1
|
The Transcriptional Regulator SpxA1 Influences the Morphology and Virulence of Listeria monocytogenes. Infect Immun 2022; 90:e0021122. [PMID: 36102657 PMCID: PMC9584327 DOI: 10.1128/iai.00211-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Listeria monocytogenes is a Gram-positive facultative anaerobe and an excellent model pathogen for investigating regulatory changes that occur during infection of a mammalian host. SpxA1 is a widely conserved transcriptional regulator that induces expression of peroxide-detoxifying genes in L. monocytogenes and is thus required for aerobic growth. SpxA1 is also required for L. monocytogenes virulence, although the SpxA1-dependent genes important in this context remain to be identified. Here, we sought to investigate the role of SpxA1 in a tissue culture model of infection and made the surprising discovery that ΔspxA1 cells are dramatically elongated during growth in the host cytosol. Quantitative microscopy revealed that ΔspxA1 cells also form elongated filaments extracellularly during early exponential phase in rich medium. Scanning and transmission electron microscopy analysis found that the likely cause of this morphological phenotype is aberrantly placed division septa localized outside cell midpoints. Quantitative mass spectrometry of whole-cell lysates identified SpxA1-dependent changes in protein abundance, including a significant number of motility and flagellar proteins that were depleted in the ΔspxA1 mutant. Accordingly, we found that both the filamentation and the lack of motility contributed to decreased phagocytosis of ΔspxA1 cells by macrophages. Overall, we identify a novel role for SpxA1 in regulating cell elongation and motility, both of which impact L. monocytogenes virulence.
Collapse
|
2
|
Hürtgen D, Vogel SK, Schwille P. Cytoskeletal and Actin-Based Polymerization Motors and Their Role in Minimal Cell Design. ACTA ACUST UNITED AC 2019; 3:e1800311. [PMID: 32648711 DOI: 10.1002/adbi.201800311] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 02/28/2019] [Indexed: 01/28/2023]
Abstract
Life implies motion. In cells, protein-based active molecular machines drive cell locomotion and intracellular transport, control cell shape, segregate genetic material, and split a cell in two parts. Key players among molecular machines driving these various cell functions are the cytoskeleton and motor proteins that convert chemical bound energy into mechanical work. Findings over the last decades in the field of in vitro reconstitutions of cytoskeletal and motor proteins have elucidated mechanistic details of these active protein systems. For example, a complex spatial and temporal interplay between the cytoskeleton and motor proteins is responsible for the translation of chemically bound energy into (directed) movement and force generation, which eventually governs the emergence of complex cellular functions. Understanding these mechanisms and the design principles of the cytoskeleton and motor proteins builds the basis for mimicking fundamental life processes. Here, a brief overview of actin, prokaryotic actin analogs, and motor proteins and their potential role in the design of a minimal cell from the bottom-up is provided.
Collapse
Affiliation(s)
- Daniel Hürtgen
- Department of Systems and Synthetic Microbiology, Max Planck Institute for Terrestrial Microbiology & LOEWE Center for Synthetic Microbiology (Synmikro), D-35043, Marburg, Germany
| | - Sven Kenjiro Vogel
- Department of Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry , Am Klopferspitz 18, D-82152, Martinsried, Germany
| | - Petra Schwille
- Department of Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry , Am Klopferspitz 18, D-82152, Martinsried, Germany
| |
Collapse
|
3
|
Satir P. Chirality of the cytoskeleton in the origins of cellular asymmetry. Philos Trans R Soc Lond B Biol Sci 2017; 371:rstb.2015.0408. [PMID: 27821520 DOI: 10.1098/rstb.2015.0408] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/15/2016] [Indexed: 02/06/2023] Open
Abstract
Self-assembly of two important components of the cytoskeleton of eukaryotic cells, actin microfilaments and microtubules (MTs) results in polar filaments of one chirality. As is true for bacterial flagella, in actin microfilaments, screw direction is important for assembly processes and motility. For MTs, polar orientation within the cell is paramount. The alignment of these elements in the cell cytoplasm gives rise to emergent properties, including the potential for cell differentiation and specialization. Complex MTs with a characteristic chirality are found in basal bodies and centrioles; this chirality is preserved in cilia. In motile cilia, it is reflected in the direction of the effective stroke. The positioning of the basal body or cilia on the cell surface depends on polarity proteins. In evolution, survival depends on global polarity information relayed to the cell in part by orientation of the MT and actin filament cytoskeletons and the chirality of the basal body to determine left and right coordinates within a defined anterior-posterior cell and tissue axis.This article is part of the themed issue 'Provocative questions in left-right asymmetry'.
Collapse
Affiliation(s)
- Peter Satir
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
4
|
Wen FL, Chen HY, Leung KT. Statistics of actin-propelled trajectories in noisy environments. Phys Rev E 2016; 93:062405. [PMID: 27415296 DOI: 10.1103/physreve.93.062405] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Indexed: 06/06/2023]
Abstract
Actin polymerization is ubiquitously utilized to power the locomotion of eukaryotic cells and pathogenic bacteria in living systems. Inevitably, actin polymerization and depolymerization proceed in a fluctuating environment that renders the locomotion stochastic. Previously, we have introduced a deterministic model that manages to reproduce actin-propelled trajectories in experiments, but not to address fluctuations around them. To remedy this, here we supplement the deterministic model with noise terms. It enables us to compute the effects of fluctuating actin density and forces on the trajectories. Specifically, the mean-squared displacement (MSD) of the trajectories is computed and found to show a super-ballistic scaling with an exponent 3 in the early stage, followed by a crossover to a normal, diffusive scaling of exponent 1 in the late stage. For open-end trajectories such as straights and S-shaped curves, the time of crossover matches the decay time of orientational order of the velocities along trajectories, suggesting that it is the spreading of velocities that leads to the crossover. We show that the super-ballistic scaling of MSD arises from the initial, linearly increasing correlation of velocities, before time translational symmetry is established. When the spreading of velocities reaches a steady state in the long-time limit, short-range correlation then yields a diffusive scaling in MSD. In contrast, close-loop trajectories like circles exhibit localized periodic motion, which inhibits spreading. The initial super-ballistic scaling of MSD arises from velocity correlation that both linearly increases and oscillates in time. Finally, we find that the above statistical features of the trajectories transcend the nature of noises, be it additive or multiplicative, and generalize to other self-propelled systems that are not necessarily actin based.
Collapse
Affiliation(s)
- Fu-Lai Wen
- Laboratory for Physical Biology, RIKEN Quantitative Biology Center, Kobe 650-0047, Japan
| | - Hsuan-Yi Chen
- Institute of Physics, Academia Sinica, Taipei 11529, Taiwan, R.O.C
- Department of Physics, National Central University, Taoyuan 32001, Taiwan, R.O.C
- Physics Division, National Center for Theoretical Sciences, Hsinchu 30013, Taiwan, R.O.C
| | - Kwan-Tai Leung
- Institute of Physics, Academia Sinica, Taipei 11529, Taiwan, R.O.C
- Department of Physics, National Central University, Taoyuan 32001, Taiwan, R.O.C
| |
Collapse
|
5
|
The cytoskeleton in cell-autonomous immunity: structural determinants of host defence. Nat Rev Immunol 2015; 15:559-73. [PMID: 26292640 DOI: 10.1038/nri3877] [Citation(s) in RCA: 125] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Host cells use antimicrobial proteins, pathogen-restrictive compartmentalization and cell death in their defence against intracellular pathogens. Recent work has revealed that four components of the cytoskeleton--actin, microtubules, intermediate filaments and septins, which are well known for their roles in cell division, shape and movement--have important functions in innate immunity and cellular self-defence. Investigations using cellular and animal models have shown that these cytoskeletal proteins are crucial for sensing bacteria and for mobilizing effector mechanisms to eliminate them. In this Review, we highlight the emerging roles of the cytoskeleton as a structural determinant of cell-autonomous host defence.
Collapse
|
6
|
Gou X, Yang H, Fahmy TM, Wang Y, Sun D. Direct measurement of cell protrusion force utilizing a robot-aided cell manipulation system with optical tweezers for cell migration control. Int J Rob Res 2014. [DOI: 10.1177/0278364914546536] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Cell migration refers to the directional cell movement in response to a chemoattractant gradient, a key process that occurs in a wide variety of biological phenomena. Cell protrusion force is generated by the actin polymerization of a cell, which drives the cell to move toward the stimulus as induced by the chemoattractant gradient. This paper presents a new methodology for the direct measurement of cell protrusion force utilizing a robot-aided optical tweezer system. The functionalized beads that are robotically trapped and placed near the cell serve as both cell migration stimulators and protrusion force probes. The force generated by the actin polymerization of the cell propels the bead to move away from the trapping center when the cell comes in contact with the bead. Such a deviation can be determined and used to calculate the trapping force, which is equal to the protrusion force at a balanced position. With the quantitative measurement of the protrusion, we find that the protrusion force of a live cell in response to a chemoattractant within the range of hundreds of piconewtons. We further probe the protrusion force distribution at the cell leading edge and find that the highest protrusion force appears at the cell migration direction. These measurements can help us characterize the mechanism of cell migration and lay a solid foundation for further proactive control of cell movement.
Collapse
Affiliation(s)
- Xue Gou
- Department of Mechanical and Biomedical Engineering, City University of Hong Kong, China
| | - Hao Yang
- Department of Mechanical and Biomedical Engineering, City University of Hong Kong, China
- Department of Automation, University of Science and Technology of China, China
| | - Tarek M Fahmy
- Department of Biomedical Engineering and Department of Chemical Engineering, Yale University, USA
| | - Yong Wang
- Department of Automation, University of Science and Technology of China, China
| | - Dong Sun
- Department of Mechanical and Biomedical Engineering, City University of Hong Kong, China
| |
Collapse
|
7
|
Abstract
A wide variety of cell biological and biomimetic systems use actin polymerization to drive motility. It has been suggested that an object such as a bacterium can propel itself by self-assembling a high concentration of actin behind it, if it is repelled by actin. However, it is also known that it is essential for the moving object to bind actin. Therefore, a key question is how the actin tail can propel an object when it both binds and repels the object. We present a physically consistent Brownian dynamics model for actin-based motility that includes the minimal components of the dendritic nucleation model and allows for both attractive and repulsive interactions between actin and a moveable disc. We find that the concentration gradient of filamentous actin generated by polymerization is sufficient to propel the object, even with moderately strong binding interactions. Additionally, actin binding can act as a biophysical cap, and may directly control motility through modulation of network growth. Overall, this mechanism is robust in that it can drive motility against a load up to a stall pressure that depends on the Young's modulus of the actin network and can explain several aspects of actin-based motility.
Collapse
Affiliation(s)
- Edward J Banigan
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | |
Collapse
|
8
|
Abstract
Assembly of appropriately oriented actin cables nucleated by formin proteins is necessary for many biological processes in diverse eukaryotes. However, compared with knowledge of how nucleation of dendritic actin filament arrays by the actin-related protein-2/3 complex is regulated, the in vivo regulatory mechanisms for actin cable formation are less clear. To gain insights into mechanisms for regulating actin cable assembly, we reconstituted the assembly process in vitro by introducing microspheres functionalized with the C terminus of the budding yeast formin Bni1 into extracts prepared from yeast cells at different cell-cycle stages. EM studies showed that unbranched actin filament bundles were reconstituted successfully in the yeast extracts. Only extracts enriched in the mitotic cyclin Clb2 were competent for actin cable assembly, and cyclin-dependent kinase 1 activity was indispensible. Cyclin-dependent kinase 1 activity also was found to regulate cable assembly in vivo. Here we present evidence that formin cell-cycle regulation is conserved in vertebrates. The use of the cable-reconstitution system to test roles for the key actin-binding proteins tropomyosin, capping protein, and cofilin provided important insights into assembly regulation. Furthermore, using mass spectrometry, we identified components of the actin cables formed in yeast extracts, providing the basis for comprehensive understanding of cable assembly and regulation.
Collapse
|
9
|
Smith DB, Liu J. Branching and capping determine the force-velocity relationships of branching actin networks. Phys Biol 2013; 10:016004. [PMID: 23358606 DOI: 10.1088/1478-3975/10/1/016004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A branching actin network is the major engine that drives cell motility. A measure of the effectiveness of an engine is the velocity the engine is able to produce at a given resistance-the force-velocity relationship. Concave force-velocity relationships consist of a force-insensitive region, indicative of an adaptive response. In contrast, convex force-velocity relationships would reflect a passive response. Even in in vitro experiments, branching actin networks can exhibit both concave and convex force-velocity curves. However, the exact mechanism that can explain both force-velocity curves is not yet known. We carried out an agent-based stochastic simulation to explore such a mechanism. We discovered an emergent behavior of a branching actin network: Upon resistance, it remodels itself by increasing the number of filaments growing in contact with the load. The remodeling is favored by branching events and limited by capping. The force-velocity relationship hinges on the relative time-scale between the intrinsic kinetics of the branching actin network and the loading. Shortly after encountering resistance (∼seconds), the force-velocity relationship of the actin network is always convex, as it does not have enough time to remodel itself. A concave force-velocity relationship requires network remodeling at longer time-scales (∼tens of seconds to minutes) and the faster branching event relative to capping. Furthermore, our model explains the observed hysteresis in the force-velocity relationship of actin networks. Our model thus establishes a unified mechanism that can account for both convex and concave force-velocity relationships observed in branching actin networks.
Collapse
Affiliation(s)
- Daniel B Smith
- National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | | |
Collapse
|
10
|
Menon M, Schafer DA. Dynamin: expanding its scope to the cytoskeleton. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2013; 302:187-219. [PMID: 23351711 DOI: 10.1016/b978-0-12-407699-0.00003-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The large GTPase dynamin is well known for its actions on budded cellular membranes to generate vesicles, most often, clathrin-coated endocytic vesicles. The scope of cellular processes in which dynamin-mediated vesicle formation occurs, has expanded to include secretory vesicle formation at the Golgi, from other endosomes and nonclathrin structures, such as caveolae, as well as membrane remodeling during exocytosis and vesicle fusion. An intriguing new facet of dynamin's sphere of influence is the cytoskeleton. Cytoskeletal filament networks maintain cell shape, provide cell movement, execute cell division and orchestrate vesicle trafficking. Recent evidence supports the hypothesis that dynamin influences actin filaments and microtubules via mechanisms that are independent of its membrane-remodeling activities. This chapter discusses this emerging evidence and considers possible mechanisms of action.
Collapse
Affiliation(s)
- Manisha Menon
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| | | |
Collapse
|
11
|
Abstract
Two theoretical models dominate current understanding of actin-based propulsion: microscopic polymerization ratchet model predicts that growing and writhing actin filaments generate forces and movements, while macroscopic elastic propulsion model suggests that deformation and stress of growing actin gel are responsible for the propulsion. We examine both experimentally and computationally the 2D movement of ellipsoidal beads propelled by actin tails and show that neither of the two models can explain the observed bistability of the orientation of the beads. To explain the data, we develop a 2D hybrid mesoscopic model by reconciling these two models such that individual actin filaments undergoing nucleation, elongation, attachment, detachment and capping are embedded into the boundary of a node-spring viscoelastic network representing the macroscopic actin gel. Stochastic simulations of this ‘in silico’ actin network show that the combined effects of the macroscopic elastic deformation and microscopic ratchets can explain the observed bistable orientation of the actin-propelled ellipsoidal beads. To test the theory further, we analyze observed distribution of the curvatures of the trajectories and show that the hybrid model's predictions fit the data. Finally, we demonstrate that the model can explain both concave-up and concave-down force-velocity relations for growing actin networks depending on the characteristic time scale and network recoil. To summarize, we propose that both microscopic polymerization ratchets and macroscopic stresses of the deformable actin network are responsible for the force and movement generation. There are two major ideas about how actin networks generate force against an obstacle: one is that the force comes directly from the elongation and bending of individual actin filaments against the surface of the obstacle; the other is that a growing actin gel can build up stress around the obstacle to squeeze it forward. Neither of the two models can explain why actin-propelled ellipsoidal beads move with equal bias toward long- and short-axes. We propose a hybrid model by combining those two ideas so that individual actin filaments are embedded into the boundary of a deformable actin gel. Simulations of this model show that the combined effects of pushing from individual filaments and squeezing from the actin network explain the observed bi-orientation of ellipsoidal beads as well as the curvature of trajectories of spherical beads and the force-velocity relation of actin networks.
Collapse
Affiliation(s)
| | - Alex Mogilner
- Department of Neurobiology, Physiology and Behavior and Department of Mathematics, University of California, Davis, Davis, California United States of America
- * E-mail:
| |
Collapse
|
12
|
Lacayo CI, Soneral PAG, Zhu J, Tsuchida MA, Footer MJ, Soo FS, Lu Y, Xia Y, Mogilner A, Theriot JA. Choosing orientation: influence of cargo geometry and ActA polarization on actin comet tails. Mol Biol Cell 2012; 23:614-29. [PMID: 22219381 PMCID: PMC3279390 DOI: 10.1091/mbc.e11-06-0584] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Revised: 11/15/2011] [Accepted: 12/21/2011] [Indexed: 11/16/2022] Open
Abstract
Networks of polymerizing actin filaments can propel intracellular pathogens and drive movement of artificial particles in reconstituted systems. While biochemical mechanisms activating actin network assembly have been well characterized, it remains unclear how particle geometry and large-scale force balance affect emergent properties of movement. We reconstituted actin-based motility using ellipsoidal beads resembling the geometry of Listeria monocytogenes. Beads coated uniformly with the L. monocytogenes ActA protein migrated equally well in either of two distinct orientations, with their long axes parallel or perpendicular to the direction of motion, while intermediate orientations were unstable. When beads were coated with a fluid lipid bilayer rendering ActA laterally mobile, beads predominantly migrated with their long axes parallel to the direction of motion, mimicking the orientation of motile L. monocytogenes. Generating an accurate biophysical model to account for our observations required the combination of elastic-propulsion and tethered-ratchet actin-polymerization theories. Our results indicate that the characteristic orientation of L. monocytogenes must be due to polarized ActA rather than intrinsic actin network forces. Furthermore, viscoelastic stresses, forces, and torques produced by individual actin filaments and lateral movement of molecular complexes must all be incorporated to correctly predict large-scale behavior in the actin-based movement of nonspherical particles.
Collapse
Affiliation(s)
- Catherine I. Lacayo
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305
| | - Paula A. G. Soneral
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305
| | - Jie Zhu
- Department of Neurobiology, Physiology and Behavior and Department of Mathematics, University of California, Davis, Davis, CA 95616
| | - Mark A. Tsuchida
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305
| | - Matthew J. Footer
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305
| | - Frederick S. Soo
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305
| | - Yu Lu
- Department of Materials Science and Engineering and Department of Chemistry, University of Washington, Seattle, WA 98195
| | - Younan Xia
- Department of Materials Science and Engineering and Department of Chemistry, University of Washington, Seattle, WA 98195
| | - Alexander Mogilner
- Department of Neurobiology, Physiology and Behavior and Department of Mathematics, University of California, Davis, Davis, CA 95616
| | - Julie A. Theriot
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305
| |
Collapse
|
13
|
Halpin D, Kalab P, Wang J, Weis K, Heald R. Mitotic spindle assembly around RCC1-coated beads in Xenopus egg extracts. PLoS Biol 2011; 9:e1001225. [PMID: 22215983 PMCID: PMC3246454 DOI: 10.1371/journal.pbio.1001225] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Accepted: 11/14/2011] [Indexed: 01/05/2023] Open
Abstract
Beads coated with the guanine nucleotide exchange factor RCC1 and a kinesin motor protein are sufficient to induce mitotic spindle assembly in Xenopus egg cytoplasm. During cell division the genetic material on chromosomes is distributed to daughter cells by a dynamic microtubule structure called the mitotic spindle. Here we establish a reconstitution system to assess the contribution of individual chromosome proteins to mitotic spindle formation around single 10 µm diameter porous glass beads in Xenopus egg extracts. We find that Regulator of Chromosome Condensation 1 (RCC1), the Guanine Nucleotide Exchange Factor (GEF) for the small GTPase Ran, can induce bipolar spindle formation. Remarkably, RCC1 beads oscillate within spindles from pole to pole, a behavior that could be converted to a more typical, stable association by the addition of a kinesin together with RCC1. These results identify two activities sufficient to mimic chromatin-mediated spindle assembly, and establish a foundation for future experiments to reconstitute spindle assembly entirely from purified components. The mitotic spindle is a bipolar structure that is responsible for separating the two sets of duplicated chromosomes in a dividing cell, thereby delivering one set to each of the two daughter cells. It is built from dynamic filaments called microtubules, as well as hundreds of other components that contribute to the organization and dynamics of the microtubules and to chromosome movement. To understand which proteins are essential for spindle formation and function, we would like to be able to build it from purified components. As a step towards this goal, we coupled individual proteins to inert glass beads (as a substitute for chromosomes), to determine what combination of proteins can induce spindle assembly in a complex cytoplasm derived from frog eggs. We found that a single enzyme called RCC1 is sufficient to activate a pathway that stabilizes and organizes microtubules into a bipolar structure around the bead, but that this bead then oscillated back and forth between the poles of the spindle. By coupling a microtubule-based motor protein together with RCC1 on the bead, we were able to balance the bead in the center of the spindle. Thus, two proteins immobilized on a bead can substitute for a chromosome and induce stable spindle formation.
Collapse
Affiliation(s)
- David Halpin
- Department of Molecular & Cell Biology, University of California–Berkeley, Berkeley, California, United States of America
| | - Petr Kalab
- Department of Molecular & Cell Biology, University of California–Berkeley, Berkeley, California, United States of America
| | - Jay Wang
- Department of Molecular & Cell Biology, University of California–Berkeley, Berkeley, California, United States of America
| | - Karsten Weis
- Department of Molecular & Cell Biology, University of California–Berkeley, Berkeley, California, United States of America
| | - Rebecca Heald
- Department of Molecular & Cell Biology, University of California–Berkeley, Berkeley, California, United States of America
- * E-mail:
| |
Collapse
|
14
|
ROMET-LEMONNE GUILLAUME, HELFER EMMANUELE, DELATOUR VINCENT, BUGYI BEATA, BOSCH MONTSERRAT, ROMERO STEPHANE, CARLIER MARIEFRANCE, SCHMIDT STEPHAN, FERY ANDREAS. BIOMIMETIC SYSTEMS SHED LIGHT ON ACTIN-BASED MOTILITY DOWN TO THE MOLECULAR SCALE. ACTA ACUST UNITED AC 2011. [DOI: 10.1142/s1793048009000909] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Cell motility, one of the modular activities of living cells, elicits the response of the cell to extra-cellular signals, to move directionally, feed, divide or transport materials. The combined actions of molecular motors and re-modeling of the cytoskeleton generate forces and movement. Here we describe mechanistic approaches of force and movement produced by site-directed assembly of actin filaments. The insight derived from a biochemical analysis of the protein machineries involved in "actin-based motile processes" like cell protrusions, invaginations, organelle propulsion, is used to build reconstituted assays that mimic cellular processes, using several protein machineries known to initiate filament assembly by different mechanisms. Reconstitution of complex self-organized systems presents a broad variety of interests. Reconstituting actin-based movement of a functionalized particle from a minimum number of pure proteins, first used to prove the general thermodynamic principles at work in motility, then was the basis for fully controlled physical measurements of forces produced by polymerization of actin against an obstacle and of the mechanical properties of the resulting polymer arrays. In addition, measurements at the mesoscopic scale (trajectories, velocity, polymer mechanics, fluorescence of specifically labeled components of the actin array, use of mutated proteins) can provide further insight into the molecular mechanisms underlying motility.
Collapse
Affiliation(s)
- GUILLAUME ROMET-LEMONNE
- Laboratoire d'Enzymologie et Biochimie Structurales, CNRS, avenue de la Terrasse, 91190 Gif-sur-Yvette, France
| | - EMMANUELE HELFER
- Laboratoire d'Enzymologie et Biochimie Structurales, CNRS, avenue de la Terrasse, 91190 Gif-sur-Yvette, France
| | - VINCENT DELATOUR
- Laboratoire d'Enzymologie et Biochimie Structurales, CNRS, avenue de la Terrasse, 91190 Gif-sur-Yvette, France
| | - BEATA BUGYI
- Laboratoire d'Enzymologie et Biochimie Structurales, CNRS, avenue de la Terrasse, 91190 Gif-sur-Yvette, France
| | - MONTSERRAT BOSCH
- Laboratoire d'Enzymologie et Biochimie Structurales, CNRS, avenue de la Terrasse, 91190 Gif-sur-Yvette, France
| | - STEPHANE ROMERO
- Laboratoire d'Enzymologie et Biochimie Structurales, CNRS, avenue de la Terrasse, 91190 Gif-sur-Yvette, France
| | - MARIE-FRANCE CARLIER
- Laboratoire d'Enzymologie et Biochimie Structurales, CNRS, avenue de la Terrasse, 91190 Gif-sur-Yvette, France
| | - STEPHAN SCHMIDT
- Department of Physical Chemistry II, University of Bayreuth, D-95440 Bayreuth, Germany
| | - ANDREAS FERY
- Department of Physical Chemistry II, University of Bayreuth, D-95440 Bayreuth, Germany
| |
Collapse
|
15
|
Wang S, Shen T, Wolynes PG. The interplay of nonlinearity and architecture in equilibrium cytoskeletal mechanics. J Chem Phys 2011; 134:014510. [DOI: 10.1063/1.3518450] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
16
|
Kang H, Perlmutter DS, Shenoy VB, Tang JX. Observation and kinematic description of long actin tracks induced by spherical beads. Biophys J 2010; 99:2793-802. [PMID: 21044576 PMCID: PMC2966028 DOI: 10.1016/j.bpj.2010.08.058] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2010] [Revised: 08/11/2010] [Accepted: 08/27/2010] [Indexed: 11/28/2022] Open
Abstract
We report an in vitro study comparing the growth of long actin tails induced by spherical beads coated with the verprolin central acidic domain of the polymerization enzyme N-WASP to that induced by Listeria monocytogenes in similar cellular extracts. The tracks behind the beads show characteristic differences in shape and curvature from those left by the bacteria, which have an elongated shape and a similar polymerization-inducing enzyme distributed only on the rear surface of the cell. The experimental tracks are simulated using a generalized kinematic model, which incorporates three modes of bead rotation with respect to the tail. The results show that the trajectories of spherical beads are mechanically deterministic rather than random, as suggested by stochastic models. Assessment of the bead rotation and its mechanistic basis offers insights into the biological function of actin-based motility.
Collapse
Affiliation(s)
- Hyeran Kang
- Department of Physics, Brown University, Providence, Rhode Island, USA
| | | | | | | |
Collapse
|
17
|
Schmidt S, Helfer E, Carlier MF, Fery A. Force generation of curved actin gels characterized by combined AFM-epifluorescence measurements. Biophys J 2010; 98:2246-53. [PMID: 20483333 PMCID: PMC2872261 DOI: 10.1016/j.bpj.2010.01.055] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2009] [Revised: 01/12/2010] [Accepted: 01/26/2010] [Indexed: 11/27/2022] Open
Abstract
Polymerization of actin into branched filaments is the driving force behind active migration of eukaryotic cells and motility of intracellular organelles. The site-directed assembly of a polarized branched array forms an expanding gel that generates the force that pushes the membrane. Here, we use atomic force microscopy to understand the relation between actin polymerization and the produced force. Functionalized spherical colloidal probes of varying size and curvature are attached to the atomic force microscopy cantilever and initiate the formation of a polarized actin gel in a solution mimicking the in vivo context. The gel growth is recorded by epifluorescence microscopy both against the cantilever and in the perpendicular (lateral) nonconstrained direction. In this configuration, the gel growth stops simultaneously in both directions at the stall force, which corresponds to a pressure of 0.15 nN/microm(2). The results show that the growth of the gel is limited laterally, in the absence of external force, by internal mechanical stresses resulting from a combination of the curved geometry and the molecular mechanism of site-directed assembly of a cohesive branched filament array.
Collapse
Affiliation(s)
- Stephan Schmidt
- Physikalische Chemie II, Universität Bayreuth, Bayreuth, Germany
- Interfaces Department, Max Planck Institute of Colloids and Interfaces, Potsdam-Golm, Germany
| | - Emmanuèle Helfer
- Laboratoire d'Enzymologie et Biochimie Structurales, Centre National de la Recherche Scientifque, Gif-sur-Yvette, France
| | - Marie-France Carlier
- Laboratoire d'Enzymologie et Biochimie Structurales, Centre National de la Recherche Scientifque, Gif-sur-Yvette, France
| | - Andreas Fery
- Physikalische Chemie II, Universität Bayreuth, Bayreuth, Germany
| |
Collapse
|
18
|
Achard V, Martiel JL, Michelot A, Guérin C, Reymann AC, Blanchoin L, Boujemaa-Paterski R. A “Primer”-Based Mechanism Underlies Branched Actin Filament Network Formation and Motility. Curr Biol 2010; 20:423-8. [DOI: 10.1016/j.cub.2009.12.056] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2009] [Revised: 12/22/2009] [Accepted: 12/23/2009] [Indexed: 10/19/2022]
|
19
|
Lee KC, Liu AJ. Force-velocity relation for actin-polymerization-driven motility from Brownian dynamics simulations. Biophys J 2009; 97:1295-304. [PMID: 19720017 DOI: 10.1016/j.bpj.2009.06.014] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2009] [Revised: 06/03/2009] [Accepted: 06/05/2009] [Indexed: 11/17/2022] Open
Abstract
We report numerical simulation results for the force-velocity relation for actin-polymerization-driven motility. We use Brownian dynamics to solve a physically consistent formulation of the dendritic nucleation model with semiflexible filaments that self-assemble and push a disk. We find that at small loads, the disk speed is independent of load, whereas at high loads, the speed decreases and vanishes at a characteristic stall pressure. Our results demonstrate that at small loads, the velocity is controlled by the reaction rates, whereas at high loads the stall pressure is determined by the mechanical properties of the branched actin network. The behavior is consistent with experiments and with our recently proposed self-diffusiophoretic mechanism for actin-polymerization-driven motility. New in vitro experiments to measure the force-velocity relation are proposed.
Collapse
Affiliation(s)
- Kun-Chun Lee
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, California, USA
| | | |
Collapse
|
20
|
Dayel MJ, Akin O, Landeryou M, Risca V, Mogilner A, Mullins RD. In silico reconstitution of actin-based symmetry breaking and motility. PLoS Biol 2009; 7:e1000201. [PMID: 19771152 PMCID: PMC2738636 DOI: 10.1371/journal.pbio.1000201] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2008] [Accepted: 08/12/2009] [Indexed: 11/19/2022] Open
Abstract
Computational modeling and experimentation in a model system for actin-based force generation explain how actin networks initiate and maintain directional movement. Eukaryotic cells assemble viscoelastic networks of crosslinked actin filaments to control their shape, mechanical properties, and motility. One important class of actin network is nucleated by the Arp2/3 complex and drives both membrane protrusion at the leading edge of motile cells and intracellular motility of pathogens such as Listeria monocytogenes. These networks can be reconstituted in vitro from purified components to drive the motility of spherical micron-sized beads. An Elastic Gel model has been successful in explaining how these networks break symmetry, but how they produce directed motile force has been less clear. We have combined numerical simulations with in vitro experiments to reconstitute the behavior of these motile actin networks in silico using an Accumulative Particle-Spring (APS) model that builds on the Elastic Gel model, and demonstrates simple intuitive mechanisms for both symmetry breaking and sustained motility. The APS model explains observed transitions between smooth and pulsatile motion as well as subtle variations in network architecture caused by differences in geometry and conditions. Our findings also explain sideways symmetry breaking and motility of elongated beads, and show that elastic recoil, though important for symmetry breaking and pulsatile motion, is not necessary for smooth directional motility. The APS model demonstrates how a small number of viscoelastic network parameters and construction rules suffice to recapture the complex behavior of motile actin networks. The fact that the model not only mirrors our in vitro observations, but also makes novel predictions that we confirm by experiment, suggests that the model captures much of the essence of actin-based motility in this system. Networks of actin filaments provide the force that drives eukaryotic cell movement. In a model system for this kind of force generation, a spherical bead coated with an actin nucleating protein builds and rockets around on an actin “comet tail,” much like the tails observed in some cellular systems. How does a spherically symmetric bead break the symmetry of the actin coat and begin to polymerize actin in a directional manner? A previous theoretical model successfully explained how symmetry breaks, but suggested that the subsequent motion was driven by actin squeezing the bead forwards—a prediction refuted by experiment. To understand how motility occurs, we created a parsimonious computer model that predicted novel experimental behaviors, then performed new experiments inspired by the model and confirmed these predictions. Our model demonstrates how the elastic properties of the actin network explain not only symmetry breaking, but also the details of subsequent motion and how the bead maintains direction.
Collapse
Affiliation(s)
- Mark J Dayel
- Miller Institute for Basic Research in Science, University of California Berkeley, Berkeley, California, USA.
| | | | | | | | | | | |
Collapse
|
21
|
Abstract
Cells make use of dynamic internal structures to control shape and create movement. By consuming energy to assemble into highly organized systems of interacting parts, these structures can generate force and resist compression, as well as adaptively change in response to their environment. Recent progress in reconstituting cytoskeletal structures in vitro has provided an opportunity to characterize the mechanics and dynamics of filament networks formed from purified proteins. Results indicate that a complex interplay between length scales and timescales underlies the mechanical responses of these systems and that energy consumption, as manifested in molecular motor activity and cytoskeletal filament growth, can drive transitions between distinct material states. This review discusses the basic characteristics of these active biological materials that set them apart from conventional materials and that create a rich array of unique behaviors.
Collapse
Affiliation(s)
- Daniel A Fletcher
- Department of Bioengineering, University of California, Berkeley, California 94720, USA.
| | | |
Collapse
|
22
|
Ng CP, Goodman TT, Park IK, Pun SH. Bio-mimetic surface engineering of plasmid-loaded nanoparticles for active intracellular trafficking by actin comet-tail motility. Biomaterials 2008; 30:951-8. [PMID: 19046764 DOI: 10.1016/j.biomaterials.2008.10.059] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2008] [Accepted: 10/21/2008] [Indexed: 10/21/2022]
Abstract
Intracellular transport after endosomal escape presents one of the major barriers for efficient non-viral gene delivery because plasmid DNA and synthetic nanoparticulate carriers suffer from significantly restricted diffusion in the cytoplasm. We postulate that forces generated by actin polymerization, a mechanism used by several bacterial pathogens such as Listeria monocytogenes, can be harnessed to propel nanoparticles within the cytoplasm and thereby overcome diffusional limitations associated with gene transport in the cell cytoplasm. In this work, we synthesized and characterized plasmid DNA-containing nanoparticles modified with ActA protein, the single protein in L. monocytogenes responsible for activating actin polymerization and initiating actin comet-tail propulsion. The motility of the ActA-modified nanoparticles was assessed in Xenopus laevis cytoplasmic extract supplemented with fluorescently labeled actin. Nanoparticle motility was monitored using multi-color, time-lapse fluorescence microscopy for the formation of actin comet tails attached to the fluorescently labeled vehicle. We observed particle motility with velocities approximately 0.06 microm/s with anionic-charged plasmid carriers formed from either poly(lactic-co-glycolic acid) (PLGA) or 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) liposomes, but interestingly not with cationic particles assembled by encapsulation of plasmid with either polyethylenimine (PEI) or 1,2-dioleoyl-3-trimethylammonium-propane/1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOTAP/DOPE) lipids. Control particles coated with albumin instead of ActA also showed no motility. Taken together, we have demonstrated the feasibility of translating the comet-tail propulsion mechanism to synthetic drug carriers as a potential approach to overcome intracellular transport barriers, and also have identified appropriate gene delivery systems that can be employed for this mechanism.
Collapse
Affiliation(s)
- Chee Ping Ng
- Department of Bioengineering, University of Washington, Seattle, Washington 98195, USA
| | | | | | | |
Collapse
|
23
|
Abstract
We present the first numerical simulation of actin-driven propulsion by elastic filaments. Specifically, we use a Brownian dynamics formulation of the dendritic nucleation model of actin-driven propulsion. We show that the model leads to a self-assembled network that exerts forces on a disk and pushes it with an average speed. This simulation approach is the first to observe a speed that varies nonmonotonically with the concentration of branching proteins (Arp2/3), capping protein, and depolymerization rate, in accord with experimental observations. Our results suggest a new interpretation of the origin of motility. When we estimate the speed that this mechanism would produce in a system with realistic rate constants and concentrations as well as fluid flow, we obtain a value that is within an order-of-magnitude of the polymerization speed deduced from experiments.
Collapse
|
24
|
Footer MJ, Lyo JK, Theriot JA. Close packing of Listeria monocytogenes ActA, a natively unfolded protein, enhances F-actin assembly without dimerization. J Biol Chem 2008; 283:23852-62. [PMID: 18577520 DOI: 10.1074/jbc.m803448200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Studies of the biochemistry of Listeria monocytogenes virulence protein ActA have typically focused on the behavior of bacteria in complex systems or on the characterization of the protein after expression and purification. Although prior in vivo work has proposed that ActA forms dimers on the surface of L. monocytogenes, dimerization has not been demonstrated in vitro, and little consideration has been given to the surface environment where ActA performs its pivotal role in bacterial actin-based motility. We have synthesized and characterized an ActA dimer and provide evidence that the two ActA molecules do not interact with each other even when tethered together. However, we also demonstrate that artificial dimers provide superior activation of actin nucleation by the Arp2/3 complex compared with monomers and that increased activation of the Arp2/3 complex by dimers may be a general property of Arp2/3 activators. It appears that the close packing ( approximately 19 nm) of ActA molecules on the surface of L. monocytogenes is so dense that the kinetics of actin nucleation mimic that of synthetic ActA dimers. We also present observations indicating that ActA is a natively unfolded protein, largely random coil that is responsible for many of the unique physical properties of ActA including its extended structure, aberrant mobility during SDS-PAGE, and ability to resist irreversible denaturation upon heating.
Collapse
Affiliation(s)
- Matthew J Footer
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | | | | |
Collapse
|
25
|
Akin O, Mullins RD. Capping protein increases the rate of actin-based motility by promoting filament nucleation by the Arp2/3 complex. Cell 2008; 133:841-51. [PMID: 18510928 DOI: 10.1016/j.cell.2008.04.011] [Citation(s) in RCA: 196] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2007] [Revised: 02/05/2008] [Accepted: 04/01/2008] [Indexed: 10/22/2022]
Abstract
Capping protein (CP) is an integral component of Arp2/3-nucleated actin networks that drive amoeboid motility. Increasing the concentration of capping protein, which caps barbed ends of actin filaments and prevents elongation, increases the rate of actin-based motility in vivo and in vitro. We studied the synergy between CP and Arp2/3 using an in vitro actin-based motility system reconstituted from purified proteins. We find that capping protein increases the rate of motility by promoting more frequent filament nucleation by the Arp2/3 complex and not by increasing the rate of filament elongation as previously suggested. One consequence of this coupling between capping and nucleation is that, while the rate of motility depends strongly on the concentration of CP and Arp2/3, the net rate of actin assembly is insensitive to changes in either factor. By reorganizing their architecture, dendritic actin networks harness the same assembly kinetics to drive different rates of motility.
Collapse
Affiliation(s)
- Orkun Akin
- Department of Cellular and Molecular Pharmacology, School of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | | |
Collapse
|
26
|
Abstract
Intracellular pathogens such as Listeria monocytogenes and Rickettsia rickettsii move within a host cell by polymerizing a comet-tail of actin fibers that ultimately pushes the cell forward. This dense network of cross-linked actin polymers typically exhibits a striking curvature that causes bacteria to move in gently looping paths. Theoretically, tail curvature has been linked to details of motility by considering force and torque balances from a finite number of polymerizing filaments. Here we track beads coated with a prokaryotic activator of actin polymerization in three dimensions to directly quantify the curvature and torsion of bead motility paths. We find that bead paths are more likely to have low rather than high curvature at any given time. Furthermore, path curvature changes very slowly in time, with an autocorrelation decay time of 200 s. Paths with a small radius of curvature, therefore, remain so for an extended period resulting in loops when confined to two dimensions. When allowed to explore a three-dimensional (3D) space, path loops are less evident. Finally, we quantify the torsion in the bead paths and show that beads do not exhibit a significant left- or right-handed bias to their motion in 3D. These results suggest that paths of actin-propelled objects may be attributed to slow changes in curvature, possibly associated with filament debranching, rather than a fixed torque.
Collapse
Affiliation(s)
- Joshua W Shaevitz
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, USA.
| | | |
Collapse
|
27
|
Non-Gaussian curvature distribution of actin-propelled biomimetic colloid trajectories. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2008; 37:1361-6. [DOI: 10.1007/s00249-008-0340-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2008] [Revised: 04/18/2008] [Accepted: 04/18/2008] [Indexed: 10/22/2022]
|
28
|
Abstract
The growth of actin filament networks is a fundamental biological process that drives a variety of cellular and intracellular motions. During motility, eukaryotic cells and intracellular pathogens are propelled by actin networks organized by nucleation-promoting factors that trigger the formation of nascent filaments off the side of existing filaments in the network. A Brownian ratchet (BR) mechanism has been proposed to couple actin polymerization to cellular movements, whereby thermal motions are rectified by the addition of actin monomers at the end of growing filaments. Here, by following actin-propelled microspheres using three-dimensional laser tracking, we find that beads adhered to the growing network move via an object-fluctuating BR. Velocity varies with the amplitude of thermal fluctuation and inversely with viscosity as predicted for a BR. In addition, motion is saltatory with a broad distribution of step sizes that is correlated in time. These data point to a model in which thermal fluctuations of the microsphere or entire actin network, and not individual filaments, govern motility. This conclusion is supported by Monte Carlo simulations of an adhesion-based BR and suggests an important role for membrane tension in the control of actin-based cellular protrusions.
Collapse
Affiliation(s)
- Joshua W. Shaevitz
- Departments of *Integrative Biology and
- To whom correspondence may be sent at the present address:
Department of Physics and Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544. E-mail:
| | - Daniel A. Fletcher
- Bioengineering, University of California, Berkeley, CA 94720
- To whom correspondence may be addressed. E-mail:
| |
Collapse
|
29
|
Peruani F, Morelli LG. Self-propelled particles with fluctuating speed and direction of motion in two dimensions. PHYSICAL REVIEW LETTERS 2007; 99:010602. [PMID: 17678144 DOI: 10.1103/physrevlett.99.010602] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2006] [Indexed: 05/16/2023]
Abstract
We study general aspects of active motion with fluctuations in the speed and the direction of motion in two dimensions. We consider the case in which fluctuations in the speed are not correlated to fluctuations in the direction of motion, and assume that both processes can be described by independent characteristic time scales. We show the occurrence of a complex transient that can exhibit a series of alternating regimes of motion, for two different angular dynamics which correspond to persistent and directed random walks. We also show additive corrections to the diffusion coefficient. The characteristic time scales are also exposed in the velocity autocorrelation, which is a sum of exponential forms.
Collapse
Affiliation(s)
- Fernando Peruani
- Max Planck Institute for the Physics of Complex Systems, Dresden, Germany.
| | | |
Collapse
|
30
|
Footer MJ, Kerssemakers JWJ, Theriot JA, Dogterom M. Direct measurement of force generation by actin filament polymerization using an optical trap. Proc Natl Acad Sci U S A 2007; 104:2181-6. [PMID: 17277076 PMCID: PMC1892916 DOI: 10.1073/pnas.0607052104] [Citation(s) in RCA: 249] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2006] [Accepted: 11/09/2006] [Indexed: 11/18/2022] Open
Abstract
Actin filament polymerization generates force for protrusion of the leading edge in motile cells. In protrusive structures, multiple actin filaments are arranged in cross-linked webs (as in lamellipodia or pseudopodia) or parallel bundles (as in filopodia). We have used an optical trap to directly measure the forces generated by elongation of a few parallel-growing actin filaments brought into apposition with a rigid barrier, mimicking the geometry of filopodial protrusion. We find that the growth of approximately eight actin parallel-growing filaments can be stalled by relatively small applied load forces on the order of 1 pN, consistent with the theoretical load required to stall the elongation of a single filament under our conditions. Indeed, large length fluctuations during the stall phase indicate that only the longest actin filament in the bundle is in contact with the barrier at any given time. These results suggest that force generation by small actin bundles is limited by a dynamic instability of single actin filaments, and therefore living cells must use actin-associated factors to suppress this instability to generate substantial forces by elongation of parallel bundles of actin filaments.
Collapse
Affiliation(s)
- Matthew J Footer
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | | | | | | |
Collapse
|
31
|
Zhu J, Carlsson AE. Growth of attached actin filaments. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2006; 21:209-222. [PMID: 17186161 DOI: 10.1140/epje/i2006-10061-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2006] [Accepted: 11/28/2006] [Indexed: 05/13/2023]
Abstract
In several studies of actin-based cellular motility, the barbed ends of actin filaments have been observed to be attached to moving obstacles. Filament growth in the presence of such filament-obstacle interactions is studied via Brownian dynamics simulations of a three-dimensional energy-based model. We find that with a binding energy greater than 24k B T and a highly directional force field, a single actin filament is able to push a small obstacle for over a second at a speed of half of the free filament elongation rate. These results are consistent with experimental observations of plastic beads in cell extracts. Calculations of an external force acting on a single-filament-pushed obstacle show that for typical in vitro free-actin concentrations, a 3pN pulling force maximizes the obstacle speed, while a 4pN pushing force almost stops the obstacle. Extension of the model to treat beads propelled by many filaments suggests that most of the propulsive force could be generated by attached filaments.
Collapse
Affiliation(s)
- J Zhu
- Department of Physics, Washington University, St. Louis, MO 63130, USA.
| | | |
Collapse
|
32
|
Leshansky AM. Actin-based propulsion of a microswimmer. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2006; 74:012901. [PMID: 16907142 DOI: 10.1103/physreve.74.012901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2006] [Indexed: 05/11/2023]
Abstract
A simple hydrodynamic model of actin-based propulsion of microparticles in dilute cell-free cytoplasmic extracts is presented. Under the basic assumption that actin polymerization at the particle surface acts as a force dipole, pushing apart the load and the free (nonanchored) actin tail, the propulsive velocity of the microparticle is determined as a function of the tail length, porosity, and particle shape. The anticipated velocities of the cargo displacement and the rearward motion of the tail are in good agreement with recently reported results of biomimetic experiments. A more detailed analysis of the particle-tail hydrodynamic interaction is presented and compared to the prediction of the simplified model.
Collapse
Affiliation(s)
- A M Leshansky
- Department of Chemical Engineering, Technion-IIT, Haifa, 32000, Israel.
| |
Collapse
|
33
|
Abstract
Actin-based protrusion is the first step in cell crawling. In the last two decades, the studies of actin networks in the lamellipodium and Listeria's comet tail advanced so far that the last goal of the reductionist agenda - reconstitution of protrusion from purified components in vitro and in silico - became viable. Earlier models dealt with growth of and force generation by a single actin filament. Modern models of tethered ratchet, autocatalytic branching, end-tracking motor action and elastic- and nano- propulsion have recently helped to elucidate dynamics and forces in complex actin networks. By considering these models, their limitations and their relationships to recent biophysical data, progress is being made toward a unified model of protrusion.
Collapse
Affiliation(s)
- Alex Mogilner
- Department of Mathematics and Center for Genetics and Development, University of California, Davis, California 95616, USA.
| |
Collapse
|
34
|
Soo FS, Theriot JA. Adhesion controls bacterial actin polymerization-based movement. Proc Natl Acad Sci U S A 2005; 102:16233-8. [PMID: 16251274 PMCID: PMC1283440 DOI: 10.1073/pnas.0507022102] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
As part of its infectious life cycle, the bacterial pathogen Listeria monocytogenes propels itself through the host-cell cytoplasm by triggering the polymerization of host-cell actin near the bacterial surface, harnessing the activity of several cytoskeletal proteins used during actin-based cell crawling. To distinguish among several classes of biophysical models of actin-based bacterial movement, we used a high-throughput tracking technique to record the movement of many individual bacteria during temperature shifts. The speed of each bacterium varied strongly with temperature, closely following the Arrhenius rate law. Among bacteria, the prefactor A of the Arrhenius dependence unexpectedly varied exponentially with apparent activation energy, E(a), over a wide range (8-21 kcal/mol), reminiscent of the "rate compensation effect" of classical catalytic reactions. Average E(a) were increased for mutant bacteria deficient in binding Ena/VASP proteins and bacteria moving in diluted extract. These two effects were additive. The observed temperature and rate compensation effects are consistent with a class of simple kinetic models in which the bacterium advances through the thermally driven, cooperative breakage of groups of adhesive bonds on its surface. The estimated number of coupled adhesive bonds N on the bacterial surface varies between 10 and 40 bonds. In contrast to other models, this model correctly predicts an experimentally observed negative correlation between bacterial speed and actin gel density. The idea that speed depends on adhesion, rather than polymerization, suggests several alternative mechanisms by which known cytoskeletal regulatory proteins could control cellular movement.
Collapse
Affiliation(s)
- Frederick S Soo
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98105, USA.
| | | |
Collapse
|
35
|
Lee A, Lee HY, Kardar M. Symmetry-breaking motility. PHYSICAL REVIEW LETTERS 2005; 95:138101. [PMID: 16197183 DOI: 10.1103/physrevlett.95.138101] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2004] [Indexed: 05/04/2023]
Abstract
Locomotion of bacteria by actin polymerization and in vitro motion of spherical beads coated with a protein catalyzing polymerization are examples of active motility. Starting from a simple model of forces locally normal to the surface of a bead, we construct a phenomenological equation for its motion. The singularities at a continuous transition between moving and stationary beads are shown to be related to the symmetries of its shape. Universal features of the phase behavior are calculated analytically and confirmed by simulations. Fluctuations in velocity are shown to be generically non-Maxwellian and correlated to the shape of the bead.
Collapse
Affiliation(s)
- Allen Lee
- Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | |
Collapse
|
36
|
Rafelski SM, Theriot JA. Bacterial shape and ActA distribution affect initiation of Listeria monocytogenes actin-based motility. Biophys J 2005; 89:2146-58. [PMID: 15980176 PMCID: PMC1366716 DOI: 10.1529/biophysj.105.061168] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2005] [Accepted: 06/16/2005] [Indexed: 11/18/2022] Open
Abstract
We have examined the process by which the intracellular bacterial pathogen Listeria monocytogenes initiates actin-based motility and determined the contribution of the variable surface distribution of the ActA protein to initiation and steady-state movement. To directly correlate ActA distributions to actin dynamics and motility of live bacteria, ActA was fused to a monomeric red fluorescent protein (mRFP1). Actin comet tail formation and steady-state bacterial movement rates both depended on ActA distribution, which in turn was tightly coupled to the bacterial cell cycle. Motility initiation was found to be a highly complex, multistep process for bacteria, in contrast to the simple symmetry breaking previously observed for ActA-coated spherical beads. F-actin initially accumulated along the sides of the bacterium and then slowly migrated to the bacterial pole expressing the highest density of ActA as a tail formed. Early movement was highly unstable with extreme changes in speed and frequent stops. Over time, saltatory motility and sensitivity to the immediate environment decreased as bacterial movement became robust at a constant steady-state speed.
Collapse
Affiliation(s)
- Susanne M Rafelski
- Department of Biochemistry, Stanford University Medical Center, Stanford, California 94305-5307, USA
| | | |
Collapse
|
37
|
Bernheim-Groswasser A, Prost J, Sykes C. Mechanism of actin-based motility: a dynamic state diagram. Biophys J 2005; 89:1411-9. [PMID: 15923234 PMCID: PMC1366625 DOI: 10.1529/biophysj.104.055822] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2004] [Accepted: 05/17/2005] [Indexed: 11/18/2022] Open
Abstract
Cells move by a dynamical reorganization of their cytoskeleton, orchestrated by a cascade of biochemical reactions directed to the membrane. Designed objects or bacteria can hijack this machinery to undergo actin-based propulsion inside cells or in a cell-like medium. These objects can explore the dynamical regimes of actin-based propulsion, and display different regimes of motion, in a continuous or periodic fashion. We show that bead movement can switch from one regime to the other, by changing the size of the beads or the surface concentration of the protein activating actin polymerization. We experimentally obtain the state diagram of the bead dynamics, in which the transitions between the different regimes can be understood by a theoretical approach based on an elastic force opposing a friction force. Moreover, the experimental characteristics of the movement, such as the velocity and the characteristic times of the periodic movement, are predicted by our theoretical analysis.
Collapse
|
38
|
Soo FS, Theriot JA. Large-scale quantitative analysis of sources of variation in the actin polymerization-based movement of Listeria monocytogenes. Biophys J 2005; 89:703-23. [PMID: 15879472 PMCID: PMC1366568 DOI: 10.1529/biophysj.104.051219] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2004] [Accepted: 04/25/2005] [Indexed: 11/18/2022] Open
Abstract
During the actin polymerization-based movement of Listeria monocytogenes, individual bacteria are rapidly propelled through the host cell cytoplasm by the growth of a filamentous actin tail. The rate of propulsion varies significantly among individuals and over time. To study this variation, we used a high-throughput tracking technique to record the movement of a large number (approximately 7900) of bacteria in Xenopus frog egg extract. Most bacteria (70%) appeared to maintain an individual characteristic speed over several minutes, suggesting that the major source of variation in average speed is intrinsic to the bacterium. Thirty percent of bacteria had significant changes in speed over time spans of a few minutes, including 17% that appeared to collide with obstacles and 13% that moved with a significant periodic component. For the latter, the peak frequency was proportional to speed, suggesting a mechanism with a fixed spatial scale of approximately 0.6 bacterial length. Near the rear of the bacterium, temporal fluctuations in actin density were positively correlated with fluctuations in speed, whereas near the front the correlation was negative. A comparison of the performance of linear models that predict motion given actin density suggests that the mechanism has a history of 5-10 s, and that fluctuations in actin density near the front of the bacteria contain more predictive information than the rear. Our results are consistent with physical models where bacterial speed is governed by the rate of dissociation of bonds between the bacterial surface and the actin tail, and individual variation is determined by long-lived intrinsic variability in bacterial surface properties.
Collapse
Affiliation(s)
- Frederick S Soo
- Department of Physiology and Biophysics, University of Washington, Seattle, Washington, USA.
| | | |
Collapse
|
39
|
Balter A, Tang JX. Hydrodynamic stability of helical growth at low Reynolds number. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2005; 71:051912. [PMID: 16089576 DOI: 10.1103/physreve.71.051912] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2004] [Indexed: 05/03/2023]
Abstract
A cylindrical object growing at a low Reynolds number can spontaneously develop a helical shape. We have studied this phenomenon numerically, and our results may shed some light on the spontaneous formation of helical tails of a dense protein network observed in experiments on actin based motility. We also identify an unstable critical pitch angle which separates helices that straighten into rods from helices that flatten into planar curves as they grow. At the critical angle the pitch angle remains constant, whereas both helical diameter and pitch increase with the helical contour length.
Collapse
Affiliation(s)
- Ariel Balter
- Department of Physics, Indiana University, Bloomington, IN 47405, USA
| | | |
Collapse
|
40
|
Yam PT, Theriot JA. Repeated cycles of rapid actin assembly and disassembly on epithelial cell phagosomes. Mol Biol Cell 2004; 15:5647-58. [PMID: 15456901 PMCID: PMC532043 DOI: 10.1091/mbc.e04-06-0509] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2004] [Revised: 09/17/2004] [Accepted: 09/20/2004] [Indexed: 11/11/2022] Open
Abstract
We have found that early in infection of the intracellular pathogen Listeria monocytogenes in Madin-Darby canine kidney epithelial cells expressing actin conjugated to green fluorescent protein, F-actin rapidly assembles (approximately 25 s) and disassembles (approximately 30 s) around the bacteria, a phenomenon we call flashing. L. monocytogenes strains unable to perform actin-based motility or unable to escape the phagosome were capable of flashing, suggesting that the actin assembly occurs on the phagosome membrane. Cycles of actin assembly and disassembly could occur repeatedly on the same phagosome. Indirect immunofluorescence showed that most bacteria were fully internalized when flashing occurred, suggesting that actin flashing does not represent phagocytosis. Escherichia coli expressing invA, a gene product from Yersinia pseudotuberculosis that mediates cellular invasion, also induced flashing. Furthermore, polystyrene beads coated with E-cadherin or transferrin also induced flashing after internalization. This suggests that flashing occurs downstream of several distinct molecular entry mechanisms and may be a general consequence of internalization of large objects by epithelial cells.
Collapse
Affiliation(s)
- Patricia T Yam
- Department of Biochemistry, Stanford University School of Medicine, Stanford CA 94305, USA
| | | |
Collapse
|
41
|
In silico reconstitution of Listeria propulsion exhibits nano-saltation. PLoS Biol 2004; 2:e412. [PMID: 15562315 PMCID: PMC532387 DOI: 10.1371/journal.pbio.0020412] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2004] [Accepted: 09/28/2004] [Indexed: 11/26/2022] Open
Abstract
To understand how the actin-polymerization-mediated movements in cells emerge from myriad individual protein–protein interactions, we developed a computational model of Listeria monocytogenes propulsion that explicitly simulates a large number of monomer-scale biochemical and mechanical interactions. The literature on actin networks and L. monocytogenes motility provides the foundation for a realistic mathematical/computer simulation, because most of the key rate constants governing actin network dynamics have been measured. We use a cluster of 80 Linux processors and our own suite of simulation and analysis software to characterize salient features of bacterial motion. Our “in silico reconstitution” produces qualitatively realistic bacterial motion with regard to speed and persistence of motion and actin tail morphology. The model also produces smaller scale emergent behavior; we demonstrate how the observed nano-saltatory motion of L. monocytogenes, in which runs punctuate pauses, can emerge from a cooperative binding and breaking of attachments between actin filaments and the bacterium. We describe our modeling methodology in detail, as it is likely to be useful for understanding any subcellular system in which the dynamics of many simple interactions lead to complex emergent behavior, e.g., lamellipodia and filopodia extension, cellular organization, and cytokinesis. A detailed computer simulation explicitly simulates monomer- scale biochemical and mechanical interactions to characterize bacterial motion
Collapse
|
42
|
Gerisch G, Bretschneider T, Müller-Taubenberger A, Simmeth E, Ecke M, Diez S, Anderson K. Mobile actin clusters and traveling waves in cells recovering from actin depolymerization. Biophys J 2004; 87:3493-503. [PMID: 15347592 PMCID: PMC1304815 DOI: 10.1529/biophysj.104.047589] [Citation(s) in RCA: 144] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2004] [Accepted: 08/24/2004] [Indexed: 11/18/2022] Open
Abstract
At the leading edge of a motile cell, actin polymerizes in close apposition to the plasma membrane. Here we ask how the machinery for force generation at a leading edge is established de novo after the global depolymerization of actin. The depolymerization is accomplished by latrunculin A, and the reorganization of actin upon removal of the drug is visualized in Dictyostelium cells by total internal reflection fluorescence microscopy. The actin filament system is reorganized in three steps. First, F-actin assembles into globular complexes that move along the bottom surface of the cells at velocities up to 10 microm/min. These clusters are transient structures that eventually disassemble, fuse, or divide. In a second step, clusters merge into a contiguous zone at the cell border that spreads and gives rise to actin waves traveling on a planar membrane. Finally, normal cell shape and motility are resumed. These data show that the initiation of actin polymerization is separated in Dictyostelium from front protrusion, and that the coupling of polymerization to protrusion is a later step in the reconstitution of a leading edge.
Collapse
Affiliation(s)
- Günther Gerisch
- Max-Planck-Institut für Biochemie, D-82152 Martinsried, Germany.
| | | | | | | | | | | | | |
Collapse
|
43
|
Abstract
Dynamin, the large guanosine triphosphatase, is generally considered to have a key role in deforming membranes to create tubules or vesicles. Dynamin, particularly dynamin2 isoforms, also are localized with actin filaments, often at locations where cellular membranes undergo remodeling. Perturbing dynamin function interferes with endocytic traffic and actin function. Thus, dynamin may regulate actin filaments coordinately with its activities that remodel membranes. This review will highlight recent observations that provide clues to mechanisms whereby dynamin might coordinate membrane remodeling and actin filament dynamics during endocytic traffic, cell morphogenesis and cell migration.
Collapse
Affiliation(s)
- Dorothy A Schafer
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA.
| |
Collapse
|