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Activation of PKCalpha will induce the cSrc binding partner AFAP-110 to colocalize with and activate cSrc. The ability of AFAP-110 to colocalize with cSrc is contingent on the integrity of the amino-terminal pleckstrin homology (PH1) domain, while the ability to activate cSrc is dependent on the integrity of its SH3 binding motif, which engages the cSrc SH3 domain. The outcome of AFAP-110-directed cSrc activation is a change in actin filament integrity and the formation of podosomes. Here, we address what cellular signals promote AFAP-110 to colocalize with and activate cSrc, in response to PKCalpha activation or PMA treatment. Because PH domain integrity in AFAP-110 is required for colocalization, and PH domains are known to interact with both protein and lipid binding partners, we sought to determine whether phosphatidylinositol 3-kinase (PI3K) activation played a role in PMA-induced colocalization between AFAP-110 and cSrc. We show that PMA treatment is able to direct activation of PI3K. Treatment of mouse embryo fibroblast with PI3K inhibitors blocked PMA-directed colocalization between AFAP-110 and cSrc and subsequent cSrc activation. PMA also was unable to induce colocalization or cSrc activation in cells that lacked the p85alpha and -beta regulatory subunits of PI3K. This signaling pathway was required for migration in a wound healing assay. Cells that were null for cSrc or the p85 regulatory subunits or expressed a dominant-negative AFAP-110 also displayed a reduction in migration. Thus PI3K activity is required for PMA-induced colocalization between AFAP-110 and cSrc and subsequent cSrc activation, and this signaling pathway promotes cell migration.
Collapse
Affiliation(s)
- Valerie G Walker
- The Mary Babb Randolph Cancer Center, Dept. of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV 26506-9300, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Csiszár A. Structural and functional diversity of adaptor proteins involved in tyrosine kinase signalling. Bioessays 2006; 28:465-79. [PMID: 16615089 DOI: 10.1002/bies.20411] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Adaptors are proteins of multi-modular structure without enzymatic activity. Their capacity to organise large, temporary protein complexes by linking proteins together in a regulated and selective fashion makes them of outstanding importance in the establishment and maintenance of specificity and efficiency in all known signal transduction pathways. This review focuses on the structural and functional characterisation of adaptors involved in tyrosine kinase (TK) signalling. TK-linked adaptors can be distinguished by their domain composition and binding specificities. However, such structural classifications have proven inadequate as indicators of functional roles. A better way to understand the logic of signalling networks might be to look at functional aspects of adaptor proteins such as signalling specificity, negative versus positive contribution to signal propagation, or their position in the signalling hierarchy. All of these functions are dynamic, suggesting that adaptors have important regulatory roles rather than acting only as stable linkers in signal transduction.
Collapse
|
30
|
Russ M, Croft D, Ali O, Martinez R, Steimle P. Myosin heavy-chain kinase A from Dictyostelium possesses a novel actin-binding domain that cross-links actin filaments. Biochem J 2006; 395:373-83. [PMID: 16372899 PMCID: PMC1422765 DOI: 10.1042/bj20051376] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Myosin heavy-chain kinase A (MHCK A) catalyses the disassembly of myosin II filaments in Dictyostelium cells via myosin II heavy-chain phosphorylation. MHCK A possesses a 'coiled-coil'-enriched domain that mediates the oligomerization, cellular localization and actin-binding activities of the kinase. F-actin (filamentous actin) binding by the coiled-coil domain leads to a 40-fold increase in MHCK A activity. In the present study we examined the actin-binding characteristics of the coiled-coil domain as a means of identifying mechanisms by which MHCK A-mediated disassembly of myosin II filaments can be regulated in the cell. Co-sedimentation assays revealed that the coiled-coil domain of MHCK A binds co-operatively to F-actin with an apparent K(D) of approx. 0.5 muM and a stoichiometry of approx. 5:1 [actin/C(1-498)]. Further analyses indicate that the coiled-coil domain binds along the length of the actin filament and possesses at least two actin-binding regions. Quite surprisingly, we found that the coiled-coil domain cross-links actin filaments into bundles, indicating that MHCK A can affect the cytoskeleton in two important ways: (1) by driving myosin II-filament disassembly via myosin II heavy-chain phosphorylation, and (2) by cross-linking/bundling actin filaments. This discovery, along with other supporting data, suggests a model in which MHCK A-mediated bundling of actin filaments plays a central role in the recruitment and activation of the kinase at specific sites in the cell. Ultimately this provides a means for achieving the robust and highly localized disruption of myosin II filaments that facilitates polarized changes in cell shape during processes such as chemotaxis, cytokinesis and multicellular development.
Collapse
Affiliation(s)
- Misty Russ
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC 27402, U.S.A
| | - Daniel Croft
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC 27402, U.S.A
| | - Omar Ali
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC 27402, U.S.A
| | - Raquel Martinez
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC 27402, U.S.A
| | - Paul A. Steimle
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC 27402, U.S.A
- To whom correspondence should be addressed (email )
| |
Collapse
|
31
|
Larsson C. Protein kinase C and the regulation of the actin cytoskeleton. Cell Signal 2005; 18:276-84. [PMID: 16109477 DOI: 10.1016/j.cellsig.2005.07.010] [Citation(s) in RCA: 282] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2005] [Revised: 07/18/2005] [Accepted: 07/18/2005] [Indexed: 01/01/2023]
Abstract
Protein kinase C (PKC) isoforms are central components in intracellular networks that regulate a vast number of cellular processes. It has long been known that in most cell types, one or more PKC isoforms influences the morphology of the F-actin cytoskeleton and thereby regulates processes that are affected by remodelling of the microfilaments. These include cellular migration and neurite outgrowth. This review focuses on the role of classical and novel PKC isoforms in migration and neurite outgrowth, and highlights some regulatory steps that may be of importance in the regulation by PKC of migration and neurite outgrowth. Many studies indicate that integrins are crucial mediators both upstream and downstream of PKC in inducing morphological changes. Furthermore, a number of PKC substrates, directly associated with the microfilaments, such as MARCKS, GAP43, adducin, fascin, ERM proteins and others have been identified. Their potential role in PKC effects on the cytoskeleton is discussed.
Collapse
Affiliation(s)
- Christer Larsson
- Lund University, Dept of Laboratory Medicine, Molecular Medicine, Entrance 78, 3rd floor, UMAS SE-205 02, Malmö University Hospital, Malmö, Sweden.
| |
Collapse
|
32
|
Gatesman A, Walker VG, Baisden JM, Weed SA, Flynn DC. Protein kinase Calpha activates c-Src and induces podosome formation via AFAP-110. Mol Cell Biol 2004; 24:7578-97. [PMID: 15314167 PMCID: PMC506973 DOI: 10.1128/mcb.24.17.7578-7597.2004] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
We report that the actin filament-associated protein AFAP-110 is required to mediate protein kinase Calpha (PKCalpha) activation of the nonreceptor tyrosine kinase c-Src and the subsequent formation of podosomes. Immunofluorescence analysis demonstrated that activation of PKCalpha by phorbol 12-myristate 13-acetate (PMA), or ectopic expression of constitutively activated PKCalpha, directs AFAP-110 to colocalize with and bind to the c-Src SH3 domain, resulting in activation of the tyrosine kinase. Activation of c-Src then directs the formation of podosomes, which contain cortactin, AFAP-110, actin, and c-Src. In a cell line (CaOV3) that has very little or no detectable AFAP-110, PMA treatment was unable to activate c-Src or effect podosome formation. Ectopic expression of AFAP-110 in CaOV3 cells rescued PKCalpha-mediated activation of c-Src and elevated tyrosine phosphorylation levels and subsequent formation of podosomes. Neither expression of activated PKCalpha nor treatment with PMA was able to induce these changes in CAOV3 cells expressing mutant forms of AFAP-110 that are unable to bind to, or colocalize with, c-Src. We hypothesize that one major function of AFAP-110 is to relay signals from PKCalpha that direct the activation of c-Src and the formation of podosomes.
Collapse
Affiliation(s)
- Amanda Gatesman
- The Mary Babb Randolph Cancer Center and Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV 26506-9300, USA
| | | | | | | | | |
Collapse
|
33
|
Qian Y, Gatesman AS, Baisden JM, Zot HG, Cherezova L, Qazi I, Mazloum N, Lee MY, Guappone-Koay A, Flynn DC. Analysis of the role of the leucine zipper motif in regulating the ability of AFAP-110 to alter actin filament integrity. J Cell Biochem 2004; 91:602-20. [PMID: 14755689 DOI: 10.1002/jcb.10725] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
AFAP-110 has an intrinsic ability to alter actin filament integrity as an actin filament crosslinking protein. This capability is regulated by a carboxy terminal leucine zipper (Lzip) motif. The Lzip motif facilitates self-association stabilizing the AFAP-110 multimers. Deletion of the Lzip motif (AFAP-110(Deltalzip)) reduces the stability of the AFAP-110 multimer and concomitantly increases its ability to crosslink actin filaments, in vitro, and to activate cSrc and alter actin filament integrity, in vivo. We sought to determine how the Lzip motif regulates AFAP-110 function. Substitution of the c-Fos Lzip motif in place of the AFAP-110 Lzip motif (AFAP-110(fos)) was predicted to preserve the alpha-helical structure while changing the sequence. To alter the structure of the alpha-helix, a leucine to proline mutation was generated in the AFAP-110 alpha-helical Lzip motif (AFAP-110(581P)), which largely preserved the sequence. The helix mutants, AFAP-110(Deltalzip), AFAP-110(fos), and AFAP-110(581P), demonstrated reduced multimer stability with an increased capacity to crosslink actin filaments, in vitro, relative to AFAP-110. An analysis of opposing binding sites indicated that the carboxy terminus/Lzip motif can contact sequences within the amino terminal pleckstrin homology (PH1) domain indicating an auto-inhibitory mechanism for regulating multimer stability and actin filament crosslinking. In vivo, only AFAP-110(Deltalzip) and AFAP-110(581P) were to activate cSrc and to alter cellular actin filament integrity. These data indicate that the intrinsic ability of AFAP-110 to crosslink actin filaments is dependent upon both the sequence and structure of the Lzip motif, while the ability of the Lzip motif to regulate AFAP-110-directed activation of cSrc and changes in actin filament integrity in vivo is dependent upon the structure or presence of the Lzip motif. We hypothesize that the intrinsic ability of AFAP-110 to crosslink actin filaments or activate cSrc are distinct functions.
Collapse
MESH Headings
- Actin Cytoskeleton/physiology
- Animals
- Blotting, Western
- COS Cells
- Chlorocebus aethiops
- Chromatography, Liquid
- Cloning, Molecular
- Gene Components/genetics
- Gene Components/physiology
- Genes, fos/genetics
- Glutathione Transferase/genetics
- Glutathione Transferase/metabolism
- Green Fluorescent Proteins
- Leucine Zippers/genetics
- Leucine Zippers/physiology
- Luminescent Proteins/genetics
- Luminescent Proteins/metabolism
- Microfilament Proteins/chemistry
- Microfilament Proteins/genetics
- Microfilament Proteins/physiology
- Microscopy, Electron
- Microscopy, Fluorescence
- Models, Biological
- Mutagenesis, Site-Directed
- Phosphoproteins/chemistry
- Phosphoproteins/genetics
- Phosphoproteins/physiology
- Protein Binding/physiology
- Protein Structure, Quaternary
- Protein Structure, Secondary
- Recombinant Proteins/genetics
- Recombinant Proteins/metabolism
- src-Family Kinases/metabolism
Collapse
Affiliation(s)
- Yong Qian
- The Mary Babb Randolph Cancer Center and the Department of Microbiology and Immunology, West Virginia University, Morgantown, West Virginia 26506-9300, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Siegmund E, Lüthen F, Kunert J, Weber H. Ethanol modifies the actin cytoskeleton in rat pancreatic acinar cells--comparison with effects of CCK. Pancreatology 2004; 4:12-21. [PMID: 14988654 DOI: 10.1159/000077023] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2003] [Accepted: 10/07/2003] [Indexed: 12/11/2022]
Abstract
BACKGROUND One of the early events leading to alcoholic pancreatitis seems to be the effect of ethanol on stimulus-secretion coupling. This study examines ethanol-induced modifications of filamentous actin (F-actin) content and localization in acini, the resulting alpha-amylase secretion and the role of protein kinase C (PKC) activity in these processes. METHODS Freshly isolated acini were treated with different concentrations of ethanol or cholecystokinin octapeptide (CCK-8) for different periods. F-actin was localized by confocal laser scanning microscopy; its quantity was determined fluorometrically, and the alpha-amylase secretion was measured. RESULTS Ethanol caused F-actin reorganization resembling the effects of supramaximal CCK-8 stimulation and of direct PKC activation by phorbol-12-myristate-13-acetate. The polyphasic time course of the F-actin content also resembled that under supramaximal CCK-8 stimulation and was counteracted by inhibition of PKC. The PKC inhibitor bisindolylmaleimide I did not increase the ethanol- induced alpha-amylase secretion, but the suboptimally CCK-8-stimulated secretion via high-affinity receptors. CONCLUSION Ethanol, like supramaximal CCK-8 concentrations, inhibits acinar secretion by reorganization of the actin cytoskeleton via PKC activation. This effect is suggested to be mediated by low-affinity CCK-A receptors. Together with the ethanol-induced stimulation of early steps of stimulus-secretion coupling, this may be a pancreas-damaging mechanism resembling that in experimental hyperstimulation pancreatitis.
Collapse
Affiliation(s)
- Eva Siegmund
- Institute of Clinical Chemistry and Pathobiochemistry, University of Rostock, Rostock, Germany.
| | | | | | | |
Collapse
|
35
|
Burgstaller G, Gimona M. Actin cytoskeleton remodelling via local inhibition of contractility at discrete microdomains. J Cell Sci 2004; 117:223-31. [PMID: 14676275 DOI: 10.1242/jcs.00839] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Activation of conventional protein kinase C by phorbol ester triggers the Src-dependent remodelling of the actin cytoskeleton and the formation of podosomes in vascular smooth muscle cells. Rearrangement of actin cytoskeleton in response to phorbol-12,13-dibutyrate is characterised by the simultaneous disassembly of peripheral actin stress fibres and focal adhesions, focal de novo actin polymerisation and actomyosin contraction in the cell center, indicating a spatially and temporally segregated, differential modulation of actin-cytoskeleton stability and turnover. Taking advantage of the prominent actin cytoskeleton in A7r5 cells we show here, that the molecular basis for the local inhibition of contractility is the specific recruitment of p190RhoGAP to specialised microdomains at the focal adhesion/stress fibre interface, which are constitutively enriched in cortactin. The microdomains contain structurally altered actin filaments inaccessible to phalloidin. However, the filaments remain decorated with high molecular weight tropomyosins. Clustering of cortactin during podosome formation causes the rapid, local dispersion of myosin and tropomyosin, and interferes with the F-actin binding of h1calponin, consistent with a RhoGAP-mediated reduction of contractility. Phorbol ester-induced podosome formation is efficiently blocked by expression of constitutively active Dia1, which leads to the dispersion of cortactin. The results provide direct evidence for the spatially restricted inhibition of contractility via the recruitment and accumulation of cortactin and p190RhoGAP.
Collapse
Affiliation(s)
- Gerald Burgstaller
- Institute of Molecular Biology, Department of Cell Biology, Austrian Academy of Sciences, Billrothstrasse 11, 5020 Salzburg, Austria
| | | |
Collapse
|
36
|
Clump DA, Clem R, Qian Y, Guappone-Koay A, Berrebi AS, Flynn DC. Protein expression levels of the Src activating protein AFAP are developmentally regulated in brain. JOURNAL OF NEUROBIOLOGY 2003; 54:473-85. [PMID: 12532398 DOI: 10.1002/neu.10143] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The Src family of nonreceptor tyrosine kinases plays an important role in modulating signals that affect growth cone extension, neuronal differentiation, and brain development. Recent reports indicate that the Src SH2/SH3 binding partner AFAP-110 has the capacity to modulate actin filament integrity as a cSrc activating protein and as an actin filament bundling protein. Both AFAP-110 and a brain specific isoform called AFAP-120 (collectively referred to as AFAP) exist at high levels in chick embryo brain. We sought to identify the localization of AFAP in mouse brain in order to identify its expression pattern and potential role as a cellular modulator of Src family kinase activity and actin filament integrity in the brain. In E16 mouse embryos, AFAP expression levels were very high and concentrated in the olfactory bulb, cortex, forebrain, cerebellum, and various peripheral sensory structures. In P3 mouse pups, overall expression was reduced compared to E16 embryos, and AFAP was found primarily in olfactory bulb, cortex, and cerebellum. AFAP expression levels were significantly reduced in adult mice, with high expression levels only detected in the olfactory bulb. Western blot analysis indicated that concentrated expression of AFAP correlates well with the AFAP-120 isoform, which appears to be a splice variant of AFAP-110. As the expression pattern of AFAP overlaps with the reported expression patterns of cSrc and Fyn, we hypothesize that AFAP is positioned to modulate signal transduction cascades that direct activation of these nonreceptor tyrosine kinases and concomitant cellular changes that occur in actin filaments during brain development.
Collapse
Affiliation(s)
- David A Clump
- The Mary Babb Randolph Cancer Center and the Department of Microbiology, Immunology and Cell Biology, West Virginia University, Morgantown, West Virginia 26506-9300, USA
| | | | | | | | | | | |
Collapse
|