1
|
Sumya FT, Aragon-Ramirez WS, Lupashin VV. Comprehensive Proteomic Characterization of the Intra-Golgi Trafficking Intermediates. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.25.620336. [PMID: 39484492 PMCID: PMC11527126 DOI: 10.1101/2024.10.25.620336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Intracellular trafficking relies on small vesicular intermediates, though their specific role in Golgi function is still debated. To clarify this, we induced acute dysfunction of the Conserved Oligomeric Golgi (COG) complex and analyzed vesicles from cis, medial, and trans-Golgi compartments. Proteomic analysis of Golgi-derived vesicles from wild-type cells revealed distinct molecular profiles, indicating a robust recycling system for Golgi proteins. Notably, these vesicles retained various vesicular coats, while COG depletion accelerated uncoating. The increased overlap in molecular profiles with COG depletion suggests that persistent defects in vesicle tethering disrupt intra-Golgi sorting. Our findings reveal that the entire Golgi glycosylation machinery recycles within vesicles in a COG-dependent manner, whereas secretory and ER-Golgi trafficking proteins were not enriched. These results support a model in which the COG complex orchestrates multi-step recycling of glycosylation machinery, coordinated by specific Golgi coats, tethers, Rabs, and SNAREs.
Collapse
Affiliation(s)
- Farhana Taher Sumya
- University of Arkansas for Medical Sciences, Department of Physiology and Cell Biology, Little Rock, Arkansas, US
| | - Walter S. Aragon-Ramirez
- University of Arkansas for Medical Sciences, Department of Physiology and Cell Biology, Little Rock, Arkansas, US
| | - Vladimir V Lupashin
- University of Arkansas for Medical Sciences, Department of Physiology and Cell Biology, Little Rock, Arkansas, US
| |
Collapse
|
2
|
Khakurel A, Pokrovskaya I, Lupashin1 VV. Acute GARP depletion disrupts vesicle transport, leading to severe defects in sorting, secretion, and O-glycosylation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.07.617053. [PMID: 39416116 PMCID: PMC11482758 DOI: 10.1101/2024.10.07.617053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
The GARP complex is an evolutionarily conserved protein complex proposed to tether endosome-derived vesicles at the trans-Golgi network. While prolonged depletion of GARP leads to severe trafficking and glycosylation defects, the primary defects linked to GARP dysfunction remain unclear. In this study, we utilized the mAID degron strategy to achieve rapid degradation of VPS54 in human cells, acutely disrupting GARP function. This resulted in the partial mislocalization and degradation of a subset of Golgi-resident proteins, including TGN46, ATP7A, TMEM87A, CPD, C1GALT1, and GS15. Enzyme recycling defects led to the early onset of O-glycosylation abnormalities. Additionally, while the secretion of fibronectin and cathepsin D was altered, mannose-6-phosphate receptors were largely unaffected. Partial displacement of COPI, AP1, and GGA coats caused a significant accumulation of vesicle-like structures and large vacuoles. Electron microscopy detection of GARP-dependent vesicles, along with the identification of specific cargo proteins, provides direct experimental evidence of GARP's role as a vesicular tether. We conclude that the primary defects of GARP dysfunction involve vesicular coat mislocalization, accumulation of GARP-dependent vesicles, degradation and mislocalization of specific Golgi proteins, and O-glycosylation defects.
Collapse
Affiliation(s)
- Amrita Khakurel
- University of Arkansas for Medical Sciences, Department of Physiology and Cell Biology, Little Rock, Arkansas, US
| | - Irina Pokrovskaya
- University of Arkansas for Medical Sciences, Department of Physiology and Cell Biology, Little Rock, Arkansas, US
| | - Vladimir V. Lupashin1
- University of Arkansas for Medical Sciences, Department of Physiology and Cell Biology, Little Rock, Arkansas, US
| |
Collapse
|
3
|
Yadav D, Hacisuleyman A, Dergai M, Khalifeh D, Abriata LA, Peraro MD, Fasshauer D. A look beyond the QR code of SNARE proteins. Protein Sci 2024; 33:e5158. [PMID: 39180485 PMCID: PMC11344281 DOI: 10.1002/pro.5158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/29/2024] [Accepted: 08/03/2024] [Indexed: 08/26/2024]
Abstract
Soluble N-ethylmaleimide-sensitive factor Attachment protein REceptor (SNARE) proteins catalyze the fusion process of vesicles with target membranes in eukaryotic cells. To do this, they assemble in a zipper-like fashion into stable complexes between the membranes. Structural studies have shown that the complexes consist of four different helices, which we subdivide into Qa-, Qb-, Qc-, and R-helix on the basis of their sequence signatures. Using a combination of biochemistry, modeling and molecular dynamics, we investigated how the four different types are arranged in a complex. We found that there is a matching pattern in the core of the complex that dictates the position of the four fundamental SNARE types in the bundle, resulting in a QabcR complex. In the cell, several different cognate QabcR-SNARE complexes catalyze the different transport steps between the compartments of the endomembrane system. Each of these cognate QabcR complexes is compiled from a repertoire of about 20 SNARE subtypes. Our studies show that exchange within the four types is largely tolerated structurally, although some non-cognate exchanges lead to structural imbalances. This suggests that SNARE complexes have evolved for a catalytic mechanism, a mechanism that leaves little scope for selectivity beyond the QabcR rule.
Collapse
Affiliation(s)
- Deepak Yadav
- Department of Computational BiologyUniversity of LausanneLausanneSwitzerland
| | - Aysima Hacisuleyman
- Department of Computational BiologyUniversity of LausanneLausanneSwitzerland
| | - Mykola Dergai
- Department of Computational BiologyUniversity of LausanneLausanneSwitzerland
| | - Dany Khalifeh
- Department of Computational BiologyUniversity of LausanneLausanneSwitzerland
| | - Luciano A. Abriata
- Institute of Bioengineering, School of Life SciencesÉcole Polytechnique FÉdÉrale de Lausanne (EPFL)LausanneSwitzerland
| | - Matteo Dal Peraro
- Institute of Bioengineering, School of Life SciencesÉcole Polytechnique FÉdÉrale de Lausanne (EPFL)LausanneSwitzerland
| | - Dirk Fasshauer
- Department of Computational BiologyUniversity of LausanneLausanneSwitzerland
| |
Collapse
|
4
|
Szenci G, Glatz G, Takáts S, Juhász G. The Ykt6-Snap29-Syx13 SNARE complex promotes crinophagy via secretory granule fusion with Lamp1 carrier vesicles. Sci Rep 2024; 14:3200. [PMID: 38331993 PMCID: PMC10853563 DOI: 10.1038/s41598-024-53607-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 02/02/2024] [Indexed: 02/10/2024] Open
Abstract
In the Drosophila larval salivary gland, developmentally programmed fusions between lysosomes and secretory granules (SGs) and their subsequent acidification promote the maturation of SGs that are secreted shortly before puparium formation. Subsequently, ongoing fusions between non-secreted SGs and lysosomes give rise to degradative crinosomes, where the superfluous secretory material is degraded. Lysosomal fusions control both the quality and quantity of SGs, however, its molecular mechanism is incompletely characterized. Here we identify the R-SNARE Ykt6 as a novel regulator of crinosome formation, but not the acidification of maturing SGs. We show that Ykt6 localizes to Lamp1+ carrier vesicles, and forms a SNARE complex with Syntaxin 13 and Snap29 to mediate fusion with SGs. These Lamp1 carriers represent a distinct vesicle population that are functionally different from canonical Arl8+, Cathepsin L+ lysosomes, which also fuse with maturing SGs but are controlled by another SNARE complex composed of Syntaxin 13, Snap29 and Vamp7. Ykt6- and Vamp7-mediated vesicle fusions also determine the fate of SGs, as loss of either of these SNAREs prevents crinosomes from acquiring endosomal PI3P. Our results highlight that fusion events between SGs and different lysosome-related vesicle populations are critical for fine regulation of the maturation and crinophagic degradation of SGs.
Collapse
Affiliation(s)
- Győző Szenci
- Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, Budapest, 1117, Hungary
- Doctoral School of Biology, Institute of Biology, Eötvös Loránd University, Budapest, 1117, Hungary
| | - Gábor Glatz
- Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, Budapest, 1117, Hungary
| | - Szabolcs Takáts
- Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, Budapest, 1117, Hungary.
| | - Gábor Juhász
- Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, Budapest, 1117, Hungary.
- Institute of Genetics, HUN-REN Biological Research Centre Szeged, Szeged, 6726, Hungary.
| |
Collapse
|
5
|
Cepeda AP, Ninov M, Neef J, Parfentev I, Kusch K, Reisinger E, Jahn R, Moser T, Urlaub H. Proteomic Analysis Reveals the Composition of Glutamatergic Organelles of Auditory Inner Hair Cells. Mol Cell Proteomics 2024; 23:100704. [PMID: 38128648 PMCID: PMC10832297 DOI: 10.1016/j.mcpro.2023.100704] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 11/08/2023] [Accepted: 12/18/2023] [Indexed: 12/23/2023] Open
Abstract
In the ear, inner hair cells (IHCs) employ sophisticated glutamatergic ribbon synapses with afferent neurons to transmit auditory information to the brain. The presynaptic machinery responsible for neurotransmitter release in IHC synapses includes proteins such as the multi-C2-domain protein otoferlin and the vesicular glutamate transporter 3 (VGluT3). Yet, much of this likely unique molecular machinery remains to be deciphered. The scarcity of material has so far hampered biochemical studies which require large amounts of purified samples. We developed a subcellular fractionation workflow combined with immunoisolation of VGluT3-containing membrane vesicles, allowing for the enrichment of glutamatergic organelles that are likely dominated by synaptic vesicles (SVs) of IHCs. We have characterized their protein composition in mice before and after hearing onset using mass spectrometry and confocal imaging and provide a fully annotated proteome with hitherto unidentified proteins. Despite the prevalence of IHC marker proteins across IHC maturation, the profiles of trafficking proteins differed markedly before and after hearing onset. Among the proteins enriched after hearing onset were VAMP-7, syntaxin-7, syntaxin-8, syntaxin-12/13, SCAMP1, V-ATPase, SV2, and PKCα. Our study provides an inventory of the machinery associated with synaptic vesicle-mediated trafficking and presynaptic activity at IHC ribbon synapses and serves as a foundation for future functional studies.
Collapse
Affiliation(s)
- Andreia P Cepeda
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Momchil Ninov
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany; Department of Clinical Chemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Jakob Neef
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany; Auditory Neuroscience & Synaptic Nanophysiology Group Max-Planck-Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Iwan Parfentev
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Kathrin Kusch
- Functional Auditory Genomics Group, Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany
| | - Ellen Reisinger
- Gene Therapy for Hearing Impairment and Deafness, Department for Otolaryngology, Head & Neck Surgery, University Hospital Tübingen, Tübingen, Germany
| | - Reinhard Jahn
- Laboratory of Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany; Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany.
| | - Tobias Moser
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany; Auditory Neuroscience & Synaptic Nanophysiology Group Max-Planck-Institute for Multidisciplinary Sciences, Göttingen, Germany; Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany.
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany; Department of Clinical Chemistry, University Medical Center Göttingen, Göttingen, Germany; Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany.
| |
Collapse
|
6
|
Drobny A, Boros FA, Balta D, Prieto Huarcaya S, Caylioglu D, Qazi N, Vandrey J, Schneider Y, Dobert JP, Pitcairn C, Mazzulli JR, Zunke F. Reciprocal effects of alpha-synuclein aggregation and lysosomal homeostasis in synucleinopathy models. Transl Neurodegener 2023; 12:31. [PMID: 37312133 PMCID: PMC10262594 DOI: 10.1186/s40035-023-00363-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 05/16/2023] [Indexed: 06/15/2023] Open
Abstract
BACKGROUND Lysosomal dysfunction has been implicated in a number of neurodegenerative diseases such as Parkinson's disease (PD). Various molecular, clinical and genetic studies have highlighted a central role of lysosomal pathways and proteins in the pathogenesis of PD. Within PD pathology the synaptic protein alpha-synuclein (αSyn) converts from a soluble monomer to oligomeric structures and insoluble amyloid fibrils. The aim of this study was to unravel the effect of αSyn aggregates on lysosomal turnover, particularly focusing on lysosomal homeostasis and cathepsins. Since these enzymes have been shown to be directly involved in the lysosomal degradation of αSyn, impairment of their enzymatic capacity has extensive consequences. METHODS We used patient-derived induced pluripotent stem cells and a transgenic mouse model of PD to examine the effect of intracellular αSyn conformers on cell homeostasis and lysosomal function in dopaminergic (DA) neurons by biochemical analyses. RESULTS We found impaired lysosomal trafficking of cathepsins in patient-derived DA neurons and mouse models with αSyn aggregation, resulting in reduced proteolytic activity of cathepsins in the lysosome. Using a farnesyltransferase inhibitor, which boosts hydrolase transport via activation of the SNARE protein ykt6, we enhanced the maturation and proteolytic activity of cathepsins and thereby decreased αSyn protein levels. CONCLUSIONS Our findings demonstrate a strong interplay between αSyn aggregation pathways and function of lysosomal cathepsins. It appears that αSyn directly interferes with the enzymatic function of cathepsins, which might lead to a vicious cycle of impaired αSyn degradation. Lysosomal trafficking of cathepsin D (CTSD), CTSL and CTSB is disrupted when alpha-synuclein (αSyn) is aggregated. This results in a decreased proteolytic activity of cathepsins, which directly mediate αSyn clearance. Boosting the transport of the cathepsins to the lysosome increases their activity and thus contributes to efficient αSyn degradation.
Collapse
Affiliation(s)
- Alice Drobny
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Fanni Annamária Boros
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Denise Balta
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Susy Prieto Huarcaya
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany
- Institute of Biochemistry, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Deniz Caylioglu
- Institute of Biochemistry, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Niyeti Qazi
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Julia Vandrey
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Yanni Schneider
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Jan Philipp Dobert
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Caleb Pitcairn
- The Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611 USA
| | - Joseph Robert Mazzulli
- The Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611 USA
| | - Friederike Zunke
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany
| |
Collapse
|
7
|
Heffernan LF, Suckrau PM, Banerjee T, Mysior MM, Simpson JC. An imaging-based RNA interference screen for modulators of the Rab6-mediated Golgi-to-ER pathway in mammalian cells. Front Cell Dev Biol 2022; 10:1050190. [DOI: 10.3389/fcell.2022.1050190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 11/17/2022] [Indexed: 11/30/2022] Open
Abstract
In mammalian cells, membrane traffic pathways play a critical role in connecting the various compartments of the endomembrane system. Each of these pathways is highly regulated, requiring specific machinery to ensure their fidelity. In the early secretory pathway, transport between the endoplasmic reticulum (ER) and Golgi apparatus is largely regulated via cytoplasmic coat protein complexes that play a role in identifying cargo and forming the transport carriers. The secretory pathway is counterbalanced by the retrograde pathway, which is essential for the recycling of molecules from the Golgi back to the ER. It is believed that there are at least two mechanisms to achieve this - one using the cytoplasmic COPI coat complex, and another, poorly characterised pathway, regulated by the small GTPase Rab6. In this work, we describe a systematic RNA interference screen targeting proteins associated with membrane fusion, in order to identify the machinery responsible for the fusion of Golgi-derived Rab6 carriers at the ER. We not only assess the delivery of Rab6 to the ER, but also one of its cargo molecules, the Shiga-like toxin B-chain. These screens reveal that three proteins, VAMP4, STX5, and SCFD1/SLY1, are all important for the fusion of Rab6 carriers at the ER. Live cell imaging experiments also show that the depletion of SCFD1/SLY1 prevents the membrane fusion event, suggesting that this molecule is an essential regulator of this pathway.
Collapse
|
8
|
He Q, Liu H, Deng S, Chen X, Li D, Jiang X, Zeng W, Lu W. The Golgi Apparatus May Be a Potential Therapeutic Target for Apoptosis-Related Neurological Diseases. Front Cell Dev Biol 2020; 8:830. [PMID: 33015040 PMCID: PMC7493689 DOI: 10.3389/fcell.2020.00830] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 08/04/2020] [Indexed: 01/04/2023] Open
Abstract
Increasing evidence shows that, in addition to the classical function of protein processing and transport, the Golgi apparatus (GA) is also involved in apoptosis, one of the most common forms of cell death. The structure and the function of the GA is damaged during apoptosis. However, the specific effect of the GA on the apoptosis process is unclear; it may be involved in initiating or promoting apoptosis, or it may inhibit apoptosis. Golgi-related apoptosis is associated with a variety of neurological diseases including glioma, Alzheimer’s disease (AD), Parkinson’s disease (PD), and ischemic stroke. This review summarizes the changes and the possible mechanisms of Golgi structure and function during apoptosis. In addition, we also explore the possible mechanisms by which the GA regulates apoptosis and summarize the potential relationship between the Golgi and certain neurological diseases from the perspective of apoptosis. Elucidation of the interaction between the GA and apoptosis broadens our understanding of the pathological mechanisms of neurological diseases and provides new research directions for the treatment of these diseases. Therefore, we propose that the GA may be a potential therapeutic target for apoptosis-related neurological diseases.
Collapse
Affiliation(s)
- Qiang He
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Hui Liu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Shuwen Deng
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xiqian Chen
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Dong Li
- State Key Laboratory of Virology, CAS Center for Excellence in Brain Science and Intelligence Technology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Xuan Jiang
- State Key Laboratory of Virology, CAS Center for Excellence in Brain Science and Intelligence Technology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Wenbo Zeng
- State Key Laboratory of Virology, CAS Center for Excellence in Brain Science and Intelligence Technology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Wei Lu
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
9
|
Linders PTA, Peters E, ter Beest M, Lefeber DJ, van den Bogaart G. Sugary Logistics Gone Wrong: Membrane Trafficking and Congenital Disorders of Glycosylation. Int J Mol Sci 2020; 21:E4654. [PMID: 32629928 PMCID: PMC7369703 DOI: 10.3390/ijms21134654] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 06/25/2020] [Accepted: 06/26/2020] [Indexed: 02/07/2023] Open
Abstract
Glycosylation is an important post-translational modification for both intracellular and secreted proteins. For glycosylation to occur, cargo must be transported after synthesis through the different compartments of the Golgi apparatus where distinct monosaccharides are sequentially bound and trimmed, resulting in increasingly complex branched glycan structures. Of utmost importance for this process is the intraorganellar environment of the Golgi. Each Golgi compartment has a distinct pH, which is maintained by the vacuolar H+-ATPase (V-ATPase). Moreover, tethering factors such as Golgins and the conserved oligomeric Golgi (COG) complex, in concert with coatomer (COPI) and soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE)-mediated membrane fusion, efficiently deliver glycosylation enzymes to the right Golgi compartment. Together, these factors maintain intra-Golgi trafficking of proteins involved in glycosylation and thereby enable proper glycosylation. However, pathogenic mutations in these factors can cause defective glycosylation and lead to diseases with a wide variety of symptoms such as liver dysfunction and skin and bone disorders. Collectively, this group of disorders is known as congenital disorders of glycosylation (CDG). Recent technological advances have enabled the robust identification of novel CDGs related to membrane trafficking components. In this review, we highlight differences and similarities between membrane trafficking-related CDGs.
Collapse
Affiliation(s)
- Peter T. A. Linders
- Tumor Immunology Lab, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands; (P.T.A.L.); (E.P.); (M.t.B.)
| | - Ella Peters
- Tumor Immunology Lab, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands; (P.T.A.L.); (E.P.); (M.t.B.)
| | - Martin ter Beest
- Tumor Immunology Lab, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands; (P.T.A.L.); (E.P.); (M.t.B.)
| | - Dirk J. Lefeber
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Geert Grooteplein 10, 6525 GA Nijmegen, The Netherlands
- Department of Laboratory Medicine, Translational Metabolic Laboratory, Radboud University Medical Center, Geert Grooteplein 10, 6525 GA Nijmegen, The Netherlands
| | - Geert van den Bogaart
- Tumor Immunology Lab, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands; (P.T.A.L.); (E.P.); (M.t.B.)
- Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| |
Collapse
|
10
|
Shirakawa R, Goto‐Ito S, Goto K, Wakayama S, Kubo H, Sakata N, Trinh DA, Yamagata A, Sato Y, Masumoto H, Cheng J, Fujimoto T, Fukai S, Horiuchi H. A SNARE geranylgeranyltransferase essential for the organization of the Golgi apparatus. EMBO J 2020; 39:e104120. [PMID: 32128853 PMCID: PMC7156963 DOI: 10.15252/embj.2019104120] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 01/22/2020] [Accepted: 01/31/2020] [Indexed: 01/08/2023] Open
Abstract
Protein prenylation is essential for many cellular processes including signal transduction, cytoskeletal reorganization, and membrane trafficking. Here, we identify a novel type of protein prenyltransferase, which we named geranylgeranyltransferase type-III (GGTase-III). GGTase-III consists of prenyltransferase alpha subunit repeat containing 1 (PTAR1) and the β subunit of RabGGTase. Using a biotinylated geranylgeranyl analogue, we identified the Golgi SNARE protein Ykt6 as a substrate of GGTase-III. GGTase-III transfers a geranylgeranyl group to mono-farnesylated Ykt6, generating doubly prenylated Ykt6. The crystal structure of GGTase-III in complex with Ykt6 provides structural basis for Ykt6 double prenylation. In GGTase-III-deficient cells, Ykt6 remained in a singly prenylated form, and the Golgi SNARE complex assembly was severely impaired. Consequently, the Golgi apparatus was structurally disorganized, and intra-Golgi protein trafficking was delayed. Our findings reveal a fourth type of protein prenyltransferase that generates geranylgeranyl-farnesyl Ykt6. Double prenylation of Ykt6 is essential for the structural and functional organization of the Golgi apparatus.
Collapse
Affiliation(s)
- Ryutaro Shirakawa
- Department of Molecular and Cellular BiologyInstitute of Development, Aging and CancerTohoku UniversitySendaiJapan
| | - Sakurako Goto‐Ito
- Institute for Quantitative BiosciencesThe University of TokyoTokyoJapan
- Synchrotron Radiation Research OrganizationThe University of TokyoTokyoJapan
| | - Kota Goto
- Department of Molecular and Cellular BiologyInstitute of Development, Aging and CancerTohoku UniversitySendaiJapan
| | - Shonosuke Wakayama
- Department of Molecular and Cellular BiologyInstitute of Development, Aging and CancerTohoku UniversitySendaiJapan
| | - Haremaru Kubo
- Department of Molecular and Cellular BiologyInstitute of Development, Aging and CancerTohoku UniversitySendaiJapan
| | - Natsumi Sakata
- Department of Molecular and Cellular BiologyInstitute of Development, Aging and CancerTohoku UniversitySendaiJapan
| | - Duc Anh Trinh
- Department of Molecular and Cellular BiologyInstitute of Development, Aging and CancerTohoku UniversitySendaiJapan
| | - Atsushi Yamagata
- Institute for Quantitative BiosciencesThe University of TokyoTokyoJapan
- Synchrotron Radiation Research OrganizationThe University of TokyoTokyoJapan
| | - Yusuke Sato
- Institute for Quantitative BiosciencesThe University of TokyoTokyoJapan
- Synchrotron Radiation Research OrganizationThe University of TokyoTokyoJapan
- Present address:
Center for Research on Green Sustainable ChemistryTottori UniversityTottoriJapan
| | - Hiroshi Masumoto
- Biomedical Research Support CenterNagasaki University School of MedicineNagasakiJapan
| | - Jinglei Cheng
- Department of Anatomy and Molecular Cell BiologyNagoya University Graduate School of MedicineNagoyaJapan
| | - Toyoshi Fujimoto
- Research Institute for Diseases of Old AgeJuntendo University Graduate School of MedicineTokyoJapan
| | - Shuya Fukai
- Institute for Quantitative BiosciencesThe University of TokyoTokyoJapan
- Synchrotron Radiation Research OrganizationThe University of TokyoTokyoJapan
| | - Hisanori Horiuchi
- Department of Molecular and Cellular BiologyInstitute of Development, Aging and CancerTohoku UniversitySendaiJapan
| |
Collapse
|
11
|
Tiwari N, Graham M, Liu X, Yue X, Zhu L, Meshram D, Choi S, Qian Y, Rothman JE, Lee I. Golgin45-Syntaxin5 Interaction Contributes to Structural Integrity of the Golgi Stack. Sci Rep 2019; 9:12465. [PMID: 31462665 PMCID: PMC6713708 DOI: 10.1038/s41598-019-48875-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 08/14/2019] [Indexed: 12/15/2022] Open
Abstract
The unique stacked morphology of the Golgi apparatus had been a topic of intense investigation among the cell biologists over the years. We had previously shown that the two Golgin tethers (GM130 and Golgin45) could, to a large degree, functionally substitute for GRASP-type Golgi stacking proteins to sustain normal Golgi morphology and function in GRASP65/55-double depleted HeLa cells. However, compared to well-studied GM130, the exact role of Golgin45 in Golgi structure remains poorly understood. In this study, we aimed to further characterize the functional role of Golgin45 in Golgi structure and identified Golgin45 as a novel Syntaxin5-binding protein. Based primarily on a sequence homology between Golgin45 and GM130, we found that a leucine zipper-like motif in the central coiled-coil region of Golgin45 appears to serve as a Syntaxin5 binding domain. Mutagenesis study of this conserved domain in Golgin45 showed that a point mutation (D171A) can abrogate the interaction between Golgin45 and Syntaxin5 in pull-down assays using recombinant proteins, whereas this mutant Golgin45 binding to Rab2-GTP was unaffected in vitro. Strikingly, exogenous expression of this Syntaxin5 binding deficient mutant (D171A) of Golgin45 in HeLa cells resulted in frequent intercisternal fusion among neighboring Golgi cisterna, as readily observed by EM and EM tomography. Further, double depletion of the two Syntaxin5-binding Golgin tethers also led to significant intercisternal fusion, while double depletion of GRASP65/55 didn’t lead to this phenotype. These results suggest that certain tether-SNARE interaction within Golgi stack may play a role in inhibiting intercisternal fusion among neighboring cisternae, thereby contributing to structural integrity of the Golgi stack.
Collapse
Affiliation(s)
- Neeraj Tiwari
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Morven Graham
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Xinran Liu
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Xihua Yue
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Lianhui Zhu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Dipak Meshram
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Sunkyu Choi
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Yi Qian
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - James E Rothman
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Intaek Lee
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
| |
Collapse
|
12
|
Pantazopoulou A, Glick BS. A Kinetic View of Membrane Traffic Pathways Can Transcend the Classical View of Golgi Compartments. Front Cell Dev Biol 2019; 7:153. [PMID: 31448274 PMCID: PMC6691344 DOI: 10.3389/fcell.2019.00153] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 07/22/2019] [Indexed: 01/07/2023] Open
Abstract
A long-standing assumption is that the cisternae of the Golgi apparatus can be grouped into functionally distinct compartments, yet the molecular identities of those compartments have not been clearly described. The concept of a compartmentalized Golgi is challenged by the cisternal maturation model, which postulates that cisternae form de novo and then undergo progressive biochemical changes. Cisternal maturation can potentially be reconciled with Golgi compartmentation by defining compartments as discrete kinetic stages in the maturation process. These kinetic stages are distinguished by the traffic pathways that are operating. For example, a major transition occurs when a cisterna stops producing COPI vesicles and begins producing clathrin-coated vesicles. This transition separates one kinetic stage, the "early Golgi," from a subsequent kinetic stage, the "late Golgi" or "trans-Golgi network (TGN)." But multiple traffic pathways drive Golgi maturation, and the periods of operation for different traffic pathways can partially overlap, so there is no simple way to define a full set of Golgi compartments in terms of kinetic stages. Instead, we propose that the focus should be on the series of transitions experienced by a Golgi cisterna as various traffic pathways are switched on and off. These traffic pathways drive changes in resident transmembrane protein composition. Transitions in traffic pathways seem to be the fundamental, conserved determinants of Golgi organization. According to this view, the initial goal is to identify the relevant traffic pathways and place them on the kinetic map of Golgi maturation, and the ultimate goal is to elucidate the logic circuit that switches individual traffic pathways on and off as a cisterna matures.
Collapse
Affiliation(s)
- Areti Pantazopoulou
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL, United States
| | - Benjamin S Glick
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL, United States
| |
Collapse
|
13
|
Linders PT, Horst CVD, Beest MT, van den Bogaart G. Stx5-Mediated ER-Golgi Transport in Mammals and Yeast. Cells 2019; 8:cells8080780. [PMID: 31357511 PMCID: PMC6721632 DOI: 10.3390/cells8080780] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 07/25/2019] [Accepted: 07/25/2019] [Indexed: 01/12/2023] Open
Abstract
The soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) syntaxin 5 (Stx5) in mammals and its ortholog Sed5p in Saccharomyces cerevisiae mediate anterograde and retrograde endoplasmic reticulum (ER)-Golgi trafficking. Stx5 and Sed5p are structurally highly conserved and are both regulated by interactions with other ER-Golgi SNARE proteins, the Sec1/Munc18-like protein Scfd1/Sly1p and the membrane tethering complexes COG, p115, and GM130. Despite these similarities, yeast Sed5p and mammalian Stx5 are differently recruited to COPII-coated vesicles, and Stx5 interacts with the microtubular cytoskeleton, whereas Sed5p does not. In this review, we argue that these different Stx5 interactions contribute to structural differences in ER-Golgi transport between mammalian and yeast cells. Insight into the function of Stx5 is important given its essential role in the secretory pathway of eukaryotic cells and its involvement in infections and neurodegenerative diseases.
Collapse
Affiliation(s)
- Peter Ta Linders
- Tumor Immunology Lab, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands
| | - Chiel van der Horst
- Tumor Immunology Lab, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands
| | - Martin Ter Beest
- Tumor Immunology Lab, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands
| | - Geert van den Bogaart
- Tumor Immunology Lab, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands.
- Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands.
| |
Collapse
|
14
|
Jepson JEC, Praschberger R, Krishnakumar SS. Mechanisms of Neurological Dysfunction in GOSR2 Progressive Myoclonus Epilepsy, a Golgi SNAREopathy. Neuroscience 2019; 420:41-49. [PMID: 30954670 DOI: 10.1016/j.neuroscience.2019.03.057] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 03/22/2019] [Accepted: 03/26/2019] [Indexed: 10/27/2022]
Abstract
Successive fusion events between transport vesicles and their target membranes mediate trafficking of secreted, membrane- and organelle-localised proteins. During the initial steps of this process, termed the secretory pathway, COPII vesicles bud from the endoplasmic reticulum (ER) and fuse with the cis-Golgi membrane, thus depositing their cargo. This fusion step is driven by a quartet of SNARE proteins that includes the cis-Golgi t-SNARE Membrin, encoded by the GOSR2 gene. Mis-sense mutations in GOSR2 result in Progressive Myoclonus Epilepsy (PME), a severe neurological disorder characterised by ataxia, myoclonus and seizures in the absence of significant cognitive impairment. However, given the ubiquitous and essential function of ER-to-Golgi transport, why GOSR2 mutations cause neurological dysfunction and not lethality or a broader range of developmental defects has remained an enigma. Here we highlight new work that has shed light on this issue and incorporate insights into canonical and non-canonical secretory trafficking pathways in neurons to speculate as to the cellular and molecular mechanisms underlying GOSR2 PME. This article is part of a Special Issue entitled: SNARE proteins: a long journey of science in brain physiology and pathology: from molecular.
Collapse
Affiliation(s)
- James E C Jepson
- Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, London, UK.
| | - Roman Praschberger
- Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, London, UK
| | - Shyam S Krishnakumar
- Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, London, UK; Department of Cell Biology, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
15
|
Sperber HS, Welke RW, Petazzi RA, Bergmann R, Schade M, Shai Y, Chiantia S, Herrmann A, Schwarzer R. Self-association and subcellular localization of Puumala hantavirus envelope proteins. Sci Rep 2019; 9:707. [PMID: 30679542 PMCID: PMC6345964 DOI: 10.1038/s41598-018-36879-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 11/28/2018] [Indexed: 01/08/2023] Open
Abstract
Hantavirus assembly and budding are governed by the surface glycoproteins Gn and Gc. In this study, we investigated the glycoproteins of Puumala, the most abundant Hantavirus species in Europe, using fluorescently labeled wild-type constructs and cytoplasmic tail (CT) mutants. We analyzed their intracellular distribution, co-localization and oligomerization, applying comprehensive live, single-cell fluorescence techniques, including confocal microscopy, imaging flow cytometry, anisotropy imaging and Number&Brightness analysis. We demonstrate that Gc is significantly enriched in the Golgi apparatus in absence of other viral components, while Gn is mainly restricted to the endoplasmic reticulum (ER). Importantly, upon co-expression both glycoproteins were found in the Golgi apparatus. Furthermore, we show that an intact CT of Gc is necessary for efficient Golgi localization, while the CT of Gn influences protein stability. Finally, we found that Gn assembles into higher-order homo-oligomers, mainly dimers and tetramers, in the ER while Gc was present as mixture of monomers and dimers within the Golgi apparatus. Our findings suggest that PUUV Gc is the driving factor of the targeting of Gc and Gn to the Golgi region, while Gn possesses a significantly stronger self-association potential.
Collapse
Affiliation(s)
- Hannah Sabeth Sperber
- Institute for Biology, IRI Life Science, Humboldt-Universität zu Berlin, Invalidenstr. 42, 10115, Berlin, Germany.,Vitalant Research Institute, 270 Masonic Ave, San Francisco, CA, 94118, USA
| | - Robert-William Welke
- Institute for Biology, IRI Life Science, Humboldt-Universität zu Berlin, Invalidenstr. 42, 10115, Berlin, Germany
| | - Roberto Arturo Petazzi
- University of Potsdam, Institute of Biochemistry and Biology, Karl-Liebknecht-Str. 24-25, 14476, Potsdam, Germany
| | - Ronny Bergmann
- Institute for Biology, IRI Life Science, Humboldt-Universität zu Berlin, Invalidenstr. 42, 10115, Berlin, Germany
| | - Matthias Schade
- Institute for Biology, IRI Life Science, Humboldt-Universität zu Berlin, Invalidenstr. 42, 10115, Berlin, Germany
| | - Yechiel Shai
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Salvatore Chiantia
- University of Potsdam, Institute of Biochemistry and Biology, Karl-Liebknecht-Str. 24-25, 14476, Potsdam, Germany
| | - Andreas Herrmann
- Institute for Biology, IRI Life Science, Humboldt-Universität zu Berlin, Invalidenstr. 42, 10115, Berlin, Germany.
| | - Roland Schwarzer
- Institute for Biology, IRI Life Science, Humboldt-Universität zu Berlin, Invalidenstr. 42, 10115, Berlin, Germany. .,Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel. .,Gladstone Institute of Virology and Immunology, 1650 Owens Street, San Francisco, CA, 95158, USA.
| |
Collapse
|
16
|
Dingjan I, Linders PTA, Verboogen DRJ, Revelo NH, Ter Beest M, van den Bogaart G. Endosomal and Phagosomal SNAREs. Physiol Rev 2018; 98:1465-1492. [PMID: 29790818 DOI: 10.1152/physrev.00037.2017] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) protein family is of vital importance for organelle communication. The complexing of cognate SNARE members present in both the donor and target organellar membranes drives the membrane fusion required for intracellular transport. In the endocytic route, SNARE proteins mediate trafficking between endosomes and phagosomes with other endosomes, lysosomes, the Golgi apparatus, the plasma membrane, and the endoplasmic reticulum. The goal of this review is to provide an overview of the SNAREs involved in endosomal and phagosomal trafficking. Of the 38 SNAREs present in humans, 30 have been identified at endosomes and/or phagosomes. Many of these SNAREs are targeted by viruses and intracellular pathogens, which thereby reroute intracellular transport for gaining access to nutrients, preventing their degradation, and avoiding their detection by the immune system. A fascinating picture is emerging of a complex transport network with multiple SNAREs being involved in consecutive trafficking routes.
Collapse
Affiliation(s)
- Ilse Dingjan
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center , Nijmegen , The Netherlands ; and Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen , Groningen , The Netherlands
| | - Peter T A Linders
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center , Nijmegen , The Netherlands ; and Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen , Groningen , The Netherlands
| | - Danielle R J Verboogen
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center , Nijmegen , The Netherlands ; and Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen , Groningen , The Netherlands
| | - Natalia H Revelo
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center , Nijmegen , The Netherlands ; and Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen , Groningen , The Netherlands
| | - Martin Ter Beest
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center , Nijmegen , The Netherlands ; and Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen , Groningen , The Netherlands
| | - Geert van den Bogaart
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center , Nijmegen , The Netherlands ; and Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen , Groningen , The Netherlands
| |
Collapse
|
17
|
Naydenov NG, Joshi S, Feygin A, Saini S, Litovchick L, Ivanov AI. A membrane fusion protein, Ykt6, regulates epithelial cell migration via microRNA-mediated suppression of Junctional Adhesion Molecule A. Cell Cycle 2018; 17:1812-1831. [PMID: 30010460 DOI: 10.1080/15384101.2018.1496755] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
Vesicle trafficking regulates epithelial cell migration by remodeling matrix adhesions and delivering signaling molecules to the migrating leading edge. Membrane fusion, which is driven by soluble N-ethylmaleimide-sensitive factor associated receptor (SNARE) proteins, is an essential step of vesicle trafficking. Mammalian SNAREs represent a large group of proteins, but few have been implicated in the regulation of cell migration. Ykt6 is a unique SNARE existing in equilibrium between active membrane-bound and inactive cytoplasmic pools, and mediating vesicle trafficking between different intracellular compartments. The biological functions of this protein remain poorly understood. In the present study, we found that Ykt6 acts as a negative regulator of migration and invasion of human prostate epithelial cells. Furthermore, Ykt6 regulates the integrity of epithelial adherens and tight junctions. The observed anti-migratory activity of Ykt6 is mediated by a unique mechanism involving the expressional upregulation of microRNA 145, which selectively decreases the cellular level of Junctional Adhesion Molecule (JAM) A. This decreased JAM-A expression limits the activity of Rap1 and Rac1 small GTPases, thereby attenuating cell spreading and motility. The described novel functions of Ykt6 could be essential for the regulation of epithelial barriers, epithelial repair, and metastatic dissemination of cancer cells.
Collapse
Affiliation(s)
- Nayden G Naydenov
- a Department of Inflammation and Immunity , Lerner Research Institute of Cleveland Clinic Foundation , Cleveland , OH , USA.,b Department of Human and Molecular Genetics , Virginia Commonwealth University , Richmond , VA , USA
| | - Supriya Joshi
- b Department of Human and Molecular Genetics , Virginia Commonwealth University , Richmond , VA , USA
| | - Alex Feygin
- b Department of Human and Molecular Genetics , Virginia Commonwealth University , Richmond , VA , USA
| | - Siddharth Saini
- c Department of Internal Medicine , Virginia Commonwealth University , Richmond , VA , USA
| | - Larisa Litovchick
- c Department of Internal Medicine , Virginia Commonwealth University , Richmond , VA , USA
| | - Andrei I Ivanov
- a Department of Inflammation and Immunity , Lerner Research Institute of Cleveland Clinic Foundation , Cleveland , OH , USA.,b Department of Human and Molecular Genetics , Virginia Commonwealth University , Richmond , VA , USA
| |
Collapse
|
18
|
Matsui T, Jiang P, Nakano S, Sakamaki Y, Yamamoto H, Mizushima N. Autophagosomal YKT6 is required for fusion with lysosomes independently of syntaxin 17. J Cell Biol 2018; 217:2633-2645. [PMID: 29789439 PMCID: PMC6080929 DOI: 10.1083/jcb.201712058] [Citation(s) in RCA: 156] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 04/01/2018] [Accepted: 05/07/2018] [Indexed: 01/01/2023] Open
Abstract
Matsui et al. identify YKT6 as a novel autophagosomal SNARE protein. YKT6 is
required for autophagosome–lysosome fusion independently of STX17, a
known autophagosomal SNARE. Macroautophagy is an evolutionarily conserved catabolic mechanism that delivers
intracellular constituents to lysosomes using autophagosomes. To achieve
degradation, lysosomes must fuse with closed autophagosomes. We previously
reported that the soluble N-ethylmaleimide–sensitive
factor attachment protein receptor (SNARE) protein syntaxin (STX) 17
translocates to autophagosomes to mediate fusion with lysosomes. In this study,
we report an additional mechanism. We found that autophagosome–lysosome
fusion is retained to some extent even in STX17 knockout (KO)
HeLa cells. By screening other human SNAREs, we identified YKT6 as a novel
autophagosomal SNARE protein. Depletion of YKT6 inhibited
autophagosome–lysosome fusion partially in wild-type and completely in
STX17 KO cells, suggesting that YKT6 and STX17 are
independently required for fusion. YKT6 formed a SNARE complex with SNAP29 and
lysosomal STX7, both of which are required for autophagosomal fusion.
Recruitment of YKT6 to autophagosomes depends on its N-terminal longin domain
but not on the C-terminal palmitoylation and farnesylation that are essential
for its Golgi localization. These findings suggest that two independent SNARE
complexes mediate autophagosome–lysosome fusion.
Collapse
Affiliation(s)
- Takahide Matsui
- Department of Biochemistry and Molecular Biology, Graduate School and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Peidu Jiang
- Department of Biochemistry and Molecular Biology, Graduate School and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Saori Nakano
- Department of Biochemistry and Molecular Biology, Graduate School and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yuriko Sakamaki
- Research Core, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hayashi Yamamoto
- Department of Biochemistry and Molecular Biology, Graduate School and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Noboru Mizushima
- Department of Biochemistry and Molecular Biology, Graduate School and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
19
|
Takáts S, Glatz G, Szenci G, Boda A, Horváth GV, Hegedűs K, Kovács AL, Juhász G. Non-canonical role of the SNARE protein Ykt6 in autophagosome-lysosome fusion. PLoS Genet 2018; 14:e1007359. [PMID: 29694367 PMCID: PMC5937789 DOI: 10.1371/journal.pgen.1007359] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 05/07/2018] [Accepted: 04/11/2018] [Indexed: 11/25/2022] Open
Abstract
The autophagosomal SNARE Syntaxin17 (Syx17) forms a complex with Snap29 and Vamp7/8 to promote autophagosome-lysosome fusion via multiple interactions with the tethering complex HOPS. Here we demonstrate that, unexpectedly, one more SNARE (Ykt6) is also required for autophagosome clearance in Drosophila. We find that loss of Ykt6 leads to large-scale accumulation of autophagosomes that are unable to fuse with lysosomes to form autolysosomes. Of note, loss of Syx5, the partner of Ykt6 in ER-Golgi trafficking does not prevent autolysosome formation, pointing to a more direct role of Ykt6 in fusion. Indeed, Ykt6 localizes to lysosomes and autolysosomes, and forms a SNARE complex with Syx17 and Snap29. Interestingly, Ykt6 can be outcompeted from this SNARE complex by Vamp7, and we demonstrate that overexpression of Vamp7 rescues the fusion defect of ykt6 loss of function cells. Finally, a point mutant form with an RQ amino acid change in the zero ionic layer of Ykt6 protein that is thought to be important for fusion-competent SNARE complex assembly retains normal autophagic activity and restores full viability in mutant animals, unlike palmitoylation or farnesylation site mutant Ykt6 forms. As Ykt6 and Vamp7 are both required for autophagosome-lysosome fusion and are mutually exclusive subunits in a Syx17-Snap29 complex, these data suggest that Vamp7 is directly involved in membrane fusion and Ykt6 acts as a non-conventional, regulatory SNARE in this process. SNARE proteins are critical executors of most vesicle fusion events in eukaryotic cells. 4 SNARE domains assemble into a bundle to promote fusion. We have previously shown that Syntaxin 17, Snap29 (contributing 2 SNARE domains) and Vamp7 form the SNARE complex executing autophagosome-lysosome fusion in Drosophila. Surprisingly, one more SNARE protein (Ykt6) is also required in vivo for autophagosome-lysosome fusion. We find that Ykt6 can form a less stable complex with Syntaxin 17 and Snap29 than Vamp7, because Vamp7 outcompetes Ykt6. Ykt6, Vamp7 and Syntaxin 17 all bind to the tethering complex HOPS to promote vesicle fusion. Ykt6 likely plays a non-canonical role in autophagosome-lysosome fusion, because its mutant form (which is thought to be unable to assemble into a fusion-competent SNARE complex) still rescues the fusion defect of ykt6 mutant cells, and it restores viability in mutant animals.
Collapse
Affiliation(s)
- Szabolcs Takáts
- Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, Budapest, Hungary
- Hungarian Academy of Sciences, Premium Postdoctoral Research Program, Budapest, Hungary
- * E-mail: (ST); (GJ)
| | - Gábor Glatz
- Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, Budapest, Hungary
| | - Győző Szenci
- Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, Budapest, Hungary
| | - Attila Boda
- Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, Budapest, Hungary
| | - Gábor V. Horváth
- Institute of Genetics, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Hungary
| | - Krisztina Hegedűs
- Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, Budapest, Hungary
| | - Attila L. Kovács
- Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, Budapest, Hungary
| | - Gábor Juhász
- Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, Budapest, Hungary
- Institute of Genetics, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Hungary
- * E-mail: (ST); (GJ)
| |
Collapse
|
20
|
Ruiz-Martinez M, Navarro A, Marrades RM, Viñolas N, Santasusagna S, Muñoz C, Ramírez J, Molins L, Monzo M. YKT6 expression, exosome release, and survival in non-small cell lung cancer. Oncotarget 2018; 7:51515-51524. [PMID: 27285987 PMCID: PMC5239493 DOI: 10.18632/oncotarget.9862] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 05/19/2016] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Cancer-derived exosomes are involved in metastasis. YKT6 is a SNARE protein that participates in the regulation of exosome production and release, but its role in non-small cell lung cancer (NSCLC) has not been examined. MATERIALS AND METHODS Ultracentrifugation-purified exosomes from the A549 cell line were studied by CRYO-TEM, nanoparticle tracking analysis and western blot (TSG101 marker). YKT6 was inhibited using a DsiRNA and selected pre-microRNAs. MicroRNAs targeting YKT6 were validated by Renilla/Luciferase assay and western blot. YKT6 expression and its prognostic impact were analyzed in 98 tissue specimens from resected NSCLC patients. RESULTS Membranous nanosized vesicles (mode size: 128nm) with TSG101 protein were purified from A549 cells. YKT6 inhibition reduced exosome release by 80.9%. We validated miR-134 and miR-135b as miRNAs targeting YKT6, and transfection with the pre-miRNAs also produced a significant reduction in exosome release. The analysis of YKT6 in tumor samples showed that patients with high levels had shorter disease-free and overall survival. CONCLUSIONS YKT6 is a key molecule in the regulation of exosome release in lung cancer cells and is in turn precisely regulated by miR-134 and miR-135b. Moreover, YKT6 levels impact prognosis of resected NSCLC patients.
Collapse
Affiliation(s)
- Marc Ruiz-Martinez
- Molecular Oncology and Embryology Laboratory, Department of Human Anatomy and Embryology, School of Medicine, University of Barcelona, IDIBAPS, Barcelona, Spain
| | - Alfons Navarro
- Molecular Oncology and Embryology Laboratory, Department of Human Anatomy and Embryology, School of Medicine, University of Barcelona, IDIBAPS, Barcelona, Spain
| | - Ramón M Marrades
- Department of Pneumology, Institut Clínic del Tórax (ICT), Hospital Clinic de Barcelona, University of Barcelona, IDIBAPS, CIBER de Enfermedades Respiratorias (CIBERES), Barcelona, Spain
| | - Nuria Viñolas
- Department of Medical Oncology, Institut Clinic Malalties Hemato-Oncològiques (ICMHO), Hospital Clinic de Barcelona, University of Barcelona, IDIBAPS, Barcelona, Spain
| | - Sandra Santasusagna
- Molecular Oncology and Embryology Laboratory, Department of Human Anatomy and Embryology, School of Medicine, University of Barcelona, IDIBAPS, Barcelona, Spain
| | - Carmen Muñoz
- Molecular Oncology and Embryology Laboratory, Department of Human Anatomy and Embryology, School of Medicine, University of Barcelona, IDIBAPS, Barcelona, Spain
| | - Josep Ramírez
- Department of Pathology, Centro de Diagnóstico Biomédico (CDB), Hospital Clinic de Barcelona, University of Barcelona, IDIBAPS, CIBERES, Barcelona, Spain
| | - Laureano Molins
- Department of Thoracic Surgery, Institut Clínic del Tórax (ICT), Hospital Clinic de Barcelona, University of Barcelona, Barcelona, Spain
| | - Mariano Monzo
- Molecular Oncology and Embryology Laboratory, Department of Human Anatomy and Embryology, School of Medicine, University of Barcelona, IDIBAPS, Barcelona, Spain
| |
Collapse
|
21
|
Hastoy B, Clark A, Rorsman P, Lang J. Fusion pore in exocytosis: More than an exit gate? A β-cell perspective. Cell Calcium 2017; 68:45-61. [PMID: 29129207 DOI: 10.1016/j.ceca.2017.10.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 10/17/2017] [Accepted: 10/24/2017] [Indexed: 12/14/2022]
Abstract
Secretory vesicle exocytosis is a fundamental biological event and the process by which hormones (like insulin) are released into the blood. Considerable progress has been made in understanding this precisely orchestrated sequence of events from secretory vesicle docked at the cell membrane, hemifusion, to the opening of a membrane fusion pore. The exact biophysical and physiological regulation of these events implies a close interaction between membrane proteins and lipids in a confined space and constrained geometry to ensure appropriate delivery of cargo. We consider some of the still open questions such as the nature of the initiation of the fusion pore, the structure and the role of the Soluble N-ethylmaleimide-sensitive-factor Attachment protein REceptor (SNARE) transmembrane domains and their influence on the dynamics and regulation of exocytosis. We discuss how the membrane composition and protein-lipid interactions influence the likelihood of the nascent fusion pore forming. We relate these factors to the hypothesis that fusion pore expansion could be affected in type-2 diabetes via changes in disease-related gene transcription and alterations in the circulating lipid profile. Detailed characterisation of the dynamics of the fusion pore in vitro will contribute to understanding the larger issue of insulin secretory defects in diabetes.
Collapse
Affiliation(s)
- Benoit Hastoy
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford OX3 7LE, UK.
| | - Anne Clark
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford OX3 7LE, UK
| | - Patrik Rorsman
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford OX3 7LE, UK; Metabolic Research, Institute of Neuroscience and Physiology, University of Goteborg, Medicinaregatan 11, S-41309 Göteborg, Sweden
| | - Jochen Lang
- Laboratoire de Chimie et Biologie des Membranes et Nano-objets (CBMN), CNRS UMR 5248, Université de Bordeaux, Allée de Geoffrey St Hilaire, 33600 Pessac, France.
| |
Collapse
|
22
|
Praschberger R, Lowe SA, Malintan NT, Giachello CNG, Patel N, Houlden H, Kullmann DM, Baines RA, Usowicz MM, Krishnakumar SS, Hodge JJL, Rothman JE, Jepson JEC. Mutations in Membrin/GOSR2 Reveal Stringent Secretory Pathway Demands of Dendritic Growth and Synaptic Integrity. Cell Rep 2017; 21:97-109. [PMID: 28978487 PMCID: PMC5640804 DOI: 10.1016/j.celrep.2017.09.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 08/17/2017] [Accepted: 09/01/2017] [Indexed: 11/16/2022] Open
Abstract
Mutations in the Golgi SNARE (SNAP [soluble NSF attachment protein] receptor) protein Membrin (encoded by the GOSR2 gene) cause progressive myoclonus epilepsy (PME). Membrin is a ubiquitous and essential protein mediating ER-to-Golgi membrane fusion. Thus, it is unclear how mutations in Membrin result in a disorder restricted to the nervous system. Here, we use a multi-layered strategy to elucidate the consequences of Membrin mutations from protein to neuron. We show that the pathogenic mutations cause partial reductions in SNARE-mediated membrane fusion. Importantly, these alterations were sufficient to profoundly impair dendritic growth in Drosophila models of GOSR2-PME. Furthermore, we show that Membrin mutations cause fragmentation of the presynaptic cytoskeleton coupled with transsynaptic instability and hyperactive neurotransmission. Our study highlights how dendritic growth is vulnerable even to subtle secretory pathway deficits, uncovers a role for Membrin in synaptic function, and provides a comprehensive explanatory basis for genotype-phenotype relationships in GOSR2-PME.
Collapse
Affiliation(s)
- Roman Praschberger
- Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, London, UK
| | - Simon A Lowe
- School of Physiology, Pharmacology, and Neuroscience, University of Bristol, Bristol, UK
| | - Nancy T Malintan
- Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, London, UK
| | - Carlo N G Giachello
- Faculty of Biology, Medicine, and Health, Division of Neuroscience & Experimental Psychology, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Nian Patel
- Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, London, UK
| | - Henry Houlden
- Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK
| | - Dimitri M Kullmann
- Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, London, UK
| | - Richard A Baines
- Faculty of Biology, Medicine, and Health, Division of Neuroscience & Experimental Psychology, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Maria M Usowicz
- School of Physiology, Pharmacology, and Neuroscience, University of Bristol, Bristol, UK
| | - Shyam S Krishnakumar
- Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, London, UK; Department of Cell Biology, Yale School of Medicine, New Haven, CT, USA
| | - James J L Hodge
- School of Physiology, Pharmacology, and Neuroscience, University of Bristol, Bristol, UK
| | - James E Rothman
- Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, London, UK; Department of Cell Biology, Yale School of Medicine, New Haven, CT, USA
| | - James E C Jepson
- Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, London, UK.
| |
Collapse
|
23
|
Tie HC, Chen B, Sun X, Cheng L, Lu L. Quantitative Localization of a Golgi Protein by Imaging Its Center of Fluorescence Mass. J Vis Exp 2017. [PMID: 28829416 DOI: 10.3791/55996] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The Golgi complex consists of serially stacked membrane cisternae which can be further categorized into sub-Golgi regions, including the cis-Golgi, medial-Golgi, trans-Golgi and trans-Golgi network. Cellular functions of the Golgi are determined by the characteristic distribution of its resident proteins. The spatial resolution of conventional light microscopy is too low to resolve sub-Golgi structure or cisternae. Thus, the immuno-gold electron microscopy is a method of choice to localize a protein at the sub-Golgi level. However, the technique and instrument are beyond the capability of most cell biology labs. We describe here our recently developed super-resolution method called Golgi protein localization by imaging centers of mass (GLIM) to systematically and quantitatively localize a Golgi protein. GLIM is based on standard fluorescence labeling protocols and conventional wide-field or confocal microscopes. It involves the calibration of chromatic-shift aberration of the microscopic system, the image acquisition and the post-acquisition analysis. The sub-Golgi localization of a test protein is quantitatively expressed as the localization quotient. There are four main advantages of GLIM; it is rapid, based on conventional methods and tools, the localization result is quantitative, and it affords ~ 30 nm practical resolution along the Golgi axis. Here we describe the detailed protocol of GLIM to localize a test Golgi protein.
Collapse
Affiliation(s)
| | - Bing Chen
- School of Biological Sciences, Nanyang Technological University
| | - Xiuping Sun
- School of Biological Sciences, Nanyang Technological University
| | - Li Cheng
- Bioinformatics Institute; School of Computing, National University of Singapore
| | - Lei Lu
- School of Biological Sciences, Nanyang Technological University;
| |
Collapse
|
24
|
Anderson NS, Mukherjee I, Bentivoglio CM, Barlowe C. The Golgin protein Coy1 functions in intra-Golgi retrograde transport and interacts with the COG complex and Golgi SNAREs. Mol Biol Cell 2017; 28:mbc.E17-03-0137. [PMID: 28794270 PMCID: PMC5620376 DOI: 10.1091/mbc.e17-03-0137] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 07/12/2017] [Accepted: 07/31/2017] [Indexed: 01/09/2023] Open
Abstract
Extended coiled-coil proteins of the Golgin family play prominent roles in maintaining the structure and function of the Golgi complex. Here we further investigate the Golgin protein Coy1 and document its function in retrograde transport between early Golgi compartments. Cells that lack Coy1 displayed a reduced half-life of the Och1 mannosyltransferase, an established cargo of intra-Golgi retrograde transport. Combining the coy1Δ mutation with deletions in other putative retrograde Golgins (sgm1Δ and rud3Δ) caused strong glycosylation and growth defects and reduced membrane association of the Conserved Oligomeric Golgi complex. In contrast, overexpression of COY1 inhibited the growth of mutant strains deficient in fusion activity at the Golgi (sed5-1 and sly1-ts). To map Coy1 protein interactions, co-immunoprecipitation experiments revealed an association with the Conserved Oliogmeric Golgi (COG) complex and with intra-Golgi SNARE proteins. These physical interactions are direct, as Coy1 was efficiently captured in vitro by Lobe A of the COG complex and the purified SNARE proteins Gos1, Sed5 and Sft1. Thus, our genetic, in vivo, and biochemical data indicate a role for Coy1 in regulating COG complex-dependent fusion of retrograde-directed COPI vesicles.
Collapse
Affiliation(s)
- Nadine S Anderson
- Department of Biochemistry & Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755
| | - Indrani Mukherjee
- Department of Biochemistry & Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755
| | - Christine M Bentivoglio
- Department of Biochemistry & Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755
| | - Charles Barlowe
- Department of Biochemistry & Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755
| |
Collapse
|
25
|
Gordon DE, Chia J, Jayawardena K, Antrobus R, Bard F, Peden AA. VAMP3/Syb and YKT6 are required for the fusion of constitutive secretory carriers with the plasma membrane. PLoS Genet 2017; 13:e1006698. [PMID: 28403141 PMCID: PMC5406017 DOI: 10.1371/journal.pgen.1006698] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 04/26/2017] [Accepted: 03/15/2017] [Indexed: 11/19/2022] Open
Abstract
The cellular machinery required for the fusion of constitutive secretory vesicles with the plasma membrane in metazoans remains poorly defined. To address this problem we have developed a powerful, quantitative assay for measuring secretion and used it in combination with combinatorial gene depletion studies in Drosophila cells. This has allowed us to identify at least three SNARE complexes mediating Golgi to PM transport (STX1, SNAP24/29 and Syb; STX1, SNAP24/29 and YKT6; STX4, SNAP24 and Syb). RNAi mediated depletion of YKT6 and VAMP3 in mammalian cells also blocks constitutive secretion suggesting that YKT6 has an evolutionarily conserved role in this process. The unexpected role of YKT6 in plasma membrane fusion may in part explain why RNAi and gene disruption studies have failed to produce the expected phenotypes in higher eukaryotes.
Collapse
Affiliation(s)
- David E. Gordon
- University of California San Francisco, Department of Cellular and Molecular Pharmacology, San Francisco, CA, United States of America
| | - Joanne Chia
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, Singapore
| | - Kamburpola Jayawardena
- Cambridge Institute for Medical Research, University of Cambridge, Hills Road, Cambridge, United Kingdom
| | - Robin Antrobus
- Cambridge Institute for Medical Research, University of Cambridge, Hills Road, Cambridge, United Kingdom
| | - Frederic Bard
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, Singapore
| | - Andrew A. Peden
- Department of Biomedical Science & Centre for Membrane Interactions and Dynamics (CMIAD), The University of Sheffield, Western Bank, Sheffield, United Kingdom
- * E-mail:
| |
Collapse
|
26
|
Satoh T, Nakamura Y, Satoh AK. The roles of Syx5 in Golgi morphology and Rhodopsin transport in Drosophila photoreceptors. Biol Open 2016; 5:1420-1430. [PMID: 27591190 PMCID: PMC5087674 DOI: 10.1242/bio.020958] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
SNAREs (SNAP receptors) are the key components of protein complexes that drive membrane fusion. Here, we report the function of a SNARE, Syntaxin 5 (Syx5), in the development of photoreceptors in Drosophila. In wild-type photoreceptors, Syx5 localizes to cis-Golgi, along with cis-Golgi markers: Rab1 and GM130. We observed that Syx5-deficient photoreceptors show notable accumulation of these cis-Golgi markers accompanying drastic accumulation of vesicles between endoplasmic reticulum (ER) and Golgi cisternae. Extensive analysis of Rh1 (rhodopsin 1) trafficking revealed that in Syx5-deficient photoreceptors, Rh1 is exported from the ER with normal kinetics, retained in the cis-Golgi region along with GM130 for a prolonged period, and then subsequently degraded presumably by endoplasmic reticulum-associated protein degradation (ERAD) after retrieval to the ER. Unlike our previous report of Rab6-deficient photoreceptors – where two apical transport pathways are specifically inhibited – vesicle transport pathways to all plasma membrane domains are inhibited in Syx5-deficient photoreceptors, implying that Rab6 and Syx5 are acting in different steps of intra-Golgi transport. These results indicate that Syx5 is crucial for membrane protein transport, presumably during ER-derived vesicle fusion to form cis-Golgi cisternae. Summary: Unlike Rab6-deficiency which affects only apical transport pathways, Syx5-deficiency inhibits all of polarized transport pathways, implying that these two genes are working in distinct stages of intra-Golgi transport.
Collapse
Affiliation(s)
- Takunori Satoh
- Division of Life Science, Graduate School of Integral Arts and Science, Hiroshima University, 1-7-1, Kagamiyama, Higashi-hiroshima 739-8521, Japan
| | - Yuri Nakamura
- Division of Life Science, Graduate School of Integral Arts and Science, Hiroshima University, 1-7-1, Kagamiyama, Higashi-hiroshima 739-8521, Japan
| | - Akiko K Satoh
- Division of Life Science, Graduate School of Integral Arts and Science, Hiroshima University, 1-7-1, Kagamiyama, Higashi-hiroshima 739-8521, Japan
| |
Collapse
|
27
|
Cho U, Kim HM, Park HS, Kwon OJ, Lee A, Jeong SW. Nuclear Expression of GS28 Protein: A Novel Biomarker that Predicts Worse Prognosis in Cervical Cancers. PLoS One 2016; 11:e0162623. [PMID: 27611086 PMCID: PMC5017663 DOI: 10.1371/journal.pone.0162623] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 08/25/2016] [Indexed: 11/18/2022] Open
Abstract
Objective The protein GS28 (28-kDa Golgi SNARE protein) has been described as a SNARE (Soluble N-ethylmaleimide-sensitive factor attachment protein receptors) protein family member that plays a critical role in mammalian ER-Golgi or intra-Golgi vesicle transport. Little is known about the possible roles of GS28 in pathological conditions. The purpose of this study was to evaluate GS28 expression in cervical cancer tissues and explore its correlation with clinicopathological features and prognosis. Methods We investigated GS28 expression in 177 cervical cancer tissues by using immunohistochemistry and evaluated the correlation of GS28 expression with clinicopathological features, the expression of p53 and Bcl-2, and prognosis of cervical cancer patients. Immunoblotting was performed using six freshly frozen cervical cancer tissues to confirm the subcellular localization of GS28. Results Immunoreactivity of GS28 was observed in both nuclear and cytoplasmic compartments of cervical cancer cells. High nuclear expression of GS28 was associated with advanced tumor stages (P = 0.036) and negative expression of p53 (P = 0.036). In multivariate analyses, patients with high nuclear expression of GS28 showed significantly worse overall survival (OS) (hazard ratio = 3.785, P = 0.003) and progression-free survival (PFS) (hazard ratio = 3.019, P = 0.008), compared to those with low or no nuclear expression. It was also a reliable, independent prognostic marker in subgroups of patients with early stage T1 and negative lymph node metastasis in OS (P = 0.008 and 0.019, respectively). The nuclear expression of GS28 was confirmed by immunoblotting. Conclusion High nuclear expression of GS28 is associated with poor prognosis in early-stage cervical cancer patients. GS28 might be a novel prognostic marker and a potential therapeutic target in cervical cancer treatment.
Collapse
Affiliation(s)
- Uiju Cho
- Department of Hospital Pathology, St. Vincent’s Hospital, College of Medicine, The Catholic University of Korea, Suwon, Republic of Korea
| | - Hae-Mi Kim
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hong Sik Park
- Department of Hospital Pathology, St. Vincent’s Hospital, College of Medicine, The Catholic University of Korea, Suwon, Republic of Korea
| | - Oh-Joo Kwon
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Ahwon Lee
- Department of Hospital Pathology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- * E-mail: (SJ); (AL)
| | - Seong-Whan Jeong
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- * E-mail: (SJ); (AL)
| |
Collapse
|
28
|
Willett R, Blackburn JB, Climer L, Pokrovskaya I, Kudlyk T, Wang W, Lupashin V. COG lobe B sub-complex engages v-SNARE GS15 and functions via regulated interaction with lobe A sub-complex. Sci Rep 2016; 6:29139. [PMID: 27385402 PMCID: PMC4935880 DOI: 10.1038/srep29139] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 06/14/2016] [Indexed: 01/03/2023] Open
Abstract
The conserved oligomeric Golgi (COG) complex is a peripheral membrane protein complex which orchestrates tethering of intra-Golgi vesicles. We found that COG1-4 (lobe A) and 5-8 (lobe B) protein assemblies are present as independent sub-complexes on cell membranes. Super-resolution microscopy demonstrates that COG sub-complexes are spatially separated on the Golgi with lobe A preferential localization on Golgi stacks and the presence of lobe B on vesicle-like structures, where it physically interacts with v-SNARE GS15. The localization and specific interaction of the COG sub-complexes with the components of vesicle tethering/fusion machinery suggests their different roles in the vesicle tethering cycle. We propose and test a novel model that employs association/disassociation of COG sub-complexes as a mechanism that directs vesicle tethering at Golgi membranes. We demonstrate that defective COG assembly or restriction of tethering complex disassembly by a covalent COG1-COG8 linkage is inhibitory to COG complex activity, supporting the model.
Collapse
Affiliation(s)
- Rose Willett
- Department of Physiology and Biophysics, UAMS, Little Rock, AR, USA
| | | | - Leslie Climer
- Department of Physiology and Biophysics, UAMS, Little Rock, AR, USA
| | | | - Tetyana Kudlyk
- Department of Physiology and Biophysics, UAMS, Little Rock, AR, USA
| | - Wei Wang
- Department of Physiology and Biophysics, UAMS, Little Rock, AR, USA
| | | |
Collapse
|
29
|
Tie HC, Mahajan D, Chen B, Cheng L, VanDongen AMJ, Lu L. A novel imaging method for quantitative Golgi localization reveals differential intra-Golgi trafficking of secretory cargoes. Mol Biol Cell 2016; 27:848-61. [PMID: 26764092 PMCID: PMC4803310 DOI: 10.1091/mbc.e15-09-0664] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 01/07/2016] [Indexed: 12/02/2022] Open
Abstract
A novel imaging-based method is introduced to quantitatively localize Golgi proteins at nanometer resolution. The method reveals different intra-Golgi trafficking of secretory cargoes. Cellular functions of the Golgi are determined by the unique distribution of its resident proteins. Currently, electron microscopy is required for the localization of a Golgi protein at the sub-Golgi level. We developed a quantitative sub-Golgi localization method based on centers of fluorescence masses of nocodazole-induced Golgi ministacks under conventional optical microscopy. Our method is rapid, convenient, and quantitative, and it yields a practical localization resolution of ∼30 nm. The method was validated by the previous electron microscopy data. We quantitatively studied the intra-Golgi trafficking of synchronized secretory membrane cargoes and directly demonstrated the cisternal progression of cargoes from the cis- to the trans-Golgi. Our data suggest that the constitutive efflux of secretory cargoes could be restricted at the Golgi stack, and the entry of the trans-Golgi network in secretory pathway could be signal dependent.
Collapse
Affiliation(s)
- Hieng Chiong Tie
- School of Biological Sciences, Nanyang Technological University, Singapore 637551
| | - Divyanshu Mahajan
- School of Biological Sciences, Nanyang Technological University, Singapore 637551
| | - Bing Chen
- School of Biological Sciences, Nanyang Technological University, Singapore 637551
| | - Li Cheng
- Bioinformatics Institute, Singapore 138671 School of Computing, National University of Singapore, Singapore 117417
| | - Antonius M J VanDongen
- Program in Neuroscience and Behavioral Disorders, Duke-NUS Graduate Medical School, Singapore 169857
| | - Lei Lu
- School of Biological Sciences, Nanyang Technological University, Singapore 637551
| |
Collapse
|
30
|
Li X, Wu Y, Shen C, Belenkaya TY, Ray L, Lin X. Drosophila p24 and Sec22 regulate Wingless trafficking in the early secretory pathway. Biochem Biophys Res Commun 2015; 463:483-9. [PMID: 26002470 DOI: 10.1016/j.bbrc.2015.04.151] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 04/30/2015] [Indexed: 01/21/2023]
Abstract
The Wnt signaling pathway is crucial for development and disease. The regulation of Wnt protein trafficking is one of the pivotal issues in the Wnt research field. Here we performed a genetic screen in Drosophila melanogaster for genes involved in Wingless/Wnt secretion, and identified the p24 protein family members Baiser, CHOp24, Eclair and a v-SNARE protein Sec22, which are involved in the early secretory pathway of Wingless/Wnt. We provided genetic evidence demonstrating that loss of p24 proteins or Sec22 impedes Wingless (Wg) secretion in Drosophila wing imaginal discs. We found that Baiser cannot replace other p24 proteins (CHOp24 or Eclair) in escorting Wg, and only Baiser and CHOp24 interact with Wg. Moreover, we showed that the v-SNARE protein Sec22 and Wg are packaged together with p24 proteins. Taken together, our data provide important insights into the early secretory pathway of Wg/Wnt.
Collapse
Affiliation(s)
- Xue Li
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yihui Wu
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Chenghao Shen
- School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Tatyana Y Belenkaya
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Lorraine Ray
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Xinhua Lin
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.
| |
Collapse
|
31
|
Suga K, Saito A, Akagawa K. ER stress response in NG108-15 cells involves upregulation of syntaxin 5 expression and reduced amyloid β peptide secretion. Exp Cell Res 2015; 332:11-23. [DOI: 10.1016/j.yexcr.2015.01.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2014] [Revised: 01/05/2015] [Accepted: 01/07/2015] [Indexed: 01/24/2023]
|
32
|
Rosenbaum EE, Vasiljevic E, Cleland SC, Flores C, Colley NJ. The Gos28 SNARE protein mediates intra-Golgi transport of rhodopsin and is required for photoreceptor survival. J Biol Chem 2014; 289:32392-409. [PMID: 25261468 PMCID: PMC4239595 DOI: 10.1074/jbc.m114.585166] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 09/24/2014] [Indexed: 11/06/2022] Open
Abstract
SNARE proteins play indispensable roles in membrane fusion events in many cellular processes, including synaptic transmission and protein trafficking. Here, we characterize the Golgi SNARE protein, Gos28, and its role in rhodopsin (Rh1) transport through Drosophila photoreceptors. Mutations in gos28 lead to defective Rh1 trafficking and retinal degeneration. We have pinpointed a role for Gos28 in the intra-Golgi transport of Rh1, downstream from α-mannosidase-II in the medial- Golgi. We have confirmed the necessity of key residues in Gos28's SNARE motif and demonstrate that its transmembrane domain is not required for vesicle fusion, consistent with Gos28 functioning as a t-SNARE for Rh1 transport. Finally, we show that human Gos28 rescues both the Rh1 trafficking defects and retinal degeneration in Drosophila gos28 mutants, demonstrating the functional conservation of these proteins. Our results identify Gos28 as an essential SNARE protein in Drosophila photoreceptors and provide mechanistic insights into the role of SNAREs in neurodegenerative disease.
Collapse
Affiliation(s)
- Erica E Rosenbaum
- From the Department of Ophthalmology and Visual Sciences, Department of Genetics and The McPherson Eye Research Institute, University of Wisconsin, Madison, Wisconsin 53792
| | - Eva Vasiljevic
- From the Department of Ophthalmology and Visual Sciences, Department of Genetics and The McPherson Eye Research Institute, University of Wisconsin, Madison, Wisconsin 53792
| | - Spencer C Cleland
- From the Department of Ophthalmology and Visual Sciences, Department of Genetics and The McPherson Eye Research Institute, University of Wisconsin, Madison, Wisconsin 53792
| | - Carlos Flores
- From the Department of Ophthalmology and Visual Sciences, Department of Genetics and The McPherson Eye Research Institute, University of Wisconsin, Madison, Wisconsin 53792
| | - Nansi Jo Colley
- From the Department of Ophthalmology and Visual Sciences, Department of Genetics and The McPherson Eye Research Institute, University of Wisconsin, Madison, Wisconsin 53792
| |
Collapse
|
33
|
Nogueira C, Erlmann P, Villeneuve J, Santos AJ, Martínez-Alonso E, Martínez-Menárguez JÁ, Malhotra V. SLY1 and Syntaxin 18 specify a distinct pathway for procollagen VII export from the endoplasmic reticulum. eLife 2014. [PMID: 24842878 DOI: 10.7554/elife.02784.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
TANGO1 binds and exports Procollagen VII from the endoplasmic reticulum (ER). In this study, we report a connection between the cytoplasmic domain of TANGO1 and SLY1, a protein that is required for membrane fusion. Knockdown of SLY1 by siRNA arrested Procollagen VII in the ER without affecting the recruitment of COPII components, general protein secretion, and retrograde transport of the KDEL-containing protein BIP, and ERGIC53. SLY1 is known to interact with the ER-specific SNARE proteins Syntaxin 17 and 18, however only Syntaxin 18 was required for Procollagen VII export. Neither SLY1 nor Syntaxin 18 was required for the export of the equally bulky Procollagen I from the ER. Altogether, these findings reveal the sorting of bulky collagen family members by TANGO1 at the ER and highlight the existence of different export pathways for secretory cargoes one of which is mediated by the specific SNARE complex containing SLY1 and Syntaxin 18.DOI: http://dx.doi.org/10.7554/eLife.02784.001.
Collapse
Affiliation(s)
- Cristina Nogueira
- Cell and Developmental Biology Program, Center for Genomic Regulation (CRG), Barcelona, Spain Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Patrik Erlmann
- Cell and Developmental Biology Program, Center for Genomic Regulation (CRG), Barcelona, Spain Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Julien Villeneuve
- Cell and Developmental Biology Program, Center for Genomic Regulation (CRG), Barcelona, Spain Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - António Jm Santos
- Cell and Developmental Biology Program, Center for Genomic Regulation (CRG), Barcelona, Spain Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Emma Martínez-Alonso
- Department of Cellular Biology and Histology, Faculty of Medicine, University of Murcia, Murcia, Spain
| | | | - Vivek Malhotra
- Cell and Developmental Biology Program, Center for Genomic Regulation (CRG), Barcelona, Spain Universitat Pompeu Fabra (UPF), Barcelona, Spain Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| |
Collapse
|
34
|
Nogueira C, Erlmann P, Villeneuve J, Santos AJ, Martínez-Alonso E, Martínez-Menárguez JÁ, Malhotra V. SLY1 and Syntaxin 18 specify a distinct pathway for procollagen VII export from the endoplasmic reticulum. eLife 2014; 3:e02784. [PMID: 24842878 PMCID: PMC4054776 DOI: 10.7554/elife.02784] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
TANGO1 binds and exports Procollagen VII from the endoplasmic reticulum (ER). In this study, we report a connection between the cytoplasmic domain of TANGO1 and SLY1, a protein that is required for membrane fusion. Knockdown of SLY1 by siRNA arrested Procollagen VII in the ER without affecting the recruitment of COPII components, general protein secretion, and retrograde transport of the KDEL-containing protein BIP, and ERGIC53. SLY1 is known to interact with the ER-specific SNARE proteins Syntaxin 17 and 18, however only Syntaxin 18 was required for Procollagen VII export. Neither SLY1 nor Syntaxin 18 was required for the export of the equally bulky Procollagen I from the ER. Altogether, these findings reveal the sorting of bulky collagen family members by TANGO1 at the ER and highlight the existence of different export pathways for secretory cargoes one of which is mediated by the specific SNARE complex containing SLY1 and Syntaxin 18.DOI: http://dx.doi.org/10.7554/eLife.02784.001.
Collapse
Affiliation(s)
- Cristina Nogueira
- Cell and Developmental Biology Program, Center for Genomic Regulation (CRG), Barcelona, Spain Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Patrik Erlmann
- Cell and Developmental Biology Program, Center for Genomic Regulation (CRG), Barcelona, Spain Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Julien Villeneuve
- Cell and Developmental Biology Program, Center for Genomic Regulation (CRG), Barcelona, Spain Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - António Jm Santos
- Cell and Developmental Biology Program, Center for Genomic Regulation (CRG), Barcelona, Spain Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Emma Martínez-Alonso
- Department of Cellular Biology and Histology, Faculty of Medicine, University of Murcia, Murcia, Spain
| | | | - Vivek Malhotra
- Cell and Developmental Biology Program, Center for Genomic Regulation (CRG), Barcelona, Spain Universitat Pompeu Fabra (UPF), Barcelona, Spain Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| |
Collapse
|
35
|
Cottam NP, Wilson KM, Ng BG, Körner C, Freeze HH, Ungar D. Dissecting functions of the conserved oligomeric Golgi tethering complex using a cell-free assay. Traffic 2013; 15:12-21. [PMID: 24102787 PMCID: PMC3892563 DOI: 10.1111/tra.12128] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2013] [Revised: 10/02/2013] [Accepted: 10/04/2013] [Indexed: 02/07/2023]
Abstract
Vesicle transport sorts proteins between compartments and is thereby responsible for generating the non-uniform protein distribution along the eukaryotic secretory and endocytic pathways. The mechanistic details of specific vesicle targeting are not yet well characterized at the molecular level. We have developed a cell-free assay that reconstitutes vesicle targeting utilizing the recycling of resident enzymes within the Golgi apparatus. The assay has physiological properties, and could be used to show that the two lobes of the conserved oligomeric Golgi tethering complex play antagonistic roles in trans-Golgi vesicle targeting. Moreover, we can show that the assay is sensitive to several different congenital defects that disrupt Golgi function and therefore cause glycosylation disorders. Consequently, this assay will allow mechanistic insight into the targeting step of vesicle transport at the Golgi, and could also be useful for characterizing some novel cases of congenital glycosylation disorders.
Collapse
|
36
|
Ispolatov I, Müsch A. A model for the self-organization of vesicular flux and protein distributions in the Golgi apparatus. PLoS Comput Biol 2013; 9:e1003125. [PMID: 23874173 PMCID: PMC3715413 DOI: 10.1371/journal.pcbi.1003125] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2013] [Accepted: 05/20/2013] [Indexed: 01/19/2023] Open
Abstract
The generation of two non-identical membrane compartments via exchange of vesicles is considered to require two types of vesicles specified by distinct cytosolic coats that selectively recruit cargo, and two membrane-bound SNARE pairs that specify fusion and differ in their affinities for each type of vesicles. The mammalian Golgi complex is composed of 6-8 non-identical cisternae that undergo gradual maturation and replacement yet features only two SNARE pairs. We present a model that explains how distinct composition of Golgi cisternae can be generated with two and even a single SNARE pair and one vesicle coat. A decay of active SNARE concentration in aging cisternae provides the seed for a cis[Formula: see text]trans SNARE gradient that generates the predominantly retrograde vesicle flux which further enhances the gradient. This flux in turn yields the observed inhomogeneous steady-state distribution of Golgi enzymes, which compete with each other and with the SNAREs for incorporation into transport vesicles. We show analytically that the steady state SNARE concentration decays exponentially with the cisterna number. Numerical solutions of rate equations reproduce the experimentally observed SNARE gradients, overlapping enzyme peaks in cis, medial and trans and the reported change in vesicle nature across the Golgi: Vesicles originating from younger cisternae mostly contain Golgi enzymes and SNAREs enriched in these cisternae and extensively recycle through the Endoplasmic Reticulum (ER), while the other subpopulation of vesicles contains Golgi proteins prevalent in older cisternae and hardly reaches the ER.
Collapse
Affiliation(s)
- Iaroslav Ispolatov
- Departamento de Física, Universidad de Santiago de Chile, Santiago, Chile.
| | | |
Collapse
|
37
|
Willett R, Ungar D, Lupashin V. The Golgi puppet master: COG complex at center stage of membrane trafficking interactions. Histochem Cell Biol 2013; 140:271-83. [PMID: 23839779 DOI: 10.1007/s00418-013-1117-6] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/18/2013] [Indexed: 11/26/2022]
Abstract
The central organelle within the secretory pathway is the Golgi apparatus, a collection of flattened membranes organized into stacks. The cisternal maturation model of intra-Golgi transport depicts Golgi cisternae that mature from cis to medial to trans by receiving resident proteins, such as glycosylation enzymes via retrograde vesicle-mediated recycling. The conserved oligomeric Golgi (COG) complex, a multi-subunit tethering complex of the complexes associated with tethering containing helical rods family, organizes vesicle targeting during intra-Golgi retrograde transport. The COG complex, both physically and functionally, interacts with all classes of molecules maintaining intra-Golgi trafficking, namely SNAREs, SNARE-interacting proteins, Rabs, coiled-coil tethers, vesicular coats, and molecular motors. In this report, we will review the current state of the COG interactome and analyze possible scenarios for the molecular mechanism of the COG orchestrated vesicle targeting, which plays a central role in maintaining glycosylation homeostasis in all eukaryotic cells.
Collapse
Affiliation(s)
- Rose Willett
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | | | | |
Collapse
|
38
|
Fukasawa M, Cornea A, Varlamov O. Selective control of SNARE recycling by Golgi retention. FEBS Lett 2013; 587:2377-84. [PMID: 23792244 DOI: 10.1016/j.febslet.2013.06.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 06/04/2013] [Accepted: 06/04/2013] [Indexed: 11/16/2022]
Abstract
Two distinct sets of soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNARE) catalyze membrane fusion in the cis-Golgi and trans-Golgi. The mechanism that controls Golgi localization of SNAREs remains largely unknown. Here we tested three potential mechanisms, including vesicle recycling between the Golgi and the endoplasmic reticulum, partitioning in Golgi lipid microdomains, and selective intra-Golgi retention. Recycling rates showed a linear relationship with intra-Golgi mobility of SNAREs. The cis-Golgi SNAREs had higher mobility than intra-Golgi SNAREs, whereas vesicle SNAREs had higher mobility than target membrane SNAREs. The differences in SNARE mobility were not due to preferential partitioning into detergent-resistant membrane microdomains. We propose that intra-Golgi retention precludes entropy-driven redistribution of SNAREs to the endoplasmic reticulum and endocytic compartments.
Collapse
Affiliation(s)
- Masayoshi Fukasawa
- Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, Tokyo, Japan
| | | | | |
Collapse
|
39
|
Fusella A, Micaroni M, Di Giandomenico D, Mironov AA, Beznoussenko GV. Segregation of the Qb-SNAREs GS27 and GS28 into Golgi vesicles regulates intra-Golgi transport. Traffic 2013; 14:568-84. [PMID: 23387339 DOI: 10.1111/tra.12055] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Revised: 01/31/2013] [Accepted: 02/06/2013] [Indexed: 12/18/2022]
Abstract
The Golgi apparatus is the main glycosylation and sorting station along the secretory pathway. Its structure includes the Golgi vesicles, which are depleted of anterograde cargo, and also of at least some Golgi-resident proteins. The role of Golgi vesicles remains unclear. Here, we show that Golgi vesicles are enriched in the Qb-SNAREs GS27 (membrin) and GS28 (GOS-28), and depleted of nucleotide sugar transporters. A block of intra-Golgi transport leads to accumulation of Golgi vesicles and partitioning of GS27 and GS28 into these vesicles. Conversely, active intra-Golgi transport induces fusion of these vesicles with the Golgi cisternae, delivering GS27 and GS28 to these cisternae. In an in vitro assay based on a donor compartment that lacks UDP-galactose translocase (a sugar transporter), the segregation of Golgi vesicles from isolated Golgi membranes inhibits intra-Golgi transport; re-addition of isolated Golgi vesicles devoid of UDP-galactose translocase obtained from normal cells restores intra-Golgi transport. We conclude that this activity is due to the presence of GS27 and GS28 in the Golgi vesicles, rather than the sugar transporter. Furthermore, there is an inverse correlation between the number of Golgi vesicles and the number of inter-cisternal connections under different experimental conditions. Finally, a rapid block of the formation of vesicles via COPI through degradation of ϵCOP accelerates the cis-to-trans delivery of VSVG. These data suggest that Golgi vesicles, presumably with COPI, serve to inhibit intra-Golgi transport by the extraction of GS27 and GS28 from the Golgi cisternae, which blocks the formation of inter-cisternal connections.
Collapse
Affiliation(s)
- Aurora Fusella
- Consorzio Mario Negri Sud, Via Nazionale 8, 66030, Santa Maria Imbaro (Chieti), Italy
| | | | | | | | | |
Collapse
|
40
|
Abstract
The Golgi complex is considered the central station of the secretory pathway where cargo proteins and lipids are properly modified, classified, packed into specific carriers and delivered to their final destinations. Early electron microscope studies showed the extraordinary structural complexity of this organelle. However, despite the large volume of incoming and outgoing traffic, it is able to maintain its architecture, although it is also flexible enough to adapt to the functional status of the cell. Many components of the molecular machinery involved in membrane traffic and other Golgi functions have been identified. However, some basic aspects of Golgi functioning remain unsolved. For instance, how cargo moves through the stack remains controversial and two classical models have been proposed: vesicular transport and cisternal maturation. Since neither of these models explains all the experimental data, a combination of these models as well as new models have been proposed. In this context, the specific role of the cisternae, vesicles and tubules needs to be clarified. In this review, we summarize our current knowledge of the Golgi organization and function, focusing on the mechanisms of intra-Golgi transport.
Collapse
|
41
|
Rendón WO, Martínez-Alonso E, Tomás M, Martínez-Martínez N, Martínez-Menárguez JA. Golgi fragmentation is Rab and SNARE dependent in cellular models of Parkinson’s disease. Histochem Cell Biol 2012; 139:671-84. [DOI: 10.1007/s00418-012-1059-4] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/17/2012] [Indexed: 10/27/2022]
|
42
|
Cottam NP, Ungar D. Retrograde vesicle transport in the Golgi. PROTOPLASMA 2012; 249:943-55. [PMID: 22160157 DOI: 10.1007/s00709-011-0361-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Accepted: 11/29/2011] [Indexed: 05/23/2023]
Abstract
The Golgi apparatus is the central sorting and biosynthesis hub of the secretory pathway, and uses vesicle transport for the recycling of its resident enzymes. This system must operate with high fidelity and efficiency for the correct modification of secretory glycoconjugates. In this review, we discuss recent advances on how coats, tethers, Rabs and SNAREs cooperate at the Golgi to achieve vesicle transport. We cover the well understood vesicle formation process orchestrated by the COPI coat, and the comprehensively documented fusion process governed by a set of Golgi localised SNAREs. Much less clear are the steps in-between formation and fusion of vesicles, and we therefore provide a much needed update of the latest findings about vesicle tethering. The interplay between Rab GTPases, golgin family coiled-coil tethers and the conserved oligomeric Golgi (COG) complex at the Golgi are thoroughly evaluated.
Collapse
Affiliation(s)
- Nathanael P Cottam
- Department of Biology (Area 9), University of York, Heslington, York, YO10 5DD, UK
| | | |
Collapse
|
43
|
Engel S, de Vries M, Herrmann A, Veit M. Mutation of a raft-targeting signal in the transmembrane region retards transport of influenza virus hemagglutinin through the Golgi. FEBS Lett 2012; 586:277-82. [PMID: 22245151 DOI: 10.1016/j.febslet.2012.01.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Revised: 01/02/2012] [Accepted: 01/03/2012] [Indexed: 12/31/2022]
Abstract
Inclusion of proteins into membrane-rafts favours interactions required for virus assembly but has also been proposed to facilitate vesicular transport of proteins. The hemagglutinin (HA) of influenza virus contains a raft-targeting sequence in the outer leaflet of its transmembrane region. We report that its mutation enhances co-localization of HA with a cis-Golgi marker and retards Golgi-localized processing, such as acquisition of Endo-H resistant carbohydrates and proteolytic cleavage. In contrast, trimerization of the molecule in the ER and transport to the apical membrane were not affected. The second signal for raft-targeting, S-acylation at cytoplasmic cysteines, did not retard HA transport.
Collapse
Affiliation(s)
- Stephanie Engel
- Immunology and Molecular Biology, Veterinary Medicine Faculty, Free University, Berlin, Germany
| | | | | | | |
Collapse
|
44
|
Abstract
A variety of secretory cargoes move through the Golgi, but the pathways and mechanisms of this traffic are still being debated. Here, we evaluate the strengths and weaknesses of five current models for Golgi traffic: (1) anterograde vesicular transport between stable compartments, (2) cisternal progression/maturation, (3) cisternal progression/maturation with heterotypic tubular transport, (4) rapid partitioning in a mixed Golgi, and (5) stable compartments as cisternal progenitors. Each model is assessed for its ability to explain a set of key observations encompassing multiple cell types. No single model can easily explain all of the observations from diverse organisms. However, we propose that cisternal progression/maturation is the best candidate for a conserved core mechanism of Golgi traffic, and that some cells elaborate this core mechanism by means of heterotypic tubular transport between cisternae.
Collapse
Affiliation(s)
- Benjamin S Glick
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, Illinois 60637, USA.
| | | |
Collapse
|
45
|
Abstract
Antero- and retrograde cargo transport through the Golgi requires a series of membrane fusion events. Fusion occurs at the cis- and trans-side and along the rims of the Golgi stack. Four functional SNARE complexes have been identified mediating lipid bilayer merger in the Golgi. Their function is tightly controlled by a series of reactions involving vesicle tethering and SM proteins. This network of protein interactions spatially and temporally determines the specificity of transport vesicle targeting and fusion within the Golgi.
Collapse
Affiliation(s)
- Jörg Malsam
- Heidelberg University Biochemistry Center, 69120 Heidelberg, Germany
| | | |
Collapse
|
46
|
Luo L, Hannemann M, Koenig S, Hegermann J, Ailion M, Cho MK, Sasidharan N, Zweckstetter M, Rensing SA, Eimer S. The Caenorhabditis elegans GARP complex contains the conserved Vps51 subunit and is required to maintain lysosomal morphology. Mol Biol Cell 2011; 22:2564-78. [PMID: 21613545 PMCID: PMC3135481 DOI: 10.1091/mbc.e10-06-0493] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Functional characterization of the Golgi-associated retrograde protein (GARP) complex in Caenorhabditis elegans has led to the identification of the conserved metazoan Vps51 subunit. It is found that GARP mutants lead to abnormal lysosomal morphology, GARP subunits interact with a distinct set of Golgi SNAREs, and GARP and GOG complexes show functional overlap. In yeast the Golgi-associated retrograde protein (GARP) complex is required for tethering of endosome-derived transport vesicles to the late Golgi. It consists of four subunits—Vps51p, Vps52p, Vps53p, and Vps54p—and shares similarities with other multimeric tethering complexes, such as the conserved oligomeric Golgi (COG) and the exocyst complex. Here we report the functional characterization of the GARP complex in the nematode Caenorhabditis elegans. Furthermore, we identified the C. elegans Vps51 subunit, which is conserved in all eukaryotes. GARP mutants are viable but show lysosomal defects. We show that GARP subunits bind specific sets of Golgi SNAREs within the yeast two-hybrid system. This suggests that the C. elegans GARP complex also facilitates tethering as well as SNARE complex assembly at the Golgi. The GARP and COG tethering complexes may have overlapping functions for retrograde endosome-to-Golgi retrieval, since loss of both complexes leads to a synthetic lethal phenotype.
Collapse
Affiliation(s)
- L Luo
- European Neuroscience Institute, 37077 Göttingen, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Ayong L, DaSilva T, Mauser J, Allen CM, Chakrabarti D. Evidence for prenylation-dependent targeting of a Ykt6 SNARE in Plasmodium falciparum. Mol Biochem Parasitol 2011; 175:162-8. [DOI: 10.1016/j.molbiopara.2010.11.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2010] [Revised: 11/01/2010] [Accepted: 11/05/2010] [Indexed: 10/18/2022]
|
48
|
Conserved molecular mechanisms underlying homeostasis of the Golgi complex. Int J Cell Biol 2010; 2010:758230. [PMID: 20976261 PMCID: PMC2952910 DOI: 10.1155/2010/758230] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2010] [Revised: 07/30/2010] [Accepted: 08/19/2010] [Indexed: 01/16/2023] Open
Abstract
The Golgi complex performs a central function in the secretory pathway in the sorting and sequential processing of a large number of proteins destined for other endomembrane organelles, the plasma membrane, or secretion from the cell, in addition to lipid metabolism and signaling. The Golgi apparatus can be regarded as a self-organizing system that maintains a relatively stable morphofunctional organization in the face of an enormous flux of lipids and proteins. A large number of the molecular players that operate in these processes have been identified, their functions and interactions defined, but there is still debate about many aspects that regulate protein trafficking and, in particular, the maintenance of these highly dynamic structures and processes. Here, we consider how an evolutionarily conserved underlying mechanism based on retrograde trafficking that uses lipids, COPI, SNAREs, and tethers could maintain such a homeodynamic system.
Collapse
|
49
|
Yen WL, Shintani T, Nair U, Cao Y, Richardson BC, Li Z, Hughson FM, Baba M, Klionsky DJ. The conserved oligomeric Golgi complex is involved in double-membrane vesicle formation during autophagy. ACTA ACUST UNITED AC 2010; 188:101-14. [PMID: 20065092 PMCID: PMC2812853 DOI: 10.1083/jcb.200904075] [Citation(s) in RCA: 156] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Macroautophagy is a catabolic pathway used for the turnover of long-lived proteins and organelles in eukaryotic cells. The morphological hallmark of this process is the formation of double-membrane autophagosomes that sequester cytoplasm. Autophagosome formation is the most complex part of macroautophagy, and it is a dynamic event that likely involves vesicle fusion to expand the initial sequestering membrane, the phagophore; however, essentially nothing is known about this process including the molecular components involved in vesicle tethering and fusion. In this study, we provide evidence that the subunits of the conserved oligomeric Golgi (COG) complex are required for double-membrane cytoplasm to vacuole targeting vesicle and autophagosome formation. COG subunits localized to the phagophore assembly site and interacted with Atg (autophagy related) proteins. In addition, mutations in the COG genes resulted in the mislocalization of Atg8 and Atg9, which are critical components involved in autophagosome formation.
Collapse
Affiliation(s)
- Wei-Lien Yen
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Suga K, Saito A, Tomiyama T, Mori H, Akagawa K. The Syntaxin 5 Isoforms Syx5 and Syx5L have Distinct Effects on the Processing of β-amyloid Precursor Protein. ACTA ACUST UNITED AC 2009; 146:905-15. [DOI: 10.1093/jb/mvp138] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|