1
|
Lee KY, Loh HX, Wan ACA. Systems for Muscle Cell Differentiation: From Bioengineering to Future Food. MICROMACHINES 2021; 13:71. [PMID: 35056236 PMCID: PMC8777594 DOI: 10.3390/mi13010071] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/24/2021] [Accepted: 12/28/2021] [Indexed: 12/12/2022]
Abstract
In light of pressing issues, such as sustainability and climate change, future protein sources will increasingly turn from livestock to cell-based production and manufacturing activities. In the case of cell-based or cultured meat a relevant aspect would be the differentiation of muscle cells into mature muscle tissue, as well as how the microsystems that have been developed to date can be developed for larger-scale cultures. To delve into this aspect we review previous research that has been carried out on skeletal muscle tissue engineering and how various biological and physicochemical factors, mechanical and electrical stimuli, affect muscle cell differentiation on an experimental scale. Material aspects such as the different biomaterials used and 3D vs. 2D configurations in the context of muscle cell differentiation will also be discussed. Finally, the ability to translate these systems to more scalable bioreactor configurations and eventually bring them to a commercial scale will be touched upon.
Collapse
Affiliation(s)
| | | | - Andrew C. A. Wan
- Singapore Institute of Food and Biotechnology Innovation, 31 Biopolis Way, #01-02, Nanos, Singapore 138669, Singapore; (K.-Y.L.); (H.-X.L.)
| |
Collapse
|
2
|
Ciecierska A, Motyl T, Sadkowski T. Transcriptomic Profile of Primary Culture of Skeletal Muscle Cells Isolated from Semitendinosus Muscle of Beef and Dairy Bulls. Int J Mol Sci 2020; 21:E4794. [PMID: 32645861 PMCID: PMC7369917 DOI: 10.3390/ijms21134794] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/30/2020] [Accepted: 07/02/2020] [Indexed: 01/05/2023] Open
Abstract
The aim of the study was to identify differences in the transcriptomic profiles of primary muscle cell cultures derived from the semitendinosus muscle of bulls of beef breeds (Limousin (LIM) and Hereford (HER)) and a dairy breed (Holstein-Friesian (HF)) (n = 4 for each breed). Finding a common expression pattern for proliferating cells may point to such an early orientation of the cattle beef phenotype at the transcriptome level of unfused myogenic cells. To check this hypothesis, microarray analyses were performed. The analysis revealed 825 upregulated and 1300 downregulated transcripts similar in both beef breeds (LIM and HER) and significantly different when compared with the dairy breed (HF) used as a reference. Ontological analyses showed that the largest group of genes were involved in muscle organ development. Muscle cells of beef breeds showed higher expression of genes involved in myogenesis (including erbb-3, myf5, myog, des, igf-1, tgfb2) and those encoding proteins comprising the contractile apparatus (acta1, actc1, myh3, myh11, myl1, myl2, myl4, tpm1, tnnt2, tnnc1). The obtained results confirmed our hypothesis that the expression profile of several groups of genes is common in beef breeds at the level of proliferating satellite cells but differs from that observed in typical dairy breeds.
Collapse
Affiliation(s)
- Anna Ciecierska
- Department of Human Nutrition, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences - SGGW, Nowoursynowska 159C, 02-776 Warsaw, Poland;
| | - Tomasz Motyl
- Department of Physiological Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences - SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland;
| | - Tomasz Sadkowski
- Department of Physiological Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences - SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland;
| |
Collapse
|
3
|
Zeng P, Han W, Li C, Li H, Zhu D, Zhang Y, Liu X. miR-378 attenuates muscle regeneration by delaying satellite cell activation and differentiation in mice. Acta Biochim Biophys Sin (Shanghai) 2016; 48:833-9. [PMID: 27563005 DOI: 10.1093/abbs/gmw077] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 05/16/2016] [Indexed: 12/27/2022] Open
Abstract
Skeletal muscle mass and homeostasis during postnatal muscle development and regeneration largely depend on adult muscle stem cells (satellite cells). We recently showed that global overexpression of miR-378 significantly reduced skeletal muscle mass in mice. In the current study, we used miR-378 transgenic (Tg) mice to assess the in vivo functional effects of miR-378 on skeletal muscle growth and regeneration. Cross-sectional analysis of skeletal muscle tissues showed that the number and size of myofibers were significantly lower in miR-378 Tg mice than in wild-type mice. Attenuated cardiotoxin-induced muscle regeneration in miR-378 Tg mice was found to be associated with delayed satellite cell activation and differentiation. Mechanistically, miR-378 was found to directly target Igf1r in muscle cells both in vitro and in vivo These miR-378 Tg mice may provide a model for investigating the physiological and pathological roles of skeletal muscle in muscle-associated diseases in humans, particularly in sarcopenia.
Collapse
Affiliation(s)
- Ping Zeng
- Division of Geriatrics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences , Beijing 100730, China
| | - Wanhong Han
- The State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College , Beijing 100005, China
| | - Changyin Li
- The State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College , Beijing 100005, China
| | - Hu Li
- The State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College , Beijing 100005, China
| | - Dahai Zhu
- The State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College , Beijing 100005, China
| | - Yong Zhang
- The State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College , Beijing 100005, China
| | - Xiaohong Liu
- Division of Geriatrics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences , Beijing 100730, China
| |
Collapse
|
4
|
Perniconi B, Coletti D, Aulino P, Costa A, Aprile P, Santacroce L, Chiaravalloti E, Coquelin L, Chevallier N, Teodori L, Adamo S, Marrelli M, Tatullo M. Muscle acellular scaffold as a biomaterial: effects on C2C12 cell differentiation and interaction with the murine host environment. Front Physiol 2014; 5:354. [PMID: 25309452 PMCID: PMC4176465 DOI: 10.3389/fphys.2014.00354] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 08/30/2014] [Indexed: 01/17/2023] Open
Abstract
The extracellular matrix (ECM) of decellularized organs possesses the characteristics of the ideal tissue-engineering scaffold (i.e., histocompatibility, porosity, degradability, non-toxicity). We previously observed that the muscle acellular scaffold (MAS) is a pro-myogenic environment in vivo. In order to determine whether MAS, which is basically muscle ECM, behaves as a myogenic environment, regardless of its location, we analyzed MAS interaction with both muscle and non-muscle cells and tissues, to assess the effects of MAS on cell differentiation. Bone morphogenetic protein treatment of C2C12 cells cultured within MAS induced osteogenic differentiation in vitro, thus suggesting that MAS does not irreversibly commit cells to myogenesis. In vivo MAS supported formation of nascent muscle fibers when replacing a muscle (orthotopic position). However, heterotopically grafted MAS did not give rise to muscle fibers when transplanted within the renal capsule. Also, no muscle formation was observed when MAS was transplanted under the xiphoid process, in spite of the abundant presence of cells migrating along the laminin-based MAS structure. Taken together, our results suggest that MAS itself is not sufficient to induce myogenic differentiation. It is likely that the pro-myogenic environment of MAS is not strictly related to the intrinsic properties of the muscle scaffold (e.g., specific muscle ECM proteins). Indeed, it is more likely that myogenic stem cells colonizing MAS recognize a muscle environment that ultimately allows terminal myogenic differentiation. In conclusion, MAS may represent a suitable environment for muscle and non-muscle 3D constructs characterized by a highly organized structure whose relative stability promotes integration with the surrounding tissues. Our work highlights the plasticity of MAS, suggesting that it may be possible to consider MAS for a wider range of tissue engineering applications than the mere replacement of volumetric muscle loss.
Collapse
Affiliation(s)
- Barbara Perniconi
- Department of Biological Adaptation and Aging (B2A) UMR 8256 CNRS - ERL U1164 INSERM, Sorbonne Universités, UPMC University Paris 06 Paris, France ; Maxillofacial Unit, Calabrodental Clinic Crotone, Italy
| | - Dario Coletti
- Department of Biological Adaptation and Aging (B2A) UMR 8256 CNRS - ERL U1164 INSERM, Sorbonne Universités, UPMC University Paris 06 Paris, France ; AHFOS Department - Section of Histology and Medical Embryology, Sapienza University of Rome Rome, Italy ; Interuniversitary Institute of Miology (IIM) Rome, Italy
| | - Paola Aulino
- Maxillofacial Unit, Calabrodental Clinic Crotone, Italy ; AHFOS Department - Section of Histology and Medical Embryology, Sapienza University of Rome Rome, Italy ; Interuniversitary Institute of Miology (IIM) Rome, Italy
| | - Alessandra Costa
- AHFOS Department - Section of Histology and Medical Embryology, Sapienza University of Rome Rome, Italy ; Interuniversitary Institute of Miology (IIM) Rome, Italy ; UTAPRAD-DIM, ENEA Frascati, Italy
| | - Paola Aprile
- UTAPRAD-DIM, ENEA Frascati, Italy ; Tor Vergata University of Rome Rome, Italy
| | - Luigi Santacroce
- JSGEM Department - Section of Taranto, University of Bari Taranto, Italy
| | | | - Laura Coquelin
- Unite d'Ingénierie et de Therapie Cellulaire, Etablissement Français du Sang Ile de France, Université Paris-Est Créteil Créteil, France
| | - Nathalie Chevallier
- Unite d'Ingénierie et de Therapie Cellulaire, Etablissement Français du Sang Ile de France, Université Paris-Est Créteil Créteil, France
| | | | - Sergio Adamo
- AHFOS Department - Section of Histology and Medical Embryology, Sapienza University of Rome Rome, Italy ; Interuniversitary Institute of Miology (IIM) Rome, Italy
| | - Massimo Marrelli
- Maxillofacial Unit, Calabrodental Clinic Crotone, Italy ; Regenerative Medicine Section, Tecnologica Research Institute Crotone, Italy
| | - Marco Tatullo
- Maxillofacial Unit, Calabrodental Clinic Crotone, Italy ; Regenerative Medicine Section, Tecnologica Research Institute Crotone, Italy
| |
Collapse
|
5
|
Costa A, Rossi E, Scicchitano BM, Coletti D, Moresi V, Adamo S. Neurohypophyseal Hormones: Novel Actors of Striated Muscle Development and Homeostasis. Eur J Transl Myol 2014; 24:3790. [PMID: 26913138 PMCID: PMC4756744 DOI: 10.4081/ejtm.2014.3790] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Since the 1980’s, novel functional roles of the neurohypophyseal hormones vasopressin and oxytocin have emerged. Several studies have investigated the effects of these two neurohormones on striated muscle tissues, both in vitro and in vivo. The effects of vasopressin on skeletal myogenic cells, developing muscle and muscle homeostasis have been documented. Oxytocin appears to have a greater influence on cardiomyocite differentiation and heart homeostasis. This review summarizes the studies on these novel roles of the two neurohypophyseal hormones, and open the possibility of new therapeutic approaches for diseases affecting striated muscle.
Collapse
Affiliation(s)
- Alessandra Costa
- (1) Histology and Medical Embryology Section, Dept. AHFMO, Sapienza University, Rome, Italy; (2) I.I.M., Interuniversity Institute of Myology
| | - Eleonora Rossi
- (1) Histology and Medical Embryology Section, Dept. AHFMO, Sapienza University , Rome, Italy
| | - Bianca Maria Scicchitano
- (1) Histology and Medical Embryology Section, Dept. AHFMO, Sapienza University, Rome, Italy; (2) I.I.M., Interuniversity Institute of Myology; (3) Institute of Histology and Embryology, Catholic University School of Medicine, Rome, Italy
| | - Dario Coletti
- (1) Histology and Medical Embryology Section, Dept. AHFMO, Sapienza University, Rome, Italy; (2) I.I.M., Interuniversity Institute of Myology
| | - Viviana Moresi
- (1) Histology and Medical Embryology Section, Dept. AHFMO, Sapienza University , Rome, Italy
| | - Sergio Adamo
- (1) Histology and Medical Embryology Section, Dept. AHFMO, Sapienza University, Rome, Italy; (2) I.I.M., Interuniversity Institute of Myology
| |
Collapse
|
6
|
Perniconi B, Coletti D. Skeletal muscle tissue engineering: best bet or black beast? Front Physiol 2014; 5:255. [PMID: 25071600 PMCID: PMC4082300 DOI: 10.3389/fphys.2014.00255] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 06/17/2014] [Indexed: 11/13/2022] Open
Affiliation(s)
- Barbara Perniconi
- Biology of Adaptation and Aging (B2A), Université Pierre et Marie Curie Paris 6Paris, France
- Department of Anatomical, Histological, Forensic Sciences and Hortopedics, Sapienza University of RomeRome, Italy
- Interuniversity Institute of MyologyRome, Italy
| | - Dario Coletti
- Biology of Adaptation and Aging (B2A), Université Pierre et Marie Curie Paris 6Paris, France
- Department of Anatomical, Histological, Forensic Sciences and Hortopedics, Sapienza University of RomeRome, Italy
- Interuniversity Institute of MyologyRome, Italy
| |
Collapse
|
7
|
Jiang Y, Singh P, Yin H, Zhou YX, Gui Y, Wang DZ, Zheng XL. Opposite roles of myocardin and atrogin-1 in L6 myoblast differentiation. J Cell Physiol 2013; 228:1989-95. [PMID: 23526547 DOI: 10.1002/jcp.24365] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Accepted: 03/04/2013] [Indexed: 12/15/2022]
Abstract
L6 rat myoblasts undergo differentiation and myotube formation when cultured in medium containing a low-concentration of serum, but the underlying mechanism is not well understood. The role of atrogin-1, an E3 ligase with well-characterized roles in muscle atrophy, has not been defined in muscle differentiation. Myocardin is a coactivator of serum response factor (SRF), which together promotes smooth muscle differentiation. Myocardin is transiently expressed in skeletal muscle progenitor cells with inhibitory effects on the expression of myogenin and muscle differentiation. It remains unknown whether myocardin, which undergoes ubiquitination degradation, plays a role in L6 cell differentiation. The current study aimed to investigate the potential roles of myocardin and atrogin-1 in differentiation of L6 cells. As reported by many others, shifting to medium containing 2% serum induced myotube formation of L6 cells. Differentiation was accompanied by up-regulation of atrogin-1 and down-regulation of myocardin, suggesting that both may be involved in muscle differentiation. As expected, over-expression of atrogin-1 stimulated the expression of troponin T and myogenin and differentiation of the L6 myoblasts. Co-expression of myocardin with atrogin-1 inhibited atrogin-1-induced myogenin expression. Over-expression of atrogin-1 decreased myocardin protein level, albeit without affecting its mRNA level. Small-interfering RNA-mediated knockdown of atrogin-1 increased myocardin protein. Consistently, ectopic expression of myocardin inhibited myogenic differentiation. Unexpectedly, myocardin decreased the expression of atrogin-1 without involving Foxo1. Taken together, our results have demonstrated that atrogin-1 plays a positive role in skeletal muscle differentiation through down-regulation of myocardin.
Collapse
Affiliation(s)
- Yulan Jiang
- Department of Biochemistry & Molecular Biology, The University of Calgary, Calgary, Albeta, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Coletti D, Teodori L, Lin Z, Beranudin JF, Adamo S. Restoration versus reconstruction: cellular mechanisms of skin, nerve and muscle regeneration compared. Regen Med Res 2013; 1:4. [PMID: 25984323 PMCID: PMC4375925 DOI: 10.1186/2050-490x-1-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Accepted: 02/20/2013] [Indexed: 01/24/2023] Open
Abstract
In tissues characterized by a high turnover or following acute injury, regeneration replaces damaged cells and is involved in adaptation to external cues, leading to homeostasis of many tissues during adult life. An understanding of the mechanics underlying tissue regeneration is highly relevant to regenerative medicine-based interventions. In order to investigate the existence a leitmotif of tissue regeneration, we compared the cellular aspects of regeneration of skin, nerve and skeletal muscle, three organs characterized by different types of anatomical and functional organization. Epidermis is a stratified squamous epithelium that migrates from the edge of the wound on the underlying dermis to rebuild lost tissue. Peripheral neurons are elongated cells whose neurites are organized in bundles, within an endoneurium of connective tissue; they either die upon injury or undergo remodeling and axon regrowth. Skeletal muscle is characterized by elongated syncytial cells, i.e. muscle fibers, that can temporarily survive in broken pieces; satellite cells residing along the fibers form new fibers, which ultimately fuse with the old ones as well as with each other to restore the previous organization. Satellite cell asymmetrical division grants a reservoir of undifferentiated cells, while other stem cell populations of muscle and non-muscle origin participate in muscle renewal. Following damage, all the tissues analyzed here go through three phases: inflammation, regeneration and maturation. Another common feature is the occurrence of cellular de-differentiation and/or differentiation events, including gene transcription, which are typical of embryonic development. Nonetheless, various strategies are used by different tissues to replace their lost parts. The epidermis regenerates ex novo, whereas neurons restore their missing parts; muscle fibers use a mixed strategy, based on the regrowth of missing parts through reconstruction by means of newborn fibers. The choice of either strategy is influenced by the anatomical, physical and chemical features of the cells as well as by the extracellular matrix typical of a given tissue, which points to the existence of differential, evolutionary-based mechanisms for specific tissue regeneration. The shared, ordered sequence of steps that characterize the regeneration processes examined suggests it may be possible to model this extremely important phenomenon to reproduce multicellular organisms.
Collapse
Affiliation(s)
- Dario Coletti
- UPMC Univ Paris 06, UR4 Ageing, Stress, Inflammation, 75005 Paris, France ; Department of Anatomical, Histological, Forensic & Orthopaedic Sciences, Section of Histology & Medical Embryology, 00161 Rome, Italy ; Interuniversity Institute of Myology, Kragujevac, Italy
| | - Laura Teodori
- ENEA-Frascati, UTAPRAD-DIM, Diagnostics and Metrology Laboratory, 00044 Rome, Italy
| | - Zhenlin Lin
- UPMC Univ Paris 06, UR4 Ageing, Stress, Inflammation, 75005 Paris, France
| | | | - Sergio Adamo
- Department of Anatomical, Histological, Forensic & Orthopaedic Sciences, Section of Histology & Medical Embryology, 00161 Rome, Italy ; Interuniversity Institute of Myology, Kragujevac, Italy
| |
Collapse
|
9
|
The myogenic kinome: protein kinases critical to mammalian skeletal myogenesis. Skelet Muscle 2011; 1:29. [PMID: 21902831 PMCID: PMC3180440 DOI: 10.1186/2044-5040-1-29] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Accepted: 09/08/2011] [Indexed: 12/13/2022] Open
Abstract
Myogenesis is a complex and tightly regulated process, the end result of which is the formation of a multinucleated myofibre with contractile capability. Typically, this process is described as being regulated by a coordinated transcriptional hierarchy. However, like any cellular process, myogenesis is also controlled by members of the protein kinase family, which transmit and execute signals initiated by promyogenic stimuli. In this review, we describe the various kinases involved in mammalian skeletal myogenesis: which step of myogenesis a particular kinase regulates, how it is activated (if known) and what its downstream effects are. We present a scheme of protein kinase activity, similar to that which exists for the myogenic transcription factors, to better clarify the complex signalling that underlies muscle development.
Collapse
|
10
|
Perniconi B, Costa A, Aulino P, Teodori L, Adamo S, Coletti D. The pro-myogenic environment provided by whole organ scale acellular scaffolds from skeletal muscle. Biomaterials 2011; 32:7870-82. [PMID: 21802724 DOI: 10.1016/j.biomaterials.2011.07.016] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Accepted: 07/05/2011] [Indexed: 11/26/2022]
Abstract
In the pursuit of a transplantable construct for the replacement of large skeletal muscle defects arising from traumatic or pathological conditions, several attempts have been made to obtain a highly oriented, vascularized and functional skeletal muscle. Acellular scaffolds derived from organ decellularization are promising, widely used biomaterials for tissue engineering. However, the acellular skeletal muscle extra cellular matrix (ECM) has been poorly characterized in terms of production, storage and host-donor interactions. We have produced acellular scaffolds at the whole organ scale from various skeletal muscles explanted from mice. The acellular scaffolds conserve chemical and architectural features of the tissue of origin, including the vascular bed. Scaffolds can be sterilely stored for weeks at +4°C or +37°C in tissue culture grade conditions. When transplanted in wt mice, the grafts are stable for several weeks, whilst being colonized by inflammatory and stem cells. We demonstrate that the acellular scaffold per se represents a pro-myogenic environment supporting de novo formation of muscle fibers, likely derived from host cells with myogenic potential. Myogenesis within the implant is enhanced by immunosuppressive treatment. Our work highlights the fundamental role of this niche in tissue engineering application and unveils the clinical potential of allografts based on decellularized tissue for regenerative medicine.
Collapse
Affiliation(s)
- Barbara Perniconi
- Sapienza University of Rome, Department of Anatomical, Histological, Forensic & Orthopaedic Sciences, Histology & Medical Embryology Section, 00161 Rome, Italy
| | | | | | | | | | | |
Collapse
|
11
|
Abstract
Activation of adrenergic receptors (AR) represents the primary mechanism to increase cardiac performance under stress. Activated βAR couple to Gs protein, leading to adenylyl cyclase-dependent increases in secondary-messenger cyclic adenosine monophosphate (cAMP) to activate protein kinase A. The increased protein kinase A activities promote phosphorylation of diversified substrates, ranging from the receptor and its associated partners to proteins involved in increases in contractility and heart rate. Recent progress with live-cell imaging has drastically advanced our understanding of the βAR-induced cAMP and protein kinase A activities that are precisely regulated in a spatiotemporal fashion in highly differentiated myocytes. Several features stand out: membrane location of βAR and its associated complexes dictates the cellular compartmentalization of signaling; βAR agonist dose-dependent equilibrium between cAMP production and cAMP degradation shapes persistent increases in cAMP signals for sustained cardiac contraction response; and arrestin acts as an agonist dose-dependent master switch to promote cAMP diffusion and propagation into intracellular compartments by sequestrating phosphodiesterase isoforms associated with the βAR signaling cascades. These features and the underlying molecular mechanisms of dynamic regulation of βAR complexes with adenylyl cyclase and phosphodiesterase enzymes and the implication in heart failure are discussed.
Collapse
Affiliation(s)
- Yang K Xiang
- Molecular and Integrative Physiology, University of Illinois at Urbana Champaign, Urbana, IL, USA.
| |
Collapse
|
12
|
Fleming-Waddell JN, Olbricht GR, Taxis TM, White JD, Vuocolo T, Craig BA, Tellam RL, Neary MK, Cockett NE, Bidwell CA. Effect of DLK1 and RTL1 but not MEG3 or MEG8 on muscle gene expression in Callipyge lambs. PLoS One 2009; 4:e7399. [PMID: 19816583 PMCID: PMC2756960 DOI: 10.1371/journal.pone.0007399] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2009] [Accepted: 09/15/2009] [Indexed: 12/30/2022] Open
Abstract
Callipyge sheep exhibit extreme postnatal muscle hypertrophy in the loin and hindquarters as a result of a single nucleotide polymorphism (SNP) in the imprinted DLK1-DIO3 domain on ovine chromosome 18. The callipyge SNP up-regulates the expression of surrounding transcripts when inherited in cis without altering their allele-specific imprinting status. The callipyge phenotype exhibits polar overdominant inheritance since only paternal heterozygous animals have muscle hypertrophy. Two studies were conducted profiling gene expression in lamb muscles to determine the down-stream effects of over-expression of paternal allele-specific DLK1 and RTL1 as well as maternal allele-specific MEG3, RTL1AS and MEG8, using Affymetrix bovine expression arrays. A total of 375 transcripts were differentially expressed in callipyge muscle and 25 transcripts were subsequently validated by quantitative PCR. The muscle-specific expression patterns of most genes were similar to DLK1 and included genes that are transcriptional repressors or affect feedback mechanisms in beta-adrenergic and growth factor signaling pathways. One gene, phosphodiesterase 7A had an expression pattern similar to RTL1 expression indicating a biological activity for RTL1 in muscle. Only transcripts that localize to the DLK1-DIO3 domain were affected by inheritance of a maternal callipyge allele. Callipyge sheep are a unique model to study over expression of both paternal allele-specific genes and maternal allele-specific non-coding RNA with an accessible and nonlethal phenotype. This study has identified a number of genes that are regulated by DLK1 and RTL1 expression and exert control on postnatal skeletal muscle growth. The genes identified in this model are primary candidates for naturally regulating postnatal muscle growth in all meat animal species, and may serve as targets to ameliorate muscle atrophy conditions including myopathic diseases and age-related sarcopenia.
Collapse
Affiliation(s)
| | - Gayla R. Olbricht
- Department of Statistics, Purdue University, West Lafayette, Indiana, United States of America
| | - Tasia M. Taxis
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana, United States of America
- Animal Sciences Division, University of Missouri, Columbia, Missouri, United States of America
| | - Jason D. White
- School of Veterinary Science, The University of Melbourne, Parkville, Victoria, Australia
| | - Tony Vuocolo
- CSIRO Livestock Industries, St. Lucia, Queensland, Australia
| | - Bruce A. Craig
- Department of Statistics, Purdue University, West Lafayette, Indiana, United States of America
| | - Ross L. Tellam
- CSIRO Livestock Industries, St. Lucia, Queensland, Australia
| | - Mike K. Neary
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana, United States of America
| | - Noelle E. Cockett
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, Utah, United States of America
| | - Christopher A. Bidwell
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana, United States of America
| |
Collapse
|
13
|
Modulation of caspase activity regulates skeletal muscle regeneration and function in response to vasopressin and tumor necrosis factor. PLoS One 2009; 4:e5570. [PMID: 19440308 PMCID: PMC2680623 DOI: 10.1371/journal.pone.0005570] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2009] [Accepted: 04/20/2009] [Indexed: 11/19/2022] Open
Abstract
Muscle homeostasis involves de novo myogenesis, as observed in conditions of acute or chronic muscle damage. Tumor Necrosis Factor (TNF) triggers skeletal muscle wasting in several pathological conditions and inhibits muscle regeneration. We show that intramuscular treatment with the myogenic factor Arg8-vasopressin (AVP) enhanced skeletal muscle regeneration and rescued the inhibitory effects of TNF on muscle regeneration. The functional analysis of regenerating muscle performance following TNF or AVP treatments revealed that these factors exerted opposite effects on muscle function. Principal component analysis showed that TNF and AVP mainly affect muscle tetanic force and fatigue. Importantly, AVP counteracted the effects of TNF on muscle function when delivered in combination with the latter. Muscle regeneration is, at least in part, regulated by caspase activation, and AVP abrogated TNF-dependent caspase activation. The contrasting effects of AVP and TNF in vivo are recapitulated in myogenic cell cultures, which express both PW1, a caspase activator, and Hsp70, a caspase inhibitor. We identified PW1 as a potential Hsp70 partner by screening for proteins interacting with PW1. Hsp70 and PW1 co-immunoprecipitated and co-localized in muscle cells. In vivo Hsp70 protein level was upregulated by AVP, and Hsp70 overexpression counteracted the TNF block of muscle regeneration. Our results show that AVP counteracts the effects of TNF through cross-talk at the Hsp70 level. Therefore, muscle regeneration, both in the absence and in the presence of cytokines may be enhanced by increasing Hsp70 expression.
Collapse
|
14
|
Salidroside stimulated glucose uptake in skeletal muscle cells by activating AMP-activated protein kinase. Eur J Pharmacol 2008; 588:165-9. [PMID: 18501890 DOI: 10.1016/j.ejphar.2008.04.036] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2007] [Revised: 03/18/2008] [Accepted: 04/11/2008] [Indexed: 11/20/2022]
Abstract
In the present study, we reported the metabolic effects of salidroside, one of the active components of Rhodiola Rosea, on skeletal muscle cells. Salidroside dose-dependently stimulated glucose uptake in differentiated L6 rat myoblast cells. Inhibitor of AMP-activated protein kinase (AMPK) by pretreating the cells with compound C potently reduced salidroside-stimulated glucose uptake, while inhibition of phosphatidylinositol 3-kinase (PI3K) by wortmannin exhibited no significant inhibitory effect on salidroside-mediated glucose transport activation. Western blotting analyses revealed that salidroside increased the phosphorylation level of AMPK and acetyl-CoA carboxylase (ACC). In addition, salidroside enhanced insulin-mediated Akt activation and glucose uptake, and such enhancement can be specifically inhibited by compound C. In summary, AMPK activation was involved in the effects of salidroside on glucose transport activation and insulin sensitivity. Salidroside can be further developed as potential compound for the anti-diabetic therapy.
Collapse
|
15
|
Mukai A, Hashimoto N. Localized cyclic AMP-dependent protein kinase activity is required for myogenic cell fusion. Exp Cell Res 2007; 314:387-97. [PMID: 18001711 DOI: 10.1016/j.yexcr.2007.10.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2007] [Revised: 10/07/2007] [Accepted: 10/10/2007] [Indexed: 11/17/2022]
Abstract
Multinucleated myotubes are formed by fusion of mononucleated myogenic progenitor cells (myoblasts) during terminal skeletal muscle differentiation. In addition, myoblasts fuse with myotubes, but terminally differentiated myotubes have not been shown to fuse with each other. We show here that an adenylate cyclase activator, forskolin, and other reagents that elevate intracellular cyclic AMP (cAMP) levels induced cell fusion between small bipolar myotubes in vitro. Then an extra-large myotube, designated a "myosheet," was produced by both primary and established mouse myogenic cells. Myotube-to-myotube fusion always occurred between the leading edge of lamellipodia at the polar end of one myotube and the lateral plasma membrane of the other. Forskolin enhanced the formation of lamellipodia where cAMP-dependent protein kinase (PKA) was accumulated. Blocking enzymatic activity or anchoring of PKA suppressed forskolin-enhanced lamellipodium formation and prevented fusion of multinucleated myotubes. Localized PKA activity was also required for fusion of mononucleated myoblasts. The present results suggest that localized PKA plays a pivotal role in the early steps of myogenic cell fusion, such as cell-to-cell contact/recognition through lamellipodium formation. Furthermore, the localized cAMP-PKA pathway might be involved in the specification of the fusion-competent areas of the plasma membrane in lamellipodia of myogenic cells.
Collapse
Affiliation(s)
- Atsushi Mukai
- Department of Regenerative Medicine, National Institute for Longevity Sciences, National Center for Geriatrics and Gerontology, 36-3 Gengo, Morioka, Oobu, Aichi 474-8522, Japan
| | | |
Collapse
|
16
|
Levallet G, Levallet J, Bonnamy PJ. Alterations in proteoglycan synthesis selectively impair FSH-induced particulate cAMP-phosphodiesterase 4 (PDE4) activation in immature rat Sertoli cells. Biochim Biophys Acta Gen Subj 2007; 1770:638-48. [PMID: 17261351 DOI: 10.1016/j.bbagen.2006.12.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2006] [Revised: 12/11/2006] [Accepted: 12/15/2006] [Indexed: 01/24/2023]
Abstract
FSH-induced upregulation of cAMP-PDE4 activities was decreased in cultured Sertoli cells when alteration of cell proteoglycans (PGs) metabolism was simultaneously induced either by para-nitrophenyl beta-d-xyloside (PNPX) or by sodium chlorate. This effect was restricted to the particulate PDE4 activities and its timing was consistent with the half-life of Sertoli cell PGs. It did not result from alterations in Pde4d variants expression, the major FSH-regulated PDE4 in Sertoli cells. Moreover, lack of changes in the particulate levels of major immunoreactive 75 kDa and 90 kDa PDE4D proteins, corresponding likely to short PDE4D1 and long PDE4D3/D8/D9 isoforms respectively, suggested that the decrease in FSH-stimulated of PDE4 activities in chlorate- and PNPX-treated cells at the end of the 24-h incubation period resulted from the increased reversal of the activated particulate PDE4(D) activities back to unstimulated levels. By controlling FSH-stimulated particulate PDE4 inactivation through a still unknown mechanism (sustained activation of PKA or reduction of phosphoprotein phosphatase activities), cell PGs could be involved in the alteration of cAMP response to FSH accompanying the transition of Sertoli cells from proliferative to non-proliferative differentiated state.
Collapse
Affiliation(s)
- Guénaëlle Levallet
- Laboratoire Oestrogènes et Reproduction, EA 2608, INRA USC 2006, Université de Caen, 14032 Caen, France
| | | | | |
Collapse
|
17
|
Fleming-Waddell JN, Wilson LM, Olbricht GR, Vuocolo T, Byrne K, Craig BA, Tellam RL, Cockett NE, Bidwell CA. Analysis of gene expression during the onset of muscle hypertrophy in callipyge lambs. Anim Genet 2007; 38:28-36. [PMID: 17257185 DOI: 10.1111/j.1365-2052.2006.01562.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The callipyge mutation causes postnatal muscle hypertrophy in heterozygous lambs that inherit a paternal callipyge allele (+/CLPG). Our hypothesis was that the up-regulation of one or both of the affected paternally expressed genes (DLK1 or PEG11) initiates changes in biochemical and physiological pathways in skeletal muscle to induce hypertrophy. The goal of this study was to identify changes in gene expression during the onset of muscle hypertrophy to identify the pathways that are involved in the expression of the callipyge phenotype. Gene expression was analysed in longissimus dorsi total RNA from lambs at 10, 20, and 30 days of age using the Affymetrix Bovine Expression Array. An average of 40.6% of probe sets on the array was detected in sheep muscle. Data were normalized and analysed using a two-way anova for genotype and age effects with a false discovery rate of 0.10. From the anova, 13 genes were significant for the effect of genotype and 13 were significant for effect of age (P < 0.10). No significant age-by-genotype interactions were detected (P > 0.10). Of the 13 genes indicating an effect of genotype, quantitative PCR assays were developed for all of them and tested on a larger group of animals from 10 to 200 days of age. Nine genes had significantly elevated transcript levels in callipyge lambs. These genes included phosphofructokinase, a putative methyltransferase protein, a cAMP phosphodiesterase, and the transcription factor DNTTIP1.
Collapse
Affiliation(s)
- J N Fleming-Waddell
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907-2042, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Scarth JP. Modulation of the growth hormone-insulin-like growth factor (GH-IGF) axis by pharmaceutical, nutraceutical and environmental xenobiotics: an emerging role for xenobiotic-metabolizing enzymes and the transcription factors regulating their expression. A review. Xenobiotica 2006; 36:119-218. [PMID: 16702112 DOI: 10.1080/00498250600621627] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The growth hormone-insulin-like growth factor (GH-IGF) axis has gained considerable focus over recent years. One cause of this increased interest is due to a correlation of age-related decline in plasma GH/IGF levels with age-related degenerative processes, and it has led to the prescribing of GH replacement therapy by some practitioners. On the other hand, however, research has also focused on the pro-carcinogenic effects of high GH-IGF levels, providing strong impetus for finding regimes that reduce its activity. Whereas the effects of GH/IGF activity on the action of xenobiotic-metabolizing enzyme systems is reasonably well appreciated, the effects of xenobiotic exposure on the GH-IGF axis has not received substantial review. Relevant xenobiotics are derived from pharmaceutical, nutraceutical and environmental exposure, and many of the mechanisms involved are highly complex in nature, not easily predictable from existing in vitro tests and do not always predict well from in vivo animal models. After a review of the human and animal in vivo and in vitro literature, a framework for considering the different levels of direct and indirect modulation by xenobiotics is developed herein, and areas that still require further investigation are highlighted, i.e. the actions of common endocrine disruptors such as pesticides and phytoestrogens, as well as the role of xenobiotic-metabolizing enzymes and the transcription factors regulating their expression. It is anticipated that a fuller appreciation of the existing human paradigms for GH-IGF axis modulation gained through this review may help explain some of the variation in levels of plasma IGF-1 and its binding proteins in the population, aid in the prescription of particular dietary regimens to certain individuals such as those with particular medical conditions, guide the direction of long-term drug/nutraceutical safety trials, and stimulate ideas for future research. It also serves to warn athletes that using compounds touted as performance enhancing because they promote short-term GH release could in fact be detrimental to performance in the long-run.
Collapse
Affiliation(s)
- J P Scarth
- The Horseracing Forensic Laboratories (HFL), Fordham, UK.
| |
Collapse
|
19
|
Activity profiles of deoxynucleoside kinases and 5'-nucleotidases in cultured adipocytes and myoblastic cells: insights into mitochondrial toxicity of nucleoside analogs. Biochem Pharmacol 2005; 69:951-60. [PMID: 15748706 DOI: 10.1016/j.bcp.2004.12.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2004] [Accepted: 12/28/2004] [Indexed: 10/25/2022]
Abstract
Nucleoside reverse transcriptase inhibitor (NRTI) treatment of HIV is associated with complications, including lipodystrophy (LD) and myopathy. Inhibition of mitochondrial DNA polymerase and depletion of mtDNA by NRTI triphosphates are believed to be key mechanisms in NRTI toxicity. Here, we determined the activities and mRNA levels of deoxynucleoside kinases (dNK) and 5'-nucleotidases (5'-NT) controlling the rate-limiting step in intracellular phosphorylation of NRTIs in cell models representing adipose, muscle tissue and peripheral blood cells using specific assays and Taqman RT-PCR. In vitro phosphorylation of 3'-azido-2',3'-dideoxythymidine (AZT) and 2',3'-didehydro-2',3'-dideoxythymidine (d4T) in extracts was also determined. 3T3-L1 adipocytes showed similar activity of mitochondrial thymidine kinase-2 (TK2) and deoxyguanosine kinase (dGK) but 3- to 36-fold lower levels of cytosolic deoxycytidine kinase (dCK), thymidine kinase-1 (TK1) and thymidine monophosphate kinase (TMPK) and higher levels of deoxyribonucleotidase activity compared to proliferating 3T3-L1. dCK, dGK and TK2 activities correlated with their mRNA levels in proliferating, resting and differentiating 3T3-L1. Differentiated L6 myoblasts had lower activities of cytosolic dNK's and TMPK, higher dGK and similar TK2 and deoxyribonucleotidases (dNT) activities compared to proliferating myoblasts. TK2 was the limiting dNK activity while dGK was predominant in adipocytes and myocytes. Activity profiles revealed limited capacity to phosphorylate dThd and dCyd in adipocytes and myocytes compared to proliferating cells and CEM lymphocytes. Phosphorylation of AZT and d4T was low in adipocytes and myocytes, and the presence of these analogs inhibited the phosphorylation of dThd by TK2 suggesting that mitochondrial toxicity of some NRTIs in adipocytes and myocytes is due to the depletion of normal mitochondrial dNTP pools.
Collapse
|
20
|
Hinkle RT, Dolan E, Cody DB, Bauer MB, Isfort RJ. Phosphodiesterase 4 inhibition reduces skeletal muscle atrophy. Muscle Nerve 2005; 32:775-81. [PMID: 16116651 DOI: 10.1002/mus.20416] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Several GTP-binding protein (G-protein)-coupled receptors that signal through Galphas (GTP-binding protein alpha stimulatory) and the cyclic adenosine monophosphate (cAMP) pathway increase skeletal muscle mass. In order to further evaluate the role of the cAMP pathway in the regulation of skeletal muscle mass, we utilized inhibitors of phosphodiesterase 4 (PDE 4), the major cAMP-modifying PDE found in skeletal muscle, to modulate skeletal muscle cAMP levels. We found that PDE 4 inhibitors reduced the loss of muscle mass and force resulting from denervation and casting in rats and mice. These studies indicate that PDE 4 inhibitors may have a role in the treatment of skeletal muscle-wasting diseases.
Collapse
Affiliation(s)
- Richard T Hinkle
- Research Division, Procter & Gamble Pharmaceuticals, Health Care Research Center, 8700 Mason-Montgomery Road, Mason, Ohio 45040, USA
| | | | | | | | | |
Collapse
|
21
|
Shayo C, Legnazzi BL, Monczor F, Fernández N, Riveiro ME, Baldi A, Davio C. The time-course of cyclic AMP signaling is critical for leukemia U-937 cell differentiation. Biochem Biophys Res Commun 2004; 314:798-804. [PMID: 14741706 DOI: 10.1016/j.bbrc.2003.12.166] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The regulation of the cAMP signaling is intimately involved in several cellular processes, including cell differentiation. Here, we provide strong evidence supporting that the time-course of cAMP signal is critical for leukemia U-937 cell differentiation. Three stimulating-cAMP agents were used to analyze the correlation between cAMP time-course and cell differentiation. All three agents denoted similar cAMP maximal responses in dose-response experiments. The kinetic of desensitization showed differential characteristics, while H2 receptor desensitized homologously without affecting PGE2 or forskolin effect, PGE2 response showed mixed desensitization characterized by a homologous initial phase followed by a heterologous phase. Regarding forskolin, long-term stimuli attenuated PGE2 and H2 agonist response without affecting adenylyl cyclase activity. In the absence of phosphodiesterase inhibitors, the three agents induced similar maximal cAMP levels after 5 min, but only that induced by the H2 agonist returned to basal levels. Consistent with this observation, H2 agonist was not able to induce U-937 cell maturation in contrast to PGE2 and forskolin, supporting the importance of time-course signaling in the determination of cell behavior.
Collapse
Affiliation(s)
- Carina Shayo
- Instituto de Biología y Medicina Experimental, Buenos Aires, Argentina.
| | | | | | | | | | | | | |
Collapse
|
22
|
Naro F, De Arcangelis V, Sette C, Ambrosio C, Komati H, Molinaro M, Adamo S, Nemoz G. A bimodal modulation of the cAMP pathway is involved in the control of myogenic differentiation in l6 cells. J Biol Chem 2003; 278:49308-15. [PMID: 14506285 DOI: 10.1074/jbc.m306941200] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have previously shown that myogenesis induction by Arg8-vasopressin (AVP) in L6 rat myoblasts involves a sustained stimulation of type 4 cAMP-phosphodiesterase. In this model, we observed that a transient cAMP generation occurs in the minutes following AVP addition. Evidence suggests that cAMP generation is due to the prostaglandins produced in response to AVP binding to V1a receptors and subsequent activation of phospholipase A2. The early cAMP increase was effective in activating cAMP-dependent protein kinase (PKA) and increasing phosphorylation of CREB transcription factor. Inhibition of PKA by compound H89 prior to AVP addition led to a significant reduction of expression of the differentiation marker creatine kinase, whereas H89 added 1-5 h after AVP had no significant effect. Furthermore, PKA inhibition 24 h after the beginning of AVP treatment potentiated differentiation. This shows that both an early activation and a later down-regulation of the cAMP pathway are required for AVP induction of myogenesis. Because phosphodiesterase PDE4D3 overexpressed in L6 cells lost its ability to potentiate AVP-induced differentiation when mutated and rendered insensitive to PKA phosphorylation and activation, we hypothesize that the early cAMP increase is required to trigger the down-regulation of cAMP pathway through stimulation of phosphodiesterase.
Collapse
Affiliation(s)
- Fabio Naro
- Dipartimento di Istologia ed Embriologia Medica, Università "La Sapienza," 00161 Rome, Italy.
| | | | | | | | | | | | | | | |
Collapse
|