1
|
Zhang Z, Wang S, Guo M. The CHY-type zinc finger protein MoChy1 is involved in polarized growth, conidiation, autophagy and pathogenicity of Magnaporthe oryzae. Int J Biol Macromol 2024; 268:131867. [PMID: 38670181 DOI: 10.1016/j.ijbiomac.2024.131867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 04/28/2024]
Abstract
Polarized growth is critical for the development of filamentous phytopathogens, and the CHY-type zinc finger protein Chy1 regulates microtubule assembly to influence polarized growth and thereby affect plant infections. However, the biological role of a Chy1 homolog MoChy1 remains unknown in Magnaporthe oryzae. We found here that the MoChy1-GFP was distributed in the cytoplasm outside the vacuole in hyphae and localized mainly to the vacuole compartments as the appressorium matured. The Mochy1 mutants showed an extremely slow growth rate, curved and branched mycelium, reduced conidiation, and a smaller size in the appressorium. Meanwhile, the Mochy1 mutants showed increased sensitivity to benomyl, damaged microtubule cytoskeleton, and mislocalized polarisome protein MoSpa2 and chitin synthase MoChs6 in hyphae. Compared to Guy11, the Mochy1 mutants exhibited increased sensitivity to H2O2, impaired ability to eliminate host-derived ROS and reduced penetration into host plants, resulting in a strong reduction in pathogenicity of Mochy1 mutants. Furthermore, the Mochy1 mutants also exhibited defects in chitin distribution, osmotic stress tolerance, and septin ring organization during appressorium differentiation and fungal development. Nonselective autophagy was negatively regulated in Mochy1 mutants compared to Guy11. In summary, MoChy1 plays multiple roles in fungal polar growth and full virulence of M. oryzae.
Collapse
Affiliation(s)
- Zhaodi Zhang
- Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, Hefei 230036, PR China; College of Plant Protection, Anhui Agricultural University, Hefei 230036, PR China
| | - Shuaishuai Wang
- Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, Hefei 230036, PR China; College of Plant Protection, Anhui Agricultural University, Hefei 230036, PR China.
| | - Min Guo
- Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, Hefei 230036, PR China; College of Plant Protection, Anhui Agricultural University, Hefei 230036, PR China.
| |
Collapse
|
2
|
Shen N, Han L, Liu Z, Deng X, Zhu S, Liu C, Tang D, Li Y. The Microtubule End Binding Protein Mal3 Is Essential for the Dynamic Assembly of Microtubules during Magnaporthe oryzae Growth and Pathogenesis. Int J Mol Sci 2024; 25:2672. [PMID: 38473921 DOI: 10.3390/ijms25052672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/19/2024] [Accepted: 02/21/2024] [Indexed: 03/14/2024] Open
Abstract
Cytoskeletal microtubules (MTs) play crucial roles in many aspects of life processes in eukaryotic organisms. They dynamically assemble physiologically important MT arrays under different cell conditions. Currently, aspects of MT assembly underlying the development and pathogenesis of the model plant pathogenic fungus Magnaporthe oryzae (M. oryzae) are unclear. In this study, we characterized the MT plus end binding protein MoMal3 in M. oryzae. We found that knockout of MoMal3 results in defects in hyphal polar growth, appressorium-mediated host penetration and nucleus division. Using high-resolution live-cell imaging, we further found that the MoMal3 mutant assembled a rigid MT in parallel with the MT during hyphal polar growth, the cage-like network in the appressorium and the stick-like spindle in nuclear division. These aberrant MT organization patterns in the MoMal3 mutant impaired actin-based cell growth and host infection. Taken together, these findings showed that M. oryzae relies on MoMal3 to assemble elaborate MT arrays for growth and infection. The results also revealed the assembly mode of MTs in M. oryzae, indicating that MTs are pivotal for M. oryzae growth and host infection and may be new targets for devastating fungus control.
Collapse
Affiliation(s)
- Ningning Shen
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Libo Han
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zixuan Liu
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- School of Future Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xianya Deng
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- School of Future Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shuai Zhu
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chengyu Liu
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Dingzhong Tang
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuanbao Li
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
3
|
Martín JF, Liras P. Targeting of Specialized Metabolites Biosynthetic Enzymes to Membranes and Vesicles by Posttranslational Palmitoylation: A Mechanism of Non-Conventional Traffic and Secretion of Fungal Metabolites. Int J Mol Sci 2024; 25:1224. [PMID: 38279221 PMCID: PMC10816013 DOI: 10.3390/ijms25021224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 12/30/2023] [Accepted: 01/09/2024] [Indexed: 01/28/2024] Open
Abstract
In nature, the formation of specialized (secondary) metabolites is associated with the late stages of fungal development. Enzymes involved in the biosynthesis of secondary metabolites in fungi are located in distinct subcellular compartments including the cytosol, peroxisomes, endosomes, endoplasmic reticulum, different types of vesicles, the plasma membrane and the cell wall space. The enzymes traffic between these subcellular compartments and the secretion through the plasma membrane are still unclear in the biosynthetic processes of most of these metabolites. Recent reports indicate that some of these enzymes initially located in the cytosol are later modified by posttranslational acylation and these modifications may target them to membrane vesicle systems. Many posttranslational modifications play key roles in the enzymatic function of different proteins in the cell. These modifications are very important in the modulation of regulatory proteins, in targeting of proteins, intracellular traffic and metabolites secretion. Particularly interesting are the protein modifications by palmitoylation, prenylation and miristoylation. Palmitoylation is a thiol group-acylation (S-acylation) of proteins by palmitic acid (C16) that is attached to the SH group of a conserved cysteine in proteins. Palmitoylation serves to target acylated proteins to the cytosolic surface of cell membranes, e.g., to the smooth endoplasmic reticulum, whereas the so-called toxisomes are formed in trichothecene biosynthesis. Palmitoylation of the initial enzymes involved in the biosynthesis of melanin serves to target them to endosomes and later to the conidia, whereas other non-palmitoylated laccases are secreted directly by the conventional secretory pathway to the cell wall space where they perform the last step(s) of melanin biosynthesis. Six other enzymes involved in the biosynthesis of endocrosin, gliotoxin and fumitremorgin believed to be cytosolic are also targeted to vesicles, although it is unclear if they are palmitoylated. Bioinformatic analysis suggests that palmitoylation may be frequent in the modification and targeting of polyketide synthetases and non-ribosomal peptide synthetases. The endosomes may integrate other small vesicles with different cargo proteins, forming multivesicular bodies that finally fuse with the plasma membrane during secretion. Another important effect of palmitoylation is that it regulates calcium metabolism by posttranslational modification of the phosphatase calcineurin. Mutants defective in the Akr1 palmitoyl transferase in several fungi are affected in calcium transport and homeostasis, thus impacting on the biosynthesis of calcium-regulated specialized metabolites. The palmitoylation of secondary metabolites biosynthetic enzymes and their temporal distribution respond to the conidiation signaling mechanism. In summary, this posttranslational modification drives the spatial traffic of the biosynthetic enzymes between the subcellular organelles and the plasma membrane. This article reviews the molecular mechanism of palmitoylation and the known fungal palmitoyl transferases. This novel information opens new ways to improve the biosynthesis of the bioactive metabolites and to increase its secretion in fungi.
Collapse
Affiliation(s)
- Juan F. Martín
- Departamento de Biología Molecular, Área de Microbiología, Universidad de León, 24071 León, Spain;
| | | |
Collapse
|
4
|
Zhang J, Qiu R, Bieger BD, Oakley CE, Oakley BR, Egan MJ, Xiang X. Aspergillus SUMOylation mutants exhibit chromosome segregation defects including chromatin bridges. Genetics 2023; 225:iyad169. [PMID: 37724751 PMCID: PMC10697819 DOI: 10.1093/genetics/iyad169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/29/2023] [Accepted: 09/07/2023] [Indexed: 09/21/2023] Open
Abstract
Functions of protein SUMOylation remain incompletely understood in different cell types. Via forward genetics, here we identified ubaBQ247*, a loss-of-function mutation in a SUMO activation enzyme UbaB in the filamentous fungus Aspergillus nidulans. The ubaBQ247*, ΔubaB, and ΔsumO mutants all produce abnormal chromatin bridges, indicating the importance of SUMOylation in the completion of chromosome segregation. The bridges are enclosed by nuclear membrane containing peripheral nuclear pore complex proteins that normally get dispersed during mitosis, and the bridges are also surrounded by cytoplasmic microtubules typical of interphase cells. Time-lapse sequences further indicate that most bridges persist through interphase prior to the next mitosis, and anaphase chromosome segregation can produce new bridges that persist into the next interphase. When the first mitosis happens at a higher temperature of 42°C, SUMOylation deficiency produces not only chromatin bridges but also many abnormally shaped single nuclei that fail to divide. UbaB-GFP localizes to interphase nuclei just like the previously studied SumO-GFP, but the nuclear signals disappear during mitosis when the nuclear pores are partially open, and the signals reappear after mitosis. The nuclear localization is consistent with many SUMO targets being nuclear proteins. Finally, although the budding yeast SUMOylation machinery interacts with LIS1, a protein critical for dynein activation, loss of SUMOylation does not cause any obvious defect in dynein-mediated transport of nuclei and early endosomes, indicating that SUMOylation is unnecessary for dynein activation in A. nidulans.
Collapse
Affiliation(s)
- Jun Zhang
- Department of Biochemistry and Molecular Biology, The Uniformed Services University of the Health Sciences-F. Edward Hébert School of Medicine, Bethesda, MD 20814, USA
| | - Rongde Qiu
- Department of Biochemistry and Molecular Biology, The Uniformed Services University of the Health Sciences-F. Edward Hébert School of Medicine, Bethesda, MD 20814, USA
| | - Baronger D Bieger
- Department of Entomology and Plant Pathology, University of Arkansas Systems Division of Agriculture, Fayetteville, AR 72701, USA
| | - C Elizabeth Oakley
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045, USA
| | - Berl R Oakley
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045, USA
| | - Martin J Egan
- Department of Entomology and Plant Pathology, University of Arkansas Systems Division of Agriculture, Fayetteville, AR 72701, USA
| | - Xin Xiang
- Department of Biochemistry and Molecular Biology, The Uniformed Services University of the Health Sciences-F. Edward Hébert School of Medicine, Bethesda, MD 20814, USA
| |
Collapse
|
5
|
Zhang J, Qiu R, Bieger BD, Oakley CE, Oakley BR, Egan MJ, Xiang X. Aspergillus SUMOylation mutants have normal dynein function but exhibit chromatin bridges. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.16.537086. [PMID: 37131833 PMCID: PMC10153134 DOI: 10.1101/2023.04.16.537086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Functions of protein SUMOylation remain incompletely understood in different cell types. The budding yeast SUMOylation machinery interacts with LIS1, a protein critical for dynein activation, but dynein-pathway components were not identified as SUMO-targets in the filamentous fungus Aspergillus nidulans. Via A. nidulans forward genetics, here we identified ubaBQ247*, a loss-of-function mutation in a SUMO-activation enzyme UbaB. Colonies of the ubaBQ247*, ΔubaB and ΔsumO mutants looked similar and less healthy than the wild-type colony. In these mutants, about 10% of nuclei are connected by abnormal chromatin bridges, indicating the importance of SUMOylation in the completion of chromosome segregation. Nuclei connected by chromatin bridges are mostly in interphase, suggesting that these bridges do not prevent cell-cycle progression. UbaB-GFP localizes to interphase nuclei just like the previously studied SumO-GFP, but the nuclear signals disappear during mitosis when the nuclear pores are partially open, and the signals reappear after mitosis. The nuclear localization is consistent with many SUMO-targets being nuclear proteins, for example, topoisomerase II whose SUMOylation defect gives rise to chromatin bridges in mammalian cells. Unlike in mammalian cells, however, loss of SUMOylation in A. nidulans does not apparently affect the metaphase-to-anaphase transition, further highlighting differences in the requirements of SUMOylation in different cell types. Finally, loss of UbaB or SumO does not affect dynein- and LIS1-mediated early-endosome transport, indicating that SUMOylation is unnecessary for dynein or LIS1 function in A. nidulans.
Collapse
Affiliation(s)
- Jun Zhang
- Department of Biochemistry and Molecular Biology, The Uniformed Services University of the Health Sciences- F. Edward Hébert School of Medicine, Bethesda, Maryland 20814, USA
| | - Rongde Qiu
- Department of Biochemistry and Molecular Biology, The Uniformed Services University of the Health Sciences- F. Edward Hébert School of Medicine, Bethesda, Maryland 20814, USA
| | - Baronger D. Bieger
- Department of Entomology and Plant Pathology, University of Arkansas Systems Division of Agriculture, Fayetteville, AR, USA
| | - C. Elizabeth Oakley
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS, USA
| | - Berl R. Oakley
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS, USA
| | - Martin J. Egan
- Department of Entomology and Plant Pathology, University of Arkansas Systems Division of Agriculture, Fayetteville, AR, USA
| | - Xin Xiang
- Department of Biochemistry and Molecular Biology, The Uniformed Services University of the Health Sciences- F. Edward Hébert School of Medicine, Bethesda, Maryland 20814, USA
| |
Collapse
|
6
|
Cell wall dynamics stabilize tip growth in a filamentous fungus. PLoS Biol 2023; 21:e3001981. [PMID: 36649360 PMCID: PMC9882835 DOI: 10.1371/journal.pbio.3001981] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 01/27/2023] [Accepted: 12/22/2022] [Indexed: 01/18/2023] Open
Abstract
Hyphal tip growth allows filamentous fungi to colonize space, reproduce, or infect. It features remarkable morphogenetic plasticity including unusually fast elongation rates, tip turning, branching, or bulging. These shape changes are all driven from the expansion of a protective cell wall (CW) secreted from apical pools of exocytic vesicles. How CW secretion, remodeling, and deformation are modulated in concert to support rapid tip growth and morphogenesis while ensuring surface integrity remains poorly understood. We implemented subresolution imaging to map the dynamics of CW thickness and secretory vesicles in Aspergillus nidulans. We found that tip growth is associated with balanced rates of CW secretion and expansion, which limit temporal fluctuations in CW thickness, elongation speed, and vesicle amount, to less than 10% to 20%. Affecting this balance through modulations of growth or trafficking yield to near-immediate changes in CW thickness, mechanics, and shape. We developed a model with mechanical feedback that accounts for steady states of hyphal growth as well as rapid adaptation of CW mechanics and vesicle recruitment to different perturbations. These data provide unprecedented details on how CW dynamics emerges from material secretion and expansion, to stabilize fungal tip growth as well as promote its morphogenetic plasticity.
Collapse
|
7
|
Zhang B, Hu S, Sun S, Fang T, Yu Y, Sun X, Xu N. Transcriptomic analysis provides insights into the algicidal mechanism of cocamidopropyl betaine against the red tide microalgae Skeletonema costatum. MARINE ENVIRONMENTAL RESEARCH 2023; 183:105838. [PMID: 36525828 DOI: 10.1016/j.marenvres.2022.105838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/25/2022] [Accepted: 11/27/2022] [Indexed: 06/17/2023]
Abstract
This study investigated the effect of the surfactant cocamidopropyl betaine (CAB) on the growth of red tide microalgae Skeletonema costatum. It was found that CAB caused cell lysis in a time- and dose-dependent manner and significantly inhibited the growth of S. costatum. Additionally, the transcriptomic approach was coupled with physiological analysis to elucidate the inhibitory mechanism of CAB on S. costatum. Among the 30726 genes identified, 17720 and 20583 genes were differentially expressed after treatment for 3 h and 6 h, respectively, which revealed that CAB redirected metabolic pathways, of which the expressions of genes related to the proteasome, ABC transporters, and amino acid-related metabolism were significantly upregulated, while genes involved in photosynthesis, biofilm and cell wall synthesis, mitogen-activated protein kinase (MAPK) cascades and antioxidant system were downregulated. The results above corresponded to the decreasing antioxidant enzymes activities, protein and photosynthetic pigments contents, as well as the increasing malondialdehyde (MDA) content. Our study presented herein shed light on the algicidal mechanism of CAB at the transcriptome level and was useful to red tide control, and marine environmental protection.
Collapse
Affiliation(s)
- Bo Zhang
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Shanshan Hu
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Siqi Sun
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Tian Fang
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Yanyan Yu
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Xue Sun
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Nianjun Xu
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo, 315211, Zhejiang, China.
| |
Collapse
|
8
|
Municio-Diaz C, Muller E, Drevensek S, Fruleux A, Lorenzetti E, Boudaoud A, Minc N. Mechanobiology of the cell wall – insights from tip-growing plant and fungal cells. J Cell Sci 2022; 135:280540. [DOI: 10.1242/jcs.259208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
ABSTRACT
The cell wall (CW) is a thin and rigid layer encasing the membrane of all plant and fungal cells. It ensures mechanical integrity by bearing mechanical stresses derived from large cytoplasmic turgor pressure, contacts with growing neighbors or growth within restricted spaces. The CW is made of polysaccharides and proteins, but is dynamic in nature, changing composition and geometry during growth, reproduction or infection. Such continuous and often rapid remodeling entails risks of enhanced stress and consequent damages or fractures, raising the question of how the CW detects and measures surface mechanical stress and how it strengthens to ensure surface integrity? Although early studies in model fungal and plant cells have identified homeostatic pathways required for CW integrity, recent methodologies are now allowing the measurement of pressure and local mechanical properties of CWs in live cells, as well as addressing how forces and stresses can be detected at the CW surface, fostering the emergence of the field of CW mechanobiology. Here, using tip-growing cells of plants and fungi as case study models, we review recent progress on CW mechanosensation and mechanical regulation, and their implications for the control of cell growth, morphogenesis and survival.
Collapse
Affiliation(s)
- Celia Municio-Diaz
- Université de Paris, CNRS, Institut Jacques Monod 1 , F-75006 Paris , France
- Equipe Labellisée LIGUE Contre le Cancer 2 , 75013 Paris , France
| | - Elise Muller
- LadHyX, CNRS, Ecole polytechnique, Institut Polytechnique de Paris 3 , 91128 Palaiseau Cedex , France
| | - Stéphanie Drevensek
- LadHyX, CNRS, Ecole polytechnique, Institut Polytechnique de Paris 3 , 91128 Palaiseau Cedex , France
| | - Antoine Fruleux
- LPTMS, CNRS, Université Paris-Saclay 4 , 91405 Orsay , France
| | - Enrico Lorenzetti
- LadHyX, CNRS, Ecole polytechnique, Institut Polytechnique de Paris 3 , 91128 Palaiseau Cedex , France
| | - Arezki Boudaoud
- LadHyX, CNRS, Ecole polytechnique, Institut Polytechnique de Paris 3 , 91128 Palaiseau Cedex , France
| | - Nicolas Minc
- Université de Paris, CNRS, Institut Jacques Monod 1 , F-75006 Paris , France
- Equipe Labellisée LIGUE Contre le Cancer 2 , 75013 Paris , France
| |
Collapse
|
9
|
Qu Y, Cao H, Huang P, Wang J, Liu X, Lu J, Lin FC. A kelch domain cell end protein, PoTea1, mediates cell polarization during appressorium morphogenesis in Pyricularia oryzae. Microbiol Res 2022; 259:126999. [DOI: 10.1016/j.micres.2022.126999] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 02/08/2022] [Accepted: 02/27/2022] [Indexed: 01/01/2023]
|
10
|
Arakawa S, Kanaseki T, Wagner R, Goodenough U. Ultrastructure of the foliose lichen Myelochroa leucotyliza and its solo fungal and algal (Trebouxia sp.) partners. ALGAL RES 2022. [DOI: 10.1016/j.algal.2021.102571] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|
11
|
Balotf S, Wilson R, Tegg RS, Nichols DS, Wilson CR. Quantitative proteomics provides an insight into germination-related proteins in the obligate biotrophic plant pathogen Spongospora subterranea. ENVIRONMENTAL MICROBIOLOGY REPORTS 2021; 13:521-532. [PMID: 33928759 DOI: 10.1111/1758-2229.12955] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 04/15/2021] [Accepted: 04/15/2021] [Indexed: 06/12/2023]
Abstract
The soil-borne and obligate plant-associated nature of S. subterranea has hindered a detailed study of this pathogen and in particular, the regulatory pathways driving the germination of S. subterranea remain unknown. To better understand the mechanisms that control the transition from dormancy to germination, protein profiles between dormant and germination stimulant-treated resting spores were compared using label-free quantitative proteomics. Among the ~680 proteins identified 20 proteins were found to be differentially expressed during the germination of S. subterranea resting spores. Elongation factor Tu, histones (H2A and H15), proteasome and DJ-1_PfpI, involved in transcription and translation, were upregulated during the germination of resting spores. Downregulation of both actin and beta-tubulin proteins occurred in the germinating spores, indicating that the changes in the cell wall cytoskeleton may be necessary for the morphological changes during the germination of the resting spore in S. subterranea. Our findings provide new approaches for the study of these and similar recalcitrant micro-organisms provide the first insights into the basic protein components of S. subterranea spores. A better understanding of S. subterranea biology may lead to the development of novel approaches for the management of persistent soil inoculum.
Collapse
Affiliation(s)
- Sadegh Balotf
- Tasmanian Institute of Agriculture, New Town Research Laboratories, University of Tasmania, New Town, Tas., 7008, Australia
| | - Richard Wilson
- Central Science Laboratory, University of Tasmania, Hobart, Tas., 7001, Australia
| | - Robert S Tegg
- Tasmanian Institute of Agriculture, New Town Research Laboratories, University of Tasmania, New Town, Tas., 7008, Australia
| | - David S Nichols
- Central Science Laboratory, University of Tasmania, Hobart, Tas., 7001, Australia
| | - Calum R Wilson
- Tasmanian Institute of Agriculture, New Town Research Laboratories, University of Tasmania, New Town, Tas., 7008, Australia
| |
Collapse
|
12
|
Cao S, Li W, Li C, Wang G, Jiang W, Sun H, Deng Y, Chen H. The CHY-Type Zinc Finger Protein FgChy1 Regulates Polarized Growth, Pathogenicity, and Microtubule Assembly in Fusarium graminearum. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2021; 34:362-375. [PMID: 33369502 DOI: 10.1094/mpmi-07-20-0206-r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Microtubules (MTs), as transport tracks, play important roles in hyphal-tip growth in filamentous fungi, but MT-associated proteins involved in polarized growth remain unknown. Here, we found that one novel zinc finger protein, FgChy1, is required for MT morphology and polarized growth in Fusarium graminearum. The Fgchy1 mutant presented curved and directionless growth of hyphae. Importantly, the conidia and germ tubes of the Fgchy1 mutant exhibited badly damaged and less-organized beta-tubulin cytoskeletons. Compared with the wild type, the Fgchy1 mutant lost the ability to maintain polarity and was also more sensitive to the anti-MT drugs carbendazim and nocodazole, likely due to the impaired MT cytoskeleton. Indeed, the hyphae of the wild type treated with nocodazole exhibited a morphology consistent with that of the Fgchy1 mutant. Interestingly, the disruption of FgChy1 resulted in the off-center localization of actin patches and the polarity-related polarisome protein FgSpa2 from the hyphal-tip axis. A similar defect in FgSpa2 localization was also observed in the nocodazole-treated wild-type strain. In addition, FgChy1 is also required for conidiogenesis, septation, sexual reproduction, pathogenicity, and deoxynivalenol production. Overall, this study provides the first demonstrations of the functions of the novel zinc finger protein FgChy1 in polarized growth, development, and virulence in filamentous fungi.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Shulin Cao
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, Jiangsu, China
| | - Wei Li
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, Jiangsu, China
| | - Chaohui Li
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, Jiangsu, China
| | - Guanghui Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Wenqiang Jiang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, Jiangsu, China
- Hubei Collaborative Innovation Center for Grain Industry, Yangtze University, Jingzhou 434025, Hubei, China
| | - Haiyan Sun
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, Jiangsu, China
| | - Yuanyu Deng
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, Jiangsu, China
| | - Huaigu Chen
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, Jiangsu, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, Jiangsu, China
| |
Collapse
|
13
|
Mannitol-1-phosphate dehydrogenase, MpdA, is required for mannitol production in vegetative cells and involved in hyphal branching, heat resistance of conidia and sexual development in Aspergillus nidulans. Curr Genet 2021; 67:613-630. [PMID: 33683401 DOI: 10.1007/s00294-021-01163-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 02/01/2021] [Accepted: 02/03/2021] [Indexed: 10/22/2022]
Abstract
Aspergillus nidulans produces cleistothecia as sexual reproductive organs in a process affected by genetic and external factors. To gain a deeper insight into A. nidulans sexual development, we performed comparative proteome analyses based on the wild type developmental periods. We identified sexual development-specific proteins with a more than twofold increase in production during hypoxia or the sexual period compared to the asexual period. Among the sexual development-specific proteins analyzed by gene-deletion experiments and functional assays, MpdA, a putative mannitol-1-phosphate 5-dehydrogenase, plays multiple roles in growth and differentiation of A. nidulans. The most distinct mpdA-deletion phenotype was ascosporogenesis failure. Genetic mpdA deletion resulted in small cleistothecia with no functional ascospores. Transcriptional analyses indicated that MpdA modulates the expression of key development- and meiosis-regulatory genes during sexual development. The mpdA deletion increased hyphal branching and decreased conidial heat resistance. Mannitol production in conidia showed no difference, whereas it was decreased in mycelia and sexual cultures. Addition of mannitol during vegetative growth recovered the defects in conidial heat resistance and ascospore genesis. Taken together, these results indicate that MpdA plays an important role in sexual development, hyphal branching, and conidial heat resistance in Aspergillus nidulans.
Collapse
|
14
|
Yang Q. The cytoskeleton influences the formation and distribution of eisosomes in Neurospora crassa. Biochem Biophys Res Commun 2021; 545:62-68. [PMID: 33545633 DOI: 10.1016/j.bbrc.2021.01.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 01/15/2021] [Indexed: 11/28/2022]
Abstract
Eisosomes are stable protein complexes at the plasma membrane, with punctate distributional patterns. Their formation and how their locations are determined remain unclear. The current study discovered that the formation and distribution of eisosomes are influenced by the cytoskeleton. Disassembly of either the F-actin or the microtubules leads to eisosome localization at hyphal tips of germinated macroconidia in Neurospora crassa, and treatment with a high concentration of the microtubule-inhibitor benomyl results in the production of filamentous eisosome patterns. The defect in the cytoskeleton caused by the disassembly of microtubules or F-actin leads to an increased formation of eisosomes.
Collapse
Affiliation(s)
- Qin Yang
- Department of Botanical Genetics and Molecular Biology Botanical Institute and Botanic Gardens Olshausenstr 40 24098 Kiel Germany; Department of Marine Ecology Ocean University of China Yushan Road 5 266000 Qingdao China.
| |
Collapse
|
15
|
Gao X, Fischer R, Takeshita N. Application of PALM Superresolution Microscopy to the Analysis of Microtubule-Organizing Centers (MTOCs) in Aspergillus nidulans. Methods Mol Biol 2021; 2329:277-289. [PMID: 34085230 DOI: 10.1007/978-1-0716-1538-6_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Photoactivated localization microscopy (PALM), one of the super resolution microscopy methods improving the resolution limit to 20 nm, allows the detection of single molecules in complex protein structures in living cells. Microtubule-organizing centres (MTOCs) are large, multisubunit protein complexes, required for microtubule polymerization. The prominent MTOC in higher eukaryotes is the centrosome, and its functional ortholog in fungi is the spindle-pole body (SPB). There is ample evidence that besides centrosomes other MTOCs are important in eukaryotic cells. The filamentous ascomycetous fungus Aspergillus nidulans is a model organism, with hyphae consisting of multinucleate compartments separated by septa. In A. nidulans, besides the SPBs, a second type of MTOCs was discovered at septa (called septal MTOCs, sMTOC). All the MTOC components appear as big dots at SPBs and sMTOCs when tagged with a fluorescent protein and observed with conventional fluorescence microscopy due to the diffraction barrier. In this chapter, we describe the application of PALM in quantifying the numbers of individual proteins at both MTOC sites in A. nidulans and provide evidence that the composition of MTOCs is highly dynamic and dramatically changes during the cell cycle.
Collapse
Affiliation(s)
- Xiaolei Gao
- Department of Microbiology, Institute for Applied Biosciences, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Reinhard Fischer
- Department of Microbiology, Institute for Applied Biosciences, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Norio Takeshita
- Microbiology Research Center for Sustainability (MiCS), Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan.
| |
Collapse
|
16
|
Fantozzi E, Kilaru S, Cannon S, Schuster M, Gurr SJ, Steinberg G. Conditional promoters to investigate gene function during wheat infection by Zymoseptoria tritici. Fungal Genet Biol 2021; 146:103487. [PMID: 33309991 PMCID: PMC7812376 DOI: 10.1016/j.fgb.2020.103487] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 11/18/2020] [Accepted: 11/20/2020] [Indexed: 12/27/2022]
Abstract
The fungus Zymoseptoria tritici causes Septoria tritici leaf blotch, which poses a serious threat to temperate-grown wheat. Recently, we described a raft of molecular tools to study the biology of this fungus in vitro. Amongst these are 5 conditional promoters (Pnar1, Pex1A, Picl1, Pgal7, PlaraB), which allow controlled over-expression or repression of target genes in cells grown in liquid culture. However, their use in the host-pathogen interaction in planta was not tested. Here, we investigate the behaviour of these promoters by quantitative live cell imaging of green-fluorescent protein-expressing cells during 6 stages of the plant infection process. We show that Pnar1 and Picl1 are repressed in planta and demonstrate their suitability for studying essential gene expression and function in plant colonisation. The promoters Pgal7 and Pex1A are not fully-repressed in planta, but are induced during pycnidiation. This indicates the presence of inducing galactose or xylose and/or arabinose, released from the plant cell wall by the activity of fungal hydrolases. In contrast, the PlaraB promoter, which normally controls expression of an α-l-arabinofuranosidase B, is strongly induced inside the leaf. This suggests that the fungus is exposed to L-arabinose in the mesophyll apoplast. Taken together, this study establishes 2 repressible promoters (Pnar1 and Picl1) and three inducible promoters (Pgal7, Pex1A, PlaraB) for molecular studies in planta. Moreover, we provide circumstantial evidence for plant cell wall degradation during the biotrophic phase of Z. tritici infection.
Collapse
Affiliation(s)
- Elena Fantozzi
- School of Biosciences, University of Exeter, Exeter EX4 4QD, UK
| | - Sreedhar Kilaru
- School of Biosciences, University of Exeter, Exeter EX4 4QD, UK
| | - Stuart Cannon
- School of Biosciences, University of Exeter, Exeter EX4 4QD, UK
| | - Martin Schuster
- School of Biosciences, University of Exeter, Exeter EX4 4QD, UK
| | - Sarah J Gurr
- School of Biosciences, University of Exeter, Exeter EX4 4QD, UK; University of Utrecht, Padualaan 8, Utrecht 3584 CH, the Netherlands
| | - Gero Steinberg
- School of Biosciences, University of Exeter, Exeter EX4 4QD, UK; University of Utrecht, Padualaan 8, Utrecht 3584 CH, the Netherlands.
| |
Collapse
|
17
|
Taheraly S, Ershov D, Dmitrieff S, Minc N. An image analysis method to survey the dynamics of polar protein abundance in the regulation of tip growth. J Cell Sci 2020; 133:133/22/jcs252064. [PMID: 33257499 DOI: 10.1242/jcs.252064] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 10/14/2020] [Indexed: 11/20/2022] Open
Abstract
Tip growth is critical for the lifestyle of many walled cells. In yeast and fungi, this process is typically associated with the polarized deposition of conserved tip factors, including landmarks, Rho GTPases, cytoskeleton regulators, and membrane and cell wall remodelers. Because tip growth speeds may vary extensively between life cycles or species, we asked whether the local amount of specific polar elements could determine or limit tip growth speeds. Using the model fission yeast, we developed a quantitative image analysis pipeline to dynamically correlate single tip elongation speeds and polar protein abundance in large data sets. We found that polarity landmarks are typically diluted by growth. In contrast, tip growth speed is positively correlated with the local amount of factors related to actin, secretion or cell wall remodeling, but, surprisingly, exhibits long saturation plateaus above certain concentrations of those factors. Similar saturation observed for Spitzenkörper components in much faster growing fungal hyphae suggests that elements independent of canonical surface remodelers may limit single tip growth. This work provides standardized methods and resources to decipher the complex mechanisms that control cell growth.This article has an associated First Person interview with Sarah Taheraly, joint first author of the paper.
Collapse
Affiliation(s)
- Sarah Taheraly
- Université de Paris, CNRS, Institut Jacques Monod, 75013, Paris, France
| | - Dmitry Ershov
- Université de Paris, CNRS, Institut Jacques Monod, 75013, Paris, France
| | - Serge Dmitrieff
- Université de Paris, CNRS, Institut Jacques Monod, 75013, Paris, France
| | - Nicolas Minc
- Université de Paris, CNRS, Institut Jacques Monod, 75013, Paris, France
| |
Collapse
|
18
|
Zhu Y, Zhang Y, Liu N, Ren W, Hou Y, Duan Y, Song X, Zhou M. The Dis1/Stu2/XMAP215 Family Gene FgStu2 Is Involved in Vegetative Growth, Morphology, Sexual and Asexual Reproduction, Pathogenicity and DON Production of Fusarium graminearum. Front Microbiol 2020; 11:545015. [PMID: 33329417 PMCID: PMC7714731 DOI: 10.3389/fmicb.2020.545015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 10/29/2020] [Indexed: 11/29/2022] Open
Abstract
The conserved Dis1/Stu2/XMAP215 microtubule association proteins (MAPs) family plays an important role in microtubule dynamics, nucleation, and kinetochore-microtubule attachments. However, function of Dis1/Stu2/XMAP215 homolog in plant pathogenic fungi has not been determined. Here, we identified and investigated the Dis1/Stu2/XMAP215 homolog (FGSG_10528) in Fusarium graminearum (FgStu2p). Co-localization experiment and co-immunoprecipitation (Co-IP) assay demonstrated that FgStu2p is a microtubule associated protein. Besides, FgStu2 could also interact with Fgγ-tubulin and presumed FgNdc80, which suggested that the FgStu2 gene might associate with microtubule nucleation and kinetochore-microtubule attachments like Dis1/Stu2/XMAP215 homologs in other species. Moreover, the FgStu2 promoter replacement mutants (FgStu2-Si mutants) produced twisted hyphae and decreased growth rate. Microscope examination further showed that the microtubule polymerization was reduced in FgStu2-Si mutants, which could account for the aberrant morphology. Although the microtubule polymerization was affected in FgStu2-Si mutants, the FgStu2-Si mutants didn't show highly increased sensitivity to anti-microtubule fungicide carbendazim (methyl benzimidazol-2-ylcarbamate [MBC]). In addition, the FgStu2-Si mutants exhibited curved conidia, decreased number of conidial production, blocked ability of perithecia production, decreased pathogenicity and deoxynivalenol (DON) production. Taken together, these results indicate that the FgStu2 gene plays a crucial role in vegetative growth, morphology, sexual reproduction, asexual reproduction, virulence and deoxynivalenol (DON) production of F. graminearum, which brings new insights into the functions of Dis1/Stu2/XMAP215 homolog in plant pathogenic fungi.
Collapse
Affiliation(s)
- Yuanye Zhu
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Yuanshuai Zhang
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Na Liu
- College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Weichao Ren
- College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Yiping Hou
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Yabing Duan
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Xiushi Song
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Mingguo Zhou
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
19
|
Dimou S, Martzoukou O, Dionysopoulou M, Bouris V, Amillis S, Diallinas G. Translocation of nutrient transporters to cell membrane via Golgi bypass in Aspergillus nidulans. EMBO Rep 2020; 21:e49929. [PMID: 32452614 DOI: 10.15252/embr.201949929] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 04/15/2020] [Accepted: 04/24/2020] [Indexed: 02/06/2023] Open
Abstract
Nutrient transporters, being polytopic membrane proteins, are believed, but not formally shown, to traffic from their site of synthesis, the ER, to the plasma membrane through Golgi-dependent vesicular trafficking. Here, we develop a novel genetic system to investigate the trafficking of a neosynthesized model transporter, the well-studied UapA purine transporter of Aspergillus nidulans. We show that sorting of neosynthesized UapA to the plasma membrane (PM) bypasses the Golgi and does not necessitate key Rab GTPases, AP adaptors, microtubules or endosomes. UapA PM localization is found to be dependent on functional COPII vesicles, actin polymerization, clathrin heavy chain and the PM t-SNARE SsoA. Actin polymerization proved to primarily affect COPII vesicle formation, whereas the essential role of ClaH seems indirect and less clear. We provide evidence that other evolutionary and functionally distinct transporters of A. nidulans also follow the herein identified Golgi-independent trafficking route of UapA. Importantly, our findings suggest that specific membrane cargoes drive the formation of distinct COPII subpopulations that bypass the Golgi to be sorted non-polarly to the PM, and thus serving house-keeping cell functions.
Collapse
Affiliation(s)
- Sofia Dimou
- Department of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Olga Martzoukou
- Department of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Vangelis Bouris
- Department of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Sotiris Amillis
- Department of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - George Diallinas
- Department of Biology, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
20
|
Martín JF. Transport systems, intracellular traffic of intermediates and secretion of β-lactam antibiotics in fungi. Fungal Biol Biotechnol 2020; 7:6. [PMID: 32351700 PMCID: PMC7183595 DOI: 10.1186/s40694-020-00096-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 04/10/2020] [Indexed: 02/07/2023] Open
Abstract
Fungal secondary metabolites are synthesized by complex biosynthetic pathways catalized by enzymes located in different subcellular compartments, thus requiring traffic of precursors and intermediates between them. The β-lactam antibiotics penicillin and cephalosporin C serve as an excellent model to understand the molecular mechanisms that control the subcellular localization of secondary metabolites biosynthetic enzymes. Optimal functioning of the β-lactam biosynthetic enzymes relies on a sophisticated temporal and spatial organization of the enzymes, the intermediates and the final products. The first and second enzymes of the penicillin pathway, ACV synthetase and IPN synthase, in Penicillium chrysogenum and Aspergillus nidulans are cytosolic. In contrast, the last two enzymes of the penicillin pathway, phenylacetyl-CoA ligase and isopenicillin N acyltransferase, are located in peroxisomes working as a tandem at their optimal pH that coincides with the peroxisomes pH. Two MFS transporters, PenM and PaaT have been found to be involved in the import of the intermediates isopenicillin N and phenylacetic acid, respectively, into peroxisomes. Similar compartmentalization of intermediates occurs in Acremonium chrysogenum; two enzymes isopenicillin N-CoA ligase and isopenicillin N-CoA epimerase, that catalyse the conversion of isopenicillin N in penicillin N, are located in peroxisomes. Two genes encoding MFS transporters, cefP and cefM, are located in the early cephalosporin gene cluster. These transporters have been localized in peroxisomes by confocal fluorescence microscopy. A third gene of A. chrysogenum, cefT, encodes an MFS protein, located in the cell membrane involved in the secretion of cephalosporin C, although cefT-disrupted mutants are still able to export cephalosporin by redundant transporters. The secretion of penicillin from peroxisomes to the extracellular medium is still unclear. Attempts have been made to identify a gene encoding the penicillin secretion protein among the 48 ABC-transporters of P. chrysogenum. The highly efficient secretion system that exports penicillin against a concentration gradient may involve active penicillin extrusion systems mediated by vesicles that fuse to the cell membrane. However, there is no correlation of pexophagy with penicillin or cephalosporin formation since inactivation of pexophagy leads to increased penicillin or cephalosporin biosynthesis due to preservation of peroxisomes. The penicillin biosynthesis finding shows that in order to increase biosynthesis of novel secondary metabolites it is essential to adequately target enzymes to organelles.
Collapse
Affiliation(s)
- Juan F Martín
- Área de Microbiología, Departamento de Biología Molecular, Universidad de León, León, Spain
| |
Collapse
|
21
|
Kinnaer C, Dudin O, Martin SG. Yeast-to-hypha transition of Schizosaccharomyces japonicus in response to environmental stimuli. Mol Biol Cell 2019; 30:975-991. [PMID: 30726171 PMCID: PMC6589906 DOI: 10.1091/mbc.e18-12-0774] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 01/31/2019] [Accepted: 02/01/2019] [Indexed: 12/28/2022] Open
Abstract
Many fungal species are dimorphic, exhibiting both unicellular yeast-like and filamentous forms. Schizosaccharomyces japonicus, a member of the fission yeast clade, is one such dimorphic fungus. Here, we first identify fruit extracts as natural, stress-free, starvation-independent inducers of filamentation, which we use to describe the properties of the dimorphic switch. During the yeast-to-hypha transition, the cell evolves from a bipolar to a unipolar system with 10-fold accelerated polarized growth but constant width, vacuoles segregated to the nongrowing half of the cell, and hyper-lengthening of the cell. We demonstrate unusual features of S. japonicus hyphae: these cells lack a Spitzenkörper, a vesicle distribution center at the hyphal tip, but display more rapid cytoskeleton-based transport than the yeast form, with actin cables being essential for the transition. S. japonicus hyphae also remain mononuclear and undergo complete cell divisions, which are highly asymmetric: one daughter cell inherits the vacuole, the other the growing tip. We show that these elongated cells scale their nuclear size, spindle length, and elongation rates, but display altered division size controls. This establishes S. japonicus as a unique system that switches between symmetric and asymmetric modes of growth and division.
Collapse
Affiliation(s)
- Cassandre Kinnaer
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Omaya Dudin
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Sophie G. Martin
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, CH-1015 Lausanne, Switzerland
| |
Collapse
|
22
|
Verdín J, Sánchez-León E, Rico-Ramírez AM, Martínez-Núñez L, Fajardo-Somera RA, Riquelme M. Off the wall: The rhyme and reason of Neurospora crassa hyphal morphogenesis. ACTA ACUST UNITED AC 2019; 5:100020. [PMID: 32743136 PMCID: PMC7389182 DOI: 10.1016/j.tcsw.2019.100020] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 02/07/2019] [Accepted: 02/10/2019] [Indexed: 12/11/2022]
Abstract
Chitin and β-1,3-glucan synthases are transported separately in chitosomes and macrovesicles. Chitin synthases occupy the core of the SPK; β-1,3-glucan synthases the outer layer. CHS-4 arrival to the SPK and septa is CSE-7 dependent. Rabs YPT-1 and YPT-31 localization at the SPK mimics that of chitosomes and macrovesicles. The exocyst acts as a tether between the SPK outer layer vesicles and the apical PM.
The fungal cell wall building processes are the ultimate determinants of hyphal shape. In Neurospora crassa the main cell wall components, β-1,3-glucan and chitin, are synthesized by enzymes conveyed by specialized vesicles to the hyphal tip. These vesicles follow different secretory routes, which are delicately coordinated by cargo-specific Rab GTPases until their accumulation at the Spitzenkörper. From there, the exocyst mediates the docking of secretory vesicles to the plasma membrane, where they ultimately get fused. Although significant progress has been done on the cellular mechanisms that carry cell wall synthesizing enzymes from the endoplasmic reticulum to hyphal tips, a lot of information is still missing. Here, the current knowledge on N. crassa cell wall composition and biosynthesis is presented with an emphasis on the underlying molecular and cellular secretory processes.
Collapse
Key Words
- BGT, β-1,3-glucan transferases
- CHS, chitin synthase
- CLSM, confocal laser scanning microscopy
- CWI, cell wall integrity
- CWP, cell wall proteins
- Cell wall
- ER, endoplasmic reticulum
- FRAP, fluorescence recovery after photobleaching
- GEF, guanine nucleotide exchange factor
- GFP, green fluorescent protein
- GH, glycosyl hydrolases
- GPI, glycosylphosphatidylinositol
- GSC, β-1,3-glucan synthase complex
- MMD, myosin-like motor domain
- MS, mass spectrometry
- MT, microtubule
- NEC, network of elongated cisternae
- PM, plasma membrane
- SPK, Spitzenkörper
- Spitzenkörper
- TIRFM, total internal reflection fluorescence microscopy
- TM, transmembrane
- Tip growth
- Vesicles
Collapse
Affiliation(s)
- Jorge Verdín
- Industrial Biotechnology, CIATEJ-Jalisco State Scientific Research and Technology Assistance Center, Mexico National Council for Science and Technology, Zapopan, Jalisco, Mexico
| | - Eddy Sánchez-León
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | - Adriana M Rico-Ramírez
- Department of Microbiology, Centro de Investigación Científica y de Educación Superior de Ensenada, CICESE Ensenada, Baja California, Mexico
| | - Leonora Martínez-Núñez
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Rosa A Fajardo-Somera
- Karlsruhe Institute of Technology (KIT) South Campus, Institute for Applied Biosciences, Department of Microbiology, Karlsruhe, Germany
| | - Meritxell Riquelme
- Department of Microbiology, Centro de Investigación Científica y de Educación Superior de Ensenada, CICESE Ensenada, Baja California, Mexico
| |
Collapse
|
23
|
Aspergillus nidulans in the post-genomic era: a top-model filamentous fungus for the study of signaling and homeostasis mechanisms. Int Microbiol 2019; 23:5-22. [DOI: 10.1007/s10123-019-00064-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 01/30/2019] [Accepted: 02/04/2019] [Indexed: 02/07/2023]
|
24
|
Ramírez-Del Villar A, Roberson RW, Callejas-Negrete OA, Mouriño-Pérez RR. The actin motor MYO-5 effect in the intracellular organization of Neurospora crassa. Fungal Genet Biol 2019; 125:13-27. [PMID: 30615944 DOI: 10.1016/j.fgb.2018.11.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 11/02/2018] [Accepted: 11/16/2018] [Indexed: 01/16/2023]
Abstract
In filamentous fungi, polarized growth is the result of vesicle secretion at the hyphal apex. Motor proteins mediate vesicle transport to target destinations on the plasma membrane via actin and microtubule cytoskeletons. Myosins are motor proteins associated with actin filaments. Specifically, class V myosins are responsible for cargo transport in eukaryotes. We studied the dynamics and localization of myosin V in wild type hyphae of Neurospora crassa and in hyphae that lacked MYO-5. In wild type hyphae, MYO-5-GFP was localized concentrated in the hyphal apex and colocalized with Spitzenkörper. Photobleaching studies showed that MYO-5-GFP was transported to the apex from subapical hyphal regions. The deletion of the class V myosin resulted in a reduced rate of hyphal growth, apical hyperbranching, and intermittent loss of hyphal polarity. MYO-5 did not participate in breaking the symmetrical growth during germination but contributed in the apical organization upon establishment of polarized growth. In the Δmyo-5 mutant, actin was organized into thick cables in the apical and subapical hyphal regions, and the number of endocytic patches was reduced. The microvesicles-chitosomes observed with CHS-1-GFP were distributed as a cloud occupying the apical dome and not in the Spitzenkörper as the WT strain. The mitochondrial movement was not associated with MYO-5, but tubular vacuole position is MYO-5-dependent. These results suggest that MYO-5 plays a role in maintaining apical organization and the integrity of the Spitzenkörper and is required for normal hyphal growth, polarity, septation, conidiation, and proper conidial germination.
Collapse
Affiliation(s)
- Arianne Ramírez-Del Villar
- Departamento de Microbiología, Centro de Investigación Científica y de Educación Superior de Ensenada, Ensenada, Baja California, Mexico
| | | | - Olga A Callejas-Negrete
- Departamento de Microbiología, Centro de Investigación Científica y de Educación Superior de Ensenada, Ensenada, Baja California, Mexico
| | - Rosa R Mouriño-Pérez
- Departamento de Microbiología, Centro de Investigación Científica y de Educación Superior de Ensenada, Ensenada, Baja California, Mexico.
| |
Collapse
|
25
|
Takeshita N. Control of Actin and Calcium for Chitin Synthase Delivery to the Hyphal Tip of Aspergillus. Curr Top Microbiol Immunol 2019; 425:113-129. [PMID: 31974757 DOI: 10.1007/82_2019_193] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Filamentous fungi are covered by a cell wall consisting mainly of chitin and glucan. The synthesis of chitin, a β-1,4-linked homopolymer of N-acetylglucosamine, is essential for hyphal morphogenesis. Fungal chitin synthases are integral membrane proteins that have been classified into seven classes. ChsB, a class III chitin synthase, is known to play a key role in hyphal tip growth and has been used here as a model to understand the cell biology of cell wall biosynthesis in Aspergillus nidulans. Chitin synthases are transported on secretory vesicles to the plasma membrane for new cell wall synthesis. Super-resolution localization imaging as a powerful biophysical approach indicated dynamics of the Spitzenkörper where spatiotemporally regulated exocytosis and cell extension, whereas high-speed pulse-chase imaging has revealed ChsB transport mechanism mediated by kinesin-1 and myosin-5. In addition, live imaging analysis showed correlations among intracellular Ca2+ levels, actin assembly, and exocytosis in growing hyphal tips. This suggests that pulsed Ca2+ influxes coordinate the temporal control of actin assembly and exocytosis, which results in stepwise cell extension. It is getting clear that turgor pressure and cell wall pressure are involved in the activation of Ca2+ channels for Ca2+ oscillation and cell extension. Here the cell wall synthesis and tip growth meet again.
Collapse
Affiliation(s)
- Norio Takeshita
- Microbiology Research Center for Sustainability (MiCS), Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan.
| |
Collapse
|
26
|
Suresh S, Markossian S, Osmani AH, Osmani SA. Nup2 performs diverse interphase functions in Aspergillus nidulans. Mol Biol Cell 2018; 29:3144-3154. [PMID: 30355026 PMCID: PMC6340215 DOI: 10.1091/mbc.e18-04-0223] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The nuclear pore complex (NPC) protein Nup2 plays interphase nuclear transport roles and in Aspergillus nidulans also functions to bridge NPCs at mitotic chromatin for their faithful coinheritance to daughter G1 nuclei. In this study, we further investigate the interphase functions of Nup2 in A. nidulans. Although Nup2 is not required for nuclear import of all nuclear proteins after mitosis, it is required for normal G1 nuclear accumulation of the NPC nuclear basket–associated components Mad2 and Mlp1 as well as the THO complex protein Tho2. Targeting of Mlp1 to nuclei partially rescues the interphase delay seen in nup2 mutants indicating that some of the interphase defects in Nup2-deleted cells are due to Mlp1 mislocalization. Among the inner nuclear membrane proteins, Nup2 affects the localization of Ima1, orthologues of which are involved in nuclear movement. Interestingly, nup2 mutant G1 nuclei also exhibit an abnormally long period of extensive to-and-fro movement immediately after mitosis in a manner dependent on the microtubule cytoskeleton. This indicates that Nup2 is required to limit the transient postmitotic nuclear migration typical of many filamentous fungi. The findings reveal that Nup2 is a multifunctional protein that performs diverse functions during both interphase and mitosis in A. nidulans.
Collapse
Affiliation(s)
- Subbulakshmi Suresh
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210.,Laboratory of Chemistry and Cell Biology, The Rockefeller University, New York, NY 10065
| | - Sarine Markossian
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210.,Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94143
| | - Aysha H Osmani
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210
| | - Stephen A Osmani
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210
| |
Collapse
|
27
|
Riquelme M, Aguirre J, Bartnicki-García S, Braus GH, Feldbrügge M, Fleig U, Hansberg W, Herrera-Estrella A, Kämper J, Kück U, Mouriño-Pérez RR, Takeshita N, Fischer R. Fungal Morphogenesis, from the Polarized Growth of Hyphae to Complex Reproduction and Infection Structures. Microbiol Mol Biol Rev 2018; 82:e00068-17. [PMID: 29643171 PMCID: PMC5968459 DOI: 10.1128/mmbr.00068-17] [Citation(s) in RCA: 190] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Filamentous fungi constitute a large group of eukaryotic microorganisms that grow by forming simple tube-like hyphae that are capable of differentiating into more-complex morphological structures and distinct cell types. Hyphae form filamentous networks by extending at their tips while branching in subapical regions. Rapid tip elongation requires massive membrane insertion and extension of the rigid chitin-containing cell wall. This process is sustained by a continuous flow of secretory vesicles that depends on the coordinated action of the microtubule and actin cytoskeletons and the corresponding motors and associated proteins. Vesicles transport cell wall-synthesizing enzymes and accumulate in a special structure, the Spitzenkörper, before traveling further and fusing with the tip membrane. The place of vesicle fusion and growth direction are enabled and defined by the position of the Spitzenkörper, the so-called cell end markers, and other proteins involved in the exocytic process. Also important for tip extension is membrane recycling by endocytosis via early endosomes, which function as multipurpose transport vehicles for mRNA, septins, ribosomes, and peroxisomes. Cell integrity, hyphal branching, and morphogenesis are all processes that are largely dependent on vesicle and cytoskeleton dynamics. When hyphae differentiate structures for asexual or sexual reproduction or to mediate interspecies interactions, the hyphal basic cellular machinery may be reprogrammed through the synthesis of new proteins and/or the modification of protein activity. Although some transcriptional networks involved in such reprogramming of hyphae are well studied in several model filamentous fungi, clear connections between these networks and known determinants of hyphal morphogenesis are yet to be established.
Collapse
Affiliation(s)
- Meritxell Riquelme
- Department of Microbiology, Centro de Investigación Científica y de Educación Superior de Ensenada, Ensenada, Baja California, Mexico
| | - Jesús Aguirre
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de Mexico, Mexico City, Mexico
| | - Salomon Bartnicki-García
- Department of Microbiology, Centro de Investigación Científica y de Educación Superior de Ensenada, Ensenada, Baja California, Mexico
| | - Gerhard H Braus
- Department of Molecular Microbiology and Genetics and Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Goettingen, Germany
| | - Michael Feldbrügge
- Institute for Microbiology, Heinrich Heine University Düsseldorf, Cluster of Excellence on Plant Sciences, Düsseldorf, Germany
| | - Ursula Fleig
- Institute for Functional Genomics of Microorganisms, Heinrich Heine University Düsseldorf, Cluster of Excellence on Plant Sciences, Düsseldorf, Germany
| | - Wilhelm Hansberg
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de Mexico, Mexico City, Mexico
| | - Alfredo Herrera-Estrella
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del IPN, Irapuato, Mexico
| | - Jörg Kämper
- Karlsruhe Institute of Technology-South Campus, Institute for Applied Biosciences, Karlsruhe, Germany
| | - Ulrich Kück
- Ruhr University Bochum, Lehrstuhl für Allgemeine und Molekulare Botanik, Bochum, Germany
| | - Rosa R Mouriño-Pérez
- Department of Microbiology, Centro de Investigación Científica y de Educación Superior de Ensenada, Ensenada, Baja California, Mexico
| | - Norio Takeshita
- University of Tsukuba, Faculty of Life and Environmental Sciences, Tsukuba, Japan
| | - Reinhard Fischer
- Karlsruhe Institute of Technology-South Campus, Institute for Applied Biosciences, Karlsruhe, Germany
| |
Collapse
|
28
|
Li M, Zhao J, Tang N, Sun H, Huang J. Horizontal Gene Transfer From Bacteria and Plants to the Arbuscular Mycorrhizal Fungus Rhizophagus irregularis. FRONTIERS IN PLANT SCIENCE 2018; 9:701. [PMID: 29887874 PMCID: PMC5982333 DOI: 10.3389/fpls.2018.00701] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 05/07/2018] [Indexed: 05/28/2023]
Abstract
Arbuscular mycorrhizal fungi (AMF) belong to Glomeromycotina, and are mutualistic symbionts of many land plants. Associated bacteria accompany AMF during their lifecycle to establish a robust tripartite association consisting of fungi, plants and bacteria. Physical association among this trinity provides possibilities for the exchange of genetic materials. However, very few horizontal gene transfer (HGT) from bacteria or plants to AMF has been reported yet. In this study, we complement existing algorithms by developing a new pipeline, Blast2hgt, to efficiently screen for putative horizontally derived genes from a whole genome. Genome analyses of the glomeromycete Rhizophagus irregularis identified 19 fungal genes that had been transferred between fungi and bacteria/plants, of which seven were obtained from bacteria. Another 18 R. irregularis genes were found to be recently acquired from either plants or bacteria. In the R. irregularis genome, gene duplication has contributed to the expansion of three foreign genes. Importantly, more than half of the R. irregularis foreign genes were expressed in various transcriptomic experiments, suggesting that these genes are functional in R. irregularis. Functional annotation and available evidence showed that these acquired genes may participate in diverse but fundamental biological processes such as regulation of gene expression, mitosis and signal transduction. Our study suggests that horizontal gene influx through endosymbiosis is a source of new functions for R. irregularis, and HGT might have played a role in the evolution and symbiotic adaptation of this arbuscular mycorrhizal fungus.
Collapse
Affiliation(s)
- Meng Li
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jinjie Zhao
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Nianwu Tang
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Hang Sun
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Jinling Huang
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, Henan University, Kaifeng, China
- Department of Biology, East Carolina University, Greenville, NC, United States
| |
Collapse
|
29
|
Feng Z, Tian J, Han L, Geng Y, Sun J, Kong Z. The Myosin5-mediated actomyosin motility system is required for Verticillium
pathogenesis of cotton. Environ Microbiol 2018; 20:1607-1621. [DOI: 10.1111/1462-2920.14101] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 03/05/2018] [Accepted: 03/11/2018] [Indexed: 11/30/2022]
Affiliation(s)
- Zhidi Feng
- The Key Laboratory of Oasis Eco-Agriculture; College of Agriculture, Shihezi University; Shihezi Xinjiang 832000 China
- State Key Laboratory of Plant Genomic; Institute of Microbiology, Chinese Academy of Sciences; Beijing 100101 China
| | - Juan Tian
- State Key Laboratory of Plant Genomic; Institute of Microbiology, Chinese Academy of Sciences; Beijing 100101 China
| | - Libo Han
- State Key Laboratory of Plant Genomic; Institute of Microbiology, Chinese Academy of Sciences; Beijing 100101 China
| | - Yuan Geng
- State Key Laboratory of Plant Genomic; Institute of Microbiology, Chinese Academy of Sciences; Beijing 100101 China
| | - Jie Sun
- The Key Laboratory of Oasis Eco-Agriculture; College of Agriculture, Shihezi University; Shihezi Xinjiang 832000 China
| | - Zhaosheng Kong
- State Key Laboratory of Plant Genomic; Institute of Microbiology, Chinese Academy of Sciences; Beijing 100101 China
| |
Collapse
|
30
|
Jabed A. Choudhury M, M. J. Trevelyan P, P. Boswell G. A mathematical model of nutrient influence on fungal competition. J Theor Biol 2018; 438:9-20. [DOI: 10.1016/j.jtbi.2017.11.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 10/20/2017] [Accepted: 11/08/2017] [Indexed: 10/18/2022]
|
31
|
Zhou L, Evangelinos M, Wernet V, Eckert AF, Ishitsuka Y, Fischer R, Nienhaus GU, Takeshita N. Superresolution and pulse-chase imaging reveal the role of vesicle transport in polar growth of fungal cells. SCIENCE ADVANCES 2018; 4:e1701798. [PMID: 29387789 PMCID: PMC5787382 DOI: 10.1126/sciadv.1701798] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 12/27/2017] [Indexed: 06/07/2023]
Abstract
Polarized growth of filamentous fungi requires continuous transport of biomolecules to the hyphal tip. To this end, construction materials are packaged in vesicles and transported by motor proteins along microtubules and actin filaments. We have studied these processes with quantitative superresolution localization microscopy of live Aspergillus nidulans cells expressing the photoconvertible protein mEosFPthermo fused to the chitin synthase ChsB. ChsB is mainly located at the Spitzenkörper near the hyphal tip and produces chitin, a key component of the cell wall. We have visualized the pulsatory dynamics of the Spitzenkörper, reflecting vesicle accumulation before exocytosis and their subsequent fusion with the apical plasma membrane. Furthermore, high-speed pulse-chase imaging after photoconversion of mEosFPthermo in a tightly focused spot revealed that ChsB is transported with two different speeds from the cell body to the hyphal tip and vice versa. Comparative analysis using motor protein deletion mutants allowed us to assign the fast movements (7 to 10 μm s-1) to transport of secretory vesicles by kinesin-1, and the slower ones (2 to 7 μm s-1) to transport by kinesin-3 on early endosomes. Our results show how motor proteins ensure the supply of vesicles to the hyphal tip, where temporally regulated exocytosis results in stepwise tip extension.
Collapse
Affiliation(s)
- Lu Zhou
- Institute of Applied Physics, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
- Institute of Nanotechnology, KIT, Karlsruhe, Germany
| | - Minoas Evangelinos
- Department of Microbiology, Institute for Applied Biosciences, KIT, Karlsruhe, Germany
- Faculty of Biology, University of Athens, Athens, Greece
- Institut de Biologie et de Médecine Moléculaires, Université Libre de Bruxelles, Gosselies, Belgium
| | - Valentin Wernet
- Department of Microbiology, Institute for Applied Biosciences, KIT, Karlsruhe, Germany
| | - Antonia F. Eckert
- Institute of Applied Physics, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Yuji Ishitsuka
- Institute of Applied Physics, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Reinhard Fischer
- Department of Microbiology, Institute for Applied Biosciences, KIT, Karlsruhe, Germany
| | - G. Ulrich Nienhaus
- Institute of Applied Physics, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
- Institute of Nanotechnology, KIT, Karlsruhe, Germany
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Institute of Toxicology and Genetics, KIT, Eggenstein-Leopoldshafen, Germany
| | - Norio Takeshita
- Department of Microbiology, Institute for Applied Biosciences, KIT, Karlsruhe, Germany
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
32
|
Oscillatory fungal cell growth. Fungal Genet Biol 2017; 110:10-14. [PMID: 29229585 DOI: 10.1016/j.fgb.2017.12.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Revised: 11/26/2017] [Accepted: 12/06/2017] [Indexed: 12/20/2022]
Abstract
Cells are dynamic systems, the state of which undergoes constant alteration that results in morphological changes and movement. Many dynamic cellular processes that appear continuous are driven by underlying mechanisms that oscillate with distinct periods. For example eukaryotic cells do not grow continuously, but rather by pulsed extension of the periphery. Stepwise cell extension at the hyphal tips of several filamentous fungi was discovered 20 years ago, but only a few molecular details of the mechanism have been clarified since then. A recent study has provided evidence for correlations among intracellular Ca2+ levels, actin assembly, exocytosis and cell extension in growing hyphal tips. This suggests that pulsed Ca2+ influxes coordinate the temporal control of actin assembly and exocytosis, which results in stepwise cell extension. The coordinated oscillation of these machineries are likely to be ubiquitous among all eukaryotes. Indeed, intracellular Ca2+ levels and/or actin polymerization oscillate in mammalian and plant cells. This review summarizes the mechanisms of oscillation in several systems.
Collapse
|
33
|
Etxebeste O, Espeso EA. Neurons show the path: tip-to-nucleus communication in filamentous fungal development and pathogenesis. FEMS Microbiol Rev 2017; 40:610-24. [PMID: 27587717 DOI: 10.1093/femsre/fuw021] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/17/2016] [Indexed: 01/11/2023] Open
Abstract
Multiple fungal species penetrate substrates and accomplish host invasion through the fast, permanent and unidirectional extension of filamentous cells known as hyphae. Polar growth of hyphae results, however, in a significant increase in the distance between the polarity site, which also receives the earliest information about ambient conditions, and nuclei, where adaptive responses are executed. Recent studies demonstrate that these long distances are overcome by signal transduction pathways which convey sensory information from the polarity site to nuclei, controlling development and pathogenesis. The present review compares the striking connections of the mechanisms for long-distance communication in hyphae with those from neurons, and discusses the importance of their study in order to understand invasion and dissemination processes of filamentous fungi, and design strategies for developmental control in the future.
Collapse
Affiliation(s)
- Oier Etxebeste
- Biochemistry II laboratory, Department of Applied Chemistry, Faculty of Chemistry, University of the Basque Country (UPV/EHU), 20018 San Sebastian, Spain
| | - Eduardo A Espeso
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
| |
Collapse
|
34
|
González-Bermúdez B, Li Q, Guinea GV, Peñalva MA, Plaza GR. Probing the effect of tip pressure on fungal growth: Application to Aspergillus nidulans. Phys Rev E 2017; 96:022402. [PMID: 28950493 DOI: 10.1103/physreve.96.022402] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Indexed: 11/07/2022]
Abstract
The study of fungal cells is of great interest due to their importance as pathogens and as fermenting fungi and for their appropriateness as model organisms. The differential pressure between the hyphal cytoplasm and the bordering medium is essential for the growth process, because the pressure is correlated with the growth rate. Notably, during the invasion of tissues, the external pressure at the tip of the hypha may be different from the pressure in the surrounding medium. We report the use of a method, based on the micropipette-aspiration technique, to study the influence of this external pressure at the hyphal tip. Moreover, this technique makes it possible to study hyphal growth mechanics in the case of very thin hyphae, not accessible to turgor pressure probes. We found a correlation between the local pressure at the tip and the growth rate for the species Arpergillus nidulans. Importantly, the proposed method allows one to measure the pressure at the tip required to arrest the hyphal growth. Determining that pressure could be useful to develop new medical treatments for fungal infections. Finally, we provide a mechanical model for these experiments, taking into account the cytoplasm flow and the wall deformation.
Collapse
Affiliation(s)
- Blanca González-Bermúdez
- Center for Biomedical Technology, Universidad Politécnica de Madrid, E-28223 Pozuelo de Alarcón, Spain.,Departamento de Ciencia de Materiales, ETSI de Caminos, Canales y Puertos, Universidad Politécnica de Madrid, E-28040 Madrid, Spain
| | - Qingxuan Li
- Center for Biomedical Technology, Universidad Politécnica de Madrid, E-28223 Pozuelo de Alarcón, Spain.,Departamento de Ciencia de Materiales, ETSI de Caminos, Canales y Puertos, Universidad Politécnica de Madrid, E-28040 Madrid, Spain
| | - Gustavo V Guinea
- Center for Biomedical Technology, Universidad Politécnica de Madrid, E-28223 Pozuelo de Alarcón, Spain.,Departamento de Ciencia de Materiales, ETSI de Caminos, Canales y Puertos, Universidad Politécnica de Madrid, E-28040 Madrid, Spain.,Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Miguel A Peñalva
- Departamento de Biología Celular y Molecular, Centro de Investigaciones Biológicas CSIC, Ramiro de Maeztu 9, E-28040 Madrid, Spain
| | - Gustavo R Plaza
- Center for Biomedical Technology, Universidad Politécnica de Madrid, E-28223 Pozuelo de Alarcón, Spain.,Departamento de Ciencia de Materiales, ETSI de Caminos, Canales y Puertos, Universidad Politécnica de Madrid, E-28040 Madrid, Spain.,Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai 200092, People's Republic of China
| |
Collapse
|
35
|
Abstract
All cells must accurately replicate DNA and partition it to daughter cells. The basic cell cycle machinery is highly conserved among eukaryotes. Most of the mechanisms that control the cell cycle were worked out in fungal cells, taking advantage of their powerful genetics and rapid duplication times. Here we describe the cell cycles of the unicellular budding yeast Saccharomyces cerevisiae and the multicellular filamentous fungus Aspergillus nidulans. We compare and contrast morphological landmarks of G1, S, G2, and M phases, molecular mechanisms that drive cell cycle progression, and checkpoints in these model unicellular and multicellular fungal systems.
Collapse
|
36
|
Abstract
Filamentous fungi are a large and ancient clade of microorganisms that occupy a broad range of ecological niches. The success of filamentous fungi is largely due to their elongate hypha, a chain of cells, separated from each other by septa. Hyphae grow by polarized exocytosis at the apex, which allows the fungus to overcome long distances and invade many substrates, including soils and host tissues. Hyphal tip growth is initiated by establishment of a growth site and the subsequent maintenance of the growth axis, with transport of growth supplies, including membranes and proteins, delivered by motors along the cytoskeleton to the hyphal apex. Among the enzymes delivered are cell wall synthases that are exocytosed for local synthesis of the extracellular cell wall. Exocytosis is opposed by endocytic uptake of soluble and membrane-bound material into the cell. The first intracellular compartment in the endocytic pathway is the early endosomes, which emerge to perform essential additional functions as spatial organizers of the hyphal cell. Individual compartments within septated hyphae can communicate with each other via septal pores, which allow passage of cytoplasm or organelles to help differentiation within the mycelium. This article introduces the reader to more detailed aspects of hyphal growth in fungi.
Collapse
|
37
|
Abstract
The eukaryotic actin cytoskeleton is a highly dynamic framework that is involved in many biological processes, such as cell growth, division, morphology, and motility. G-actin polymerizes into microfilaments that associate into bundles, patches, and networks, which, in turn, organize into higher order structures that are fundamental for the course of important physiological events. Actin rings are an example for such higher order actin entities, but this term represents an actually diverse set of subcellular structures that are involved in various processes. This review especially sheds light on a crucial type of non-constricting ring-like actin networks, and categorizes them under the term 'actin fringe'. These 'actin fringes' are visualized as highly dynamic and yet steady structures in the tip of various polarized growing cells. The present comprehensive overview compares the actin fringe characteristics of rapidly elongating pollen tubes with several related actin arrays in other cell types of diverse species. The current state of knowledge about various actin fringe functions is summarized, and the key role of this structure in the polar growth process is discussed.
Collapse
Affiliation(s)
- Octavian O H Stephan
- Department of Biology, Friedrich-Alexander University of Erlangen-Nuremberg, Erlangen, Bavaria 91058, Germany
| |
Collapse
|
38
|
Sáez-Calvo G, Sharma A, Balaguer FDA, Barasoain I, Rodríguez-Salarichs J, Olieric N, Muñoz-Hernández H, Berbís MÁ, Wendeborn S, Peñalva MA, Matesanz R, Canales Á, Prota AE, Jímenez-Barbero J, Andreu JM, Lamberth C, Steinmetz MO, Díaz JF. Triazolopyrimidines Are Microtubule-Stabilizing Agents that Bind the Vinca Inhibitor Site of Tubulin. Cell Chem Biol 2017; 24:737-750.e6. [DOI: 10.1016/j.chembiol.2017.05.016] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 03/29/2017] [Accepted: 05/10/2017] [Indexed: 10/19/2022]
|
39
|
De Souza CP, Hashmi SB, Hage N, Fitch RM, Osmani AH, Osmani SA. Location and functional analysis of the Aspergillus nidulans Aurora kinase confirm mitotic functions and suggest non-mitotic roles. Fungal Genet Biol 2017; 103:1-15. [PMID: 28315405 PMCID: PMC11443558 DOI: 10.1016/j.fgb.2017.03.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 03/12/2017] [Indexed: 11/17/2022]
Abstract
Filamentous fungi have devastating negative impacts as pathogens and agents of food spoilage but also have critical ecological importance and are utilized for industrial applications. The characteristic multinucleate nature of filamentous fungi is facilitated by limiting if, when and where septation, the fungal equivalent of cytokinesis, occurs. In the model filamentous fungus Aspergillus nidulans septation does not occur immediately after mitosis and is an incomplete process resulting in the formation of a septal pore whose permeability is cell cycle regulated. How mitotic regulators, such as the Aurora kinase, contribute to the often unique biology of filamentous fungi is not well understood. The Aurora B kinase has not previously been investigated in any detail during hyphal growth. Here we demonstrate for the first time that Aurora displays cell cycle dependent locations to the region of forming septa, the septal pore and mature septa as well as the mitotic apparatus. To functionally analyze Aurora, we generated a temperature sensitive allele revealing essential mitotic and spindle assembly checkpoint functions consistent with its location to the kinetochore region and spindle midzone. Our analysis also reveals that cellular and kinetochore Aurora levels increase during a mitotic spindle assembly checkpoint arrest and we propose that this could be important for checkpoint inactivation when spindle formation is prevented. We demonstrate that Aurora accumulation at mature septa following mitotic entry does not require mitotic progression but is dependent upon a timing mechanism. Surprisingly we also find that Aurora inactivation leads to cellular swelling and lysis indicating an unexpected function for Aurora in fungal cell growth. Thus in addition to its conserved mitotic functions our data suggest that Aurora has the capacity to be an important regulator of septal biology and cell growth in filamentous fungi.
Collapse
Affiliation(s)
- Colin P De Souza
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, United States
| | - Shahr B Hashmi
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, United States
| | - Natalie Hage
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, United States
| | - Rebecca M Fitch
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, United States
| | - Aysha H Osmani
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, United States
| | - Stephen A Osmani
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, United States.
| |
Collapse
|
40
|
Pulses of Ca 2+ coordinate actin assembly and exocytosis for stepwise cell extension. Proc Natl Acad Sci U S A 2017; 114:5701-5706. [PMID: 28507141 DOI: 10.1073/pnas.1700204114] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Many eukaryotic cells grow by extending their cell periphery in pulses. The molecular mechanisms underlying this process are not yet fully understood. Here we present a comprehensive model of stepwise cell extension by using the unique tip growth system of filamentous fungi. Live-cell imaging analysis, including superresolution microscopy, revealed that the fungus Aspergillus nidulans extends the hyphal tip in an oscillatory manner. The amount of F-actin and secretory vesicles (SV) accumulating at the hyphal tip oscillated with a positive temporal correlation, whereas vesicle amounts were negatively correlated to the growth rate. The intracellular Ca2+ level also pulsed with a positive temporal correlation to the amount of F-actin and SV at the hyphal tip. Two Ca2+ channels, MidA and CchA, were needed for proper tip growth and the oscillations of actin polymerization, exocytosis, and the growth rate. The data indicate a model in which transient Ca2+ pluses cause depolymerization of F-actin at the cortex and promote SV fusion with the plasma membrane, thereby extending the cell tip. Over time, Ca2+ diffuses away and F-actin and SV accumulate again at the hyphal tip. Our data provide evidence that temporally controlled actin polymerization and exocytosis are coordinated by pulsed Ca2+ influx, resulting in stepwise cell extension.
Collapse
|
41
|
Peñalva MA, Zhang J, Xiang X, Pantazopoulou A. Transport of fungal RAB11 secretory vesicles involves myosin-5, dynein/dynactin/p25, and kinesin-1 and is independent of kinesin-3. Mol Biol Cell 2017; 28:947-961. [PMID: 28209731 PMCID: PMC5385943 DOI: 10.1091/mbc.e16-08-0566] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 01/31/2017] [Accepted: 02/07/2017] [Indexed: 12/02/2022] Open
Abstract
In Aspergillus nidulans, the distribution of exocytic carriers involves interplay between kinesin-1, myosin-5, and dynein. Engagement of the dynein complex to these carriers requires dynactin p25, but, unlike that of early endosomes, it does not require the Hook complex. Hyphal tip cells of the fungus Aspergillus nidulans are useful for studying long-range intracellular traffic. Post-Golgi secretory vesicles (SVs) containing the RAB11 orthologue RabE engage myosin-5 as well as plus end– and minus end–directed microtubule motors, providing an experimental system with which to investigate the interplay between microtubule and actin motors acting on the same cargo. By exploiting the fact that depolymerization of F-actin unleashes SVs focused at the apex by myosin-5 to microtubule-dependent motors, we establish that the minus end–directed transport of SVs requires the dynein/dynactin supercomplex. This minus end–directed transport is largely unaffected by genetic ablation of the Hook complex adapting early endosomes (EEs) to dynein but absolutely requires p25 in dynactin. Thus dynein recruitment to two different membranous cargoes, namely EEs and SVs, requires p25, highlighting the importance of the dynactin pointed-end complex to scaffold cargoes. Finally, by studying the behavior of SVs and EEs in null and rigor mutants of kinesin-3 and kinesin-1 (UncA and KinA, respectively), we demonstrate that KinA is the major kinesin mediating the anterograde transport of SVs. Therefore SVs arrive at the apex of A. nidulans by anterograde transport involving cooperation of kinesin-1 with myosin-5 and can move away from the apex powered by dynein.
Collapse
Affiliation(s)
- Miguel A Peñalva
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Madrid 28040, Spain
| | - Jun Zhang
- Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814-4799
| | - Xin Xiang
- Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814-4799
| | - Areti Pantazopoulou
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Madrid 28040, Spain
| |
Collapse
|
42
|
Bartnicki-Garcia S. The evolution of fungal morphogenesis, a personal account. Mycologia 2017; 108:475-84. [DOI: 10.3852/15-272] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 01/28/2016] [Indexed: 01/11/2023]
Affiliation(s)
- Salomon Bartnicki-Garcia
- Departamento de Microbiología, Centro de Investigación Científica y Educación Superior de Ensenada, CICESE, Ensenada B.C. 22860 Mexico
| |
Collapse
|
43
|
Abstract
Filamentous fungi have proven to be a better-suited model system than unicellular yeasts in analyses of cellular processes such as polarized growth, exocytosis, endocytosis, and cytoskeleton-based organelle traffic. For example, the filamentous fungus
Neurospora crassa develops a variety of cellular forms. Studying the molecular basis of these forms has led to a better, yet incipient, understanding of polarized growth. Polarity factors as well as Rho GTPases, septins, and a localized delivery of vesicles are the central elements described so far that participate in the shift from isotropic to polarized growth. The growth of the cell wall by apical biosynthesis and remodeling of polysaccharide components is a key process in hyphal morphogenesis. The coordinated action of motor proteins and Rab GTPases mediates the vesicular journey along the hyphae toward the apex, where the exocyst mediates vesicle fusion with the plasma membrane. Cytoplasmic microtubules and actin microfilaments serve as tracks for the transport of vesicular carriers as well as organelles in the tubular cell, contributing to polarization. In addition to exocytosis, endocytosis is required to set and maintain the apical polarity of the cell. Here, we summarize some of the most recent breakthroughs in hyphal morphogenesis and apical growth in
N. crassa and the emerging questions that we believe should be addressed.
Collapse
Affiliation(s)
- Meritxell Riquelme
- Department of Microbiology, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Ensenada, Baja California, 22860, Mexico
| | - Leonora Martínez-Núñez
- Department of Microbiology, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Ensenada, Baja California, 22860, Mexico
| |
Collapse
|
44
|
Schultzhaus Z, Johnson TB, Shaw BD. Clathrin localization and dynamics in Aspergillus nidulans. Mol Microbiol 2016; 103:299-318. [PMID: 27741567 DOI: 10.1111/mmi.13557] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/10/2016] [Indexed: 12/15/2022]
Abstract
Cell growth necessitates extensive membrane remodeling events including vesicle fusion or fission, processes that are regulated by coat proteins. The hyphal cells of filamentous fungi concentrate both exocytosis and endocytosis at the apex. This investigation focuses on clathrin in Aspergillus nidulans, with the aim of understanding its role in membrane remodeling in growing hyphae. We examined clathrin heavy chain (ClaH-GFP) which localized to three distinct subcellular structures: late Golgi (trans-Golgi equivalents of filamentous fungi), which are concentrated just behind the hyphal tip but are intermittently present throughout all hyphal cells; the region of concentrated endocytosis just behind the hyphal apex (the "endocytic collar"); and small, rapidly moving puncta that were seen trafficking long distances in nearly all hyphal compartments. ClaH localized to distinct domains on late Golgi, and these clathrin "hubs" dispersed in synchrony after the late Golgi marker PHOSBP . Although clathrin was essential for growth, ClaH did not colocalize well with the endocytic patch marker fimbrin. Tests of FM4-64 internalization and repression of ClaH corroborated the observation that clathrin does not play an important role in endocytosis in A. nidulans. A minor portion of ClaH puncta exhibited bidirectional movement, likely along microtubules, but were generally distinct from early endosomes.
Collapse
Affiliation(s)
- Z Schultzhaus
- Department of Plant Pathology and Microbiology, Texas A&M University, 2132 TAMU, College Station, TX, 77845, USA
| | - T B Johnson
- Department of Plant Pathology and Microbiology, Texas A&M University, 2132 TAMU, College Station, TX, 77845, USA
| | - B D Shaw
- Department of Plant Pathology and Microbiology, Texas A&M University, 2132 TAMU, College Station, TX, 77845, USA
| |
Collapse
|
45
|
Zhou Y, Zhu Y, Li Y, Duan Y, Zhang R, Zhou M. β1 Tubulin Rather Than β2 Tubulin Is the Preferred Binding Target for Carbendazim in Fusarium graminearum. PHYTOPATHOLOGY 2016; 106:978-985. [PMID: 27135676 DOI: 10.1094/phyto-09-15-0235-r] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Tubulins are the proposed target of anticancer drugs, anthelminthics, and fungicides. In Fusarium graminearum, β2 tubulin has been reported to be the binding target of methyl benzimidazole carbamate (MBC) fungicides. However, the function of F. graminearum β1 tubulin, which shares 76% amino acid sequence identity with β2 tubulin, in MBC sensitivity has been unclear. In this study, MBC sensitivity relative to that of a parental strain (2021) was significantly reduced in a β1 tubulin deletion strain but increased in a β2 tubulin deletion strain, suggesting that β1 tubulin was involved in the MBC sensitivity of F. graminearum. When strain 2021 was grown in a medium with a low or high concentration of the MBC fungicide carbendazim (0.5 or 1.4 μg/ml), the protein accumulation levels were reduced by 47 and 87%, respectively, for β1 tubulin but only by 6 and 24%, respectively, for β2 tubulin. This result was consistent with observations that MBC fungicides are more likely to disrupt β1 tubulin microtubules rather than β2 tubulin microtubules in GFP-β tubulin fusion mutants in vivo. Furthermore, sequence analysis indicated that a difference in tubulin amino acid 240 (240L in β1 versus 240F in β2) may explain the difference in MBC binding affinity; this result was consistent with the result that an F240L mutation in β2 tubulin greatly increased sensitivity to carbendazim in F. graminearum. We suggest that β1 tubulin rather than β2 tubulin is the preferred binding target for MBC fungicides in F. graminearum.
Collapse
Affiliation(s)
- Yujun Zhou
- College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Pesticide, Jiangsu Province, Nanjing, 210095, China
| | - Yuanye Zhu
- College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Pesticide, Jiangsu Province, Nanjing, 210095, China
| | - Yanjun Li
- College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Pesticide, Jiangsu Province, Nanjing, 210095, China
| | - Yabing Duan
- College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Pesticide, Jiangsu Province, Nanjing, 210095, China
| | - Rongsheng Zhang
- College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Pesticide, Jiangsu Province, Nanjing, 210095, China
| | - Mingguo Zhou
- College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Pesticide, Jiangsu Province, Nanjing, 210095, China
| |
Collapse
|
46
|
Bergs A, Ishitsuka Y, Evangelinos M, Nienhaus GU, Takeshita N. Dynamics of Actin Cables in Polarized Growth of the Filamentous Fungus Aspergillus nidulans. Front Microbiol 2016; 7:682. [PMID: 27242709 PMCID: PMC4860496 DOI: 10.3389/fmicb.2016.00682] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 04/26/2016] [Indexed: 12/20/2022] Open
Abstract
Highly polarized growth of filamentous fungi requires a continuous supply of proteins and lipids to the hyphal tip. This transport is managed by vesicle trafficking via the actin and microtubule cytoskeletons and their associated motor proteins. Particularly, actin cables originating from the hyphal tip are essential for hyphal growth. Although, specific marker proteins have been developed to visualize actin cables in filamentous fungi, the exact organization and dynamics of actin cables has remained elusive. Here, we observed actin cables using tropomyosin (TpmA) and Lifeact fused to fluorescent proteins in living Aspergillus nidulans hyphae and studied the dynamics and regulation. GFP tagged TpmA visualized dynamic actin cables formed from the hyphal tip with cycles of elongation and shrinkage. The elongation and shrinkage rates of actin cables were similar and approximately 0.6 μm/s. Comparison of actin markers revealed that high concentrations of Lifeact reduced actin dynamics. Simultaneous visualization of actin cables and microtubules suggests temporally and spatially coordinated polymerization and depolymerization between the two cytoskeletons. Our results provide new insights into the molecular mechanism of ordered polarized growth regulated by actin cables and microtubules.
Collapse
Affiliation(s)
- Anna Bergs
- Department of Microbiology, Institute for Applied Bioscience, Karlsruhe Institute of Technology Karlsruhe, Germany
| | - Yuji Ishitsuka
- Institute of Applied Physics, Karlsruhe Institute of Technology Karlsruhe, Germany
| | - Minoas Evangelinos
- Department of Microbiology, Institute for Applied Bioscience, Karlsruhe Institute of TechnologyKarlsruhe, Germany; Faculty of Biology, University of AthensAthens, Greece
| | - G U Nienhaus
- Institute of Applied Physics, Karlsruhe Institute of TechnologyKarlsruhe, Germany; Institute of Toxicology and Genetics, Karlsruhe Institute of TechnologyEggenstein-Leopoldshafen, Germany; Institute of Nanotechnology, Karlsruhe Institute of TechnologyEggenstein-Leopoldshafen, Germany; Department of Physics, University of Illinois at Urbana-ChampaignUrbana-Champaign, IL, USA
| | - Norio Takeshita
- Department of Microbiology, Institute for Applied Bioscience, Karlsruhe Institute of TechnologyKarlsruhe, Germany; Faculty of Life and Environmental Sciences, University of TsukubaTsukuba, Japan
| |
Collapse
|
47
|
Abstract
Filamentous fungi are extremely polarized organisms, exhibiting continuous growth at their hyphal tips. The hyphal form is related to their pathogenicity in animals and plants, and their high secretion ability for biotechnology. Polarized growth requires a sequential supply of proteins and lipids to the hyphal tip. This transport is managed by vesicle trafficking via the actin and microtubule cytoskeleton. Therefore, the arrangement of the cytoskeleton is a crucial step to establish and maintain the cell polarity. This review summarizes recent findings unraveling the mechanism of polarized growth with special emphasis on the role of actin and microtubule cytoskeleton and polarity marker proteins. Rapid insertions of membranes via highly active exocytosis at hyphal tips could quickly dilute the accumulated polarity marker proteins. Recent findings by a super-resolution microscopy indicate that filamentous fungal cells maintain their polarity at the tips by repeating transient assembly and disassembly of polarity sites.
Collapse
Affiliation(s)
- Norio Takeshita
- a Department of Microbiology , Institute for Applied Bioscience, Karlsruhe Institute of Technology (KIT) , Karlsruhe , Germany.,b Faculty of Life and Environmental Sciences , University of Tsukuba , Tsukuba , Japan
| |
Collapse
|
48
|
Schultzhaus Z, Quintanilla L, Hilton A, Shaw BD. Live Cell Imaging of Actin Dynamics in the Filamentous Fungus Aspergillus nidulans. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2016; 22:264-274. [PMID: 26879694 DOI: 10.1017/s1431927616000131] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Hyphal cells of filamentous fungi grow at their tips in a method analogous to pollen tube and root hair elongation. This process, generally referred to as tip growth, requires precise regulation of the actin cytoskeleton, and characterizing the various actin structures in these cell types is currently an active area of research. Here, the actin marker Lifeact was used to document actin dynamics in the filamentous fungus Aspergillus nidulans. Contractile double rings were observed at septa, and annular clusters of puncta were seen subtending growing hyphal tips, corresponding to the well-characterized subapical endocytic collar. However, Lifeact also revealed two additional structures. One, an apical array, was dynamic on the face opposite the tip, while a subapical web was dynamic on the apical face and was located several microns behind the growth site. Each was observed turning into the other over time, implying that they could represent different localizations of the same structure, although hyphae with a subapical web grew faster than those exhibiting an apical array. The subapical web has not been documented in any filamentous fungus to date, and is separate from the networks of F-actin seen in other tip-growing organisms surrounding septa or stationary along the plasmalemma.
Collapse
Affiliation(s)
- Zachary Schultzhaus
- Department of Plant Pathology and Microbiology,Texas A&M University,College Station,TX 77843,USA
| | - Laura Quintanilla
- Department of Plant Pathology and Microbiology,Texas A&M University,College Station,TX 77843,USA
| | - Angelyn Hilton
- Department of Plant Pathology and Microbiology,Texas A&M University,College Station,TX 77843,USA
| | - Brian D Shaw
- Department of Plant Pathology and Microbiology,Texas A&M University,College Station,TX 77843,USA
| |
Collapse
|
49
|
Mouriño-Pérez RR, Riquelme M, Callejas-Negrete OA, Galván-Mendoza JI. Microtubules and associated molecular motors in Neurospora crassa. Mycologia 2016; 108:515-27. [PMID: 26951369 DOI: 10.3852/15-323] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 03/02/2016] [Indexed: 11/10/2022]
Abstract
The cytoskeleton provides structure, shape and movement to various cells. Microtubules (MTs) are tubular structures made of α and β-tubulin heterodimers organized in 13 protofilaments, forming a hollow cylinder. A vast group of MT-associated proteins determines the function, behavior and interaction of the MTs with other cellular components. Among these proteins, molecular motors such as the dynein-dynactin complex and kinesin superfamily play roles in MT organization and organelle transport. This article focuses on the MT cytoskeleton and associated molecular motors in the filamentous fungus Neurospora crassa In addition to reviewing current available information for this fungus and contrasting it with knowledge of other fungal species, we present new experimental results that support the role of dynein, dynactin and conventional kinesin in MT organization, dynamics and transport of subcellular structures (nuclei and secretory vesicles). In wild type hyphae of N. crassa, cytoplasmic MTs are arranged longitudinally along hyphae and display a helical curvature. They interlace with one another to form a network throughout the cytoplasm. N. crassa dynein and dynactin mutants have a scant and disorganized MT cytoskeleton, an erratic and reduced Spitzenkörper (Spk) and distorted hyphal morphology. In contrast, hyphae of mutants with defective conventional kinesin exhibit only minor disruptions in MT and Spk organization. Although nuclear positioning is affected in all mutants, the MT-associated motor proteins are not major contributors to nuclear movement during hyphal growth. Cytoplasmic bulk flow is the vehicle for nuclear displacement in growing hyphal regions of N. crassa Motors are involved in nuclei saltatory movements in both retrograde or anterograde direction. In the dynein and kinesin mutants, micro and macrovesicles can reach the Spk, although growth is slightly impaired and the Spk displays an erratic path. Hyphal growth requires MTs, and their associated motors are required for their organization and dynamics and Spk integrity.
Collapse
Affiliation(s)
- Rosa Reyna Mouriño-Pérez
- Departamento de Microbiología. Centro de Investigación Científica y de Educación Superior de Ensenada, CICESE, Ensenada B.C. 22860 Mexico
| | - Meritxell Riquelme
- Departamento de Microbiología. Centro de Investigación Científica y de Educación Superior de Ensenada, CICESE, Ensenada B.C. 22860 Mexico
| | - Olga Alicia Callejas-Negrete
- Departamento de Microbiología. Centro de Investigación Científica y de Educación Superior de Ensenada, CICESE, Ensenada B.C. 22860 Mexico
| | - José Iván Galván-Mendoza
- Unidad de Microscopia Confocal y Multifotónica, CINVESTAV-Zacatenco. San Pedro Zacatenco, 07360 Ciudad de México DF, Mexico
| |
Collapse
|
50
|
Salogiannis J, Egan MJ, Reck-Peterson SL. Peroxisomes move by hitchhiking on early endosomes using the novel linker protein PxdA. J Cell Biol 2016; 212:289-96. [PMID: 26811422 PMCID: PMC4748578 DOI: 10.1083/jcb.201512020] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 01/05/2016] [Indexed: 11/22/2022] Open
Abstract
Eukaryotic cells use microtubule-based intracellular transport for the delivery of many subcellular cargos, including organelles. The canonical view of organelle transport is that organelles directly recruit molecular motors via cargo-specific adaptors. In contrast with this view, we show here that peroxisomes move by hitchhiking on early endosomes, an organelle that directly recruits the transport machinery. Using the filamentous fungus Aspergillus nidulans we found that hitchhiking is mediated by a novel endosome-associated linker protein, PxdA. PxdA is required for normal distribution and long-range movement of peroxisomes, but not early endosomes or nuclei. Using simultaneous time-lapse imaging, we find that early endosome-associated PxdA localizes to the leading edge of moving peroxisomes. We identify a coiled-coil region within PxdA that is necessary and sufficient for early endosome localization and peroxisome distribution and motility. These results present a new mechanism of microtubule-based organelle transport in which peroxisomes hitchhike on early endosomes and identify PxdA as the novel linker protein required for this coupling.
Collapse
Affiliation(s)
- John Salogiannis
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115
| | - Martin J Egan
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115
| | - Samara L Reck-Peterson
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115 Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093 Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093
| |
Collapse
|