1
|
Zhang C, Calderin JD, Hurst LR, Gokbayrak ZD, Hrabak MR, Balutowski A, Rivera-Kohr DA, Kazmirchuk TDD, Brett CL, Fratti RA. Sphingolipids containing very long-chain fatty acids regulate Ypt7 function during the tethering stage of vacuole fusion. J Biol Chem 2024; 300:107808. [PMID: 39307308 PMCID: PMC11530833 DOI: 10.1016/j.jbc.2024.107808] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/22/2024] [Accepted: 09/15/2024] [Indexed: 10/20/2024] Open
Abstract
Sphingolipids are essential in membrane trafficking and cellular homeostasis. Here, we show that sphingolipids containing very long-chain fatty acids (VLCFAs) promote homotypic vacuolar fusion in Saccharomyces cerevisiae. The elongase Elo3 adds the last two carbons to VLCFAs that are incorporated into sphingolipids. Cells lacking Elo3 have fragmented vacuoles, which is also seen when WT cells are treated with the sphingolipid synthesis inhibitor Aureobasidin-A. Isolated elo3Δ vacuoles show acidification defects and increased membrane fluidity, and this correlates with deficient fusion. Fusion arrest occurs at the tethering stage as elo3Δ vacuoles fail to cluster efficiently in vitro. Unlike HOPS and fusogenic lipids, GFP-Ypt7 does not enrich at elo3Δ vertex microdomains, a hallmark of vacuole docking prior to fusion. Pulldown assays using bacterially expressed GST-Ypt7 showed that HOPS from elo3Δ vacuole extracts failed to bind GST-Ypt7 while HOPS from WT extracts interacted strongly with GST-Ypt7. Treatment of WT vacuoles with the fluidizing anesthetic dibucaine recapitulates the elo3Δ phenotype and shows increased membrane fluidity, mislocalized GFP-Ypt7, inhibited fusion, and attenuated acidification. Together these data suggest that sphingolipids contribute to Rab-mediated tethering and docking required for vacuole fusion.
Collapse
Affiliation(s)
- Chi Zhang
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Jorge D Calderin
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Logan R Hurst
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | | | - Michael R Hrabak
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Adam Balutowski
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - David A Rivera-Kohr
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | | | | | - Rutilio A Fratti
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, Illinois, USA; Center for Biophysics & Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA.
| |
Collapse
|
2
|
Kadhim I, Begum N, King W, Xu L, Tang F. Up-regulation of Osh6 boosts an anti-aging membrane trafficking pathway toward vacuoles. MICROBIAL CELL (GRAZ, AUSTRIA) 2022; 9:145-157. [PMID: 35974810 PMCID: PMC9344199 DOI: 10.15698/mic2022.08.783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 06/09/2022] [Accepted: 06/18/2022] [Indexed: 11/30/2022]
Abstract
Members of the family of oxysterol-binding proteins mediate non-vesicular lipid transport between membranes and contribute to longevity in different manners. We previously found that a 2-fold up-regulation of Osh6, one of seven yeast oxysterol-binding proteins, remedies vacuolar morphology defects in mid-aged cells, partly down-regulates the target of rapamycin complex 1 (TORC1), and increases the replicative lifespan. At the molecular level, Osh6 transports phosphatidylserine (PS) and phosphatidylinositol-4-phosphate (PI4P) between the endoplasmic reticulum (ER) and the plasma membrane (PM). To decipher how an ER-PM working protein controls vacuolar morphology, we tested genetic interactions between OSH6 and DRS2, whose protein flips PS from the lumen to the cytosolic side of the Golgi, the organelle between ER and vacuoles in many pathways. Up-regulated OSH6 complemented vacuolar morphology of drs2Δ and enriched PI4P on the Golgi, indicating that Osh6 also works on the Golgi. This altered PI4P-enrichment led to a delay in the secretion of the proton ATPase Pma1 to the PM and a rerouting of Pma1 to vacuoles in a manner dependent on the trans-Golgi network (TGN) to late endosome (LE) trafficking pathway. Since the TGN-LE pathway controls endosomal and vacuolar TORC1, it may be the anti-aging pathway boosted by up-regulated Osh6.
Collapse
Affiliation(s)
- Ilham Kadhim
- Department of Biology, University of Arkansas, Little Rock, AR 72204, USA
| | - Nazneen Begum
- Department of Biology, University of Arkansas, Little Rock, AR 72204, USA
| | - William King
- Department of Biology, University of Arkansas, Little Rock, AR 72204, USA
| | - Licheng Xu
- Department of Biology, University of Arkansas, Little Rock, AR 72204, USA
| | - Fusheng Tang
- Department of Biology, University of Arkansas, Little Rock, AR 72204, USA
| |
Collapse
|
3
|
Watchaputi K, Somboon P, Phromma-in N, Ratanakhanokchai K, Soontorngun N. Actin cytoskeletal inhibitor 19,20-epoxycytochalasin Q sensitizes yeast cells lacking ERG6 through actin-targeting and secondarily through disruption of lipid homeostasis. Sci Rep 2021; 11:7779. [PMID: 33833332 PMCID: PMC8032726 DOI: 10.1038/s41598-021-87342-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 03/22/2021] [Indexed: 02/01/2023] Open
Abstract
Repetitive uses of antifungals result in a worldwide crisis of drug resistance; therefore, natural fungicides with minimal side-effects are currently sought after. This study aimed to investigate antifungal property of 19, 20-epoxycytochalasin Q (ECQ), derived from medicinal mushroom Xylaria sp. BCC 1067 of tropical forests. In a model yeast Saccharomyces cerevisiae, ECQ is more toxic in the erg6∆ strain, which has previously been shown to allow higher uptake of many hydrophilic toxins. We selected one pathway to study the effects of ECQ at very high levels on transcription: the ergosterol biosynthesis pathway, which is unlikely to be the primary target of ECQ. Ergosterol serves many functions that cholesterol does in human cells. ECQ's transcriptional effects were correlated with altered sterol and triacylglycerol levels. In the ECQ-treated Δerg6 strain, which presumably takes up far more ECQ than the wild-type strain, there was cell rupture. Increased actin aggregation and lipid droplets assembly were also found in the erg6∆ mutant. Thereby, ECQ is suggested to sensitize yeast cells lacking ERG6 through actin-targeting and consequently but not primarily led to disruption of lipid homeostasis. Investigation of cytochalasins may provide valuable insight with potential biopharmaceutical applications in treatments of fungal infection, cancer or metabolic disorder.
Collapse
Affiliation(s)
- Kwanrutai Watchaputi
- grid.412151.20000 0000 8921 9789Division of Biochemical Technology, School of Bioresources and Technology, King Mongkut’s University of Technology Thonburi (KMUTT), Bangkok, 10150 Thailand
| | - Pichayada Somboon
- grid.419784.70000 0001 0816 7508Division of Fermentation Technology, Faculty of Food Industry, King Mongkut’s Institute of Technology Ladkrabang (KMITL), Bangkok, 10520 Thailand
| | - Nipatthra Phromma-in
- grid.412151.20000 0000 8921 9789Division of Biochemical Technology, School of Bioresources and Technology, King Mongkut’s University of Technology Thonburi (KMUTT), Bangkok, 10150 Thailand
| | - Khanok Ratanakhanokchai
- grid.412151.20000 0000 8921 9789Division of Biochemical Technology, School of Bioresources and Technology, King Mongkut’s University of Technology Thonburi (KMUTT), Bangkok, 10150 Thailand
| | - Nitnipa Soontorngun
- grid.412151.20000 0000 8921 9789Division of Biochemical Technology, School of Bioresources and Technology, King Mongkut’s University of Technology Thonburi (KMUTT), Bangkok, 10150 Thailand
| |
Collapse
|
4
|
Weber M, Basu S, González B, Greslehner GP, Singer S, Haskova D, Hasek J, Breitenbach M, W.Gourlay C, Cullen PJ, Rinnerthaler M. Actin Cytoskeleton Regulation by the Yeast NADPH Oxidase Yno1p Impacts Processes Controlled by MAPK Pathways. Antioxidants (Basel) 2021; 10:322. [PMID: 33671669 PMCID: PMC7926930 DOI: 10.3390/antiox10020322] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/17/2021] [Accepted: 02/18/2021] [Indexed: 01/21/2023] Open
Abstract
Reactive oxygen species (ROS) that exceed the antioxidative capacity of the cell can be harmful and are termed oxidative stress. Increasing evidence suggests that ROS are not exclusively detrimental, but can fulfill important signaling functions. Recently, we have been able to demonstrate that a NADPH oxidase-like enzyme (termed Yno1p) exists in the single-celled organism Saccharomyces cerevisiae. This enzyme resides in the peripheral and perinuclear endoplasmic reticulum and functions in close proximity to the plasma membrane. Its product, hydrogen peroxide, which is also produced by the action of the superoxide dismutase, Sod1p, influences signaling of key regulatory proteins Ras2p and Yck1p/2p. In the present work, we demonstrate that Yno1p-derived H2O2 regulates outputs controlled by three MAP kinase pathways that can share components: the filamentous growth (filamentous growth MAPK (fMAPK)), pheromone response, and osmotic stress response (hyperosmolarity glycerol response, HOG) pathways. A key structural component and regulator in this process is the actin cytoskeleton. The nucleation and stabilization of actin are regulated by Yno1p. Cells lacking YNO1 showed reduced invasive growth, which could be reversed by stimulation of actin nucleation. Additionally, under osmotic stress, the vacuoles of a ∆yno1 strain show an enhanced fragmentation. During pheromone response induced by the addition of alpha-factor, Yno1p is responsible for a burst of ROS. Collectively, these results broaden the roles of ROS to encompass microbial differentiation responses and stress responses controlled by MAPK pathways.
Collapse
Affiliation(s)
- Manuela Weber
- Department of Biosciences, University of Salzburg, 5020 Salzburg, Austria; (M.W.); (G.P.G.); (S.S.); (M.B.)
| | - Sukanya Basu
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, NY 14260-1300, USA; (S.B.); (B.G.)
| | - Beatriz González
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, NY 14260-1300, USA; (S.B.); (B.G.)
| | - Gregor P. Greslehner
- Department of Biosciences, University of Salzburg, 5020 Salzburg, Austria; (M.W.); (G.P.G.); (S.S.); (M.B.)
| | - Stefanie Singer
- Department of Biosciences, University of Salzburg, 5020 Salzburg, Austria; (M.W.); (G.P.G.); (S.S.); (M.B.)
| | - Danusa Haskova
- Laboratory of Cell Reproduction, Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic; (D.H.); (J.H.)
| | - Jiri Hasek
- Laboratory of Cell Reproduction, Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic; (D.H.); (J.H.)
| | - Michael Breitenbach
- Department of Biosciences, University of Salzburg, 5020 Salzburg, Austria; (M.W.); (G.P.G.); (S.S.); (M.B.)
| | - Campbell W.Gourlay
- Kent Fungal Group, School of Biosciences, University of Kent, Kent CT2 9HY, UK;
| | - Paul J. Cullen
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, NY 14260-1300, USA; (S.B.); (B.G.)
| | - Mark Rinnerthaler
- Department of Biosciences, University of Salzburg, 5020 Salzburg, Austria; (M.W.); (G.P.G.); (S.S.); (M.B.)
| |
Collapse
|
5
|
Xu Y, Quan H, Wang Y, Zhong H, Sun J, Xu J, Jia N, Jiang Y. Requirement for Ergosterol in Berberine Tolerance Underlies Synergism of Fluconazole and Berberine against Fluconazole-Resistant Candida albicans Isolates. Front Cell Infect Microbiol 2017; 7:491. [PMID: 29238700 PMCID: PMC5712545 DOI: 10.3389/fcimb.2017.00491] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 11/15/2017] [Indexed: 12/19/2022] Open
Abstract
Candida albicans is one of the most common fungal pathogens. Our previous study demonstrated that concomitant use of berberine (BBR) and fluconazole (FLC) showed a synergistic action against FLC-resistant C. albicans in vitro and BBR had a major antifungal effect in the synergism, while FLC played a role of increasing the intracellular BBR concentration. Since the antifungal activity of BBR alone is very weak (MIC > 128 μg/mL), it was assumed that FLC-resistant C. albicans was naturally tolerant to BBR, and this tolerance could be reversed by FLC. The present study aimed to elucidate the mechanism underlying BBR tolerance in FLC-resistant C. albicans and its disruption by FLC. The ergosterol quantitative analysis showed that the BBR monotreatment could increase the content of cellular ergosterol. Real-time RT-PCR revealed a global upregulation of ergosterol synthesis genes in response to BBR exposure. In addition, exogenous ergosterol could decrease intracellular BBR concentration and increase the expression of drug efflux pump genes, further reducing the susceptibility of C. albicans to BBR. Similar to FLC, other antifungal agents acting on ergosterol were able to synergize with BBR against FLC-resistant C. albicans. However, the antifungal agents not acting on ergosterol were not synergistic with BBR. These results suggested that ergosterol was required for BBR tolerance, and FLC could enhance the susceptibility of FLC-resistant C. albicans to BBR by inhibiting ergosterol synthesis.
Collapse
Affiliation(s)
- Yi Xu
- Department of Pharmacy, Jinan Military General Hospital, Jinan, China
| | - Hua Quan
- New Drug Research and Development Center, School of Pharmacy, Second Military Medical University, Shanghai, China.,Shanghai Pudong Institute for Food and Drug Control, Shanghai, China
| | - Yan Wang
- New Drug Research and Development Center, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Hua Zhong
- New Drug Research and Development Center, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Jun Sun
- Department of Pharmacy, Jinan Military General Hospital, Jinan, China
| | - Jianjiang Xu
- Department of Pharmacy, Jinan Military General Hospital, Jinan, China
| | - Nuan Jia
- Department of Pharmacy, Jinan Military General Hospital, Jinan, China
| | - Yuanying Jiang
- New Drug Research and Development Center, School of Pharmacy, Second Military Medical University, Shanghai, China
| |
Collapse
|
6
|
Shpilka T, Welter E, Borovsky N, Amar N, Mari M, Reggiori F, Elazar Z. Lipid droplets and their component triglycerides and steryl esters regulate autophagosome biogenesis. EMBO J 2015; 34:2117-31. [PMID: 26162625 DOI: 10.15252/embj.201490315] [Citation(s) in RCA: 161] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 06/09/2015] [Indexed: 12/14/2022] Open
Abstract
Autophagy is a major catabolic process responsible for the delivery of proteins and organelles to the lysosome/vacuole for degradation. Malfunction of this pathway has been implicated in numerous pathological conditions. Different organelles have been found to contribute to the formation of autophagosomes, but the exact mechanism mediating this process remains obscure. Here, we show that lipid droplets (LDs) are important for the regulation of starvation-induced autophagy. Deletion of Dga1 and Lro1 enzymes responsible for triacylglycerol (TAG) synthesis, or of Are1 and Are2 enzymes responsible for the synthesis of steryl esters (STE), results in the inhibition of autophagy. Moreover, we identified the STE hydrolase Yeh1 and the TAG lipase Ayr1 as well as the lipase/hydrolase Ldh1 as essential for autophagy. Finally, we provide evidence that the ER-LD contact-site proteins Ice2 and Ldb16 regulate autophagy. Our study thus highlights the importance of lipid droplet dynamics for the autophagic process under nitrogen starvation.
Collapse
Affiliation(s)
- Tomer Shpilka
- Department of Biological Chemistry, The Weizmann Institute of Science, Rehovot, Israel
| | - Evelyn Welter
- Department of Biological Chemistry, The Weizmann Institute of Science, Rehovot, Israel
| | - Noam Borovsky
- Department of Biological Chemistry, The Weizmann Institute of Science, Rehovot, Israel
| | - Nira Amar
- Department of Biological Chemistry, The Weizmann Institute of Science, Rehovot, Israel
| | - Muriel Mari
- Department of Cell Biology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Fulvio Reggiori
- Department of Cell Biology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Zvulun Elazar
- Department of Biological Chemistry, The Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
7
|
Gebre S, Connor R, Xia Y, Jawed S, Bush JM, Bard M, Elsalloukh H, Tang F. Osh6 overexpression extends the lifespan of yeast by increasing vacuole fusion. Cell Cycle 2014; 11:2176-88. [DOI: 10.4161/cc.20691] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
8
|
Mukherjee V, Steensels J, Lievens B, Van de Voorde I, Verplaetse A, Aerts G, Willems KA, Thevelein JM, Verstrepen KJ, Ruyters S. Phenotypic evaluation of natural and industrial Saccharomyces yeasts for different traits desirable in industrial bioethanol production. Appl Microbiol Biotechnol 2014; 98:9483-98. [PMID: 25267160 DOI: 10.1007/s00253-014-6090-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 09/09/2014] [Accepted: 09/10/2014] [Indexed: 01/17/2023]
Abstract
Saccharomyces cerevisiae is the organism of choice for many food and beverage fermentations because it thrives in high-sugar and high-ethanol conditions. However, the conditions encountered in bioethanol fermentation pose specific challenges, including extremely high sugar and ethanol concentrations, high temperature, and the presence of specific toxic compounds. It is generally considered that exploring the natural biodiversity of Saccharomyces strains may be an interesting route to find superior bioethanol strains and may also improve our understanding of the challenges faced by yeast cells during bioethanol fermentation. In this study, we phenotypically evaluated a large collection of diverse Saccharomyces strains on six selective traits relevant for bioethanol production with increasing stress intensity. Our results demonstrate a remarkably large phenotypic diversity among different Saccharomyces species and among S. cerevisiae strains from different origins. Currently applied bioethanol strains showed a high tolerance to many of these relevant traits, but several other natural and industrial S. cerevisiae strains outcompeted the bioethanol strains for specific traits. These multitolerant strains performed well in fermentation experiments mimicking industrial bioethanol production. Together, our results illustrate the potential of phenotyping the natural biodiversity of yeasts to find superior industrial strains that may be used in bioethanol production or can be used as a basis for further strain improvement through genetic engineering, experimental evolution, or breeding. Additionally, our study provides a basis for new insights into the relationships between tolerance to different stressors.
Collapse
Affiliation(s)
- Vaskar Mukherjee
- Laboratory for Process Microbial Ecology and Bioinspirational Management, Cluster for Bioengineering Technology (CBeT), Department of Microbial and Molecular Systems (M2S), Campus De Nayer, KU Leuven, Fortsesteenweg 30A, B-2860, Sint-Katelijne-Waver, Belgium
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Interactomic study on interaction between lipid droplets and mitochondria. Protein Cell 2011; 2:487-96. [PMID: 21748599 DOI: 10.1007/s13238-011-1061-y] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2011] [Accepted: 05/22/2011] [Indexed: 10/18/2022] Open
Abstract
An increasing body of evidence shows that the lipid droplet, a neutral lipid storage organelle, plays a role in lipid metabolism and energy homeostasis through its interaction with mitochondria. However, the cellular functions and molecular mechanisms of the interaction remain ambiguous. Here we present data from transmission electron microscopy, fluorescence imaging, and reconstitution assays, demonstrating that lipid droplets physically contact mitochondria in vivo and in vitro. Using a bimolecular fluorescence complementation assay in Saccharomyces cerevisiae, we generated an interactomic map of protein-protein contacts of lipid droplets with mitochondria and peroxisomes. The lipid droplet proteins Erg6 and Pet10 were found to be involved in 75% of the interactions detected. Interestingly, interactions between 3 pairs of lipid metabolic enzymes were detected. Collectively, these data demonstrate that lipid droplets make physical contacts with mitochondria and peroxisomes, and reveal specific molecular interactions that suggest active participation of lipid droplets in lipid metabolism in yeast.
Collapse
|
10
|
Abstract
RhoGDIs (Rho GDP-dissociation inhibitors) are the natural inhibitors of Rho GTPases. They interfere with Rho protein function by either blocking upstream activation or association with downstream signalling molecules. RhoGDIs can also extract membrane-bound Rho GTPases to form soluble cytosolic complexes. We have shown previously that purified yeast RhoGDI Rdi1p, can inhibit vacuole membrane fusion in vitro. In the present paper we functionally dissect Rdi1p to discover its mode of regulating membrane fusion. Overexpression of Rdi1p in vivo profoundly affected cell morphology including increased actin patches in mother cells indicative of polarity defects, delayed ALP (alkaline phosphatase) sorting and the presence of highly fragmented vacuoles indicative of membrane fusion defects. These defects were not caused by the loss of typical transport and fusion proteins, but rather were linked to the reduction of membrane localization and activation of Cdc42p and Rho1p. Subcellular fractionation showed that Rdi1p is predominantly a cytosolic monomer, free of bound Rho GTPases. Overexpression of endogenous Rdi1p, or the addition of exogenous Rdi1p, generated stable cytosolic complexes. Rdi1p structure-function analysis showed that membrane association via the C-terminal β-sheet domain was required for the functional inhibition of membrane fusion. Furthermore, Rdi1p inhibited membrane fusion through the binding of Rho GTPases independent from its extraction activity.
Collapse
|
11
|
Qiu QS, Fratti RA. The Na+/H+ exchanger Nhx1p regulates the initiation of Saccharomyces cerevisiae vacuole fusion. J Cell Sci 2010; 123:3266-75. [DOI: 10.1242/jcs.067637] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Nhx1p is a Na+(K+)/H+ antiporter localized at the vacuolar membrane of the yeast Saccharomyces cerevisiae. Nhx1p regulates the acidification of cytosol and vacuole lumen, and is involved in membrane traffic from late endosomes to the vacuole. Deletion of the gene leads to aberrant vacuolar morphology and defective vacuolar protein sorting. These phenotypes are hallmarks of malfunctioning vacuole homeostasis and indicate that membrane fusion is probably altered. Here, we investigated the role of Nhx1p in the regulation of homotypic vacuole fusion. Vacuoles isolated from nhx1Δ yeast showed attenuated fusion. Assays configured to differentiate between the first round of fusion and ongoing rounds showed that nhx1Δ vacuoles were only defective in the first round of fusion, suggesting that Nhx1p regulates an early step in the pathway. Although fusion was impaired on nhx1Δ vacuoles, SNARE complex formation was indistinguishable from wild-type vacuoles. Fusion could be rescued by adding the soluble SNARE Vam7p. However, Vam7p only activated the first round of nhx1Δ vacuole fusion. Once fusion was initiated, nhx1Δ vacuoles appeared behave in a wild-type manner. Complementation studies showed that ion transport function was required for Nhx1p-mediated support of fusion. In addition, the weak base chloroquine restored nhx1Δ fusion to wild-type levels. Together, these data indicate that Nhx1p regulates the initiation of fusion by controlling vacuole lumen pH.
Collapse
Affiliation(s)
- Quan-Sheng Qiu
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- School of Life Sciences, Lanzhou University, Lanzhou City, Tianshui Road 222, 730000, China
| | - Rutilio A. Fratti
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
12
|
Natamycin inhibits vacuole fusion at the priming phase via a specific interaction with ergosterol. Antimicrob Agents Chemother 2010; 54:2618-25. [PMID: 20385867 DOI: 10.1128/aac.01794-09] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The antifungal antibiotic natamycin belongs to the family of polyene antibiotics. Its antifungal activity arises via a specific interaction with ergosterol in the plasma membrane (te Welscher et al., J. Biol. Chem. 283:6393-6401, 2008). However, this activity does not involve disruption of the membrane barrier function, a well-known property of other members of the polyene antibiotic family, such as filipin and nystatin. Here we tested the effect of natamycin on vacuole membrane fusion, which is known to be ergosterol dependent. Natamycin blocked the fusion of isolated vacuoles without compromising the barrier function of the vacuolar membrane. Sublethal doses of natamycin perturbed the cellular vacuole morphology, causing the formation of many more small vacuolar structures in yeast cells. Using vacuoles isolated from yeast strains deficient in the ergosterol biosynthesis pathway, we showed that the inhibitory activity of natamycin was dependent on the presence of specific chemical features in the structure of ergosterol that allow the binding of natamycin. We found that natamycin inhibited the priming stage of vacuole fusion. Similar results were obtained with nystatin. These results suggest a novel mode of action of natamycin and perhaps all polyene antibiotics, which involves the impairment of membrane fusion via perturbation of ergosterol-dependent priming reactions that precede membrane fusion, and they may point to an effect of natamycin on ergosterol-dependent protein function in general.
Collapse
|
13
|
Knoblach B, Rachubinski RA. Phosphorylation-dependent activation of peroxisome proliferator protein PEX11 controls peroxisome abundance. J Biol Chem 2009; 285:6670-80. [PMID: 20028986 DOI: 10.1074/jbc.m109.094805] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Peroxisomes are dynamic organelles that divide continuously in growing cell cultures and expand extensively in lipid-rich medium. Peroxisome population control is achieved in part by Pex11p-dependent regulation of peroxisome size and number. Although the production of Pex11p in yeast is tightly linked to peroxisome biogenesis by transcriptional regulation of the PEX11 gene, it remains unclear if and how Pex11p activity could be modulated by rapid signaling. We report the reversible phosphorylation of Saccharomyces cerevisiae Pex11p in response to nutritional cues and delineate a mechanism for phosphorylation-dependent activation of Pex11p through the analysis of phosphomimicking mutants. Peroxisomal phenotypes in the PEX11-A and PEX11-D strains expressing constitutively dephosphorylated and phosphorylated forms of Pex11p resemble those of PEX11 gene knock-out and overexpression mutants, although PEX11 transcript and Pex11 protein levels remain unchanged. We demonstrate functional inequality and differences in subcellular localization of the Pex11p forms. Pex11Dp promotes peroxisome fragmentation when reexpressed in cells containing induced peroxisomes. Pex11p translocates between endoplasmic reticulum and peroxisomes in a phosphorylation-dependent manner, whereas Pex11Ap and Pex11Dp are impaired in trafficking and constitutively associated with mature and proliferating peroxisomes, respectively. Overexpression of cyclin-dependent kinase Pho85p results in hyperphosphorylation of Pex11p and peroxisome proliferation. This study provides the first evidence for control of peroxisome dynamics by phosphorylation-dependent regulation of a peroxin.
Collapse
Affiliation(s)
- Barbara Knoblach
- Department of Cell Biology, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | | |
Collapse
|
14
|
Jones L, Tedrick K, Baier A, Logan MR, Eitzen G. Cdc42p is activated during vacuole membrane fusion in a sterol-dependent subreaction of priming. J Biol Chem 2009; 285:4298-306. [PMID: 20007700 DOI: 10.1074/jbc.m109.074609] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Cdc42p is a Rho GTPase that initiates signaling cascades at spatially defined intracellular sites for many cellular functions. We have previously shown that Cdc42p is localized to the yeast vacuole where it initiates actin polymerization during membrane fusion. Here we examine the activation cycle of Cdc42p during vacuole membrane fusion. Expression of either GTP- or GDP-locked Cdc42p mutants caused several morphological defects including enlarged cells and fragmented vacuoles. Stimulation of multiple rounds of fusion enhanced vacuole fragmentation, suggesting that cycles of Cdc42p activation, involving rounds of GTP binding and hydrolysis, are required to propagate Cdc42p signaling. We developed an assay to directly examine Cdc42p activation based on affinity to a probe derived from the p21-activated kinase effector, Ste20p. Cdc42p was rapidly activated during vacuole membrane fusion, which kinetically coincided with priming subreaction. During priming, Sec18p ATPase activity dissociates SNARE complexes and releases Sec17p, however, priming inhibitors such as Sec17p and Sec18p ligands did not block Cdc42p activation. Therefore, Cdc42p activation seems to be a parallel subreaction of priming, distinct from Sec18p activity. Specific mutants in the ergosterol synthesis pathway block both Sec17p release and Cdc42p activation. Taken together, our results define a novel sterol-dependent subreaction of vacuole priming that activates cycles of Cdc42p activity to facilitate membrane fusion.
Collapse
Affiliation(s)
- Lynden Jones
- Department of Cell Biology, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | | | | | | | | |
Collapse
|
15
|
Alsharif NH, Berger CEM, Varanasi SS, Chao Y, Horrocks BR, Datta HK. Alkyl-capped silicon nanocrystals lack cytotoxicity and have enhanced intracellular accumulation in malignant cells via cholesterol-dependent endocytosis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2009; 5:221-8. [PMID: 19058285 PMCID: PMC2962801 DOI: 10.1002/smll.200800903] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2008] [Revised: 08/08/2008] [Indexed: 05/20/2023]
Abstract
Nanocrystals of various inorganic materials are being considered for application in the life sciences as fluorescent labels and for such therapeutic applications as drug delivery or targeted cell destruction. The potential applications of the nanoparticles are critically compromised due to the well-documented toxicity and lack of understanding about the mechanisms involved in the intracellular internalization. Here intracellular internalization and toxicity of alkyl-capped silicon nanocrystals in human neoplastic and normal primary cells is reported. The capped nanocrystals lack cytotoxicity, and there is a marked difference in the rate and extent of intracellular accumulation of the nanoparticles between human cancerous and non-cancerous primary cells, the rate and extent being higher in the malignant cells compared to normal human primary cells. The exposure of the cells to the alkyl-capped nanocrystals demonstrates no evidence of in vitro cytotoxicity when assessed by cell morphology, apoptosis, and cell viability assays. The internalization of the nanocrystals by Hela and SW1353 cells is almost completely blocked by the pinocytosis inhibitors filipin, cytochalasin B, and actinomycin D. The internalization process is not associated with any surface change in the nanoparticles, as their luminescence spectrum is unaltered upon transport into the cytosol. The observed dramatic difference in the rate and extent of internalization of the nanocrystals between malignant and non-malignant cells therefore offers potential application in the management of human neoplastic conditions.
Collapse
Affiliation(s)
- Naif H Alsharif
- Musculoskeletal Research Group, Institute of Cellular Medicine Newcastle UniversityFramlington Place Newcastle upon Tyne, NE2 4HH (UK)
| | - Christine E M Berger
- A & R Biology Pfizer Limited500/1.826 IPC 675 Ramsgate Road Sandwich CT13 9NJ (UK)
| | - Satya S Varanasi
- Biomedical Tissue Research Group Department of Biology University of York YorkYO10 5DD (UK)
| | - Yimin Chao
- Faculty of Science Chemical Sciences and Pharmacy University of East AngliaNorwich NR4 7TJ (UK)
| | - Benjamin R Horrocks
- School of Natural Sciences, Bedson Building Newcastle UniversityNewcastle upon Tyne NE1 7RU (UK)
| | - Harish K Datta
- Musculoskeletal Research Group, Institute of Cellular Medicine Newcastle UniversityFramlington Place Newcastle upon Tyne, NE2 4HH (UK)
| |
Collapse
|
16
|
Khoury CM, Yang Z, Li XY, Vignali M, Fields S, Greenwood MT. A TSC22-like motif defines a novel antiapoptotic protein family. FEMS Yeast Res 2008; 8:540-63. [PMID: 18355271 PMCID: PMC2593406 DOI: 10.1111/j.1567-1364.2008.00367.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2007] [Revised: 01/15/2008] [Accepted: 01/22/2008] [Indexed: 11/28/2022] Open
Abstract
The apoptotic programme is evolutionarily conserved between yeast and metazoan organisms. We have previously identified a number of mammalian cDNAs capable of suppressing the deleterious effects of Bax expression in yeast. We herein report that one such suppressor, named Tsc22((86)), represents the C-terminal 86 amino acids of the previously characterized leucine zipper (LZ) motif-containing transcriptional regulator Tsc22. Employing a genome-wide two-hybrid screen, functional genomics, and deletion mutagenesis approaches, we conclude that Tsc22((86))-mediated antiapoptosis is independent of the LZ motif and is likely independent of effects on gene transcription. Rather, a 16-residue sequence within the conserved 56-residue TSC22 domain is necessary for antiapoptosis. The presence of a similar sequence was used to predict an antiapoptotic role for two yeast proteins, Sno1p and Fyv10p. Overexpression and knock-out experiments were used to validate this prediction. These findings demonstrate the potential of studying heterologous proteins in yeast to uncover novel biological insights into the regulation of apoptosis.
Collapse
Affiliation(s)
- Chamel M Khoury
- Department of Medicine, McGill University, Montreal, Quebec, Canada
| | | | | | | | | | | |
Collapse
|
17
|
Isgandarova S, Jones L, Forsberg D, Loncar A, Dawson J, Tedrick K, Eitzen G. Stimulation of actin polymerization by vacuoles via Cdc42p-dependent signaling. J Biol Chem 2007; 282:30466-75. [PMID: 17726018 DOI: 10.1074/jbc.m704117200] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have previously shown that actin ligands inhibit the fusion of yeast vacuoles in vitro, which suggests that actin remodeling is a subreaction of membrane fusion. Here, we demonstrate the presence of vacuole-associated actin polymerization activity, and its dependence on Cdc42p and Vrp1p. Using a sensitive in vitro pyrene-actin polymerization assay, we found that vacuole membranes stimulated polymerization, and this activity increased when vacuoles were preincubated under conditions that support membrane fusion. Vacuoles purified from a VRP1-gene deletion strain showed reduced polymerization activity, which could be recovered when reconstituted with excess Vrp1p. Cdc42p regulates this activity because overexpression of dominant-negative Cdc42p significantly reduced vacuole-associated polymerization activity, while dominant-active Cdc42p increased activity. We also used size-exclusion chromatography to directly examine changes in yeast actin induced by vacuole fusion. This assay confirmed that actin undergoes polymerization in a process requiring ATP. To further confirm the need for actin polymerization during vacuole fusion, an actin polymerization-deficient mutant strain was examined. This strain showed in vivo defects in vacuole fusion, and actin purified from this strain inhibited in vitro vacuole fusion. Affinity isolation of vacuole-associated actin and in vitro binding assays revealed a polymerization-dependent interaction between actin and the SNARE Ykt6p. Our results suggest that actin polymerization is a subreaction of vacuole membrane fusion governed by Cdc42p signal transduction.
Collapse
Affiliation(s)
- Sabina Isgandarova
- Department of Cell Biology, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
Vac8p is a multifunctional yeast protein involved in several distinct vacuolar events including vacuole inheritance, vacuole homotypic fusion, nucleus-vacuole junction formation and the cytoplasm to vacuole protein targeting pathway. Vac8p associates with the vacuole membrane via myristoylation and palmitoylation. Vac8p has three putative palmitoylation sites, at Cys 4, 5 and 7. Here, we show that each of these cysteines may serve as a palmitoylation site. Palmitoylation at Cys 7 alone provides partial function of Vac8p, whereas palmitoylation at either Cys 4 or Cys 5 alone is sufficient for Vac8p function. In the former mutant, there is a severe defect in the localization of Vac8p to the vacuole membrane, while in the latter mutants, there is a partial defect in the localization of Vac8p. In addition, our studies provide evidence that palmitoylation targets Vac8p to specific membrane subdomains.
Collapse
Affiliation(s)
- Yutian Peng
- Department of Cell & Developmental Biology, Life Sciences Institute, 210 Washtenaw Avenue, Room 6437, University of Michigan, Ann Arbor, MI 48109-2216, USA
| | | | | |
Collapse
|
19
|
Souza CM, Pichler H. Lipid requirements for endocytosis in yeast. Biochim Biophys Acta Mol Cell Biol Lipids 2007; 1771:442-54. [PMID: 16997624 DOI: 10.1016/j.bbalip.2006.08.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2006] [Revised: 08/10/2006] [Accepted: 08/10/2006] [Indexed: 01/19/2023]
Abstract
Endocytosis is, besides secretion, the most prominent membrane transport pathway in eukaryotic cells. In membrane transport, defined areas of the donor membranes engulf solutes of the compartment they are bordering and bud off with the aid of coat proteins to form vesicles. These transport vehicles are guided along cytoskeletal paths, often matured and, finally, fuse to the acceptor membrane they are targeted to. Lipids and proteins are equally important components in membrane transport pathways. Not only are they the structural units of membranes and vesicles, but both classes of molecules also participate actively in membrane transport processes. Whereas proteins form the cytoskeleton and vesicle coats, confer signals and constitute attachment points for membrane-membrane interaction, lipids modulate the flexibility of bilayers, carry protein recognition sites and confer signals themselves. Over the last decade it has been realized that all classes of bilayer lipids, glycerophospholipids, sphingolipids and sterols, actively contribute to functional membrane transport, in particular to endocytosis. Thus, abnormal bilayer lipid metabolism leads to endocytic defects of different severity. Interestingly, there seems to be a great deal of interdependence and interaction among lipid classes. It will be a challenge to characterize this plenitude of interactions and find out about their impact on cellular processes.
Collapse
|
20
|
Neuhof T, Seibold M, Thewes S, Laue M, Han CO, Hube B, von Döhren H. Comparison of susceptibility and transcription profile of the new antifungal hassallidin A with caspofungin. Biochem Biophys Res Commun 2006; 349:740-9. [PMID: 16949033 DOI: 10.1016/j.bbrc.2006.08.110] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2006] [Accepted: 08/16/2006] [Indexed: 11/23/2022]
Abstract
This is the first report on the antifungal effects of the new glycolipopeptide hassallidin A. Due to related molecular structure moieties between hassallidin A and the established antifungal drug caspofungin we assumed parallels in the effects on cell viability. Therefore we compared hassallidin A with caspofungin by antifungal susceptibility testing and by analysing the genome-wide transcriptional profile of Candida albicans. Furthermore, we examined modifications in ultracellular structure due to hassallidin A treatment by electron microscopy. Hassallidin A was found to be fungicidal against all tested Candida species and Cryptococcus neoformans isolates. MICs ranged from 4 to 8 microg/ml, independently from the species. Electron microscopy revealed noticeable ultrastructural changes in C. albicans cells exposed to hassallidin A. Comparing the transcriptional profile of C. albicans cells treated with hassallidin A to that of cells exposed to caspofungin, only 20 genes were found to be similarly up- or down-regulated in both assays, while 227 genes were up- or down-regulated induced by hassallidin A specifically. Genes up-regulated in cells exposed to hassallidin A included metabolic and mitotic genes, while genes involved in DNA repair, vesicle docking, and membrane fusion were down-regulated. In summary, our data suggest that, although hassallidin A and caspofungin have similar structures, however, the effects on susceptibility and transcriptional response to yeasts seem to be different.
Collapse
Affiliation(s)
- Torsten Neuhof
- Technische Universität Berlin, Institut für Chemie, FG Biochemie und Molekulare Biologie, 10587 Berlin, Germany.
| | | | | | | | | | | | | |
Collapse
|
21
|
Hölttä-Vuori M, Alpy F, Tanhuanpää K, Jokitalo E, Mutka AL, Ikonen E. MLN64 is involved in actin-mediated dynamics of late endocytic organelles. Mol Biol Cell 2005; 16:3873-86. [PMID: 15930133 PMCID: PMC1182323 DOI: 10.1091/mbc.e04-12-1105] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
MLN64 is a late endosomal cholesterol-binding membrane protein of an unknown function. Here, we show that MLN64 depletion results in the dispersion of late endocytic organelles to the cell periphery similarly as upon pharmacological actin disruption. The dispersed organelles in MLN64 knockdown cells exhibited decreased association with actin and the Arp2/3 complex subunit p34-Arc. MLN64 depletion was accompanied by impaired fusion of late endocytic organelles and delayed cargo degradation. MLN64 overexpression increased the number of actin and p34-Arc-positive patches on late endosomes, enhanced the fusion of late endocytic organelles in an actin-dependent manner, and stimulated the deposition of sterol in late endosomes harboring the protein. Overexpression of wild-type MLN64 was capable of rescuing the endosome dispersion in MLN64-depleted cells, whereas mutants of MLN64 defective in cholesterol binding were not, suggesting a functional connection between MLN64-mediated sterol transfer and actin-dependent late endosome dynamics. We propose that local sterol enrichment by MLN64 in the late endosomal membranes facilitates their association with actin, thereby governing actin-dependent fusion and degradative activity of late endocytic organelles.
Collapse
|