1
|
Enrich C, Lu A, Tebar F, Rentero C, Grewal T. Ca 2+ and Annexins - Emerging Players for Sensing and Transferring Cholesterol and Phosphoinositides via Membrane Contact Sites. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1422:393-438. [PMID: 36988890 DOI: 10.1007/978-3-031-21547-6_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
Maintaining lipid composition diversity in membranes from different organelles is critical for numerous cellular processes. However, many lipids are synthesized in the endoplasmic reticulum (ER) and require delivery to other organelles. In this scenario, formation of membrane contact sites (MCS) between neighbouring organelles has emerged as a novel non-vesicular lipid transport mechanism. Dissecting the molecular composition of MCS identified phosphoinositides (PIs), cholesterol, scaffolding/tethering proteins as well as Ca2+ and Ca2+-binding proteins contributing to MCS functioning. Compelling evidence now exists for the shuttling of PIs and cholesterol across MCS, affecting their concentrations in distinct membrane domains and diverse roles in membrane trafficking. Phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) at the plasma membrane (PM) not only controls endo-/exocytic membrane dynamics but is also critical in autophagy. Cholesterol is highly concentrated at the PM and enriched in recycling endosomes and Golgi membranes. MCS-mediated cholesterol transfer is intensely researched, identifying MCS dysfunction or altered MCS partnerships to correlate with de-regulated cellular cholesterol homeostasis and pathologies. Annexins, a conserved family of Ca2+-dependent phospholipid binding proteins, contribute to tethering and untethering events at MCS. In this chapter, we will discuss how Ca2+ homeostasis and annexins in the endocytic compartment affect the sensing and transfer of cholesterol and PIs across MCS.
Collapse
Affiliation(s)
- Carlos Enrich
- Departament de Biomedicina, Unitat de Biologia Cel⋅lular, Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.
- Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain.
| | - Albert Lu
- Departament de Biomedicina, Unitat de Biologia Cel⋅lular, Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
| | - Francesc Tebar
- Departament de Biomedicina, Unitat de Biologia Cel⋅lular, Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
| | - Carles Rentero
- Departament de Biomedicina, Unitat de Biologia Cel⋅lular, Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
| | - Thomas Grewal
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
2
|
Black JD, Affandi T, Black AR, Reyland ME. PKCα and PKCδ: Friends and Rivals. J Biol Chem 2022; 298:102194. [PMID: 35760100 PMCID: PMC9352922 DOI: 10.1016/j.jbc.2022.102194] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 06/13/2022] [Accepted: 06/21/2022] [Indexed: 01/06/2023] Open
Abstract
PKC comprises a large family of serine/threonine kinases that share a requirement for allosteric activation by lipids. While PKC isoforms have significant homology, functional divergence is evident among subfamilies and between individual PKC isoforms within a subfamily. Here, we highlight these differences by comparing the regulation and function of representative PKC isoforms from the conventional (PKCα) and novel (PKCδ) subfamilies. We discuss how unique structural features of PKCα and PKCδ underlie differences in activation and highlight the similar, divergent, and even opposing biological functions of these kinases. We also consider how PKCα and PKCδ can contribute to pathophysiological conditions and discuss challenges to targeting these kinases therapeutically.
Collapse
Affiliation(s)
- Jennifer D Black
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE.
| | - Trisiani Affandi
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus
| | - Adrian R Black
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE
| | - Mary E Reyland
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus.
| |
Collapse
|
3
|
Chen CH, Wang BW, Hsiao YC, Wu CY, Cheng FJ, Hsia TC, Chen CY, Wang Y, Weihua Z, Chou RH, Tang CH, Chen YJ, Wei YL, Hsu JL, Tu CY, Hung MC, Huang WC. PKCδ-mediated SGLT1 upregulation confers the acquired resistance of NSCLC to EGFR TKIs. Oncogene 2021; 40:4796-4808. [PMID: 34155348 PMCID: PMC8298203 DOI: 10.1038/s41388-021-01889-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 05/18/2021] [Accepted: 06/04/2021] [Indexed: 02/06/2023]
Abstract
The tyrosine kinase inhibitors (TKIs) targeting epidermal growth factor receptor (EGFR) have been widely used for non-small cell lung cancer (NSCLC) patients, but the development of acquired resistance remains a therapeutic hurdle. The reduction of glucose uptake has been implicated in the anti-tumor activity of EGFR TKIs. In this study, the upregulation of the active sodium/glucose co-transporter 1 (SGLT1) was found to confer the development of acquired EGFR TKI resistance and was correlated with the poorer clinical outcome of the NSCLC patients who received EGFR TKI treatment. Blockade of SGLT1 overcame this resistance in vitro and in vivo by reducing glucose uptake in NSCLC cells. Mechanistically, SGLT1 protein was stabilized through the interaction with PKCδ-phosphorylated (Thr678) EGFR in the TKI-resistant cells. Our findings revealed that PKCδ/EGFR axis-dependent SGLT1 upregulation was a critical mechanism underlying the acquired resistance to EGFR TKIs. We suggest co-targeting PKCδ/SGLT1 as a potential strategy to improve the therapeutic efficacy of EGFR TKIs in NSCLC patients.
Collapse
Affiliation(s)
- Chia-Hung Chen
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
- School of Medicine, China Medical University, Taichung, Taiwan
- Department of Respiratory Therapy, China Medical University, Taichung, Taiwan
| | - Bo-Wei Wang
- Center for Molecular Medicine, Research Center for Cancer Biology, and Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Drug Development Center, China Medical University, Taichung, Taiwan
| | - Yu-Chun Hsiao
- Center for Molecular Medicine, Research Center for Cancer Biology, and Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Drug Development Center, China Medical University, Taichung, Taiwan
- The Ph.D. Program for Cancer Biology and Drug Discovery, China Medical University and Academia Sinica, Taichung, Taiwan
| | - Chun-Yi Wu
- Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Fang-Ju Cheng
- The Ph.D. Program for Cancer Biology and Drug Discovery, China Medical University and Academia Sinica, Taichung, Taiwan
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Te-Chun Hsia
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
- Department of Respiratory Therapy, China Medical University, Taichung, Taiwan
- Department of Internal Medicine, Hyperbaric Oxygen Therapy Center, China Medical University Hospital, Taichung, Taiwan
| | - Chih-Yi Chen
- Division of Thoracic Surgery, Department of Surgery, Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Yihua Wang
- Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, UK
- Institute for Life Sciences, University of Southampton, Southampton, UK
| | - Zhang Weihua
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | - Ruey-Hwang Chou
- Center for Molecular Medicine, Research Center for Cancer Biology, and Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- The Ph.D. Program for Cancer Biology and Drug Discovery, China Medical University and Academia Sinica, Taichung, Taiwan
| | - Chih-Hsin Tang
- School of Medicine, China Medical University, Taichung, Taiwan
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
| | - Yun-Ju Chen
- Department of Medical Research, E-Da Hospital, Kaohsiung, Taiwan
- School of Medicine for International Students, I-Shou University, Kaohsiung, Taiwan
- Department of Pharmacy, E-Da Hospital, Kaohsiung, Taiwan
| | - Ya-Ling Wei
- Center for Molecular Medicine, Research Center for Cancer Biology, and Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Jennifer L Hsu
- Center for Molecular Medicine, Research Center for Cancer Biology, and Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Chih-Yen Tu
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan.
- School of Medicine, China Medical University, Taichung, Taiwan.
| | - Mien-Chie Hung
- Center for Molecular Medicine, Research Center for Cancer Biology, and Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan.
- Drug Development Center, China Medical University, Taichung, Taiwan.
- The Ph.D. Program for Cancer Biology and Drug Discovery, China Medical University and Academia Sinica, Taichung, Taiwan.
| | - Wei-Chien Huang
- Center for Molecular Medicine, Research Center for Cancer Biology, and Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan.
- Drug Development Center, China Medical University, Taichung, Taiwan.
- The Ph.D. Program for Cancer Biology and Drug Discovery, China Medical University and Academia Sinica, Taichung, Taiwan.
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung, Taiwan.
| |
Collapse
|
4
|
Lonic A, Gehling F, Belle L, Li X, Schieber NL, Nguyen EV, Goodall GJ, Parton RG, Daly RJ, Khew-Goodall Y. Phosphorylation of PKCδ by FER tips the balance from EGFR degradation to recycling. J Cell Biol 2021; 220:211661. [PMID: 33411917 PMCID: PMC7797899 DOI: 10.1083/jcb.201902073] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 07/30/2020] [Accepted: 11/19/2020] [Indexed: 12/22/2022] Open
Abstract
Receptor degradation terminates signaling by activated receptor tyrosine kinases. Degradation of EGFR occurs in lysosomes and requires the switching of RAB5 for RAB7 on late endosomes to enable their fusion with the lysosome, but what controls this critical switching is poorly understood. We show that the tyrosine kinase FER alters PKCδ function by phosphorylating it on Y374, and that phospho-Y374-PKCδ prevents RAB5 release from nascent late endosomes, thereby inhibiting EGFR degradation and promoting the recycling of endosomal EGFR to the cell surface. The rapid association of phospho-Y374-PKCδ with EGFR-containing endosomes is diminished by PTPN14, which dephosphorylates phospho-Y374-PKCδ. In triple-negative breast cancer cells, the FER-dependent phosphorylation of PKCδ enhances EGFR signaling and promotes anchorage-independent cell growth. Importantly, increased Y374-PKCδ phosphorylation correlating with arrested late endosome maturation was identified in ∼25% of triple-negative breast cancer patients, suggesting that dysregulation of this pathway may contribute to their pathology.
Collapse
Affiliation(s)
- Ana Lonic
- Centre for Cancer Biology, An Alliance of SA Pathology and the University of South Australia, Adelaide, South Australia, Australia,The Discipline of Medicine, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Freya Gehling
- Centre for Cancer Biology, An Alliance of SA Pathology and the University of South Australia, Adelaide, South Australia, Australia
| | - Leila Belle
- Centre for Cancer Biology, An Alliance of SA Pathology and the University of South Australia, Adelaide, South Australia, Australia
| | - Xiaochun Li
- Centre for Cancer Biology, An Alliance of SA Pathology and the University of South Australia, Adelaide, South Australia, Australia
| | - Nicole L. Schieber
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland, Australia
| | - Elizabeth V. Nguyen
- Cancer Program, Biomedicine Discovery Institute, and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Gregory J. Goodall
- Centre for Cancer Biology, An Alliance of SA Pathology and the University of South Australia, Adelaide, South Australia, Australia,The Discipline of Medicine, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, South Australia, Australia,School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Robert G. Parton
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland, Australia,Centre for Microscopy and Microanalysis, The University of Queensland, St. Lucia, Queensland, Australia
| | - Roger J. Daly
- Cancer Program, Biomedicine Discovery Institute, and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Yeesim Khew-Goodall
- Centre for Cancer Biology, An Alliance of SA Pathology and the University of South Australia, Adelaide, South Australia, Australia,The Discipline of Medicine, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, South Australia, Australia,Department of Molecular and Cellular Biology, School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia,Correspondence to Yeesim Khew-Goodall:
| |
Collapse
|
5
|
Tebar F, Enrich C, Rentero C, Grewal T. GTPases Rac1 and Ras Signaling from Endosomes. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2018; 57:65-105. [PMID: 30097772 DOI: 10.1007/978-3-319-96704-2_3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The endocytic compartment is not only the functional continuity of the plasma membrane but consists of a diverse collection of intracellular heterogeneous complex structures that transport, amplify, sustain, and/or sort signaling molecules. Over the years, it has become evident that early, late, and recycling endosomes represent an interconnected vesicular-tubular network able to form signaling platforms that dynamically and efficiently translate extracellular signals into biological outcome. Cell activation, differentiation, migration, death, and survival are some of the endpoints of endosomal signaling. Hence, to understand the role of the endosomal system in signal transduction in space and time, it is therefore necessary to dissect and identify the plethora of decoders that are operational in the different steps along the endocytic pathway. In this chapter, we focus on the regulation of spatiotemporal signaling in cells, considering endosomes as central platforms, in which several small GTPases proteins of the Ras superfamily, in particular Ras and Rac1, actively participate to control cellular processes like proliferation and cell mobility.
Collapse
Affiliation(s)
- Francesc Tebar
- Departament de Biomedicina, Unitat de Biologia Cel·lular, Facultat de Medicina i Ciències de la Salut, Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Casanova 143, 08036, Barcelona, Spain.
| | - Carlos Enrich
- Departament de Biomedicina, Unitat de Biologia Cel·lular, Facultat de Medicina i Ciències de la Salut, Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Casanova 143, 08036, Barcelona, Spain
| | - Carles Rentero
- Departament de Biomedicina, Unitat de Biologia Cel·lular, Facultat de Medicina i Ciències de la Salut, Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Casanova 143, 08036, Barcelona, Spain
| | - Thomas Grewal
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, 2006, Australia
| |
Collapse
|
6
|
Soriano-Castell D, Chavero A, Rentero C, Bosch M, Vidal-Quadras M, Pol A, Enrich C, Tebar F. ROCK1 is a novel Rac1 effector to regulate tubular endocytic membrane formation during clathrin-independent endocytosis. Sci Rep 2017; 7:6866. [PMID: 28761175 PMCID: PMC5537229 DOI: 10.1038/s41598-017-07130-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 06/23/2017] [Indexed: 01/10/2023] Open
Abstract
Clathrin-dependent and -independent pathways contribute for β1-integrin endocytosis. This study defines a tubular membrane clathrin-independent endocytic network, induced with the calmodulin inhibitor W13, for β1-integrin internalization. This pathway is dependent on increased phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) levels and dynamin activity at the plasma membrane. Exogenous addition of PI(4,5)P2 or phosphatidylinositol-4-phosphate 5-kinase (PIP5K) expression mimicked W13-generated-tubules which are inhibited by active Rac1. Therefore, the molecular mechanisms downstream of Rac1, that controls this plasma membrane tubulation, were analyzed biochemically and by the expression of different Rac1 mutants. The results indicate that phospholipase C and ROCK1 are the main Rac1 effectors that impair plasma membrane invagination and tubule formation, essentially by decreasing PI(4,5)P2 levels and promoting cortical actomyosin assembly respectively. Interestingly, among the plethora of proteins that participate in membrane remodeling, this study revealed that ROCK1, the well-known downstream RhoA effector, has an important role in Rac1 regulation of actomyosin at the cell cortex. This study provides new insights into Rac1 functioning on plasma membrane dynamics combining phosphatidylinositides and cytoskeleton regulation.
Collapse
Affiliation(s)
- David Soriano-Castell
- Departament de Biomedicina, Unitat de Biologia Cel·lular, Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Facultat de Medicina, Universitat de Barcelona, Casanova 143, 08036, Barcelona, Spain
| | - Albert Chavero
- Departament de Biomedicina, Unitat de Biologia Cel·lular, Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Facultat de Medicina, Universitat de Barcelona, Casanova 143, 08036, Barcelona, Spain
| | - Carles Rentero
- Departament de Biomedicina, Unitat de Biologia Cel·lular, Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Facultat de Medicina, Universitat de Barcelona, Casanova 143, 08036, Barcelona, Spain
| | - Marta Bosch
- Departament de Biomedicina, Unitat de Biologia Cel·lular, Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Facultat de Medicina, Universitat de Barcelona, Casanova 143, 08036, Barcelona, Spain
| | - Maite Vidal-Quadras
- Departament de Biomedicina, Unitat de Biologia Cel·lular, Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Facultat de Medicina, Universitat de Barcelona, Casanova 143, 08036, Barcelona, Spain
| | - Albert Pol
- Departament de Biomedicina, Unitat de Biologia Cel·lular, Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Facultat de Medicina, Universitat de Barcelona, Casanova 143, 08036, Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010, Barcelona, Spain
| | - Carlos Enrich
- Departament de Biomedicina, Unitat de Biologia Cel·lular, Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Facultat de Medicina, Universitat de Barcelona, Casanova 143, 08036, Barcelona, Spain
| | - Francesc Tebar
- Departament de Biomedicina, Unitat de Biologia Cel·lular, Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Facultat de Medicina, Universitat de Barcelona, Casanova 143, 08036, Barcelona, Spain.
| |
Collapse
|
7
|
Vidal-Quadras M, Holst MR, Francis MK, Larsson E, Hachimi M, Yau WL, Peränen J, Martín-Belmonte F, Lundmark R. Endocytic turnover of Rab8 controls cell polarization. J Cell Sci 2017; 130:1147-1157. [PMID: 28137756 PMCID: PMC5358338 DOI: 10.1242/jcs.195420] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 01/18/2017] [Indexed: 01/05/2023] Open
Abstract
Adaptation of cell shape and polarization through the formation and retraction of cellular protrusions requires balancing of endocytosis and exocytosis combined with fine-tuning of the local activity of small GTPases like Rab8. Here, we show that endocytic turnover of the plasma membrane at protrusions is directly coupled to surface removal and inactivation of Rab8. Removal is induced by reduced membrane tension and mediated by the GTPase regulator associated with focal adhesion kinase-1 (GRAF1, also known as ARHGAP26), a regulator of clathrin-independent endocytosis. GRAF1-depleted cells were deficient in multi-directional spreading and displayed elevated levels of GTP-loaded Rab8, which was accumulated at the tips of static protrusions. Furthermore, GRAF1 depletion impaired lumen formation and spindle orientation in a 3D cell culture system, indicating that GRAF1 activity regulates polarity establishment. Our data suggest that GRAF1-mediated removal of Rab8 from the cell surface restricts its activity during protrusion formation, thereby facilitating dynamic adjustment of the polarity axis.
Collapse
Affiliation(s)
| | - Mikkel R Holst
- Integrative Medical Biology, Umeå University, Umeå 901 87, Sweden
| | - Monika K Francis
- Integrative Medical Biology, Umeå University, Umeå 901 87, Sweden.,Medical Biochemistry and Biophysics, Laboratory for Molecular Infection Medicine Sweden, Umeå University, Umeå 901 87, Sweden
| | - Elin Larsson
- Integrative Medical Biology, Umeå University, Umeå 901 87, Sweden.,Medical Biochemistry and Biophysics, Laboratory for Molecular Infection Medicine Sweden, Umeå University, Umeå 901 87, Sweden
| | - Mariam Hachimi
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-UAM, Madrid 28049, Spain
| | - Wai-Lok Yau
- Medical Biochemistry and Biophysics, Laboratory for Molecular Infection Medicine Sweden, Umeå University, Umeå 901 87, Sweden
| | - Johan Peränen
- Department of Anatomy, Faculty of Medicine, University of Helsinki, Helsinki FIN-00014, Finland
| | - Fernando Martín-Belmonte
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-UAM, Madrid 28049, Spain
| | - Richard Lundmark
- Integrative Medical Biology, Umeå University, Umeå 901 87, Sweden .,Medical Biochemistry and Biophysics, Laboratory for Molecular Infection Medicine Sweden, Umeå University, Umeå 901 87, Sweden
| |
Collapse
|
8
|
Reyland ME, Jones DNM. Multifunctional roles of PKCδ: Opportunities for targeted therapy in human disease. Pharmacol Ther 2016; 165:1-13. [PMID: 27179744 DOI: 10.1016/j.pharmthera.2016.05.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The serine-threonine protein kinase, protein kinase C-δ (PKCδ), is emerging as a bi-functional regulator of cell death and proliferation. Studies in PKCδ-/- mice have confirmed a pro-apoptotic role for this kinase in response to DNA damage and a tumor promoter role in some oncogenic contexts. In non-transformed cells, inhibition of PKCδ suppresses the release of cytochrome c and caspase activation, indicating a function upstream of apoptotic pathways. Data from PKCδ-/- mice demonstrate a role for PKCδ in the execution of DNA damage-induced and physiologic apoptosis. This has led to the important finding that inhibitors of PKCδ can be used therapeutically to reduce irradiation and chemotherapy-induced toxicity. By contrast, PKCδ is a tumor promoter in mouse models of mammary gland and lung cancer, and increased PKCδ expression is a negative prognostic indicator in Her2+ and other subtypes of human breast cancer. Understanding how these distinct functions of PKCδ are regulated is critical for the design of therapeutics to target this pathway. This review will discuss what is currently known about biological roles of PKCδ and prospects for targeting PKCδ in human disease.
Collapse
Affiliation(s)
- Mary E Reyland
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
| | - David N M Jones
- Department of Pharmacology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
9
|
Martínez-Mármol R, Comes N, Styrczewska K, Pérez-Verdaguer M, Vicente R, Pujadas L, Soriano E, Sorkin A, Felipe A. Unconventional EGF-induced ERK1/2-mediated Kv1.3 endocytosis. Cell Mol Life Sci 2015; 73:1515-28. [PMID: 26542799 DOI: 10.1007/s00018-015-2082-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 10/14/2015] [Accepted: 10/26/2015] [Indexed: 12/13/2022]
Abstract
The potassium channel Kv1.3 plays roles in immunity, neuronal development and sensory discrimination. Regulation of Kv1.3 by kinase signaling has been studied. In this context, EGF binds to specific receptors (EGFR) and triggers tyrosine kinase-dependent signaling, which down-regulates Kv1.3 currents. We show that Kv1.3 undergoes EGF-dependent endocytosis. This EGF-mediated mechanism is relevant because is involved in adult neural stem cell fate determination. We demonstrated that changes in Kv1.3 subcellular distribution upon EGFR activation were due to Kv1.3 clathrin-dependent endocytosis, which targets the Kv1.3 channels to the lysosomal degradative pathway. Interestingly, our results further revealed that relevant tyrosines and other interacting motifs, such as PDZ and SH3 domains, were not involved in the EGF-dependent Kv1.3 internalization. However, a new, and yet undescribed mechanism, of ERK1/2-mediated threonine phosphorylation is crucial for the EGF-mediated Kv1.3 endocytosis. Our results demonstrate that EGF triggers the down-regulation of Kv1.3 activity and its expression at the cell surface, which is important for the development and migration of adult neural progenitors.
Collapse
Affiliation(s)
- Ramón Martínez-Mármol
- Molecular Physiology Laboratory, Departament de Bioquímica i Biologia Molecular, Institut de Biomedicina (IBUB), Barcelona, Spain.,Departament de Biologia Celular, Universitat de Barcelona, Barcelona, Spain
| | - Núria Comes
- Molecular Physiology Laboratory, Departament de Bioquímica i Biologia Molecular, Institut de Biomedicina (IBUB), Barcelona, Spain
| | - Katarzyna Styrczewska
- Molecular Physiology Laboratory, Departament de Bioquímica i Biologia Molecular, Institut de Biomedicina (IBUB), Barcelona, Spain
| | - Mireia Pérez-Verdaguer
- Molecular Physiology Laboratory, Departament de Bioquímica i Biologia Molecular, Institut de Biomedicina (IBUB), Barcelona, Spain
| | - Rubén Vicente
- Laboratory of Molecular Physiology and Channelopathies, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain
| | - Lluís Pujadas
- Departament de Biologia Celular, Universitat de Barcelona, Barcelona, Spain
| | - Eduardo Soriano
- Departament de Biologia Celular, Universitat de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Madrid, Spain.,Vall d´Hebron Institute of Research (VHIR) and Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Alexander Sorkin
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Antonio Felipe
- Molecular Physiology Laboratory, Departament de Bioquímica i Biologia Molecular, Institut de Biomedicina (IBUB), Barcelona, Spain. .,Departament de Bioquímica i Biologia Molecular, Universitat de Barcelona, Avda. Diagonal 643, 08028, Barcelona, Spain.
| |
Collapse
|
10
|
Bailey TA, Luan H, Tom E, Bielecki TA, Mohapatra B, Ahmad G, George M, Kelly DL, Natarajan A, Raja SM, Band V, Band H. A kinase inhibitor screen reveals protein kinase C-dependent endocytic recycling of ErbB2 in breast cancer cells. J Biol Chem 2014; 289:30443-30458. [PMID: 25225290 DOI: 10.1074/jbc.m114.608992] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
ErbB2 overexpression drives oncogenesis in 20-30% cases of breast cancer. Oncogenic potential of ErbB2 is linked to inefficient endocytic traffic into lysosomes and preferential recycling. However, regulation of ErbB2 recycling is incompletely understood. We used a high-content immunofluorescence imaging-based kinase inhibitor screen on SKBR-3 breast cancer cells to identify kinases whose inhibition alters the clearance of cell surface ErbB2 induced by Hsp90 inhibitor 17-AAG. Less ErbB2 clearance was observed with broad-spectrum PKC inhibitor Ro 31-8220. A similar effect was observed with Go 6976, a selective inhibitor of classical Ca(2+)-dependent PKCs (α, β1, βII, and γ). PKC activation by PMA promoted surface ErbB2 clearance but without degradation, and ErbB2 was observed to move into a juxtanuclear compartment where it colocalized with PKC-α and PKC-δ together with the endocytic recycling regulator Arf6. PKC-α knockdown impaired the juxtanuclear localization of ErbB2. ErbB2 transit to the recycling compartment was also impaired upon PKC-δ knockdown. PMA-induced Erk phosphorylation was reduced by ErbB2 inhibitor lapatinib, as well as by knockdown of PKC-δ but not that of PKC-α. Our results suggest that activation of PKC-α and -δ mediates a novel positive feedback loop by promoting ErbB2 entry into the endocytic recycling compartment, consistent with reported positive roles for these PKCs in ErbB2-mediated tumorigenesis. As the endocytic recycling compartment/pericentrion has emerged as a PKC-dependent signaling hub for G-protein-coupled receptors, our findings raise the possibility that oncogenesis by ErbB2 involves previously unexplored PKC-dependent endosomal signaling.
Collapse
Affiliation(s)
- Tameka A Bailey
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, Nebraska 68198-5950
| | - Haitao Luan
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, Nebraska 68198-5950; Departments of Genetics, Cell Biology, and Anatomy, and University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, Nebraska 68198-5950
| | - Eric Tom
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, Nebraska 68198-5950; Departments of Biochemistry & Molecular Biology, College of Medicine, and University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, Nebraska 68198-5950
| | - Timothy Alan Bielecki
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, Nebraska 68198-5950
| | - Bhopal Mohapatra
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, Nebraska 68198-5950; Departments of Biochemistry & Molecular Biology, College of Medicine, and University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, Nebraska 68198-5950
| | - Gulzar Ahmad
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, Nebraska 68198-5950
| | - Manju George
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, Nebraska 68198-5950
| | - David L Kelly
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, Nebraska 68198-5950; Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, Nebraska 68198-5950
| | - Amarnath Natarajan
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, Nebraska 68198-5950; Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, Nebraska 68198-5950
| | - Srikumar M Raja
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, Nebraska 68198-5950; Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, Nebraska 68198-5950
| | - Vimla Band
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, Nebraska 68198-5950; Departments of Genetics, Cell Biology, and Anatomy, and University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, Nebraska 68198-5950; Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, Nebraska 68198-5950
| | - Hamid Band
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, Nebraska 68198-5950; Departments of Genetics, Cell Biology, and Anatomy, and University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, Nebraska 68198-5950; Departments of Biochemistry & Molecular Biology, College of Medicine, and University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, Nebraska 68198-5950; Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, Nebraska 68198-5950.
| |
Collapse
|
11
|
Nagasawa S, Ogura K, Tsutsuki H, Saitoh H, Moss J, Iwase H, Noda M, Yahiro K. Uptake of Shiga-toxigenic Escherichia coli SubAB by HeLa cells requires an actin- and lipid raft-dependent pathway. Cell Microbiol 2014; 16:1582-601. [PMID: 24844382 DOI: 10.1111/cmi.12315] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Revised: 05/07/2014] [Accepted: 05/08/2014] [Indexed: 02/06/2023]
Abstract
The novel cytotoxic factor subtilase cytotoxin (SubAB) is produced mainly by non-O157 Shiga-toxigenic Escherichia coli (STEC). SubAB cleaves the molecular chaperone BiP/GRP78 in the endoplasmic reticulum (ER), leading to activation of RNA-dependent protein kinase (PKR)-like ER kinase (PERK), followed by caspase-dependent cell death. However, the SubAB uptake mechanism in HeLa cells is unknown. In this study, a variety of inhibitors and siRNAs were employed to characterize the SubAB uptake process. SubAB-induced BiP cleavage was inhibited by high concentrations of Dynasore, and methyl-β-cyclodextrin (mβCD) and Filipin III, but not suppressed in clathrin-, dynamin I/II-, caveolin1- and caveolin2-knockdown cells. We observed that SubAB treatment led to dramatic actin rearrangements, e.g. formation of plasma membrane blebs, with a significant increase in fluid uptake. Confocal microscopy analysis showed that SubAB uptake required actin cytoskeleton remodelling and lipid raft cholesterol. Furthermore, internalized SubAB in cells was found in the detergent-resistant domain (DRM) structure. Interestingly, IPA-3, an inhibitor of serine/threonine kinase p21-activated kinase (PAK1), an important protein of macropinocytosis, directly inhibited SubAB-mediated BiP cleavage and SubAB internalization. Thus, our findings suggest that SubAB uses lipid raft- and actin-dependent, but not clathrin-, caveolin- and dynamin-dependent pathways as its major endocytic translocation route.
Collapse
Affiliation(s)
- Sayaka Nagasawa
- Department of Legal Medicine, Graduate School of Medicine, Chiba University, Chiba, 260-8670, Japan
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Hoque M, Rentero C, Cairns R, Tebar F, Enrich C, Grewal T. Annexins — Scaffolds modulating PKC localization and signaling. Cell Signal 2014; 26:1213-25. [DOI: 10.1016/j.cellsig.2014.02.012] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 02/22/2014] [Indexed: 12/15/2022]
|
13
|
Gelabert-Baldrich M, Soriano-Castell D, Calvo M, Lu A, Viña-Vilaseca A, Rentero C, Pol A, Grinstein S, Enrich C, Tebar F. Dynamics of KRas on endosomes: involvement of acidic phospholipids in its association. FASEB J 2014; 28:3023-37. [PMID: 24719356 DOI: 10.1096/fj.13-241158] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The endocytic compartment is emerging as a functional platform for controlling important cellular processes. We have found that ∼10 to 15% of total KRas, a protein that is frequently mutated in cancer, is present on endosomes, independent of its activation state. The dynamics of GFP-KRas wild-type (WT) and constitutively active or inactive mutants on endosomes were analyzed by fluorescence recovery after photobleaching (FRAP) microscopy. The measurements revealed an extraordinarily fast recovery of KRas WT [half-time (HT), ∼1.3 s] compared to HRas, Rab5, and EGFR, with the active KRasG12V mutant being significantly faster and more mobile (HT, ∼1 s, and ∼82% of exchangeable fraction) than the inactive KRasS17N (HT, ∼1.6 s, and ∼60% of exchangeable fraction). KRas rapidly switches from the cytoplasm to the endosomal membranes by an electrostatic interaction between its polybasic region and the endosomal acidic phospholipids, mainly phosphatidylserine.-Gelabert-Baldrich, M., Soriano-Castell, D., Calvo, M., Lu, A., Viña-Vilaseca, A., Rentero, C., Pol, A., Grinstein, S. Enrich, C., Tebar, F. Dynamics of KRas on endosomes: involvement of acidic phospholipids in its association.
Collapse
Affiliation(s)
- Mariona Gelabert-Baldrich
- Departament de Biologia Cel·lular, Immunologia i Neurociències, Facultat de Medicina, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), and
| | - David Soriano-Castell
- Departament de Biologia Cel·lular, Immunologia i Neurociències, Facultat de Medicina, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), and
| | - Maria Calvo
- Unitat de Microscopia Òptica Avançada, Facultat de Medicina, Centres Científics i Tecnològics, Universitat de Barcelona, Barcelona, Spain
| | - Albert Lu
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California, USA
| | - Arnau Viña-Vilaseca
- Departament de Biologia Cel·lular, Immunologia i Neurociències, Facultat de Medicina, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), and
| | - Carles Rentero
- Departament de Biologia Cel·lular, Immunologia i Neurociències, Facultat de Medicina, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), and
| | - Albert Pol
- Departament de Biologia Cel·lular, Immunologia i Neurociències, Facultat de Medicina, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), and Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain; and
| | - Sergio Grinstein
- Division of Cell Biology, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Carlos Enrich
- Departament de Biologia Cel·lular, Immunologia i Neurociències, Facultat de Medicina, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), and
| | - Francesc Tebar
- Departament de Biologia Cel·lular, Immunologia i Neurociències, Facultat de Medicina, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), and
| |
Collapse
|
14
|
Tebar F, Gelabert-Baldrich M, Hoque M, Cairns R, Rentero C, Pol A, Grewal T, Enrich C. Annexins and Endosomal Signaling. Methods Enzymol 2014; 535:55-74. [DOI: 10.1016/b978-0-12-397925-4.00004-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
15
|
Liu M, Idkowiak-Baldys J, Roddy PL, Baldys A, Raymond J, Clarke CJ, Hannun YA. Sustained activation of protein kinase C induces delayed phosphorylation and regulates the fate of epidermal growth factor receptor. PLoS One 2013; 8:e80721. [PMID: 24244711 PMCID: PMC3823608 DOI: 10.1371/journal.pone.0080721] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Accepted: 10/04/2013] [Indexed: 01/11/2023] Open
Abstract
It is well established that acute activation of members of the protein kinase C (PKC) family induced by activation of cellular receptors can transduce extracellular stimuli to intracellular signaling. However, the functions of sustained activation of PKC are not well studied. We have previously shown that sustained activation of classical PKC isoforms over 15-60 min induced the formation of the pericentrion, a subset of recycling endosomes that are sequestered perinuclearly in a PKC- and phospholipase D (PLD)-dependent manner. In this study, we investigated the role of this process in the phosphorylation of EGFR on threonine 654 (Thr-654) and in the regulation of intracellular trafficking and fate of epidermal growth factor receptor (EGFR). Sustained stimulation of the angiotensin II receptor induced translocation of the EGFR to the pericentrion, which in turn prevents full access of EGF to the EGFR. These effects required PKC and PLD activities, and direct stimulation of PKC with phorbol esters was sufficient to reproduce these effects. Furthermore, activation of PKC induced delayed phosphorylation of EGFR on Thr-654 that coincided with the formation of the pericentrion and which was dependent on PLD and endocytosis of EGFR. Thus, Thr-654 phosphorylation required the formation of the pericentrion. On the other hand, using a T654A mutant of EGFR, we find that the phosphorylation on Thr-654 was not required for translocation of EGFR to the pericentrion but was required for protection of EGFR from degradation in response to EGF. Taken together, these results demonstrate a novel role for the pericentrion in the regulation of EGFR phosphorylation, which in turn is important for the fates of EGFR.
Collapse
Affiliation(s)
- Mengling Liu
- Department of Medicine and The Stony Brook Cancer Center, Stony Brook University, Stony Brook, New York, United States of America
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Jolanta Idkowiak-Baldys
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Patrick L. Roddy
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Aleksander Baldys
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, United States of America
- Medical and Research Services, Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina, United States of America
| | - John Raymond
- Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Christopher J. Clarke
- Department of Medicine and The Stony Brook Cancer Center, Stony Brook University, Stony Brook, New York, United States of America
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Yusuf A. Hannun
- Department of Medicine and The Stony Brook Cancer Center, Stony Brook University, Stony Brook, New York, United States of America
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina, United States of America
- * E-mail:
| |
Collapse
|
16
|
Sukocheva O, Wadham C, Xia P. Estrogen defines the dynamics and destination of transactivated EGF receptor in breast cancer cells: role of S1P₃ receptor and Cdc42. Exp Cell Res 2013; 319:455-65. [PMID: 23142484 DOI: 10.1016/j.yexcr.2012.10.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Revised: 10/19/2012] [Accepted: 10/20/2012] [Indexed: 02/08/2023]
Abstract
Sphingosine-1-phosphate (S1P) receptors mediate transactivation of epidermal growth factor receptor (EGFR) by estrogen (E2). Here we report that the amount of intracellular EGFR remains elevated after stimulation of MCF-7 cells with E2 and S1P, although membrane-localized EGFR and S1P3 receptors are quickly internalized. Co-localization of internalized EGFR and LAMP-2 was lower in cells treated with E2/S1P, suggesting that endosomal EGFR might be directed for recycling instead of degradation. In addition, we found that E2/S1P activated Cdc42 and that knockdown of Cdc42 restores fast EGFR degradation after E2/S1P stimulation. Inhibition of S1P3 receptors prevented E2-induced activation of Cdc42, supporting the important role of the S1P receptor in E2 signaling. This is a novel mechanism further defining the effect of E2/S1P on the EGFR transactivation in breast cancer cells.
Collapse
Affiliation(s)
- O Sukocheva
- Flinders Centre for Cancer Prevention and Control, Division of Surgery, Flinders University, Bedford Park, SA 5042, Australia.
| | | | | |
Collapse
|
17
|
Annexin A1 and A2: roles in retrograde trafficking of Shiga toxin. PLoS One 2012; 7:e40429. [PMID: 22792315 PMCID: PMC3391278 DOI: 10.1371/journal.pone.0040429] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Accepted: 06/06/2012] [Indexed: 01/05/2023] Open
Abstract
Annexins constitute a family of calcium and membrane binding proteins. As annexin A1 and A2 have previously been linked to various membrane trafficking events, we initiated this study to investigate the role of these annexins in the uptake and intracellular transport of the bacterial Shiga toxin (Stx) and the plant toxin ricin. Once endocytosed, both toxins are retrogradely transported from endosomes to the Golgi apparatus and the endoplasmic reticulum before being targeted to the cytosol where they inhibit protein synthesis. This study was performed to obtain new information both about toxin transport and the function of annexin A1 and annexin A2. Our data show that depletion of annexin A1 or A2 alters the retrograde transport of Stx but not ricin, without affecting toxin binding or internalization. Knockdown of annexin A1 increases Golgi transport of Stx, whereas knockdown of annexin A2 slightly decreases the same transport step. Interestingly, annexin A1 was found in proximity to cytoplasmic phospholipase A2 (cPLA2), and the basal as well as the increased Golgi transport of Stx upon annexin A1 knockdown is dependent on cPLA2 activity. In conclusion, annexin A1 and A2 have different roles in Stx transport to the trans-Golgi network. The most prominent role is played by annexin A1 which normally works as a negative regulator of retrograde transport from the endosomes to the Golgi network, most likely by complex formation and inhibition of cPLA2.
Collapse
|
18
|
Pavarotti M, Capmany A, Vitale N, Colombo MI, Damiani MT. Rab11 is phosphorylated by classical and novel protein kinase C isoenzymes upon sustained phorbol ester activation. Biol Cell 2012; 104:102-15. [PMID: 22188018 DOI: 10.1111/boc.201100062] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Accepted: 11/29/2011] [Indexed: 01/06/2023]
Abstract
BACKGROUND INFORMATION Rab11 is a small GTPase that controls diverse intracellular trafficking pathways. However, the molecular machinery that regulates the participation of Rab11 in those different transport events is poorly understood. In resting cells, Rab11 localizes at the endocytic recycling compartment (ERC), whereas the different protein kinase C (PKC) isoforms display a cytosolic distribution. RESULTS Sustained phorbol ester stimulation induces the translocation of the classical PKCα and PKCβII isoenzymes to the ERC enriched in Rab11, and results in transferrin recycling inhibition. In contrast, novel PKCε and atypical PKCζ isoenzymes neither redistribute to the perinucleus nor modify transferrin recycling transport after phorbol ester stimulation. Although several Rabs have been shown to be phosphorylated, there is to date no evidence indicating Rab11 as a kinase substrate. In this report, we show that Rab11 appears phosphorylated in vivo in phorbol ester-stimulated cells. A bioinformatic analysis of Rab11 allowed us to identify several high-probability Ser/Thr kinase phosphorylation sites. Our results demonstrate that classical PKC (PKCα and PKCβII but not PKCβI) directly phosphorylate Rab11 in vitro. In addition, novel PKCε and PKCη but not PKCδ isoenzymes also phosphorylate Rab11. Mass spectrometry analysis revealed that Ser 177 is the Rab11 residue to be phosphorylated in vitro by either PKCβII or PKCε. In agreement, the phosphomimetic mutant, Rab11 S177D, retains transferrin at the ERC in the absence of phorbol-12-myristate-13-acetate stimulus. CONCLUSIONS This report shows for the first time that Rab11 is differentially phosphorylated by distinct PKC isoenzymes and that this post-translational modification might be a regulatory mechanism of intracellular trafficking.
Collapse
Affiliation(s)
- Martín Pavarotti
- IHEM-CONICET, National Research Council, School of Medicine, University of Cuyo, Mendoza, Argentina
| | | | | | | | | |
Collapse
|
19
|
Cornely R, Rentero C, Enrich C, Grewal T, Gaus K. Annexin A6 is an organizer of membrane microdomains to regulate receptor localization and signalling. IUBMB Life 2011; 63:1009-17. [PMID: 21990038 DOI: 10.1002/iub.540] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2011] [Accepted: 06/16/2011] [Indexed: 12/13/2022]
Abstract
Annexin A6 (AnxA6) belongs to the conserved annexin protein family--a group of Ca(2+) -dependent membrane binding proteins. It is the largest of all annexin proteins and upon activation, binds to negatively charged phospholipids in the plasma membrane and endosomes. In addition, AnxA6 associates with cholesterol-rich membrane microdomains termed lipid rafts. Membrane cholesterol triggers Ca(2+) -independent translocation of AnxA6 to membranes and AnxA6 levels determine the number of caveolae, a form of specialized rafts at the cell surface. AnxA6 also has an F-actin binding domain and interacts with cytoskeleton components. Taken together, this suggests that AnxA6 has a scaffold function to link membrane microdomains with the organization of the cytoskeleton. Such a link facilitates AnxA6 to participate in plasma membrane repair and it would also impact on receptor signalling at the cell surface, growth factor, and lipoprotein receptor trafficking, Ca(2+) -channel activity and T cell activation. Hence, the regulation of cell surface receptors by AnxA6 may be facilitated by its unique structure that allows recruitment of interaction partners and simultaneously bridging specialized membrane domains with cortical actin surrounding activated receptors.
Collapse
Affiliation(s)
- Rhea Cornely
- Centre for Vascular Research, University of New South Wales, Sydney, Australia
| | | | | | | | | |
Collapse
|
20
|
Vidal-Quadras M, Gelabert-Baldrich M, Soriano-Castell D, Lladó A, Rentero C, Calvo M, Pol A, Enrich C, Tebar F. Rac1 and Calmodulin Interactions Modulate Dynamics of ARF6-Dependent Endocytosis. Traffic 2011; 12:1879-96. [DOI: 10.1111/j.1600-0854.2011.01274.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
21
|
Ohashi E, Tanabe K, Henmi Y, Mesaki K, Kobayashi Y, Takei K. Receptor sorting within endosomal trafficking pathway is facilitated by dynamic actin filaments. PLoS One 2011; 6:e19942. [PMID: 21625493 PMCID: PMC3098849 DOI: 10.1371/journal.pone.0019942] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Accepted: 04/06/2011] [Indexed: 12/22/2022] Open
Abstract
Early endosomes (EEs) are known to be a sorting station for internalized molecules destined for degradation, recycling, or other intracellular organelles. Segregation is an essential step in such sorting, but the molecular mechanism of this process remains to be elucidated. Here, we show that actin is required for efficient recycling and endosomal maturation by producing a motile force. Perturbation of actin dynamics by drugs induced a few enlarged EEs containing several degradative vacuoles and also interfered with their transporting ability. Actin repolymerization induced by washout of the drug caused the vacuoles to dissociate and individually translocate toward the perinuclear region. We further elucidated that cortactin, an actin-nucleating factor, was required for transporting contents from within EEs. Actin filaments regulated by cortactin may provide a motile force for efficient sorting within early endosomes. These data suggest that actin filaments coordinate with microtubules to mediate segregation in EEs.
Collapse
Affiliation(s)
- Emiko Ohashi
- Department of Neuroscience, Okayama University Graduate School of
Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Kenji Tanabe
- Department of Neuroscience, Okayama University Graduate School of
Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
- * E-mail:
| | - Yuji Henmi
- Department of Neuroscience, Okayama University Graduate School of
Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Kumi Mesaki
- Department of Neuroscience, Okayama University Graduate School of
Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Yuka Kobayashi
- Department of Neuroscience, Okayama University Graduate School of
Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Kohji Takei
- Department of Neuroscience, Okayama University Graduate School of
Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|
22
|
Sánchez-González P, Jellali K, Villalobo A. Calmodulin-mediated regulation of the epidermal growth factor receptor. FEBS J 2009; 277:327-42. [PMID: 19951361 DOI: 10.1111/j.1742-4658.2009.07469.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this review, we first describe the mechanisms by which the epidermal growth factor receptor generates a Ca(2+) signal and, subsequently, we compile the available experimental evidence regarding the role that the Ca(2+)/calmodulin complex, formed after the rise in cytosolic free Ca(2+) concentration, exerts on the receptor. We focus not only on the indirect action that Ca(2+)/calmodulin exerts on the epidermal growth factor receptor, as a result of the activation of distinct calmodulin-dependent kinases, but also, and more extensively, on the direct interaction of Ca(2+)/calmodulin with the receptor. We also describe several mechanistic models that could account for the Ca(2+)/calmodulin-mediated regulation of epidermal growth factor receptor activity. The control exerted by calmodulin on distinct epidermal growth factor receptor-mediated cellular functions is also discussed. Finally, the phosphorylation of this Ca(2+) sensor by the epidermal growth factor receptor is highlighted.
Collapse
Affiliation(s)
- Pablo Sánchez-González
- Instituto de Investigaciones Biomédicas, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | | | | |
Collapse
|
23
|
Butowt R, von Bartheld CS. Fates of neurotrophins after retrograde axonal transport: phosphorylation of p75NTR is a sorting signal for delayed degradation. J Neurosci 2009; 29:10715-29. [PMID: 19710323 PMCID: PMC2761711 DOI: 10.1523/jneurosci.2512-09.2009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2009] [Revised: 07/15/2009] [Accepted: 07/20/2009] [Indexed: 12/16/2022] Open
Abstract
Neurotrophins can mediate survival or death of neurons. Opposing functions of neurotrophins are based on binding of these ligands to two distinct types of receptors: trk receptors and p75NTR. Previous work showed that target-derived NGF induces cell death, whereas BDNF and NT-3 enhance survival of neurons in the isthmo-optic nucleus of avian embryos. To determine the fate of retrogradely transported neurotrophins and test whether their sorting differs between neurotrophins mediating survival- or death-signaling pathways, we traced receptor-binding, sorting, and degradation kinetics of target-applied radiolabeled neurotrophins that bind in this system to trk receptors (BDNF, NT-3) or only to p75NTR (NGF). At the ultrastructural level, the p75NTR-bound NGF accumulates with a significant delay in multivesicular bodies and organelles of the degradation pathway on arrival in the cell body when compared with trk-bound BDNF or NT-3. This delayed lysosomal accumulation was restricted to target-derived NGF, but was not seen when NGF was supplied to the soma in vitro. The kinase inhibitors K252a and Gö6976 alter the kinetics of organelle accumulation: phosphorylation of p75NTR is a sorting signal for delayed sequestering of p75NTR-bound NGF in multivesicular bodies and delayed degradation in lysosomes when compared with trk-bound neurotrophins. Mutagenesis and mass spectrometry studies indicate that p75NTR is phosphorylated by conventional protein kinase C on serine 266. We conclude that, in addition to the known phosphorylation of trks, the phosphorylation of p75NTR can also significantly affect neuronal survival in vivo by changing the intracellular sorting and degradation kinetics of its ligands and thus signaling duration.
Collapse
Affiliation(s)
- Rafal Butowt
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada 89557
| | | |
Collapse
|
24
|
Chodaczek G, Bacsi A, Dharajiya N, Sur S, Hazra TK, Boldogh I. Ragweed pollen-mediated IgE-independent release of biogenic amines from mast cells via induction of mitochondrial dysfunction. Mol Immunol 2009; 46:2505-14. [PMID: 19501909 DOI: 10.1016/j.molimm.2009.05.023] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2009] [Accepted: 05/18/2009] [Indexed: 11/16/2022]
Abstract
Normal functions of mitochondria are required for physiological dynamics of cells, while their dysfunction contributes to development of various disorders including those of immune system. Here we demonstrate that exposure of mast cells to ragweed pollen extract increases production of H(2)O(2) via mitochondrial respiratory complex III. These mitochondrial ROS (mtROS) enhance secretion of histamine and serotonin from mast cells, but not enzymes such as beta-hexosaminidase, independently from FcvarepsilonRI-generated stimuli. The release of biogenic amines is associated with inhibition of secretory granules' H(+)-ATPase activity, activation of PKC-delta and microtubule-dependent motility, and it is independent from intracellular free Ca(2+) levels. To asses differences from IgE-mediated mast cell degranulation we show that mtROS decrease antigen-triggered beta-hexosaminidase release, while they are synergistic with antigen-induced IL-4 production in sensitized cells. Taken together, these data indicate that mitochondrial dysfunction can act independently from adaptive immunity, as well as augments Th2-type responses. Pharmacological maintenance of physiological mitochondrial function could have clinical benefits in prevention and treatment of allergic diseases.
Collapse
Affiliation(s)
- Grzegorz Chodaczek
- Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, TX 77555, USA
| | | | | | | | | | | |
Collapse
|
25
|
Abstract
At the cell surface, activation of the epidermal growth factor (EGF) receptor triggers a complex network of signalling events that regulate a variety of cellular processes. For signal termination, the activated EGF receptor is internalised and targeted to lysosomes for degradation. Microdomain localization at the plasma membrane and endocytic transport of the EGFR is important for the formation of compartment-specific signalling complexes and is regulated by scaffolding and targeting proteins. This includes Ca2+-effector proteins, such as calmodulin and annexins (Anx), in particular AnxA1, AnxA2, AnxA6 and as shown recently,AnxA8. Given that these annexins show differences in their expression patterns, subcellular localization and mode of action, they are likely to differentially contribute and cooperate in the fine-tuning of EGFR activity. In support of this hypothesis, current literature suggests these annexins to be involved in different steps that control the endocytic transport and signalling of the EGF receptor. This review summarizes how the coordinated activity of AnxA1, AnxA2, AnxA6 and AnxA8 can contribute to regulate EGF receptor localization and activity.
Collapse
Affiliation(s)
- Thomas Grewal
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Sydney, Sydney, Australia.
| | | |
Collapse
|
26
|
Ma JSY, Haydar TF, Radoja S. Protein kinase C delta localizes to secretory lysosomes in CD8+ CTL and directly mediates TCR signals leading to granule exocytosis-mediated cytotoxicity. THE JOURNAL OF IMMUNOLOGY 2008; 181:4716-22. [PMID: 18802074 DOI: 10.4049/jimmunol.181.7.4716] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Lytic granule exocytosis is the major effector function used by CD8(+) CTL in response to intracellular pathogens and tumors. Despite recent progress in the field, two important aspects of this cytotoxic mechanism remain poorly understood. First, TCR-signaling pathway(s) that selectively induces granule exocytosis in CTL has not been defined to date. Second, it is unclear how Ag receptor-induced signals are converted into mobilization of lytic granules. We recently demonstrated that protein kinase C delta (PKC delta) selectively regulates TCR-induced lytic granule polarization in mouse CD8(+) CTL. To better understand how PKC delta facilitates granule movement, here we studied dynamics of intracellular localization of PKC delta in living CD8(+) CTL. Strikingly, we found that PKC delta localizes to the secretory lysosomes and polarizes toward immunological synapse during the process of target cell killing. Also, biochemical and structure-function studies demonstrated that upon TCR ligation, PKC delta becomes rapidly phosphorylated on the activation loop and regulates granule exocytosis in a kinase-dependent manner. Altogether, our current studies provide new insights concerning the regulation of TCR-induced lytic granule exocytosis by revealing novel intracellular localization of PKC delta, providing the first example of colocalization of a kinase with secretory lysosomes in CD8(+) CTL and demonstrating that PKC delta directly transduces TCR signals leading to polarized granule secretion.
Collapse
Affiliation(s)
- Jennifer S Y Ma
- Center for Cancer and Immunology, Children's National Medical Center, Children's Research Institute, Washington, DC 20010, USA
| | | | | |
Collapse
|
27
|
Cubells L, de Muga SV, Tebar F, Bonventre JV, Balsinde J, Pol A, Grewal T, Enrich C. Annexin A6-induced Inhibition of Cytoplasmic Phospholipase A2 Is Linked to Caveolin-1 Export from the Golgi. J Biol Chem 2008; 283:10174-83. [DOI: 10.1074/jbc.m706618200] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
28
|
Moretó J, Lladó A, Vidal-Quadras M, Calvo M, Pol A, Enrich C, Tebar F. Calmodulin modulates H-Ras mediated Raf-1 activation. Cell Signal 2008; 20:1092-103. [PMID: 18356021 DOI: 10.1016/j.cellsig.2008.01.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2007] [Revised: 01/22/2008] [Accepted: 01/23/2008] [Indexed: 01/08/2023]
Abstract
We have previously demonstrated that, in COS-1 cells, inhibition of calmodulin increases Ras-GTP levels although it decreases Raf-1 activity and consequently MAPK. The present study analyzes the role of calmodulin in the regulation of Raf-1. First we show, using FRET microscopy, that inhibition of Raf-1 was not a consequence of a decreased interaction between H-Ras and Raf-1. Besides, the analysis of the phosphorylation state of Raf-1 showed that calmodulin, through downstream PI3K, is essential to ensure the Ser338-Raf-1 phosphorylation, critical for Raf-1 activation. We also show that the expression of a dominant negative mutant of PI3K impairs the calmodulin-mediated Raf-1 activation; in addition, both calmodulin and PI3K inhibitors decrease phospho-Ser338 and Raf-1 activity from upstream active H-Ras (H-RasG12V) and this effect is dependent on endocytosis. Importantly, in H-Ras depleted COS-1 cells, calmodulin does not modulate MAPK activation. Altogether, the results suggest that calmodulin regulation of MAPK in COS-1 cells relies upon H-Ras control of Raf-1 activity and involves PI3K.
Collapse
Affiliation(s)
- Jemina Moretó
- Departament de Biologia Cel.lular, Facultat de Medicina, Universitat de Barcelona, Casanova 143, 08036-Barcelona, Spain
| | | | | | | | | | | | | |
Collapse
|
29
|
Cubells L, Vilà de Muga S, Tebar F, Wood P, Evans R, Ingelmo-Torres M, Calvo M, Gaus K, Pol A, Grewal T, Enrich C. Annexin A6-induced alterations in cholesterol transport and caveolin export from the Golgi complex. Traffic 2007; 8:1568-89. [PMID: 17822395 PMCID: PMC3003291 DOI: 10.1111/j.1600-0854.2007.00640.x] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Annexin A6 (AnxA6) belongs to a family of Ca(2+)-dependent membrane-binding proteins and is involved in the regulation of endocytic and exocytic pathways. We previously demonstrated that AnxA6 regulates receptor-mediated endocytosis and lysosomal targeting of low-density lipoproteins and translocates to cholesterol-enriched late endosomes (LE). As cholesterol modulates the membrane binding and the cellular location of AnxA6, but also affects the intracellular distribution of caveolin, we investigated the localization and trafficking of caveolin in AnxA6-expressing cells. Here, we show that cells expressing high levels of AnxA6 are characterized by an accumulation of caveolin-1 (cav-1) in the Golgi complex. This is associated with a sequestration of cholesterol in the LE and lower levels of cholesterol in the Golgi and the plasma membrane, both likely contributing to retention of caveolin in the Golgi apparatus and a reduced number of caveolae at the cell surface. Further strengthening these findings, knock down of AnxA6 and the ectopic expression of the Niemann-Pick C1 protein in AnxA6-overexpressing cells restore the cellular distribution of cav-1 and cholesterol, respectively. In summary, this study demonstrates that elevated expression levels of AnxA6 perturb the intracellular distribution of cholesterol, which indirectly inhibits the exit of caveolin from the Golgi complex.
Collapse
Affiliation(s)
- Laia Cubells
- Departament de Biologia Cel·lular, Facultat de Medicina, Universitat de BarcelonaCasanova 143, 08036-Barcelona, Spain
| | - Sandra Vilà de Muga
- Departament de Biologia Cel·lular, Facultat de Medicina, Universitat de BarcelonaCasanova 143, 08036-Barcelona, Spain
| | - Francesc Tebar
- Departament de Biologia Cel·lular, Facultat de Medicina, Universitat de BarcelonaCasanova 143, 08036-Barcelona, Spain
| | - Peta Wood
- Centre for Immunology, St. Vincent’s Hospital, University of New South WalesSydney, NSW 2010, Australia
| | - Rachael Evans
- Centre for Immunology, St. Vincent’s Hospital, University of New South WalesSydney, NSW 2010, Australia
| | - Mercedes Ingelmo-Torres
- Departament de Biologia Cel·lular, Facultat de Medicina, Universitat de BarcelonaCasanova 143, 08036-Barcelona, Spain
| | - Maria Calvo
- Institut d’Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), Facultat de Medicina, Universitat de BarcelonaBarcelona, Spain
- Unitat de Microscòpia Confocal, Serveis Cientificotècnics, Facultat de Medicina, Universitat de BarcelonaBarcelona, Spain
| | - Katharina Gaus
- Centre of Vascular Research, School of Medical Sciences, University of New South WalesSydney, NSW 2052, Australia
| | - Albert Pol
- Institut d’Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), Facultat de Medicina, Universitat de BarcelonaBarcelona, Spain
| | - Thomas Grewal
- Centre for Immunology, St. Vincent’s Hospital, University of New South WalesSydney, NSW 2010, Australia
| | - Carlos Enrich
- Departament de Biologia Cel·lular, Facultat de Medicina, Universitat de BarcelonaCasanova 143, 08036-Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), Facultat de Medicina, Universitat de BarcelonaBarcelona, Spain
| |
Collapse
|
30
|
Lladó A, Timpson P, Vilà de Muga S, Moretó J, Pol A, Grewal T, Daly RJ, Enrich C, Tebar F. Protein kinase Cdelta and calmodulin regulate epidermal growth factor receptor recycling from early endosomes through Arp2/3 complex and cortactin. Mol Biol Cell 2007; 19:17-29. [PMID: 17959830 DOI: 10.1091/mbc.e07-05-0411] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The intracellular trafficking of the epidermal growth factor receptor (EGFR) is regulated by a cross-talk between calmodulin (CaM) and protein kinase Cdelta (PKCdelta). On inhibition of CaM, PKCdelta promotes the formation of enlarged early endosomes and blocks EGFR recycling and degradation. Here, we show that PKCdelta impairs EGFR trafficking due to the formation of an F-actin coat surrounding early endosomes. The PKCdelta-induced polymerization of actin is orchestrated by the Arp2/3 complex and requires the interaction of cortactin with PKCdelta. Accordingly, inhibition of actin polymerization by using cytochalasin D or by overexpression of active cofilin, restored the normal morphology of the organelle and the recycling of EGFR. Similar results were obtained after down-regulation of cortactin and the sequestration of the Arp2/3 complex. Furthermore we demonstrate an interaction of cortactin with CaM and PKCdelta, the latter being dependent on CaM inhibition. In summary, this study provides the first evidence that CaM and PKCdelta organize actin dynamics in the early endosomal compartment, thereby regulating the intracellular trafficking of EGFR.
Collapse
Affiliation(s)
- Anna Lladó
- Departament de Biologia Cellular, Facultat de Medicina, Universitat de Barcelona, Casanova 143, 08036-Barcelona, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Torgersen ML, Wälchli S, Grimmer S, Skånland SS, Sandvig K. Protein Kinase Cδ Is Activated by Shiga Toxin and Regulates Its Transport. J Biol Chem 2007; 282:16317-28. [PMID: 17403690 DOI: 10.1074/jbc.m610886200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Protein kinase C (PKC) isozymes regulate different vesicular trafficking steps in the recycling or degradative pathways. However, a possible role of these kinases in the retrograde pathway from endosomes to the Golgi complex has previously not been investigated. We report here the involvement of a specific PKC isozyme, PKCdelta, in the intracellular transport of the glycolipid-binding Shiga toxin (Stx), which utilizes the retrograde pathway to intoxicate cells. Upon binding to cells, Stx was shown to specifically activate PKCdelta and not PKCalpha. The involvement of PKCdelta and PKCalpha in the retrograde transport of Stx was then monitored biochemically and by immunofluorescence after inhibition or depletion of the isozymes. PKCdelta, but not PKCalpha, was shown to selectively regulate the endosome-to-Golgi transport of StxB. Upon inhibition or knockdown of PKCdelta, StxB molecules colocalized less with giantin and more with EEA1, indicating that the molecules were accumulated in endosomes, unable to reach the Golgi complex. The inhibition of Golgi transport of Stx was reflected by a strong reduction in the toxic effect, demonstrating that transport of Stx to the cytosol is dependent on PKCdelta activity. These results are in agreement with our previous data, which show that Stx is able to stimulate its own transport.
Collapse
Affiliation(s)
- Maria L Torgersen
- Institute for Cancer Research, Faculty Division, The Norwegian Radium Hospital, University of Oslo, Montebello, 0310 Oslo, Norway
| | | | | | | | | |
Collapse
|
32
|
Perry C, Le H, Grichtchenko II. ANG II and calmodulin/CaMKII regulate surface expression and functional activity of NBCe1 via separate means. Am J Physiol Renal Physiol 2007; 293:F68-77. [PMID: 17376763 DOI: 10.1152/ajprenal.00454.2006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
We recently reported that ANG II inhibits NBCe1 current and surface expression in Xenopus laevis oocytes (Perry C, Blaine J, Le H, and Grichtchenko II. Am J Physiol Renal Physiol 290: F417-F427, 2006). Here, we investigated mechanisms of ANG II-induced changes in NBCe1 surface expression. We showed that the PKC inhibitor GF109203X blocks and EGTA reduces surface cotransporter loss in ANG II-treated oocytes, suggesting roles for PKC and Ca(2+). Using the endosomal marker FM 4-64 and enhanced green fluorescent protein (EGFP)-tagged NBCe1, we showed that ANG II stimulates endocytosis of NBCe1. To eliminate the possibility that ANG II inhibits NBCe1 recycling, we demonstrated that the recycling inhibitor monensin decreases surface expression, accumulates NBCe1-EGFP in endosomes, and inhibits NBCe1 current. Monensin and ANG II applied together produce greater inhibition of NBCe1 current than either did alone. This additive effect of monensin and ANG II suggests that ANG II stimulates internalization of NBCe1. We used the calmodulin (CaM) antagonist W13, which controls recycling by blocking the exit of the endocytosed cargo from early endosomes, to determine the role of CaM in NBCe1 trafficking. We demonstrated that W13 decreases surface expression of NBCe1, accumulates NBCe1-EGFP in endosomal-like formations, and inhibits NBCe1 current. W13 and ANG II applied together produce greater inhibition of NBCe1 current than either does alone, while W13 and monensin applied together do not. The additive effect of ANG II and W13 and lack of additive effect of monensin and W13 suggest that CaM is not involved in ANG II stimulation of internalization but controls recycling of endocytosed NBCe1. The CaM-activated enzyme CaM kinase II (CaMKII) applied with ANG II also gives an additive inhibitory effect, suggesting a role for CaMKII in NBCe1 recycling.
Collapse
Affiliation(s)
- Clint Perry
- Department of Physiology and Biophysics, University of Colorado and Denver Health Sciences Center, Aurora, CO 80045, USA
| | | | | |
Collapse
|
33
|
Grewal T, Enrich C. Molecular mechanisms involved in Ras inactivation: the annexin A6–p120GAP complex. Bioessays 2006; 28:1211-20. [PMID: 17120209 DOI: 10.1002/bies.20503] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
In mammalian cells, a complex network of signaling pathways tightly regulates a variety of cellular processes, such as proliferation and differentiation. New insights from one of the most-important signaling cascades involved in oncogenesis, the Ras-Raf-MAPK pathway, suggest that the subcellular localisation and assembly of signaling modules of this pathway is crucial to control the biological response. This commonly requires membrane targeting events that are mediated by adaptor/scaffold proteins. Of particular interest is the translocation and complex formation of GTPase-activating proteins (GAPs), such as p120GAP, at the plasma membrane to inactivate Ras. Recent studies indicate that one member of the annexin family, annexin A6 acts as a targeting protein for p120GAP. This review discusses how annexin A6 modulates the involvement of negative regulators of the Ras-Raf-MAPK pathway contributing to Ras inactivation.
Collapse
Affiliation(s)
- Thomas Grewal
- Centre for Immunology, St. Vincent's Hospital, University of New South Wales, Sydney, Australia.
| | | |
Collapse
|
34
|
Rentero C, Evans R, Wood P, Tebar F, Vilà de Muga S, Cubells L, de Diego I, Hayes TE, Hughes WE, Pol A, Rye KA, Enrich C, Grewal T. Inhibition of H-Ras and MAPK is compensated by PKC-dependent pathways in annexin A6 expressing cells. Cell Signal 2005; 18:1006-16. [PMID: 16183252 DOI: 10.1016/j.cellsig.2005.08.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2005] [Revised: 08/22/2005] [Accepted: 08/22/2005] [Indexed: 01/06/2023]
Abstract
High-density lipoprotein (HDL)-induced activation of the Ras/MAPK pathway can be mediated by protein kinase C (PKC)-dependent and independent pathways. Although both pathways co-exist in cells, we showed that binding of HDL to scavenger receptor BI (SR-BI) in CHO cells activates Ras and MAPK in a PKC-independent manner. We have recently identified that HDL-induced activation of Ras and Raf-1 is reduced in annexin A6 expressing CHO cells (CHOanx6). In the present study we demonstrate that despite the loss of Ras and Raf-1 activity, HDL induces MAPK phosphorylation in CHOanx6 cells. Since annexin A6 is a PKCalpha-binding protein we therefore investigated the possible involvement of PKC in HDL-induced Ras and MAPK activation in CHOanx6 cells. Taken together our findings demonstrate that HDL-induced H-Ras and MAPK activation is PKC-dependent in cells expressing annexin A6 to compensate for the loss of PKC-independent activation of H-Ras and MAPK.
Collapse
Affiliation(s)
- Carles Rentero
- Departament de Biologia Cellular, Facultat de Medicina, Universitat de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain, and Centre for Immunology, St. Vincent's Hospital, Sydney, NSW, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Tyteca D, van Ijzendoorn SCD, Hoekstra D. Calmodulin modulates hepatic membrane polarity by protein kinase C-sensitive steps in the basolateral endocytic pathway. Exp Cell Res 2005; 310:293-302. [PMID: 16154564 DOI: 10.1016/j.yexcr.2005.07.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2005] [Revised: 07/08/2005] [Accepted: 07/17/2005] [Indexed: 01/24/2023]
Abstract
Membrane polarity is maintained by a complex intermingling of various trafficking pathways, including basolateral and apical endocytosis. The present work was undertaken to better define the role of basolateral endocytic transport in apical membrane homeostasis. When polarized HepG2 hepatoma cells were incubated with calmodulin antagonists, the cells lost their polarity, as reflected by an inhibition of lipid transport of a fluorescent sphingomyelin to the apical membrane and an impediment of its recycling to the basolateral membrane. Instead, an accumulation of the lipid in dilated early endosomal compartments was observed, presumably due to a frustration of vesiculation. Interestingly, lipid transport to the apical pole, lipid recycling to the basolateral membrane and cell polarity were reestablished, while dilated compartments disappeared, when the cells were simultaneously treated with specific inhibitors of protein kinase C (PKC). Consistently, following activation of PKC, extensive dilation/vacuolation of early sorting endosomes was observed, very similar as seen upon treatment with calmodulin antagonists. Thus, the results indicate that membrane trafficking at early steps of the basolateral endocytic pathway in HepG2 cells is regulated by an intricate interplay between calmodulin and PKC. This interference, although not affecting endocytosis as such, compromises cell polarity by impeding membrane trafficking from early endosomes to the apical membrane.
Collapse
Affiliation(s)
- Donatienne Tyteca
- Department of Cell Biology/Section Membrane Cell Biology, University Medical Center Groningen, A.Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | | | | |
Collapse
|