1
|
Elucidation of possible molecular mechanisms underlying the estrogen-induced disruption of cartilage development in zebrafish larvae. Toxicol Lett 2018; 289:22-27. [DOI: 10.1016/j.toxlet.2018.02.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 02/09/2018] [Accepted: 02/13/2018] [Indexed: 11/17/2022]
|
2
|
Huang J, Zhang F, Jiang L, Hu G, Sun W, Zhang C, Ding X. Inhibition of SKP2 Sensitizes Bromocriptine-Induced Apoptosis in Human Prolactinoma Cells. Cancer Res Treat 2016; 49:358-373. [PMID: 27488872 PMCID: PMC5398389 DOI: 10.4143/crt.2016.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 06/28/2016] [Indexed: 01/07/2023] Open
Abstract
PURPOSE Prolactinoma (prolactin-secreting pituitary adenoma) is one of the most common estrogen-related functional pituitary tumors. As an agonist of the dopamine D2 receptor, bromocriptine is used widely to inhibit prolactinoma progression. On the other hand, it is not always effective in clinical application. Although a dopamine D2 receptor deficiency contributes to the impaired efficiency of bromocriptine therapy to some extent, it is unknown whether there some other underlying mechanisms leading to bromocriptine resistance in prolactinoma treatment. That is the main point addressed in this project. MATERIALS AND METHODS Human prolactinoma samples were used to analyze the S-phase kinase associated protein 2 (SKP2) expression level. Nutlin-3/adriamycin/cisplatin-treated GH3 and MMQ cells were used to analyze apoptosis in SKP2 overexpression or knockdown cells. SKP2 expression and the interaction partners of SKP2 were also detected after a bromocriptine treatment in 293T. Apoptosis was analyzed in C25 and bromocriptine-treated GH3 cells. RESULTS Compared to normal pituitary samples, most prolactinoma samples exhibit higher levels of SKP2 expression, which could inhibit apoptosis in a p53-dependent manner. In addition, the bromocriptine treatment prolonged the half-life of SKP2 and resulted in SKP2 overexpression to a greater extent, which in turn compromised its pro-apoptotic effect. As a result, the bromocriptine treatment combined with C25 (a SKP2 inhibitor) led to the maximal apoptosis of human prolactinoma cells. CONCLUSION These findings indicated that SKP2 inhibition sensitized the prolactinoma cells to bromocriptine and helped promote apoptosis. Moreover, a combined treatment of bromocriptine and C25 may contribute to the maximal apoptosis of human prolactinoma cells.
Collapse
Affiliation(s)
- Jinxiang Huang
- Department of Neurosurgery, Shanghai Institute of Neurosurgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Fenglin Zhang
- Department of Neurosurgery, The 411th Hospital of PLA, Shanghai, China
| | - Lei Jiang
- Department of Neurosurgery, Shanghai Institute of Neurosurgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Guohan Hu
- Department of Neurosurgery, Shanghai Institute of Neurosurgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Wei Sun
- Department of Neurosurgery, Shanghai Institute of Neurosurgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Chenran Zhang
- Department of Neurosurgery, Shanghai Institute of Neurosurgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Xuehua Ding
- Department of Neurosurgery, Shanghai Institute of Neurosurgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| |
Collapse
|
3
|
Chao W, Xuexin Z, Jun S, Ming C, Hua J, Li G, Tan C, Xu W. Effects of resveratrol on cell growth and prolactin synthesis in GH3 cells. Exp Ther Med 2014; 7:923-928. [PMID: 24669252 PMCID: PMC3965128 DOI: 10.3892/etm.2014.1544] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Accepted: 01/22/2014] [Indexed: 12/14/2022] Open
Abstract
Resveratrol (RE), a phytoestrogen, has antiestrogenic properties. Estrogen plays a key role in the development and progression of pituitary prolactinoma. Moreover, RE is a potent cancer chemopreventive agent that inhibits the initiation, promotion and progression of carcinogenesis. The present study investigated the antitumor effects of RE on GH3 pituitary tumor cells. A concentration- and treatment duration-dependent biphasic effect of RE on the proliferation of the GH3 cells was demonstrated. After three days of treatment, RE stimulated proliferation at low concentrations and inhibited proliferation at high concentrations. However, when the treatment duration was reduced to 6 h, RE inhibited proliferation in a concentration-dependent manner. In addition, RE induced apoptosis with the activation of caspase-3 and -8, and decreased the percentage of prolactin (PRL)-immunopositive GH3 cells. Furthermore, RE suppressed expression of the PRL gene and inhibited the cell proliferation and PRL synthesis induced by 17β-estradiol (E2). In GH3 cells, the proliferation response exhibited higher sensitivity to E2 compared with the PRL response; by contrast, the PRL response was more sensitive to RE than the proliferation response was. These results indicate that RE, an antiestrogenic compound, exerts its antitumor effect on GH3 cells through the suppression of GH3 cell growth and through the inhibition of PRL synthesis. The RE-induced cell apoptosis was shown to be caspase-dependent. Therefore, the present study provides support for the use of RE in the chemoprevention and chemotherapy of pituitary prolactinoma.
Collapse
Affiliation(s)
- Wang Chao
- Department of Neurosurgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Zhang Xuexin
- Department of Neurosurgery, The Third Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Su Jun
- Department of Neurosurgery, The Third Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Chu Ming
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Jin Hua
- Department of Neurosurgery, The Third Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Guofu Li
- Department of Neurosurgery, The Third Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Chunlei Tan
- Department of Neurosurgery, The Third Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Wanhai Xu
- Department of Urology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| |
Collapse
|
4
|
Sengupta A, Sarkar DK. Roles of dopamine 2 receptor isoforms and g proteins in ethanol regulated prolactin synthesis and lactotropic cell proliferation. PLoS One 2012; 7:e45593. [PMID: 23029123 PMCID: PMC3445509 DOI: 10.1371/journal.pone.0045593] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Accepted: 08/23/2012] [Indexed: 11/18/2022] Open
Abstract
Alcohol consumption has been shown to increase prolactin (PRL) production and cell proliferation of pituitary lactotropes. It also causes a reduction in the lactotrope's response to dopaminergic agents and a differential expression of dopamine 2 receptor short (D2S) and long (D2L) isoforms in the pituitary. However, the role of each of these D2 receptor isoforms and its coupled G protein in mediation of ethanol actions on lactotropes is not known. We have addressed this issue by comparing ethanol effects on the level of PRL production gene transcription rate cellular protein, G proteins and cell proliferation in enriched lactotropes and lactotrope-derived PR1 cells containing various D2 receptor isoforms. Additionally, we determined the effects of G protein blockade on ethanol-induced PRL production and cell proliferation in these cells. We show here that the D2 receptor, primarily the D2S isoform, is critically involved in the regulation of ethanol actions on PRL production and cell proliferation in lactotropes. We also present data to elucidate that the presence of the pertussis toxin (PTX)-sensitive D2S receptor is critical to mediate the ethanol stimulatory action on Gs and the ethanol's inhibitory action on Gi3 protein in lactotropes. Additionally, we provide evidence for the existence of an inhibitory action of Gi3 on Gs that is under the control of the D2S receptor and is inhibited by ethanol. These results suggest that ethanol via the inhibitory action on D2S receptor activity suppresses Gi3 repression of Gs expression resulting in stimulation of PRL synthesis and cell proliferation in lactotropes.
Collapse
Affiliation(s)
- Amitabha Sengupta
- Endocrine Program, Department of Animal Sciences, Rutgers University, New Brunswick, New Jersey, United States of America
| | - Dipak K. Sarkar
- Endocrine Program, Department of Animal Sciences, Rutgers University, New Brunswick, New Jersey, United States of America
- * E-mail:
| |
Collapse
|
5
|
Sengupta A, Sarkar DK. Estrogen inhibits D2S receptor-regulated Gi3 and Gs protein interactions to stimulate prolactin production and cell proliferation in lactotropic cells. J Endocrinol 2012; 214:67-78. [PMID: 22573829 DOI: 10.1530/joe-12-0125] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The neurotransmitter dopamine (DA) is known to inhibit prolactin (PRL) secretion and the proliferation of lactotropes in the pituitary gland. Dopamine-2 (D2) receptor short (D2S) isoform is expressed in a reduced level while the D2 receptor long (D2L) isoform is expressed in an elevated level during estradiol (E(2))-induced PRL production and cell proliferation in lactotropes. To evaluate the role of these D2 receptor isoforms in E(2)-regulated lactotropic cell function, we compared E(2) effects on the level of PRL, cell proliferation, and G proteins in enriched lactotropes and lactotrope-derived PR1 cells containing only D2S isoform (D2S cells), D2L isoform (D2L cells), or no D2 receptor (V cells). Additionally, we determined the effects of G protein blockade on the E(2)-induced PRL production and cell proliferation in these cells. We here show that E(2) actions on G proteins, PRL production, and cell proliferation were maximally achieved in D2S cells, oppositely or marginally achieved in D2L cells, and absent in V cells. We also show that the DA and pertussis toxin modulations of E(2) actions on PRL, G proteins, and cell proliferation were maximally achieved in D2S cells compared with in D2L or V cells. Furthermore, we provide evidence for the existence of an inhibitory action of Gi3 on Gs that is under the control of the D2S receptor and is inhibited by E(2). These results suggest that the suppression of D2S-regulated Gi3 inhibition of Gs protein may be one of the mechanisms controlling E(2)-activated PRL synthesis and cell proliferation in lactotropes.
Collapse
MESH Headings
- Animals
- Blotting, Western
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Cells, Cultured
- Dopamine/pharmacology
- Dose-Response Relationship, Drug
- Estradiol/pharmacology
- Estrogens/pharmacology
- Female
- GTP-Binding Protein alpha Subunits, Gi-Go/genetics
- GTP-Binding Protein alpha Subunits, Gi-Go/metabolism
- GTP-Binding Protein alpha Subunits, Gs/genetics
- GTP-Binding Protein alpha Subunits, Gs/metabolism
- Gene Expression/drug effects
- Lactotrophs/cytology
- Lactotrophs/drug effects
- Lactotrophs/metabolism
- Pertussis Toxin/pharmacology
- Prolactin/genetics
- Prolactin/metabolism
- Protein Binding/drug effects
- Protein Isoforms/genetics
- Protein Isoforms/metabolism
- RNA Interference
- Rats
- Rats, Inbred F344
- Receptors, Dopamine D2/genetics
- Receptors, Dopamine D2/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
Collapse
Affiliation(s)
- A Sengupta
- Endocrinology Program and Department of Animal Sciences, Rutgers, The State University of New Jersey, 67 Poultry Farm Road, New Brunswick, New Jersey 08901, USA
| | | |
Collapse
|
6
|
Wang C, Hu ZQ, Chu M, Wang Z, Zhang WG, Wang LZ, Li CG, Wang JS. Resveratrol inhibited GH3 cell growth and decreased prolactin level via estrogen receptors. Clin Neurol Neurosurg 2012; 114:241-8. [DOI: 10.1016/j.clineuro.2011.10.035] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2011] [Revised: 10/20/2011] [Accepted: 10/21/2011] [Indexed: 12/19/2022]
|
7
|
Grober OMV, Mutarelli M, Giurato G, Ravo M, Cicatiello L, De Filippo MR, Ferraro L, Nassa G, Papa MF, Paris O, Tarallo R, Luo S, Schroth GP, Benes V, Weisz A. Global analysis of estrogen receptor beta binding to breast cancer cell genome reveals an extensive interplay with estrogen receptor alpha for target gene regulation. BMC Genomics 2011; 12:36. [PMID: 21235772 PMCID: PMC3025958 DOI: 10.1186/1471-2164-12-36] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2010] [Accepted: 01/14/2011] [Indexed: 02/08/2023] Open
Abstract
Background Estrogen receptors alpha (ERα) and beta (ERβ) are transcription factors (TFs) that mediate estrogen signaling and define the hormone-responsive phenotype of breast cancer (BC). The two receptors can be found co-expressed and play specific, often opposite, roles, with ERβ being able to modulate the effects of ERα on gene transcription and cell proliferation. ERβ is frequently lost in BC, where its presence generally correlates with a better prognosis of the disease. The identification of the genomic targets of ERβ in hormone-responsive BC cells is thus a critical step to elucidate the roles of this receptor in estrogen signaling and tumor cell biology. Results Expression of full-length ERβ in hormone-responsive, ERα-positive MCF-7 cells resulted in a marked reduction in cell proliferation in response to estrogen and marked effects on the cell transcriptome. By ChIP-Seq we identified 9702 ERβ and 6024 ERα binding sites in estrogen-stimulated cells, comprising sites occupied by either ERβ, ERα or both ER subtypes. A search for TF binding matrices revealed that the majority of the binding sites identified comprise one or more Estrogen Response Element and the remaining show binding matrixes for other TFs known to mediate ER interaction with chromatin by tethering, including AP2, E2F and SP1. Of 921 genes differentially regulated by estrogen in ERβ+ vs ERβ- cells, 424 showed one or more ERβ site within 10 kb. These putative primary ERβ target genes control cell proliferation, death, differentiation, motility and adhesion, signal transduction and transcription, key cellular processes that might explain the biological and clinical phenotype of tumors expressing this ER subtype. ERβ binding in close proximity of several miRNA genes and in the mitochondrial genome, suggests the possible involvement of this receptor in small non-coding RNA biogenesis and mitochondrial genome functions. Conclusions Results indicate that the vast majority of the genomic targets of ERβ can bind also ERα, suggesting that the overall action of ERβ on the genome of hormone-responsive BC cells depends mainly on the relative concentration of both ERs in the cell.
Collapse
Affiliation(s)
- Oli M V Grober
- Department of General Pathology, Second University of Naples, vico L, De Crecchio 7, 80138 Napoli, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Kansra S, Chen S, Bangaru MLY, Sneade L, Dunckley JA, Ben-Jonathan N. Selective estrogen receptor down-regulator and selective estrogen receptor modulators differentially regulate lactotroph proliferation. PLoS One 2010; 5:e10060. [PMID: 20419096 PMCID: PMC2856675 DOI: 10.1371/journal.pone.0010060] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2010] [Accepted: 03/20/2010] [Indexed: 11/29/2022] Open
Abstract
Background We recently reported that estrogen receptor α (ERα), even in absence of estrogen (E2), plays a critical role in lactotroph homeostasis. The anti-estrogen ICI 182780 (ICI), but not tamoxifen or raloxifene, rapidly promoted the degradation of ERα, and inhibited cell proliferation. However, all three ER antagonists suppressed PRL release, suggesting that receptor occupation is sufficient to inhibit prl gene expression whereas receptor degradation is required to suppress lactotroph proliferation. In this study our objective was to determine whether ERα degradation versus occupation, differentially modulates the biological outcome of anti-estrogens. Principal Findings Using the rat lactotroph cell line, GH3 cells, we report that ICI induced proteosome mediated degradation of ERα. In contrast, an ERα specific antagonist, MPP, that does not promote degradation of ERα, did not inhibit cell proliferation. Further, ICI, but not MPP, abolished anchorage independent growth of GH3 cells. Yet, both ICI and MPP were equally effective in suppressing prl expression and release, as well as ERE-mediated transcriptional activity. Conclusion Taken together, our results demonstrate that in lactotrophs, ERα degradation results in decreased cell proliferation, whereas ERα occupation by an antagonist that does not promote degradation of ERα is sufficient to inhibit prl expression.
Collapse
Affiliation(s)
- Sanjay Kansra
- Department of Cancer and Cell Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
- Department of Endocrinology, Metabolism and Clinical Nutrition, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
- Department of Pharmacology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
- * E-mail:
| | - Shenglin Chen
- Department of Endocrinology, Metabolism and Clinical Nutrition, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Madhavi Latha Yadav Bangaru
- Department of Endocrinology, Metabolism and Clinical Nutrition, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Leighton Sneade
- Department of Cancer and Cell Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Joseph A. Dunckley
- Department of Cancer and Cell Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Nira Ben-Jonathan
- Department of Cancer and Cell Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| |
Collapse
|
9
|
Quentien MH, Barlier A, Franc JL, Pellegrini I, Brue T, Enjalbert A. Pituitary transcription factors: from congenital deficiencies to gene therapy. J Neuroendocrinol 2006; 18:633-42. [PMID: 16879162 DOI: 10.1111/j.1365-2826.2006.01461.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Despite the existence of interspecies phenotypic variability, animal models have yielded valuable insights into human pituitary diseases. Studies on Snell and Jackson mice known to have growth hormone, prolactin and thyroid-stimulating hormone deficiencies involving the hypoplastic pituitary gland have led to identifying alterations of the pituitary specific POU homeodomain Pit-1 transcription factor gene. The human phenotype associated with rare mutations in this gene was found to be similar to that of these mice mutants. Terminal differentiation of lactotroph cells and direct regulation of the prolactin gene both require interactions between Pit-1 and cell type specific partners, including panpituitary transcriptional regulators such as Pitx1 and Pitx2. Synergistic activation of the prolactin promoter by Pitx factors and Pit-1 is involved not only in basal condition, but also in responsiveness to forskolin, thyrotrophin-releasing-hormone and epidermal growth factor. In corticotroph cells, Pitx1 interacts with Tpit. Tpit mutations have turned out to be the main molecular cause of neonatal isolated adrenocorticotrophin deficiency. This finding supports the idea that Tpit plays an essential role in the differentiation of the pro-opiomelanocortin pituitary lineage. The effects of Pit-1 are not restricted to hormone gene regulation because this factor also contributes to cell division and protects the cell from programmed cell death. Lentiviral vectors expressing a Pit-1 dominant negative mutant induced time- and dose-dependent cell death in somatotroph and lactotroph adenomas in vitro. Gene transfer by lentiviral vectors should provide a promising step towards developing an efficient specific therapeutic approach by which a gene therapy programme for treating human pituitary adenomas could be based.
Collapse
Affiliation(s)
- M H Quentien
- ICNE-UMR6544-CNRS-Université de la Méditerranée, Institut Jean Roche, Marseille, France.
| | | | | | | | | | | |
Collapse
|
10
|
Kansra S, Yamagata S, Sneade L, Foster L, Ben-Jonathan N. Differential effects of estrogen receptor antagonists on pituitary lactotroph proliferation and prolactin release. Mol Cell Endocrinol 2005; 239:27-36. [PMID: 15950373 DOI: 10.1016/j.mce.2005.04.008] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2005] [Revised: 04/22/2005] [Accepted: 04/25/2005] [Indexed: 11/25/2022]
Abstract
Anti-estrogens act by inhibiting estrogen receptor (ER) function. Unlike raloxifene and tamoxifen which exhibit both antagonist and agonist properties, ICI 182,780 (ICI) is considered a "pure" anti-estrogen devoid of any agonistic activities. Whereas there is ample information on the effects of anti-estrogens on the breast and uterus, little is known about their action on the pituitary, the estrogen-sensitive master endocrine gland. Our objectives were to: (1) compare the effects of ICI, tamoxifen and raloxifene on lactotroph proliferation in the absence of estrogen, (2) determine whether their action is mediated through the ER, and (3) compare their effects on prolactin (PRL) release. We are reporting that ICI is a potent inhibitor of lactotroph proliferation (both GH3 and MMQ cells) with maximal inhibition of 45-50% seen with 1nM. ICI is several orders of magnitude more potent than raloxifene while tamoxifen has no effect. Neither anti-estrogen affects T47D breast cancer cell proliferation. GH3 cell incubation with ICI for 1h only causes maximal suppression of cell proliferation, an effect which is reversed by co-incubation with estrogen. Such a short exposure to ICI is sufficient to cause rapid and persistent downregulation of ERalpha protein, whereas downregulation of ERbeta is significantly delayed; tamoxifen and raloxifene have no appreciable effects on ER(s) levels. The ability of ICI to inhibit GH3 cell proliferation is dependent upon ERalpha, since an ERalpha, but not ERbeta, specific agonist reverses the effect of ICI. PRL release is differentially regulated by the anti-estrogens. ICI at 0.1nM suppresses PRL release from GH3 cells by 80%, with a similar strong suppression also seen with 10nM raloxifene. However, tamoxifen at 0.01nM inhibits PRL release but has no effect at 10nM. Cell co-incubation with ICI and estradiol results in a four-fold increase in PRL release. Taken together, our study shows that ICI, in the absence of exogenous estrogens, inhibits lactotroph proliferation and PRL release by downregulating or inactivating ERalpha. The dissimilar responses of cell proliferation and PRL release to the anti-estrogens suggest that both processes are regulated by different mechanisms. These data highlight the importance of studying the effects of anti-estrogens in multiple systems.
Collapse
Affiliation(s)
- Sanjay Kansra
- Department of Cell Biology, Neurobiology and Anatomy, University of Cincinnati College of Medicine, 3125 Eden Avenue, Cincinnati, OH 45267-0521, USA.
| | | | | | | | | |
Collapse
|
11
|
Erensoy N, Cagatay P, Yilmazer S. Effects of estrogen and tamoxifen on the ultrastructural characteristics of female rat prolactin cells as evaluated by immunogold technique. Acta Histochem 2005; 107:199-205. [PMID: 15993477 DOI: 10.1016/j.acthis.2005.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2004] [Revised: 03/14/2005] [Accepted: 03/17/2005] [Indexed: 11/27/2022]
Abstract
Estrogens and antiestrogens are known to have effects on prolactin (PRL)-producing cells in the anterior pituitary. This study was planned to investigate the effects of estrogen and tamoxifen at immunohistochemical and immunoelectron microscopic levels on PRL cells of female rat pituitary. Animals were divided into three groups of eight adult female rats each. The first group was the control group. 200-microg/day of estrogen was administered subcutaneously for 11 weeks to 16 rats. Tamoxifen was administered to eight of them for the last 15 days. In diethylstilbestrol (DES)-induced group, serum PRL levels and pituitary weights were found to be elevated when compared with the control group. In the DES plus tamoxifen group the readings were close to that of the control group. PRL-positive cells were enlarged and strongly immunostained in DES-induced group when assessed by light microscopy. Tamoxifen prevented this effect. At the ultrastructural level, in the tamoxifen treated group, PRL-producing cells contained both immunopositive and immunonegative secretory granules. Numerous PRL-producing cells exhibited progressive morphological changes in the nuclei compatible with the apoptotic process. The results of this study indicate that tamoxifen prevents not only the proliferative effect of estrogen but also inhibits the secretion mechanism of the cells.
Collapse
Affiliation(s)
- Nevin Erensoy
- Department of Medical Biology, Cerrahpasa Faculty of Medicine, University of Istanbul, Turkey.
| | | | | |
Collapse
|
12
|
Chaturvedi K, Sarkar DK. Mediation of basic fibroblast growth factor-induced lactotropic cell proliferation by Src-Ras-mitogen-activated protein kinase p44/42 signaling. Endocrinology 2005; 146:1948-55. [PMID: 15637287 PMCID: PMC2869484 DOI: 10.1210/en.2004-1448] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Basic fibroblast growth factor (bFGF), which is secreted from folliculostellate cells in the anterior pituitary, is known to be involved in the communication between folliculostellate cells and lactotropes during estradiol-induced lactotropic cell proliferation. We studied the role of MAPK p44/42 in bFGF-regulated cell proliferation using enriched lactotropes and the lactotrope-derived PR1 cell line. In cell cultures, bFGF increased cell proliferation of PR1 cells and enriched lactotropes. In both of these cell populations, bFGF also increased phosphorylation of MAPK p44/42. U0126, an inhibitor of MAPK p44/42, blocked the bFGF-induced activation of MAPK p44/42 as well as the bFGF-induced cell proliferation of enriched lactotropes and PR1 cells. Treatment of PR1 cells with bFGF increased the activity of Ras p21, whereas overexpression of a dominant negative mutant of Ras p21 abrogated the bFGF-induced activation of MAPK p44/42 in these cells. Furthermore, the Src kinase inhibitor PP1 suppressed bFGF-induced activation of MAPK p44/42 in both enriched lactotropes and PR1 cells. The Src kinase inhibitor PP1 also reduced bFGF activation of Ras p21 and cell proliferation in PR1 cells. On the other hand, the bFGF-induced activation of MAPK p44/42 in enriched lactotropes and PR1 cells was not affected by protein kinase C inhibitors. These data suggest that bFGF induction of lactotropic cell proliferation is possibly mediated by activation of Src kinase, Ras p21, and MAPK p44/42.
Collapse
Affiliation(s)
- Kirti Chaturvedi
- Endocrinology Program and Department of Animal Sciences, Rutgers, The State University of New Jersey, 84 Lipman Drive, New Brunswick, New Jersey 08901, USA
| | | |
Collapse
|
13
|
Pisera D, Candolfi M, Navarra S, Ferraris J, Zaldivar V, Jaita G, Castro MG, Seilicovich A. Estrogens sensitize anterior pituitary gland to apoptosis. Am J Physiol Endocrinol Metab 2004; 287:E767-71. [PMID: 15172886 DOI: 10.1152/ajpendo.00052.2004] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Tissue homeostasis results from a balance between cell proliferation and cell death by apoptosis. Estradiol affects proliferation as well as apoptosis in hormone-dependent tissues. In the present study, we investigated the apoptotic response of the anterior pituitary gland to lipopolysaccharide (LPS) in cycling female rats, and the influence of estradiol in this response in ovariectomized (OVX) rats. The OVX rats were chronically estrogenized with implanted Silastic capsules containing 1 mg of 17beta-estradiol (E2). Cycling or OVX and E2-treated rats were injected with LPS (250 microg/rat ip). Apoptosis was determined by the terminal deoxynucleotidyl-mediated dUTP nick-end labeling (TUNEL) method in sections of the anterior pituitary gland and spleen. Chronic estrogenization induced apoptosis in the anterior pituitary gland. Acute endotoxemia triggered apoptosis of cells in the anterior pituitary gland of E2-treated rats but not of OVX rats. No differences were observed in the apoptotic response to LPS in spleen between OVX and E2-treated rats. The apoptotic response of the anterior pituitary to LPS was variable along the estrous cycle, being higher at proestrus than at estrus or diestrus I. Approximately 75% of the apoptotic cells were identified as lactotropes by immunofluorescence. In conclusion, our results indicate that estradiol induces apoptosis and enables the proapoptotic action of LPS in the anterior pituitary gland. Also, our study suggests that estrogens may be involved in anterior pituitary cell renewal during the estrous cycle, sensitizing lactotropes to proapoptotic stimuli.
Collapse
Affiliation(s)
- D Pisera
- Centro de Investigaciones en Reproducción, Facultad de Medicina, Universidad de Buenos Aires, C1121ABG, Argentina.
| | | | | | | | | | | | | | | |
Collapse
|