1
|
Hu H, Kurasawa Y, Zhou Q, Li Z. A kinesin-13 family kinesin in Trypanosoma brucei regulates cytokinesis and cytoskeleton morphogenesis by promoting microtubule bundling. PLoS Pathog 2024; 20:e1012000. [PMID: 38300973 PMCID: PMC10863849 DOI: 10.1371/journal.ppat.1012000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 02/13/2024] [Accepted: 01/26/2024] [Indexed: 02/03/2024] Open
Abstract
The early branching eukaryote Trypanosoma brucei divides uni-directionally along the longitudinal cell axis from the cell anterior toward the cell posterior, and the cleavage furrow ingresses along the cell division plane between the new and the old flagella of a dividing bi-flagellated cell. Regulation of cytokinesis in T. brucei involves actomyosin-independent machineries and trypanosome-specific signaling pathways, but the molecular mechanisms underlying cell division plane positioning remain poorly understood. Here we report a kinesin-13 family protein, KIN13-5, that functions downstream of FPRC in the cytokinesis regulatory pathway and determines cell division plane placement. KIN13-5 localizes to multiple cytoskeletal structures, interacts with FPRC, and depends on FPRC for localization to the site of cytokinesis initiation. Knockdown of KIN13-5 causes loss of microtubule bundling at both ends of the cell division plane, leading to mis-placement of the cleavage furrow and unequal cytokinesis, and at the posterior cell tip, causing the formation of a blunt posterior. In vitro biochemical assays demonstrate that KIN13-5 bundles microtubules, providing mechanistic insights into the role of KIN13-5 in cytokinesis and posterior morphogenesis. Altogether, KIN13-5 promotes microtubule bundle formation to ensure cleavage furrow placement and to maintain posterior cytoskeleton morphology in T. brucei.
Collapse
Affiliation(s)
- Huiqing Hu
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Yasuhiro Kurasawa
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Qing Zhou
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Ziyin Li
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| |
Collapse
|
2
|
Lee KJ, Zhou Q, Li Z. CRK2 controls cytoskeleton morphogenesis in Trypanosoma brucei by phosphorylating β-tubulin to regulate microtubule dynamics. PLoS Pathog 2023; 19:e1011270. [PMID: 36947554 PMCID: PMC10069784 DOI: 10.1371/journal.ppat.1011270] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 04/03/2023] [Accepted: 03/08/2023] [Indexed: 03/23/2023] Open
Abstract
Microtubules constitute a vital part of the cytoskeleton in eukaryotes by mediating cell morphogenesis, cell motility, cell division, and intracellular transport. The cytoskeleton of the parasite Trypanosoma brucei contains an array of subpellicular microtubules with their plus-ends positioned toward the posterior cell tip, where extensive microtubule growth and cytoskeleton remodeling take place during early cell cycle stages. However, the control mechanism underlying microtubule dynamics at the posterior cell tip remains elusive. Here, we report that the S-phase cyclin-dependent kinase-cyclin complex CRK2-CYC13 in T. brucei regulates microtubule dynamics by phosphorylating β-tubulin on multiple evolutionarily conserved serine and threonine residues to inhibit its incorporation into cytoskeletal microtubules and promote its degradation in the cytosol. Consequently, knockdown of CRK2 or CYC13 causes excessive microtubule extension and loss of microtubule convergence at the posterior cell tip, leading to cytoskeleton elongation and branching. These findings uncover a control mechanism for cytoskeletal microtubule dynamics by which CRK2 phosphorylates β-tubulin and fine-tunes cellular β-tubulin protein abundance to restrict excess microtubule extension for the maintenance of cytoskeleton architecture.
Collapse
Affiliation(s)
- Kyu Joon Lee
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Qing Zhou
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Ziyin Li
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| |
Collapse
|
3
|
Lee KJ, Li Z. The CRK2-CYC13 complex functions as an S-phase cyclin-dependent kinase to promote DNA replication in Trypanosoma brucei. BMC Biol 2021; 19:29. [PMID: 33568178 PMCID: PMC7876812 DOI: 10.1186/s12915-021-00961-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 01/15/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Faithful DNA replication is essential to maintain genomic stability in all living organisms, and the regulatory pathway for DNA replication initiation is conserved from yeast to humans. The evolutionarily ancient human parasite Trypanosoma brucei, however, lacks many of the conserved DNA replication factors and may employ unusual mechanisms for DNA replication. Neither the S-phase cyclin-dependent kinase (CDK) nor the regulatory pathway governing DNA replication has been previously identified in T. brucei. RESULTS Here we report that CRK2 (Cdc2-related kinase 2) complexes with CYC13 (Cyclin13) and functions as an S-phase CDK to promote DNA replication in T. brucei. We further show that CRK2 phosphorylates Mcm3, a subunit of the Mcm2-7 sub-complex of the Cdc45-Mcm2-7-GINS complex, and demonstrate that Mcm3 phosphorylation by CRK2 facilitates interaction with Sld5, a subunit of the GINS sub-complex of the Cdc45-Mcm2-7-GINS complex. CONCLUSIONS These results identify the CRK2-CYC13 complex as an S-phase regulator in T. brucei and reveal its role in regulating DNA replication through promoting the assembly of the Cdc45-Mcm2-7-GINS complex.
Collapse
Affiliation(s)
- Kyu Joon Lee
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Ziyin Li
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.
| |
Collapse
|
4
|
Sphingosine Kinase Regulates Microtubule Dynamics and Organelle Positioning Necessary for Proper G1/S Cell Cycle Transition in Trypanosoma brucei. mBio 2015; 6:e01291-15. [PMID: 26443455 PMCID: PMC4611037 DOI: 10.1128/mbio.01291-15] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
UNLABELLED Sphingolipids are important constituents of cell membranes and also serve as mediators of cell signaling and cell recognition. Sphingolipid metabolites such as sphingosine-1-phosphate and ceramide regulate signaling cascades involved in cell proliferation and differentiation, autophagy, inflammation, and apoptosis. Little is known about how sphingolipids and their metabolites function in single-celled eukaryotes. In the present study, we investigated the role of sphingosine kinase (SPHK) in the biology of the protozoan parasite Trypanosoma brucei, the agent of African sleeping sickness. T. brucei SPHK (TbSPHK) is constitutively but differentially expressed during the life cycle of T. brucei. Depletion of TbSPHK in procyclic-form T. brucei causes impaired growth and attenuation in the G1/S phase of the cell cycle. TbSPHK-depleted cells also develop organelle positioning defects and an accumulation of tyrosinated α-tubulin at the elongated posterior end of the cell, known as the "nozzle" phenotype, caused by other molecular perturbations in this organism. Our studies indicate that TbSPHK is involved in G1-to-S cell cycle progression, organelle positioning, and maintenance of cell morphology. Cytotoxicity assays using TbSPHK inhibitors revealed a favorable therapeutic index between T. brucei and human cells, suggesting TbSPHK to be a novel drug target. IMPORTANCE Trypanosoma brucei is a single-celled parasite that is transmitted between humans and other animals by the tsetse fly. T. brucei is endemic in sub-Saharan Africa, where over 70 million people and countless livestock are at risk of developing T. brucei infection, called African sleeping sickness, resulting in economic losses of ~$35 million from the loss of cattle alone. New drugs for this infection are sorely needed and scientists are trying to identify essential enzymes in the parasite that can be targets for new therapies. One possible enzyme target is sphingosine kinase, an enzyme involved in the synthesis of lipids important for cell surface integrity and regulation of cell functions. In this study, we found that sphingosine kinase is essential for normal growth and structure of the parasite, raising the possibility that it could be a good target for new chemotherapy for sleeping sickness.
Collapse
|
5
|
Levy GV, Bañuelos CP, Níttolo AG, Ortiz GE, Mendiondo N, Moretti G, Tekiel VS, Sánchez DO. Depletion of the SR-Related Protein TbRRM1 Leads to Cell Cycle Arrest and Apoptosis-Like Death in Trypanosoma brucei. PLoS One 2015; 10:e0136070. [PMID: 26284933 PMCID: PMC4540419 DOI: 10.1371/journal.pone.0136070] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 07/29/2015] [Indexed: 11/19/2022] Open
Abstract
Arginine-Serine (RS) domain-containing proteins are RNA binding proteins with multiple functions in RNA metabolism. In mammalian cells this group of proteins is also implicated in regulation and coordination of cell cycle and apoptosis. In trypanosomes, an early branching group within the eukaryotic lineage, this group of proteins is represented by 3 members, two of them are SR proteins and have been recently shown to be involved in rRNA processing as well as in pre-mRNA splicing and stability. Here we report our findings on the 3rd member, the SR-related protein TbRRM1. In the present study, we showed that TbRRM1 ablation by RNA-interference in T. brucei procyclic cells leads to cell-cycle block, abnormal cell elongation compatible with the nozzle phenotype and cell death by an apoptosis-like mechanism. Our results expand the role of the trypanosomal RS-domain containing proteins in key cellular processes such as cell cycle and apoptosis-like death, roles also carried out by the mammalian SR proteins, and thus suggesting a conserved function in this phylogenetically conserved protein family.
Collapse
Affiliation(s)
- Gabriela V. Levy
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (IIB-UNSAM)—Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), 25 de Mayo y Francia. Gral. San Martín, Buenos Aires, Argentina
- * E-mail:
| | - Carolina P. Bañuelos
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (IIB-UNSAM)—Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), 25 de Mayo y Francia. Gral. San Martín, Buenos Aires, Argentina
| | - Analía G. Níttolo
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (IIB-UNSAM)—Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), 25 de Mayo y Francia. Gral. San Martín, Buenos Aires, Argentina
| | - Gastón E. Ortiz
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (IIB-UNSAM)—Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), 25 de Mayo y Francia. Gral. San Martín, Buenos Aires, Argentina
| | - Nicolás Mendiondo
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (IIB-UNSAM)—Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), 25 de Mayo y Francia. Gral. San Martín, Buenos Aires, Argentina
| | - Georgina Moretti
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (IIB-UNSAM)—Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), 25 de Mayo y Francia. Gral. San Martín, Buenos Aires, Argentina
| | - Valeria S. Tekiel
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (IIB-UNSAM)—Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), 25 de Mayo y Francia. Gral. San Martín, Buenos Aires, Argentina
| | - Daniel O. Sánchez
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (IIB-UNSAM)—Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), 25 de Mayo y Francia. Gral. San Martín, Buenos Aires, Argentina
| |
Collapse
|
6
|
Genetic validation of aminoacyl-tRNA synthetases as drug targets in Trypanosoma brucei. EUKARYOTIC CELL 2014; 13:504-16. [PMID: 24562907 DOI: 10.1128/ec.00017-14] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Human African trypanosomiasis (HAT) is an important public health threat in sub-Saharan Africa. Current drugs are unsatisfactory, and new drugs are being sought. Few validated enzyme targets are available to support drug discovery efforts, so our goal was to obtain essentiality data on genes with proven utility as drug targets. Aminoacyl-tRNA synthetases (aaRSs) are known drug targets for bacterial and fungal pathogens and are required for protein synthesis. Here we survey the essentiality of eight Trypanosoma brucei aaRSs by RNA interference (RNAi) gene expression knockdown, covering an enzyme from each major aaRS class: valyl-tRNA synthetase (ValRS) (class Ia), tryptophanyl-tRNA synthetase (TrpRS-1) (class Ib), arginyl-tRNA synthetase (ArgRS) (class Ic), glutamyl-tRNA synthetase (GluRS) (class 1c), threonyl-tRNA synthetase (ThrRS) (class IIa), asparaginyl-tRNA synthetase (AsnRS) (class IIb), and phenylalanyl-tRNA synthetase (α and β) (PheRS) (class IIc). Knockdown of mRNA encoding these enzymes in T. brucei mammalian stage parasites showed that all were essential for parasite growth and survival in vitro. The reduced expression resulted in growth, morphological, cell cycle, and DNA content abnormalities. ThrRS was characterized in greater detail, showing that the purified recombinant enzyme displayed ThrRS activity and that the protein localized to both the cytosol and mitochondrion. Borrelidin, a known inhibitor of ThrRS, was an inhibitor of T. brucei ThrRS and showed antitrypanosomal activity. The data show that aaRSs are essential for T. brucei survival and are likely to be excellent targets for drug discovery efforts.
Collapse
|
7
|
Zhou Q, Hu H, Li Z. New insights into the molecular mechanisms of mitosis and cytokinesis in trypanosomes. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2014; 308:127-66. [PMID: 24411171 DOI: 10.1016/b978-0-12-800097-7.00004-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Trypanosoma brucei, a unicellular eukaryote and the causative agent of human sleeping sickness, possesses multiple single-copy organelles that all need to be duplicated and segregated during cell division. Trypanosomes undergo a closed mitosis in which the mitotic spindle is anchored on the nuclear envelope and connects the kinetochores made of novel protein components. Cytokinesis in trypanosomes is initiated from the anterior tip of the new flagellum attachment zone, and proceeds along the longitudinal axis without the involvement of the actomyosin contractile ring, the well-recognized cytokinesis machinery conserved from yeast to humans. Trypanosome appears to employ both evolutionarily conserved and trypanosome-specific proteins to regulate its cell cycle, and has evolved certain cell cycle regulatory pathways that are either distinct between its life cycle stages or different from its human host. Understanding the mechanisms of mitosis and cytokinesis in trypanosomes not only would shed novel light on the evolution of cell cycle control, but also could provide new drug targets for chemotherapy.
Collapse
Affiliation(s)
- Qing Zhou
- Department of Microbiology and Molecular Genetics, University of Texas Medical School at Houston, Houston, Texas, USA
| | - Huiqing Hu
- Department of Microbiology and Molecular Genetics, University of Texas Medical School at Houston, Houston, Texas, USA
| | - Ziyin Li
- Department of Microbiology and Molecular Genetics, University of Texas Medical School at Houston, Houston, Texas, USA.
| |
Collapse
|
8
|
Liu Y, Hu H, Li Z. The cooperative roles of PHO80-like cyclins in regulating the G1/S transition and posterior cytoskeletal morphogenesis in Trypanosoma brucei. Mol Microbiol 2013; 90:130-46. [PMID: 23909752 DOI: 10.1111/mmi.12352] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/30/2013] [Indexed: 12/23/2022]
Abstract
Cyclins and cyclin-dependent kinases (CDKs) represent the fundamental, crucial regulators of the cell division cycle in eukaryotes. Trypanosoma brucei expresses a large number of cyclins and Cdc2-related kinases (CRKs). However, how these cyclins and CRKs cooperate to regulate cell cycle progression remains poorly understood. Here, we carry out directional yeast two-hybrid assays to identify the interactions between the 10 cyclins and the 11 CRKs and detect a total of 26 cyclin-CRK pairs, among which 20 pairs are new. Our current efforts are focused on four PHO80-like cyclins, CYC2, CYC4, CYC5 and CYC7, and their physical and functional interactions with CRK1. Silencing of the four cyclins and CRK1 leads to the increase of G1 cells and defective DNA replication, suggesting their important roles in promoting the G1/S transition. Additionally, CYC2-, CYC7- and CRK1-deficient cells possess an elongated posterior that is filled with newly assembled microtubules. Further, we show that the four cyclins display distinct subcellular localizations and half-lives, suggesting that they likely undergo distinct regulation. Altogether, our results demonstrate the involvement of four CRK1-associated cyclins, CYC2, CYC4, CYC5 and CYC7, in promoting the G1/S transition and the requirement of CYC2 and CYC7 in maintaining posterior cytoskeletal morphogenesis during the G1/S transition.
Collapse
Affiliation(s)
- Yi Liu
- Department of Microbiology and Molecular Genetics, University of Texas Medical School at Houston, Houston, TX, 77030, USA
| | | | | |
Collapse
|
9
|
Monnerat S, Almeida Costa CI, Forkert AC, Benz C, Hamilton A, Tetley L, Burchmore R, Novo C, Mottram JC, Hammarton TC. Identification and Functional Characterisation of CRK12:CYC9, a Novel Cyclin-Dependent Kinase (CDK)-Cyclin Complex in Trypanosoma brucei. PLoS One 2013; 8:e67327. [PMID: 23805309 PMCID: PMC3689728 DOI: 10.1371/journal.pone.0067327] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Accepted: 05/20/2013] [Indexed: 11/19/2022] Open
Abstract
The protozoan parasite, Trypanosoma brucei, is spread by the tsetse fly and causes trypanosomiasis in humans and animals. Both the life cycle and cell cycle of the parasite are complex. Trypanosomes have eleven cdc2-related kinases (CRKs) and ten cyclins, an unusually large number for a single celled organism. To date, relatively little is known about the function of many of the CRKs and cyclins, and only CRK3 has previously been shown to be cyclin-dependent in vivo. Here we report the identification of a previously uncharacterised CRK:cyclin complex between CRK12 and the putative transcriptional cyclin, CYC9. CRK12:CYC9 interact to form an active protein kinase complex in procyclic and bloodstream T. brucei. Both CRK12 and CYC9 are essential for the proliferation of bloodstream trypanosomes in vitro, and we show that CRK12 is also essential for survival of T. brucei in a mouse model, providing genetic validation of CRK12:CYC9 as a novel drug target for trypanosomiasis. Further, functional characterisation of CRK12 and CYC9 using RNA interference reveals roles for these proteins in endocytosis and cytokinesis, respectively.
Collapse
Affiliation(s)
- Séverine Monnerat
- Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Cristina I. Almeida Costa
- Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Lisbon, Portugal
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Andrea C. Forkert
- Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Corinna Benz
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Alana Hamilton
- Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Laurence Tetley
- School of Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Richard Burchmore
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Carlos Novo
- Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Jeremy C. Mottram
- Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Tansy C. Hammarton
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
10
|
Farr H, Gull K. Cytokinesis in trypanosomes. Cytoskeleton (Hoboken) 2012; 69:931-41. [DOI: 10.1002/cm.21074] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Accepted: 09/06/2012] [Indexed: 11/08/2022]
|
11
|
Gourguechon S, Wang CC. CRK9 contributes to regulation of mitosis and cytokinesis in the procyclic form of Trypanosoma brucei. BMC Cell Biol 2009; 10:68. [PMID: 19772588 PMCID: PMC2754446 DOI: 10.1186/1471-2121-10-68] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2009] [Accepted: 09/21/2009] [Indexed: 11/10/2022] Open
Abstract
Background The Trypanosoma brucei cell cycle is regulated by combinations of cyclin/CRKs (cdc2 related kinases). Recently, two additional cyclins (CYC10, CYC11) and six new CRK (CRK7-12) homologues were identified in the T. brucei genome database [1,2]. Results Individual RNAi knockdowns of these new proteins in the procyclic form of T. brucei showed no apparent phenotype except for the CRK9 depletion, which enriched the cells in G2/M phase. But a similar CRK9 knockdown in the bloodstream form caused no apparent phenotype. CRK9 lacks the typical PSTAIRE motif for cyclin binding and the phenylalanine "gatekeeper" but binds to cyclin B2 in vitro and localizes to the nucleus in both forms of T. brucei. CRK9-depleted procyclic-form generated no detectable anucleate cells, suggesting an inhibition of cytokinesis by CRK9 depletion as well. The knockdown enriched cells with one nucleus, one kinetoplast and two closely associated basal bodies with an average distance of 1.08 mm in between, which was shorter than the control value of 1.36 μm, and the cells became morphologically deformed and rounded with time. Conclusion CRK9 may play a role in mediating the segregation between the two kinetoplast/basal body pairs prior to cytokinetic initiation. Since such a segregation over a relatively significant distance is essential for cytokinetic initiation only in the procyclic but may not be in the bloodstream form, CRK9 could be specifically involved in regulating cytokinetic initiation in the procyclic form of T. brucei.
Collapse
Affiliation(s)
- Stephane Gourguechon
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158-2280, USA.
| | | |
Collapse
|
12
|
Cavalli A, Bolognesi ML. Neglected Tropical Diseases: Multi-Target-Directed Ligands in the Search for Novel Lead Candidates against Trypanosoma and Leishmania. J Med Chem 2009; 52:7339-59. [DOI: 10.1021/jm9004835] [Citation(s) in RCA: 172] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Andrea Cavalli
- Department of Pharmaceutical Sciences, Alma Mater Studiorum, University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
- Department of Drug Discovery and Development, Italian Institute of Technology, Via Morego 30, 16163 Genova, Italy
| | - Maria Laura Bolognesi
- Department of Pharmaceutical Sciences, Alma Mater Studiorum, University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| |
Collapse
|
13
|
Sahasrabuddhe AA, Nayak RC, Gupta CM. Ancient Leishmania coronin (CRN12) is involved in microtubule remodeling during cytokinesis. J Cell Sci 2009; 122:1691-9. [DOI: 10.1242/jcs.044651] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In general, coronins play an important role in actin-based processes, and are expressed in a variety of eukaryotic cells, including Leishmania. Here, we show that Leishmania coronin preferentially distributes to the distal tip during cytokinesis, and interacts with microtubules through a microtubule-based motor, kinesin K39. We further show that reduction in coronin levels by 40-50% in heterozygous coronin mutants results in generation of bipolar cells (25-30%), specifically in the log phase, owing to unregulated growth of the corset microtubules. Further analysis of bipolar cells revealed that the main cause of generation of bipolar cell morphology is the intrusion of the persistently growing corset microtubules into the other daughter cell corset from the opposite direction. This defect in cytokinesis, however, disappears upon episomal gene complementation. Additionally, our attempts to prepare homozygous mutants were unsuccessful, as only the aneuploid cells survive the selection process. These results indicate that coronin regulates microtubule remodeling during Leishmania cytokinesis and is essentially required for survival of these parasites in culture.
Collapse
Affiliation(s)
- Amogh A. Sahasrabuddhe
- Division of Molecular and Structural Biology, Central Drug Research Institute, M.G. Marg, Lucknow 226001, India
| | - Ramesh C. Nayak
- Division of Molecular and Structural Biology, Central Drug Research Institute, M.G. Marg, Lucknow 226001, India
| | - Chhitar M. Gupta
- Division of Molecular and Structural Biology, Central Drug Research Institute, M.G. Marg, Lucknow 226001, India
| |
Collapse
|
14
|
Identification and specific localization of tyrosine-phosphorylated proteins in Trypanosoma brucei. EUKARYOTIC CELL 2009; 8:617-26. [PMID: 19181871 PMCID: PMC2669198 DOI: 10.1128/ec.00366-08] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Phosphorylation on tyrosine residues is a key signal transduction mechanism known to regulate intercellular and intracellular communication in multicellular organisms. Despite the lack of conventional tyrosine kinases in the genome of the single cell organism Trypanosoma brucei, phosphorylation on trypanosomal protein tyrosine residues has been reported for this parasite. However, the identities of most of the tyrosine-phosphorylated proteins and their precise site(s) of phosphorylation were unknown. Here, we have applied a phosphotyrosine-specific proteomics approach to identify 34 phosphotyrosine-containing proteins from whole-cell extracts of procyclic form T. brucei. A significant proportion of the phosphotyrosine-containing proteins identified in this study were protein kinases of the CMGC kinase group as well as some proteins of unknown function and proteins involved in energy metabolism, protein synthesis, and RNA metabolism. Interestingly, immunofluorescence microscopy using anti-phosphotyrosine antibodies suggests that there is a concentration of tyrosine-phosphorylated proteins associated with cytoskeletal structures (basal body and flagellum) and in the nucleolus of the parasite. This localization of tyrosine-phosphorylated proteins supports the idea that the function of signaling molecules is controlled by their precise location in T. brucei, a principle well known from higher eukaryotes.
Collapse
|
15
|
Sienkiewicz N, Jarosławski S, Wyllie S, Fairlamb AH. Chemical and genetic validation of dihydrofolate reductase-thymidylate synthase as a drug target in African trypanosomes. Mol Microbiol 2008; 69:520-33. [PMID: 18557814 PMCID: PMC2610392 DOI: 10.1111/j.1365-2958.2008.06305.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The phenotypes of single- (SKO) and double-knockout (DKO) lines of dihydrofolate reductase–thymidylate synthase (DHFR–TS) of bloodstream Trypanosoma brucei were evaluated in vitro and in vivo. Growth of SKO in vitro is identical to wild-type (WT) cells, whereas DKO has an absolute requirement for thymidine. Removal of thymidine from the medium triggers growth arrest in S phase, associated with gross morphological changes, followed by cell death after 60 h. DKO is unable to infect mice, whereas the virulence of SKO is similar to WT. Normal growth and virulence could be restored by transfection of DKO with T. brucei DHFR–TS, but not with Escherichia coli TS. As pteridine reductase (PTR1) levels are unchanged in SKO and DKO cells, PTR1 is not able to compensate for loss of DHFR activity. Drugs such as raltitrexed or methotrexate with structural similarity to folic acid are up to 300-fold more potent inhibitors of WT cultured in a novel low-folate medium, unlike hydrophobic antifols such as trimetrexate or pyrimethamine. DKO trypanosomes show reduced sensitivity to these inhibitors ranging from twofold for trimetrexate to >10 000-fold for raltitrexed. These data demonstrate that DHFR–TS is essential for parasite survival and represents a promising target for drug discovery.
Collapse
Affiliation(s)
- Natasha Sienkiewicz
- Division of Biological Chemistry & Drug Discovery, College of Life Sciences, University of Dundee, Dundee, UK
| | | | | | | |
Collapse
|
16
|
Estévez AM. The RNA-binding protein TbDRBD3 regulates the stability of a specific subset of mRNAs in trypanosomes. Nucleic Acids Res 2008; 36:4573-86. [PMID: 18611951 PMCID: PMC2504296 DOI: 10.1093/nar/gkn406] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In trypanosomes, the apparent lack of regulation of RNA polymerase II-dependent transcription initiation poses a challenge to understand how these eukaryotes adjust gene expression to adapt to the contrasting environments they find during their life cycles. Evidence so far indicates that mRNA turnover and translation are the major control points in which regulation is exerted in trypanosomes. However, very little is known about which proteins are involved, and how do they regulate the abundance and translation of different mRNAs in different life stages. In this work, an RNA-binding protein, TbDRBD3, has been identified by affinity chromatography, and its function addressed using RNA interference, microarray analysis and immunoprecipitation of mRNA-protein complexes. The results obtained indicate that TbDRBD3 binds to a subset of developmentally regulated mRNAs encoding membrane proteins, and that this association promotes the stabilization of the target transcripts. These observations raise the possibility that TbDRBD3-mRNA complexes act as a post-transcriptional operon, and provide a framework to interpret how trypanosomes regulate gene expression in the absence of transcriptional control.
Collapse
Affiliation(s)
- Antonio M Estévez
- Instituto de Parasitología y Biomedicina López-Neyra, CSIC Avda. del Conocimiento s/n, Armilla, 18100-Granada, Spain.
| |
Collapse
|
17
|
Gerald NJ, Coppens I, Dwyer DM. Molecular dissection and expression of the LdK39 kinesin in the human pathogen, Leishmania donovani. Mol Microbiol 2007; 63:962-79. [PMID: 17257310 DOI: 10.1111/j.1365-2958.2006.05487.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In this study we show for the first time the intracellular distribution of a K39 kinesin homologue in Leishmania donovani, a medically important parasite of humans. Further, we demonstrated that this motor protein is expressed in both the insect and mammalian developmental forms (i.e. promastigote and amastigotes) of this organism. Moreover, in both of these parasite developmental stages, immunofluorescence indicated that the LdK39 kinesin accumulated at anterior and posterior cell poles and that it displayed a peripheral localization consistent with the cortical cytoskeleton. Using a molecular approach, we identified, cloned and characterized the first complete open reading frame for the gene (LdK39) encoding this large (> 358 kDa) motor protein in L. donovani. Based on these observations, we subsequently used a homologous episomal expression system to dissect and express the functional domains that constitute the native molecule. Cell fractionation experiments demonstrated that LdK39 was soluble and that it bound to detergent-extracted cytoskeletons of these parasites in an ATP-dependent manner. The cumulative results of these experiments are consistent with LdK39 functioning as an ATP-dependent kinesin which binds to and travels along the cortical cytoskeleton of this important human pathogen.
Collapse
Affiliation(s)
- Noel J Gerald
- Cell Biology Section, Laboratory of Parasitic Diseases, NIAID/NIH, Bethesda, MD, USA
| | | | | |
Collapse
|
18
|
Gourguechon S, Savich JM, Wang CC. The multiple roles of cyclin E1 in controlling cell cycle progression and cellular morphology of Trypanosoma brucei. J Mol Biol 2007; 368:939-50. [PMID: 17376478 PMCID: PMC2701699 DOI: 10.1016/j.jmb.2007.02.050] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2006] [Revised: 02/05/2007] [Accepted: 02/12/2007] [Indexed: 10/23/2022]
Abstract
Regulation of eukaryotic cell cycle progression requires sequential activation and inactivation of cyclin-dependent kinases. Previous RNA interference (RNAi) experiments in Trypanosoma brucei indicated that cyclin E1, cdc2-related kinase (CRK)1 and CRK2 are involved in regulating G1/S transition, whereas cyclin B2 and CRK3 play a pivotal role in controlling the G2/M checkpoint. To search for potential interactions between the other cyclins and CRKs that may not have been revealed by the RNAi assays, we used the yeast two-hybrid system and an in vitro glutathione-S-transferase pulldown assay and observed interactions between cyclin E1 and CRK1, CRK2 and CRK3. Cyclins E1-E4 are homologues of yeast Pho80 cyclin. But yeast complementation assays indicated that none of them possesses a Pho80-like function. Analysis of cyclin E1+CRK1 and cyclin E1+CRK2 double knockdowns in the procyclic form of T. brucei indicated that the cells were arrested more extensively in the G1 phase beyond the cumulative effect of individual knockdowns. But BrdU incorporation was impaired significantly only in cyclin E1+CRK1-depleted cells, whereas a higher percentage of cyclin E1+CRK2 knockdown cells assumed a grossly elongated posterior end morphology. A double knockdown of cyclin E1 and CRK3 arrested cells in G2/M much more efficiently than if only CRK3 was depleted. Taken together, these data suggest multiple functions of cyclin E1: it forms a complex with CRK1 in promoting G1/S phase transition; it forms a complex with CRK2 in controlling the posterior morphogenesis during G1/S transition; and it forms a complex with CRK3 in promoting passage across the G2/M checkpoint in the trypanosome.
Collapse
Affiliation(s)
| | | | - Ching C. Wang
- Corresponding author: Department of Pharmaceutical Chemistry, UCSF, Mission Bay Campus Genentech Hall, 600 16 Street, Suite N572C, San Francisco, CA 94143-2280, Tel. 415 476-1321, Fax. 415 476-3382, E-Mail:
| |
Collapse
|
19
|
Paterou A, Walrad P, Craddy P, Fenn K, Matthews K. Identification and stage-specific association with the translational apparatus of TbZFP3, a CCCH protein that promotes trypanosome life-cycle development. J Biol Chem 2006; 281:39002-13. [PMID: 17043361 PMCID: PMC2688685 DOI: 10.1074/jbc.m604280200] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The post-transcriptional control of gene expression is becoming increasingly important in the understanding of regulated events in eukaryotic cells. The parasitic kinetoplastids have a unique reliance on such processes, because their genome is organized into polycistronic transcription units in which adjacent genes are not coordinately regulated. Indeed, the number of RNA-binding proteins predicted to be encoded in the genome of kinetoplastids is unusually large, invoking the presence of unique RNA regulators dedicated to gene expression in these evolutionarily ancient organisms. Here, we report that a small CCCH zinc finger protein, TbZFP3, enhances development between life-cycle stages in Trypanosoma brucei. Moreover, we demonstrate that this protein interacts both with the translational machinery and with other small CCCH proteins previously implicated in trypanosome developmental control. Antibodies to this protein also co-immunoprecipitate EP procyclin mRNA and encode the major surface antigen of insect forms of T. brucei. Strikingly, although TbZFP3 is constitutively expressed, it exhibits developmentally regulated association with polyribosomes, and mutational analysis demonstrates that this association is essential for the expression of phenotype. TbZFP3 is therefore a novel regulator of developmental events in kinetoplastids that acts at the level of the post-transcriptional control of gene expression.
Collapse
Affiliation(s)
| | | | - Paul Craddy
- Institute of Immunology and Infection Research, School of Biological Sciences, Ashworth Laboratories, King’s Buildings, University of Edinburgh, West Mains Road, Edinburgh EH9 3JT, Scotland, United Kingdom
| | - Katelyn Fenn
- Institute of Immunology and Infection Research, School of Biological Sciences, Ashworth Laboratories, King’s Buildings, University of Edinburgh, West Mains Road, Edinburgh EH9 3JT, Scotland, United Kingdom
| | - Keith Matthews
- Institute of Immunology and Infection Research, School of Biological Sciences, Ashworth Laboratories, King’s Buildings, University of Edinburgh, West Mains Road, Edinburgh EH9 3JT, Scotland, United Kingdom
| |
Collapse
|
20
|
Uboldi AD, Lueder FB, Walsh P, Spurck T, McFadden GI, Curtis J, Likic VA, Perugini MA, Barson M, Lithgow T, Handman E. A mitochondrial protein affects cell morphology, mitochondrial segregation and virulence in Leishmania. Int J Parasitol 2006; 36:1499-514. [PMID: 17011565 DOI: 10.1016/j.ijpara.2006.08.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2006] [Revised: 08/21/2006] [Accepted: 08/22/2006] [Indexed: 11/24/2022]
Abstract
The single mitochondrion of kinetoplastids divides in synchrony with the nucleus and plays a crucial role in cell division. However, despite its importance and potential as a drug target, the mechanism of mitochondrial division and segregation and the molecules involved are only partly understood. In our quest to identify novel mitochondrial proteins in Leishmania, we constructed a hidden Markov model from the targeting motifs of known mitochondrial proteins as a tool to search the Leishmania major genome. We show here that one of the 17 proteins of unknown function that we identified, designated mitochondrial protein X (MIX), is an oligomeric protein probably located in the inner membrane and expressed throughout the Leishmania life cycle. The MIX gene appears to be essential. Moreover, even deletion of one allele from L. major led to abnormalities in cell morphology, mitochondrial segregation and, importantly, to loss of virulence. MIX is unique to kinetoplastids but its heterologous expression in Saccharomyces cerevisiae produced defects in mitochondrial morphology. Our data show that a number of mitochondrial proteins are unique to kinetoplastids and some, like MIX, play a central role in mitochondrial segregation and cell division, as well as virulence.
Collapse
|
21
|
Li Z, Tu X, Wang CC. Okadaic acid overcomes the blocked cell cycle caused by depleting Cdc2-related kinases in Trypanosoma brucei. Exp Cell Res 2006; 312:3504-16. [PMID: 16949574 DOI: 10.1016/j.yexcr.2006.07.022] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2006] [Revised: 07/19/2006] [Accepted: 07/21/2006] [Indexed: 10/24/2022]
Abstract
Mitosis and cytokinesis are highly coordinated in eukaryotic cells. But procyclic-form Trypanosoma brucei under G1 or mitotic arrest is still capable of dividing, resulting in anucleate daughter cells (zoids). Okadaic acid (OKA), an inhibitor of protein phosphatases PP1 and PP2A, is known to inhibit kinetoplast replication and cell division yielding multinucleate cells with single kinetoplasts. However, when OKA was applied to cells arrested in G1 or G2/M phase via RNAi knockdown of specific cdc2-related kinases (CRKs), DNA synthesis and nuclear division were resumed without kinetoplast replication or cell division, resulting in multinucleate cells as in the wild type. Cells arrested in G2/M via depleting the mitotic cyclin CycB2 or an aurora B kinase homologue TbAUK1 were, however, not released by OKA treatment. The phenomenon is thus similar to the OKA activation of Cdc2 in Xenopus oocyte by inhibiting PP2A [Maton, et al., Differential regulation of Cdc2 and Aurora-A in Xenopus oocytes: a crucial role of phosphatase 2A. J. Cell Sci. 118 (2005) 2485-2494]. A simultaneous knockdown of the seven PP1s or the PP2A catalytic subunit in T. brucei by RNA interference did not, however, result in multinucleate cells. This could be explained by assuming a negative regulation, either directly or indirectly, of CRK by an OKA-sensitive phosphatase, which could be a PP2A as in the Xenopus oocyte and a positive regulation of kinetoplast replication by an OKA-susceptible protein(s). Test of a PP2A-specific inhibitor, fostriecin, on cells arrested in G2/M via CRK depletion or a knockdown of the PP2A catalytic subunit from the CRK-depleted cells both showed a partial lift of the G2/M block without forming multinucleate cells. These observations support the abovementioned assumption and suggest the presence of a novel OKA-sensitive protein(s) regulating kinetoplast replication that still remains to be identified.
Collapse
Affiliation(s)
- Ziyin Li
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94143-2280, USA
| | | | | |
Collapse
|
22
|
Tu X, Kumar P, Li Z, Wang CC. An Aurora Kinase Homologue Is Involved in Regulating Both Mitosis and Cytokinesis in Trypanosoma brucei. J Biol Chem 2006; 281:9677-87. [PMID: 16436376 DOI: 10.1074/jbc.m511504200] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The chromosomal passenger protein aurora kinases have been implicated in regulating chromosome segregation and cell division. Three aurora kinase homologues were identified (TbAUK1, -2 and -3) in the Trypanosome Genomic Data Base, and their expressions in the procyclic form of Trypanosoma brucei were knocked down individually by using the RNA interference technique. Only a knockdown of TbAUK1 arrested the cells in G(2)/M phase with each cell showing an extended posterior end, two kinetoplasts, and an enlarged nucleus, apparently the result of an inhibited kinetoplast multiplication and a failed mitosis. There is no mitotic spindle structure in the TbAUK1-depleted cell. The two kinetoplasts moved apart from each other but stopped just before cytokinesis, suggesting that cytokinesis was blocked in its early phase. Overexpression of TbAUK1 in the cells resulted in little change in cell growth. By immunofluorescence, TbAUK1 was primarily localized to the nucleus in interphase and to the mitotic spindle during apparent metaphase and anaphase. Thus, differing from other eukaryotes, TbAUK1 has an apparent triple function in coupling mitosis and kinetoplast replication with cytokinesis in T. brucei. T. brucei polo-like kinase, previously identified as the initiator of cytokinesis without apparent involvement in mitosis in the trypanosome, was either depleted or overexpressed in the TbAUK1-deficient cells. A dominant TbAUK1-depleted phenotype was demonstrated in both cases, suggesting that TbAUK1 plays an essential role in cytokinesis that cannot be affected by changes in the level of T. brucei polo-like kinase. To our knowledge, this is the first time that the function of an aurora B-like kinase is a prerequisite for polo-like kinase action in initiating cytokinesis. TbAUK1 is also the first identified protein that couples both mitosis and kinetoplast replication with cytokinesis in the trypanosome.
Collapse
Affiliation(s)
- Xiaoming Tu
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94143, USA
| | | | | | | |
Collapse
|
23
|
Rothberg KG, Burdette DL, Pfannstiel J, Jetton N, Singh R, Ruben L. The RACK1 homologue from Trypanosoma brucei is required for the onset and progression of cytokinesis. J Biol Chem 2006; 281:9781-90. [PMID: 16469736 PMCID: PMC1997280 DOI: 10.1074/jbc.m600133200] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The receptor for activated C kinase 1 (RACK1) is a conserved scaffold protein that helps regulate a range of cell activities including cell growth, shape, and protein translation. We report that a homologue of RACK1 is required for cytokinesis in pathogenic Trypanosoma brucei. The protein, referred to as TRACK, is comprised of WD repeat elements and can complement cpc2 null mutants of Schizosaccharomyces pombe. TRACK is expressed throughout the trypanosome life cycle and is distributed predominantly in a perinuclear region and the cytoplasm but not along the endoplasmic reticulum, mitochondrion, or cleavage furrow of dividing cells. When tetracycline-inducible RNA interference (RNAi) is used to deplete the cellular content of TRACK, the cells remain metabolically active, but growth is inhibited. In bloodstream forms, growth arrest is due to a delay in the onset of cytokinesis. By contrast, procyclic forms are able to initiate cytokinesis in the absence of TRACK but arrest midway through cell cleavage. The RNAi cells undergo multiple rounds of partial cytokinesis and accumulate nuclei and cytoplasmic extensions with attached flagella. The TRACK RNAi construct is also inducible within infected mice. Under these conditions parasites are eliminated from peripheral blood within 3 days post-infection. Taken as a whole, these data indicate that trypanosomes utilize a RACK1 homologue to regulate the final stages of mitosis. Moreover, disrupting the interaction between TRACK and its partners might be targeted in the design of novel therapies.
Collapse
Affiliation(s)
- Karen G Rothberg
- Department of Biological Sciences, Southern Methodist University, Dallas, Texas 75275, USA
| | | | | | | | | | | |
Collapse
|
24
|
Kumar P, Wang CC. Dissociation of cytokinesis initiation from mitotic control in a eukaryote. EUKARYOTIC CELL 2006; 5:92-102. [PMID: 16400171 PMCID: PMC1360254 DOI: 10.1128/ec.5.1.92-102.2006] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2005] [Accepted: 10/17/2005] [Indexed: 11/20/2022]
Abstract
Cytokinesis is initiated only after mitotic exit in eukaryotes. However, in the insect (procyclic) form of an ancient protist, Trypanosoma brucei, a blockade at the G2/M checkpoint results in an enrichment of anucleate cells (zoids), suggesting separated regulations between mitosis and cytokinesis (X. Tu and C. C. Wang, J. Biol. Chem. 279:20519-20528, 2004). Polo-like kinases (Plks) are known to play critical roles in controlling both mitosis and cytokinesis. A single Plk homologue in T. brucei, TbPLK, was found to be capable of complementing the Plk (Cdc5) functions in Saccharomyces cerevisiae, thus raising the question of how it may function in the trypanosome with cytokinesis dissociated from mitosis. Depletion of TbPLK in the procyclic form of T. brucei by RNA interference resulted in growth arrest with accumulation of multiple nuclei, kinetoplasts, basal bodies, and flagella in approximately equal numbers among individual cells. There were, however, few zoids detectable, indicating inhibited cytokinesis with unblocked mitosis and kinetoplast segregation. TbPLK is thus apparently involved only in initiating cytokinesis in T. brucei. Overexpression of TbPLK in the trypanosome did not affect cell growth, but 13% of the resulting population was in the zoid form, suggesting runaway cytokinesis. An immunofluorescence assay indicated that TbPLK was localized in a chain of likely flagellum attachment zones in the cytoskeleton. In a dividing cell, a new line of such zones appeared closely paralleling the existing one, which could constitute the cleavage furrow. An exposed region of TbPLK at the anterior tip of the cell may provide the trigger of cytokinesis. Taken together, our results revealed a novel mechanism of cytokinesis initiation in the trypanosome that may serve as a useful model for further in-depth investigations.
Collapse
Affiliation(s)
- Praveen Kumar
- Department of Pharmaceutical Chemistry, UCSF, San Francisco, California 94143-2280, USA
| | | |
Collapse
|
25
|
Hendriks EF, Matthews KR. Disruption of the developmental programme of Trypanosoma brucei by genetic ablation of TbZFP1, a differentiation-enriched CCCH protein. Mol Microbiol 2005; 57:706-16. [PMID: 16045615 PMCID: PMC2686838 DOI: 10.1111/j.1365-2958.2005.04679.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The regulation of differentiation is particularly important in microbial eukaryotes that inhabit multiple environments. The parasite Trypanosoma brucei is an extreme example of this, requiring exquisite gene regulation during transmission from mammals to the tsetse fly vector. Unusually, trypanosomes rely almost exclusively on post-transcriptional mechanisms for regulated gene expression. Hence, RNA binding proteins are potentially of great significance in controlling stage-regulated processes. We have previously identified TbZFP1 as a trypanosome molecule transiently enriched during differentiation to tsetse midgut procyclic forms. This small protein (101 amino acids) contains the unusual CCCH zinc finger, an RNA binding motif. Here, we show that genetic ablation of TbZFP1 compromises repositioning of the mitochondrial genome, a specific event in the strictly regulated differentiation programme. Despite this, other events that occur both before and after this remain intact. Significantly, this phenotype correlates with the TbZFP1 expression profile during differentiation. This is the first genetic disruption of a developmental regulator in T. brucei. It demonstrates that programmed events in parasite development can be uncoupled at the molecular level. It also further supports the importance of CCCH proteins in key aspects of trypanosome cell function.
Collapse
Affiliation(s)
- Edward F. Hendriks
- Centre for Molecular Microbiology and Infection, Department of Biological Sciences, Flowers Building Room 3.21, South Kensington Campus, Imperial College London, London SW7 2AZ, UK
- School of Biological Sciences, Division of Biochemistry, 2.205 Stopford Building, University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - Keith R. Matthews
- Institute of Immunology and Infection Research, School of Biological Sciences, Ashworth Laboratories, University of Edinburgh, West Mains Road, Edinburgh EH9 3JT, UK
- School of Biological Sciences, Division of Biochemistry, 2.205 Stopford Building, University of Manchester, Oxford Road, Manchester, M13 9PT, UK
- For correspondence. E-mail ; Tel. (+44) 131 651 3639; Fax (+44) 131 650 6564
| |
Collapse
|
26
|
Tu X, Mancuso J, Cande WZ, Wang CC. Distinct cytoskeletal modulation and regulation of G1-S transition in the two life stages of Trypanosoma brucei. J Cell Sci 2005; 118:4353-64. [PMID: 16144864 DOI: 10.1242/jcs.02567] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Procyclic-form Trypanosoma brucei is arrested in G1 phase with extended and/or branched posterior morphology when expression of its cdc2-related kinases 1 and 2 (CRK1 and CRK2) is knocked down by RNA interference. Transmission electron microscopy indicated that the mitochondrion in the cell is also extended and branched and associated with cortical microtubules in each elongated/branched posterior end. This posterior extension is apparently driven by the growing microtubule corset, as it can be blocked by rhizoxin, an inhibitor of microtubule assembly. In the bloodstream form of T. brucei, however, a knockdown of CRK1 and CRK2 resulted only in an enrichment of cells in G1 phase without cessation of DNA synthesis or elongated/branched posterior ends. A triple knockdown of CRK1, CRK2 and CycE1/CYC2 in the bloodstream form resulted in 15% of the cells arrested in G1 phase, but no cells had an abnormal posterior morphology. The double and triple knockdown bloodstream-form cells were differentiated in vitro into the procyclic form, and the latter thus generated bore the typical morphology of a procyclic form without an extended/branched posterior end, albeit arrested in the G1 phase as the bloodstream-form precursor. There is thus a major distinction in the mechanisms regulating G1-S transition and posterior morphogenesis between the two life stages of T. brucei.
Collapse
Affiliation(s)
- Xiaoming Tu
- Department of Pharmaceutical Chemistry, University of California, 600 16th Street, San Francisco, CA 94143-2280, USA
| | | | | | | |
Collapse
|
27
|
Tu X, Wang CC. Pairwise knockdowns of cdc2-related kinases (CRKs) in Trypanosoma brucei identified the CRKs for G1/S and G2/M transitions and demonstrated distinctive cytokinetic regulations between two developmental stages of the organism. EUKARYOTIC CELL 2005; 4:755-64. [PMID: 15821135 PMCID: PMC1087811 DOI: 10.1128/ec.4.4.755-764.2005] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Expression of the cdc2-related kinase 3 (CRK3) together with expression of CRK1, -2, -4, or -6, were knocked down in pairs in the procyclic and bloodstream forms of Trypanosoma brucei, using the RNA interference technique. Double knockdowns of CRK3 and CRK2, CRK4, or CRK6 exerted significant growth inhibition and enriched the cells in G2/M phase, whereas a CRK3 plus CRK1 (CRK3 + CRK1) knockdown arrested cells in both G1/S and G2/M transitions. Thus, CRK1 and CRK3 are apparently the kinases regulating the G1/S and G2/M checkpoint passages, respectively, whereas the other CRKs are probably playing only minor roles in cell cycle regulation. A CRK1 + CRK2 knockdown in the procyclic form was found to cause aberrant posterior cytoskeletal morphogenesis (X. M. Tu and C. C. Wang, Mol. Biol. Cell 16:97-105, 2005). A CRK3 + CRK2 knockdown, however, did not lead to such a change, suggesting that CRK2 depletion can lead to the abnormal morphogenesis only when procyclic-form cells are arrested in the G1 phase. The G2/M-arrested procyclic form produces up to 20% stumpy anucleated cells (zoids) in the population, suggesting that cytokinesis and cell division are not blocked by mitotic arrest but are apparently driven to completion by the kinetoplast cycle. In the bloodstream form, however, G2/M arrest resulted in little zoid formation but, instead, enriched a population of cells each containing multiple kinetoplasts, basal bodies, and flagella and an aggregate of multiple nuclei, indicating failure in entering cytokinesis. The two different cytokinetic regulations between two distinct stage-specific forms of the same organism may provide an interesting and useful model for further understanding the evolution of cytokinetic control among eukaryotes.
Collapse
Affiliation(s)
- Xiaoming Tu
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94143-2280, USA
| | | |
Collapse
|