1
|
Sun Y, Li B, Song B, Xia Y, Ye Z, Lin F, Zhou X, Li W, Rao T, Cheng F. UHRF1 promotes calcium oxalate-induced renal fibrosis by renal lipid deposition via bridging AMPK dephosphorylation. Cell Biol Toxicol 2025; 41:39. [PMID: 39899077 PMCID: PMC11790803 DOI: 10.1007/s10565-025-09991-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 01/17/2025] [Indexed: 02/04/2025]
Abstract
BACKGROUND Nephrolithiasis, a common urinary system disorder, exhibits high morbidity and recurrence rates, correlating with renal dysfunction and the increased risk of chronic kidney disease. Nonetheless, the precise role of disrupted cellular metabolism in renal injury induced by calcium oxalate (CaOx) crystal deposition is unclear. The purpose of this study is to investigate the involvement of the ubiquitin-like protein containing PHD and RING finger structural domain 1 (UHRF1) in CaOx-induced renal fibrosis and its impacts on cellular lipid metabolism. METHODS Various approaches, including snRNA-seq, transcriptome RNA-seq, immunohistochemistry, and western blot analyses, were employed to assess UHRF1 expression in kidneys of nephrolithiasis patients, hyperoxaluric mice, and CaOx-induced renal tubular epithelial cells. Subsequently, knockdown of UHRF1 in mice and cells corroborated its effect of UHRF1 on fibrosis, ectopic lipid deposition (ELD) and fatty acid oxidation (FAO). Rescue experiments using AICAR, ND-630 and Compound-C were performed in UHRF1-knockdown cells to explore the involvement of the AMPK pathway. Then we confirmed the bridging molecule and its regulatory pathway in vitro. Experimental results were finally confirmed using AICAR and chemically modified si-UHRF1 in vivo of hyperoxaluria mice model. RESULTS Mechanistically, UHRF1 was found to hinder the activation of the AMPK/ACC1 pathway during CaOx-induced renal fibrosis, which was mitigated by employing AICAR, an AMPK agonist. As a nuclear protein, UHRF1 facilitates nuclear translocation of AMPK and act as a molecular link targeting the protein phosphatase PP2A to dephosphorylate AMPK and inhibit its activity. CONCLUSION This study revealed that UHRF1 promotes CaOx -induced renal fibrosis by enhancing lipid accumulation and suppressing FAO via inhibiting the AMPK pathway. These findings underscore the feasible therapeutic implications of targeting UHRF1 to prevent renal fibrosis due to stones.
Collapse
Affiliation(s)
- Yushi Sun
- Department of Urology, Renmin Hospital of Wuhan University, No.238 Jiefang Road, Wuchang District, Wuhan, Hubei, 430060, People's Republic of China
| | - Bojun Li
- Department of Urology, Renmin Hospital of Wuhan University, No.238 Jiefang Road, Wuchang District, Wuhan, Hubei, 430060, People's Republic of China
| | - Baofeng Song
- Department of Urology, Renmin Hospital of Wuhan University, No.238 Jiefang Road, Wuchang District, Wuhan, Hubei, 430060, People's Republic of China
| | - Yuqi Xia
- Department of Urology, Renmin Hospital of Wuhan University, No.238 Jiefang Road, Wuchang District, Wuhan, Hubei, 430060, People's Republic of China
| | - Zehua Ye
- Department of Urology, Renmin Hospital of Wuhan University, No.238 Jiefang Road, Wuchang District, Wuhan, Hubei, 430060, People's Republic of China
| | - Fangyou Lin
- Department of Urology, Renmin Hospital of Wuhan University, No.238 Jiefang Road, Wuchang District, Wuhan, Hubei, 430060, People's Republic of China
| | - Xiangjun Zhou
- Department of Urology, Renmin Hospital of Wuhan University, No.238 Jiefang Road, Wuchang District, Wuhan, Hubei, 430060, People's Republic of China
| | - Wei Li
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Ting Rao
- Department of Urology, Renmin Hospital of Wuhan University, No.238 Jiefang Road, Wuchang District, Wuhan, Hubei, 430060, People's Republic of China.
| | - Fan Cheng
- Department of Urology, Renmin Hospital of Wuhan University, No.238 Jiefang Road, Wuchang District, Wuhan, Hubei, 430060, People's Republic of China.
| |
Collapse
|
2
|
Uguen M, Liu T, James LI, Frye SV. Tudor-Containing Methyl-Lysine and Methyl-Arginine Reader Proteins: Disease Implications and Chemical Tool Development. ACS Chem Biol 2025; 20:33-47. [PMID: 39718819 DOI: 10.1021/acschembio.4c00661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Abstract
Tudor domains are histone readers that can recognize various methylation marks on lysine and arginine. This recognition event plays a key role in the recruitment of other epigenetic effectors and the control of gene accessibility. The Tudor-containing protein family contains 42 members, many of which are involved in the development and progression of various diseases, especially cancer. The development of chemical tools for this family will not only lead to a deeper understanding of the biological functions of Tudor domains but also lay the foundation for therapeutic discoveries. In this review, we discuss the role of several Tudor domain-containing proteins in a range of relevant diseases and progress toward the development of chemical tools such as peptides, peptidomimetics, or small-molecules that bind Tudor domains. Overall, we highlight how Tudor domains are promising targets for therapeutic development and would benefit from the development of novel chemical tools.
Collapse
Affiliation(s)
- Mélanie Uguen
- UNC Eshelman School of Pharmacy, Center for Integrative Chemical Biology and Drug Discovery, Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Tongkun Liu
- UNC Eshelman School of Pharmacy, Center for Integrative Chemical Biology and Drug Discovery, Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Lindsey I James
- UNC Eshelman School of Pharmacy, Center for Integrative Chemical Biology and Drug Discovery, Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina 27599, United States
| | - Stephen V Frye
- UNC Eshelman School of Pharmacy, Center for Integrative Chemical Biology and Drug Discovery, Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
3
|
Hwang GH, Lee SH, Oh M, Kim S, Habib O, Jang HK, Kim HS, Kim Y, Kim CH, Kim S, Bae S. Large DNA deletions occur during DNA repair at 20-fold lower frequency for base editors and prime editors than for Cas9 nucleases. Nat Biomed Eng 2025; 9:79-92. [PMID: 39496933 PMCID: PMC11754094 DOI: 10.1038/s41551-024-01277-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 10/01/2024] [Indexed: 11/06/2024]
Abstract
When used to edit genomes, Cas9 nucleases produce targeted double-strand breaks in DNA. Subsequent DNA-repair pathways can induce large genomic deletions (larger than 100 bp), which constrains the applicability of genome editing. Here we show that Cas9-mediated double-strand breaks induce large deletions at varying frequencies in cancer cell lines, human embryonic stem cells and human primary T cells, and that most deletions are produced by two repair pathways: end resection and DNA-polymerase theta-mediated end joining. These findings required the optimization of long-range amplicon sequencing, the development of a k-mer alignment algorithm for the simultaneous analysis of large DNA deletions and small DNA alterations, and the use of CRISPR-interference screening. Despite leveraging mutated Cas9 nickases that produce single-strand breaks, base editors and prime editors also generated large deletions, yet at approximately 20-fold lower frequency than Cas9. We provide strategies for the mitigation of such deletions.
Collapse
Affiliation(s)
- Gue-Ho Hwang
- Medical Research Center of Genomic Medicine Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Seok-Hoon Lee
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Minsik Oh
- School of Software Convergence, Myongji University, Seoul, Republic of Korea
| | - Segi Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | | | - Hyeon-Ki Jang
- Division of Chemical Engineering and Bioengineering, College of Art Culture and Engineering, Kangwon National University, Chuncheon-si, Gangwon-do, Republic of Korea
- Multidimensional Genomics Research Center, Kangwon National University, Chuncheon-si, Gangwon-do, Republic of Korea
| | - Heon Seok Kim
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, Republic of Korea
| | - Youngkuk Kim
- Department of Computer Science and Engineering, Seoul National University, Seoul, Republic of Korea
| | - Chan Hyuk Kim
- School of Transdisciplinary Innovations, Seoul National University, Seoul, Republic of Korea
- Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Sun Kim
- Department of Computer Science and Engineering, Seoul National University, Seoul, Republic of Korea
| | - Sangsu Bae
- Medical Research Center of Genomic Medicine Institute, Seoul National University College of Medicine, Seoul, Republic of Korea.
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea.
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea.
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
4
|
Tiedemann R, Hrit J, Du Q, Wiseman A, Eden H, Dickson B, Kong X, Chomiak A, Vaughan R, Tibben B, Hebert J, David Y, Zhou W, Baylin S, Jones P, Clark S, Rothbart S. UHRF1 ubiquitin ligase activity supports the maintenance of low-density CpG methylation. Nucleic Acids Res 2024; 52:13733-13756. [PMID: 39607687 PMCID: PMC11662662 DOI: 10.1093/nar/gkae1105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 10/04/2024] [Accepted: 10/25/2024] [Indexed: 11/29/2024] Open
Abstract
The RING E3 ubiquitin ligase UHRF1 is an established cofactor for DNA methylation inheritance. The model posits that nucleosomal engagement through histone and DNA interactions directs UHRF1 ubiquitin ligase activity toward lysines on histone H3 tails, creating binding sites for DNMT1 through ubiquitin interacting motifs (UIM1 and UIM2). However, the extent to which DNMT1 relies on ubiquitin signaling through UHRF1 in support of DNA methylation maintenance remains unclear. Here, with integrative epigenomic and biochemical analyses, we reveal that DNA methylation maintenance at low-density cytosine-guanine dinucleotides (CpGs) is particularly vulnerable to disruption of UHRF1 ubiquitin ligase activity and DNMT1 ubiquitin reading activity through UIM1. Hypomethylation of low-density CpGs in this manner induces formation of partially methylated domains (PMDs), a methylation signature observed across human cancers. In contrast, UIM2 disruption completely abolishes the DNA methylation maintenance function of DNMT1 in a CpG density-independent manner. In the context of DNA methylation recovery following acute DNMT1 depletion, we further reveal a 'bookmarking' function for UHRF1 ubiquitin ligase activity in support of DNA re-methylation. Collectively, these studies show that DNMT1-dependent DNA methylation inheritance is a ubiquitin-regulated process that is partially reliant on UHRF1 and suggest a disrupted UHRF1-DNMT1 ubiquitin signaling axis contributes to PMD formation in cancers.
Collapse
Affiliation(s)
- Rochelle L Tiedemann
- Department of Epigenetics, Van Andel Institute, 333 Bostwick Ave NE, Grand Rapids, MI 49503, USA
| | - Joel Hrit
- Department of Epigenetics, Van Andel Institute, 333 Bostwick Ave NE, Grand Rapids, MI 49503, USA
| | - Qian Du
- Epigenetics Research Program, Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, NSW 2010, Australia
| | - Ashley K Wiseman
- Department of Epigenetics, Van Andel Institute, 333 Bostwick Ave NE, Grand Rapids, MI 49503, USA
| | - Hope E Eden
- Department of Epigenetics, Van Andel Institute, 333 Bostwick Ave NE, Grand Rapids, MI 49503, USA
| | - Bradley M Dickson
- Department of Epigenetics, Van Andel Institute, 333 Bostwick Ave NE, Grand Rapids, MI 49503, USA
| | - Xiangqian Kong
- Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, 401 N Broadway, Baltimore, MD, USA
| | - Alison A Chomiak
- Department of Epigenetics, Van Andel Institute, 333 Bostwick Ave NE, Grand Rapids, MI 49503, USA
| | - Robert M Vaughan
- Department of Epigenetics, Van Andel Institute, 333 Bostwick Ave NE, Grand Rapids, MI 49503, USA
| | - Bailey M Tibben
- Department of Epigenetics, Van Andel Institute, 333 Bostwick Ave NE, Grand Rapids, MI 49503, USA
| | - Jakob M Hebert
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, 1275 York Ave, NY, NY 10065, USA
| | - Yael David
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, 1275 York Ave, NY, NY 10065, USA
| | - Wanding Zhou
- Center for Computational and Genomic Medicine, Children's Hospital of Philadelphia, 3501 Civic Center Blvd, Philadelphia, PA19104, USA
| | - Stephen B Baylin
- Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, 401 N Broadway, Baltimore, MD, USA
| | - Peter A Jones
- Department of Epigenetics, Van Andel Institute, 333 Bostwick Ave NE, Grand Rapids, MI 49503, USA
| | - Susan J Clark
- Epigenetics Research Program, Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, NSW 2010, Australia
- St. Vincent's Clinical School, University of New South Wales, 390 Victoria Street, Darlinghurst, NSW 2010, Australia
| | - Scott B Rothbart
- Department of Epigenetics, Van Andel Institute, 333 Bostwick Ave NE, Grand Rapids, MI 49503, USA
| |
Collapse
|
5
|
Deng Z, Long C, Han S, Xu Z, Hou T, Li W, Wang X, Liu X. UHRF1-mediated ubiquitination of nonhomologous end joining factor XLF promotes DNA repair in human tumor cells. J Biol Chem 2024; 300:107823. [PMID: 39341501 PMCID: PMC11530599 DOI: 10.1016/j.jbc.2024.107823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 09/13/2024] [Accepted: 09/21/2024] [Indexed: 10/01/2024] Open
Abstract
UHRF1 (Ubiquitin-like with PHD and Ring Finger domains 1) is a crucial E3 ubiquitin ligase and epigenetic regulator with pivotal roles in various biological processes, including the maintenance of DNA methylation, regulation of gene expression, and facilitation of DNA damage repair. In this study, we unveil that UHRF1 interacts with the nonhomologous end joining factor XLF (also known as Cernunnos) following DNA double strand breaks in HeLa cells. Furthermore, we demonstrate that UHRF1 catalyzes lysine 63-linked polyubiquitination of XLF, rather than lysine 48-linked polyubiquitination. Notably, this polyubiquitination of XLF by UHRF1 does not affect its protein stability; instead, it enhances the recruitment of XLF to the sites of DNA damage. These findings shed light on the role of UHRF1 as a novel regulator of DNA repair through XLF in tumor cells.
Collapse
Affiliation(s)
- Zhiwen Deng
- International Cancer Center, Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Marshall Laboratory of Biomedical Engineering, Department of Biochemistry and Molecular Biology, Shenzhen University Medical School, Shenzhen, China
| | - Caiyun Long
- International Cancer Center, Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Marshall Laboratory of Biomedical Engineering, Department of Biochemistry and Molecular Biology, Shenzhen University Medical School, Shenzhen, China
| | - Shuzhen Han
- International Cancer Center, Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Marshall Laboratory of Biomedical Engineering, Department of Biochemistry and Molecular Biology, Shenzhen University Medical School, Shenzhen, China
| | - Zhishen Xu
- International Cancer Center, Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Marshall Laboratory of Biomedical Engineering, Department of Biochemistry and Molecular Biology, Shenzhen University Medical School, Shenzhen, China; South China Hospital, Health Science Center, Shenzhen University, Shenzhen, China
| | - Teng Hou
- South China Hospital, Health Science Center, Shenzhen University, Shenzhen, China
| | - Weili Li
- International Cancer Center, Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Marshall Laboratory of Biomedical Engineering, Department of Biochemistry and Molecular Biology, Shenzhen University Medical School, Shenzhen, China
| | - Xingwu Wang
- Molecular Cancer Research Center, School of Medicine, Sun Yat-Sen University, Shenzhen, Guangdong, China.
| | - Xiangyu Liu
- International Cancer Center, Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Marshall Laboratory of Biomedical Engineering, Department of Biochemistry and Molecular Biology, Shenzhen University Medical School, Shenzhen, China; Department of Hematology, The Second People's Hospital of Shenzhen, Shenzhen, China.
| |
Collapse
|
6
|
Kim A, Benavente CA. Oncogenic Roles of UHRF1 in Cancer. EPIGENOMES 2024; 8:26. [PMID: 39051184 PMCID: PMC11270427 DOI: 10.3390/epigenomes8030026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/29/2024] [Accepted: 06/27/2024] [Indexed: 07/27/2024] Open
Abstract
Ubiquitin-like with PHD and RING finger domains 1 (UHRF1) is an essential protein involved in the maintenance of repressive epigenetic marks, ensuring epigenetic stability and fidelity. As an epigenetic regulator, UHRF1 comprises several functional domains (UBL, TTD, PHD, SRA, RING) that are collectively responsible for processes like DNA methylation, histone modification, and DNA repair. UHRF1 is a downstream effector of the RB/E2F pathway, which is nearly universally deregulated in cancer. Under physiological conditions, UHRF1 protein levels are cell cycle-dependent and are post-translationally regulated by proteasomal degradation. Conversely, UHRF1 is overexpressed and serves as an oncogenic driver in multiple cancers. This review focuses on the functional domains of UHRF1, highlighting its key interacting proteins and oncogenic roles in solid tumors including retinoblastoma, osteosarcoma, lung cancer, and breast cancer. Additionally, current therapeutic strategies targeting UHRF1 domains or its interactors are explored, providing an insight on potential clinical applications.
Collapse
Affiliation(s)
- Ahhyun Kim
- Department of Pharmaceutical Sciences, University of California, Irvine, CA 92697, USA
| | - Claudia A. Benavente
- Department of Pharmaceutical Sciences, University of California, Irvine, CA 92697, USA
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92697, USA
- Chao Family Comprehensive Cancer Center, University of California, Irvine, CA 92697, USA
| |
Collapse
|
7
|
Chuang HC, Lan KY, Hsu PM, Chen MH, Chen YM, Yen JH, Liao BY, Tan TH. UHRF1P contributes to IL-17A-mediated systemic lupus erythematosus via UHRF1-MAP4K3 axis. J Autoimmun 2024; 146:103221. [PMID: 38643728 DOI: 10.1016/j.jaut.2024.103221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/14/2024] [Accepted: 04/01/2024] [Indexed: 04/23/2024]
Abstract
Inflammatory T cells contribute to the pathogenesis of autoimmune diseases such as systemic lupus erythematosus (SLE). Analysis of the T-cell transcriptomics data of two independent SLE patient cohorts by three machine learning models revealed the pseudogene UHRF1P as a novel SLE biomarker. The pseudogene-encoded UHRF1P protein was overexpressed in peripheral blood T cells of SLE patients. The UHRF1P protein lacks the amino-terminus of its parental UHRF1 protein, resulting in missing the proteasome-binding ubiquitin-like (Ubl) domain of UHRF1. T-cell-specific UHRF1P transgenic mice manifested the induction of IL-17A and autoimmune inflammation. Mechanistically, UHFR1P prevented UHRF1-induced Lys48-linked ubiquitination and degradation of MAP4K3 (GLK), which is a kinase known to induce IL-17A. Consistently, IL-17A induction and autoimmune phenotypes of UHRF1P transgenic mice were obliterated by MAP4K3 knockout. Collectively, UHRF1P overexpression in T cells inhibits the E3 ligase function of its parental UHRF1 and induces autoimmune diseases.
Collapse
Affiliation(s)
- Huai-Chia Chuang
- Immunology Research Center, National Health Research Institutes, Zhunan, Taiwan
| | - Kuei-Yuan Lan
- Institute of Population Health Sciences, National Health Research Institutes, Zhunan, Taiwan
| | - Pu-Ming Hsu
- Immunology Research Center, National Health Research Institutes, Zhunan, Taiwan
| | - Ming-Han Chen
- Division of Allergy, Immunology, and Rheumatology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yi-Ming Chen
- Division of Allergy, Immunology, and Rheumatology, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Jeng-Hsien Yen
- Division of Rheumatology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Ben-Yang Liao
- Institute of Population Health Sciences, National Health Research Institutes, Zhunan, Taiwan.
| | - Tse-Hua Tan
- Immunology Research Center, National Health Research Institutes, Zhunan, Taiwan.
| |
Collapse
|
8
|
Almalki NAR, Sabir JSM, Ibrahim A, Alhosin M, Asseri AH, Albiheyri RS, Zari AT, Bahieldin A, Javed A, Mély Y, Hamiche A, Mousli M, Bronner C. UHRF1 poly-auto-ubiquitination induced by the anti-cancer drug, thymoquinone, is involved in the DNA repair machinery recruitment. Int J Biochem Cell Biol 2024; 171:106582. [PMID: 38649007 DOI: 10.1016/j.biocel.2024.106582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 03/20/2024] [Accepted: 04/16/2024] [Indexed: 04/25/2024]
Abstract
DNA methylation is one of the most important epigenetic mark involved in many physiologic cellular processes and pathologies. During mitosis, the transmission of DNA methylation patterns from a mother to the daughter cells is ensured through the action of the Ubiquitin-like, containing PHD and RING domains, 1/DNA methyltransferase 1 (UHRF1/DNMT1) tandem. UHRF1 is involved in the silencing of many tumor suppressor genes (TSGs) via mechanisms that remain largely to be deciphered. The present study investigated the role and the regulation of UHRF1 poly-ubiquitination induced by thymoquinone, a natural anti-cancer drug, known to enhance or re-activate the expression of TSGs. We found that the auto-ubiquitination of UHRF1, induced by TQ, is mediated by reactive oxygen species, and occurs following DNA damage. We demonstrated that the poly-ubiquitinated form of UHRF1 is K63-linked and can still silence the tumor suppressor gene p16INK4A/CDKN2A. We further showed that TQ-induced auto-ubiquitination is mediated via the activity of Tip60. Since this latter is known as a nuclear receptor co-factor, we investigated if the glucocorticoid receptor (GR) might be involved in the regulation of UHRF1 ubiquitination. Activation of the GR, with dexamethasone, did not influence auto-ubiquitination of UHRF1. However, we could observe that TQ induced a K48-linked poly-ubiquitination of GR, probably involved in the proteosomal degradation pathway. Mass-spectrometry analysis of FLAG-HA-tagged UHRF1 identified UHRF1 partners involved in DNA repair and showed that TQ increased their association with UHRF1, suggesting that poly-ubiquitination of UHRF1 is involved in the DNA repair process. We propose that poly-ubiquitination of UHRF1 serves as a scaffold to recruit the DNA repair machinery at DNA damage sites.
Collapse
Affiliation(s)
- Naif A R Almalki
- Department of Functional Genomics, Institute of Genetics and Molecular and Cellular Biology (IGBMC), INSERM U1258, CNRS UMR 7104, University of Strasbourg, "équipe labellisée" Ligue contre le Cancer, Illkirch-Graffenstaden 67404, France; Experimental Biochemistry unit, King Fahad medical research Centre, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Jamal S M Sabir
- Department of Biological Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Centre of Excellence in Bionanoscience, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Abdulkhaleg Ibrahim
- Department of Functional Genomics, Institute of Genetics and Molecular and Cellular Biology (IGBMC), INSERM U1258, CNRS UMR 7104, University of Strasbourg, "équipe labellisée" Ligue contre le Cancer, Illkirch-Graffenstaden 67404, France; National Research Centre for Tropical and Transboundary Diseases (NRCTTD), Alzentan 99316, Libya
| | - Mahmoud Alhosin
- Department of Biochemistry, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Amer H Asseri
- Department of Biochemistry, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Centre for Artificial Intelligence in Precision Medicines, King Abdul-Aziz University, Jeddah 21589, Saudi Arabia
| | - Raed S Albiheyri
- Department of Biological Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Centre of Excellence in Bionanoscience, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ali T Zari
- Department of Biological Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Centre of Excellence in Bionanoscience, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ahmed Bahieldin
- Department of Biological Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Centre of Excellence in Bionanoscience, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Aqib Javed
- Laboratory of Bioimaging and Pathologies, UMR 7021 CNRS, University of Strasbourg, Faculty of Pharmacy, Illkirch-Graffenstaden 67401, France
| | - Yves Mély
- Laboratory of Bioimaging and Pathologies, UMR 7021 CNRS, University of Strasbourg, Faculty of Pharmacy, Illkirch-Graffenstaden 67401, France
| | - Ali Hamiche
- Department of Functional Genomics, Institute of Genetics and Molecular and Cellular Biology (IGBMC), INSERM U1258, CNRS UMR 7104, University of Strasbourg, "équipe labellisée" Ligue contre le Cancer, Illkirch-Graffenstaden 67404, France; Centre of Excellence in Bionanoscience, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Marc Mousli
- Laboratory of Bioimaging and Pathologies, UMR 7021 CNRS, University of Strasbourg, Faculty of Pharmacy, Illkirch-Graffenstaden 67401, France
| | - Christian Bronner
- Department of Functional Genomics, Institute of Genetics and Molecular and Cellular Biology (IGBMC), INSERM U1258, CNRS UMR 7104, University of Strasbourg, "équipe labellisée" Ligue contre le Cancer, Illkirch-Graffenstaden 67404, France.
| |
Collapse
|
9
|
Vakayil M, Madani AY, Agha MV, Majeed Y, Hayat S, Yonuskunju S, Mohamoud YA, Malek J, Suhre K, Mazloum NA. The E3 ubiquitin-protein ligase UHRF1 promotes adipogenesis and limits fibrosis by suppressing GPNMB-mediated TGF-β signaling. Sci Rep 2024; 14:11886. [PMID: 38789534 PMCID: PMC11126700 DOI: 10.1038/s41598-024-62508-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 05/17/2024] [Indexed: 05/26/2024] Open
Abstract
The E3 ubiquitin-ligase UHRF1 is an epigenetic regulator coordinating DNA methylation and histone modifications. However, little is known about how it regulates adipogenesis or metabolism. In this study, we discovered that UHRF1 is a key regulatory factor for adipogenesis, and we identified the altered molecular pathways that UHRF1 targets. Using CRISPR/Cas9-based knockout strategies, we discovered the whole transcriptomic changes upon UHRF1 deletion. Bioinformatics analyses revealed that key adipogenesis regulators such PPAR-γ and C/EBP-α were suppressed, whereas TGF-β signaling and fibrosis markers were upregulated in UHRF1-depleted differentiating adipocytes. Furthermore, UHRF1-depleted cells showed upregulated expression and secretion of TGF-β1, as well as the glycoprotein GPNMB. Treating differentiating preadipocytes with recombinant GPNMB led to an increase in TGF-β protein and secretion levels, which was accompanied by an increase in secretion of fibrosis markers such as MMP13 and a reduction in adipogenic conversion potential. Conversely, UHRF1 overexpression studies in human cells demonstrated downregulated levels of GPNMB and TGF-β, and enhanced adipogenic potential. In conclusion, our data show that UHRF1 positively regulates 3T3-L1 adipogenesis and limits fibrosis by suppressing GPNMB and TGF-β signaling cascade, highlighting the potential relevance of UHRF1 and its targets to the clinical management of obesity and linked metabolic disorders.
Collapse
Affiliation(s)
- Muneera Vakayil
- College of Health and Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, PO Box 34110, Doha, Qatar
- Department of Microbiology and Immunology, Weill Cornell Medicine-Qatar (WCM-Q), Qatar Foundation, PO Box 24144, Doha, Qatar
| | - Aisha Y Madani
- Department of Microbiology and Immunology, Weill Cornell Medicine-Qatar (WCM-Q), Qatar Foundation, PO Box 24144, Doha, Qatar
| | - Maha V Agha
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, PO Box 3050, Doha, Qatar
| | - Yasser Majeed
- Department of Microbiology and Immunology, Weill Cornell Medicine-Qatar (WCM-Q), Qatar Foundation, PO Box 24144, Doha, Qatar
| | - Shahina Hayat
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar (WCM-Q), Qatar Foundation, PO Box 24144, Doha, Qatar
| | - Shameem Yonuskunju
- Department of Genetic Medicine, Weill Cornell Medicine-Qatar (WCM-Q), Qatar Foundation, PO Box 24144, Doha, Qatar
| | - Yasmin Ali Mohamoud
- Department of Genetic Medicine, Weill Cornell Medicine-Qatar (WCM-Q), Qatar Foundation, PO Box 24144, Doha, Qatar
| | - Joel Malek
- Department of Genetic Medicine, Weill Cornell Medicine-Qatar (WCM-Q), Qatar Foundation, PO Box 24144, Doha, Qatar
| | - Karsten Suhre
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar (WCM-Q), Qatar Foundation, PO Box 24144, Doha, Qatar
| | - Nayef A Mazloum
- Department of Microbiology and Immunology, Weill Cornell Medicine-Qatar (WCM-Q), Qatar Foundation, PO Box 24144, Doha, Qatar.
| |
Collapse
|
10
|
Gu L, Fu Y, Li X. Roles of post-translational modifications of UHRF1 in cancer. Epigenetics Chromatin 2024; 17:15. [PMID: 38725075 PMCID: PMC11080273 DOI: 10.1186/s13072-024-00540-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 05/02/2024] [Indexed: 05/12/2024] Open
Abstract
UHRF1 as a member of RING-finger type E3 ubiquitin ligases family, is an epigenetic regulator with five structural domains. It has been involved in the regulation of a series of biological functions, such as DNA replication, DNA methylation, and DNA damage repair. Additionally, aberrant overexpression of UHRF1 has been observed in over ten cancer types, indicating that UHRF1 is a typical oncogene. The overexpression of UHRF1 repressed the transcription of such tumor-suppressor genes as CDKN2A, BRCA1, and CDH1 through DNMT1-mediated DNA methylation. In addition to the upstream transcription factors regulating gene transcription, post-translational modifications (PTMs) also contribute to abnormal overexpression of UHRF1 in cancerous tissues. The types of PTM include phosphorylation, acetylation, methylationand ubiquitination, which regulate protein stability, histone methyltransferase activity, intracellular localization and the interaction with binding partners. Recently, several novel PTM types of UHRF1 have been reported, but the detailed mechanisms remain unclear. This comprehensive review summarized the types of UHRF1 PTMs, as well as their biological functions. A deep understanding of these crucial mechanisms of UHRF1 is pivotal for the development of novel UHRF1-targeted anti-cancer therapeutic strategies in the future.
Collapse
Affiliation(s)
- Lili Gu
- Key Laboratory of Clinical Precision Pharmacy of Guangdong Higher Education Institutes, The First Affiliated Hospital, Guangdong Pharmaceutical University, Guangzhou, 510699, Guangdong, China
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital, Guangdong Pharmaceutical University, Guangzhou, 510699, Guangdong, China
- NMPA Key Laboratory for Technology Research and Evaluation of Pharmacovigilance, Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong, China
| | - Yongming Fu
- Key Laboratory of Clinical Precision Pharmacy of Guangdong Higher Education Institutes, The First Affiliated Hospital, Guangdong Pharmaceutical University, Guangzhou, 510699, Guangdong, China
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital, Guangdong Pharmaceutical University, Guangzhou, 510699, Guangdong, China
- NMPA Key Laboratory for Technology Research and Evaluation of Pharmacovigilance, Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong, China
| | - Xiong Li
- Key Laboratory of Clinical Precision Pharmacy of Guangdong Higher Education Institutes, The First Affiliated Hospital, Guangdong Pharmaceutical University, Guangzhou, 510699, Guangdong, China.
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital, Guangdong Pharmaceutical University, Guangzhou, 510699, Guangdong, China.
- NMPA Key Laboratory for Technology Research and Evaluation of Pharmacovigilance, Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong, China.
- School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong, China.
| |
Collapse
|
11
|
Madakashira BP, Magnani E, Ranjan S, Sadler KC. DNA hypomethylation activates Cdk4/6 and Atr to induce DNA replication and cell cycle arrest to constrain liver outgrowth in zebrafish. Nucleic Acids Res 2024; 52:3069-3087. [PMID: 38321933 PMCID: PMC11014291 DOI: 10.1093/nar/gkae031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 12/12/2023] [Accepted: 01/16/2024] [Indexed: 02/08/2024] Open
Abstract
Coordinating epigenomic inheritance and cell cycle progression is essential for organogenesis. UHRF1 connects these functions during development by facilitating maintenance of DNA methylation and cell cycle progression. Here, we provide evidence resolving the paradoxical phenotype of uhrf1 mutant zebrafish embryos which have activation of pro-proliferative genes and increased number of hepatocytes in S-phase, but the liver fails to grow. We uncover decreased Cdkn2a/b and persistent Cdk4/6 activation as the mechanism driving uhrf1 mutant hepatocytes into S-phase. This induces replication stress, DNA damage and Atr activation. Palbociclib treatment of uhrf1 mutants prevented aberrant S-phase entry, reduced DNA damage, and rescued most cellular and developmental phenotypes, but it did not rescue DNA hypomethylation, transposon expression or the interferon response. Inhibiting Atr reduced DNA replication and increased liver size in uhrf1 mutants, suggesting that Atr activation leads to dormant origin firing and prevents hepatocyte proliferation. Cdkn2a/b was downregulated pro-proliferative genes were also induced in a Cdk4/6 dependent fashion in the liver of dnmt1 mutants, suggesting DNA hypomethylation as a mechanism of Cdk4/6 activation during development. This shows that the developmental defects caused by DNA hypomethylation are attributed to persistent Cdk4/6 activation, DNA replication stress, dormant origin firing and cell cycle inhibition.
Collapse
|
12
|
Guo NJ, Wang B, Zhang Y, Kang HQ, Nie HQ, Feng MK, Zhang XY, Zhao LJ, Wang N, Liu HM, Zheng YC, Li W, Gao Y. USP7 as an emerging therapeutic target: A key regulator of protein homeostasis. Int J Biol Macromol 2024; 263:130309. [PMID: 38382779 DOI: 10.1016/j.ijbiomac.2024.130309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 01/19/2024] [Accepted: 02/18/2024] [Indexed: 02/23/2024]
Abstract
Maintaining protein balance within a cell is essential for proper cellular function, and disruptions in the ubiquitin-proteasome pathway, which is responsible for degrading and recycling unnecessary or damaged proteins, can lead to various diseases. Deubiquitinating enzymes play a vital role in regulating protein homeostasis by removing ubiquitin chains from substrate proteins, thereby controlling important cellular processes, such as apoptosis and DNA repair. Among these enzymes, ubiquitin-specific protease 7 (USP7) is of particular interest. USP7 is a cysteine protease consisting of a TRAF region, catalytic region, and C-terminal ubiquitin-like (UBL) region, and it interacts with tumor suppressors, transcription factors, and other key proteins involved in cell cycle regulation and epigenetic control. Moreover, USP7 has been implicated in the pathogenesis and progression of various diseases, including cancer, inflammation, neurodegenerative conditions, and viral infections. Overall, characterizing the functions of USP7 is crucial for understanding the pathophysiology of diverse diseases and devising innovative therapeutic strategies. This article reviews the structure and function of USP7 and its complexes, its association with diseases, and its known inhibitors and thus represents a valuable resource for advancing USP7 inhibitor development and promoting potential future treatment options for a wide range of diseases.
Collapse
Affiliation(s)
- Ning-Jie Guo
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, Henan Province, Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Bo Wang
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, Henan Province, Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Yu Zhang
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, Henan Province, Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Hui-Qin Kang
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, Henan Province, Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Hai-Qian Nie
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, Henan Province, Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Meng-Kai Feng
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, Henan Province, Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Xi-Ya Zhang
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, Henan Province, Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Li-Juan Zhao
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, Henan Province, Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Ning Wang
- The School of Chinese Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Hong-Min Liu
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, Henan Province, Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Yi-Chao Zheng
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, Henan Province, Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China.
| | - Wen Li
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, Henan Province, Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China.
| | - Ya Gao
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, Henan Province, Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China.
| |
Collapse
|
13
|
Wang L, Yang X, Zhao K, Huang S, Qin Y, Chen Z, Hu X, Jin G, Zhou Z. MOF-mediated acetylation of UHRF1 enhances UHRF1 E3 ligase activity to facilitate DNA methylation maintenance. Cell Rep 2024; 43:113908. [PMID: 38446667 DOI: 10.1016/j.celrep.2024.113908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 01/11/2024] [Accepted: 02/18/2024] [Indexed: 03/08/2024] Open
Abstract
The multi-domain protein UHRF1 (ubiquitin-like, containing PHD and RING finger domains, 1) recruits DNMT1 for DNA methylation maintenance during DNA replication. Here, we show that MOF (males absent on the first) acetylates UHRF1 at K670 in the pre-RING linker region, whereas HDAC1 deacetylates UHRF1 at the same site. We also identify that K667 and K668 can also be acetylated by MOF when K670 is mutated. The MOF/HDAC1-mediated acetylation in UHRF1 is cell-cycle regulated and peaks at G1/S phase, in line with the function of UHRF1 in recruiting DNMT1 to maintain DNA methylation. In addition, UHRF1 acetylation significantly enhances its E3 ligase activity. Abolishing UHRF1 acetylation at these sites attenuates UHRF1-mediated H3 ubiquitination, which in turn impairs DNMT1 recruitment and DNA methylation. Taken together, these findings identify MOF as an acetyltransferase for UHRF1 and define a mechanism underlying the regulation of DNA methylation maintenance through MOF-mediated UHRF1 acetylation.
Collapse
Affiliation(s)
- Linsheng Wang
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, P.R. China; Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, P.R. China; School of Biomedical Sciences, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Xi Yang
- School of Biomedical Sciences, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Kaiqiang Zhao
- School of Biomedical Sciences, The University of Hong Kong, Pok Fu Lam, Hong Kong; Dongguang Children's Hospital, Dongguan Pediatric Research Institute, Dongguan, P.R. China
| | - Shengshuo Huang
- School of Biomedical Sciences, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Yiming Qin
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, P.R. China; Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, P.R. China
| | - Zixin Chen
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, P.R. China; Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, P.R. China
| | - Xiaobin Hu
- School of Biomedical Sciences, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Guoxiang Jin
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, P.R. China.
| | - Zhongjun Zhou
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, P.R. China; School of Biomedical Sciences, The University of Hong Kong, Pok Fu Lam, Hong Kong; Orthopedic Center, The University of Hong Kong-Shenzhen Hospital, Shenzhen, P.R. China.
| |
Collapse
|
14
|
Tiedemann RL, Hrit J, Du Q, Wiseman AK, Eden HE, Dickson BM, Kong X, Chomiak AA, Vaughan RM, Hebert JM, David Y, Zhou W, Baylin SB, Jones PA, Clark SJ, Rothbart SB. UHRF1 ubiquitin ligase activity supports the maintenance of low-density CpG methylation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.13.580169. [PMID: 38405904 PMCID: PMC10888769 DOI: 10.1101/2024.02.13.580169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
The RING E3 ubiquitin ligase UHRF1 is an established cofactor for DNA methylation inheritance. Nucleosomal engagement through histone and DNA interactions directs UHRF1 ubiquitin ligase activity toward lysines on histone H3 tails, creating binding sites for DNMT1 through ubiquitin interacting motifs (UIM1 and UIM2). Here, we profile contributions of UHRF1 and DNMT1 to genome-wide DNA methylation inheritance and dissect specific roles for ubiquitin signaling in this process. We reveal DNA methylation maintenance at low-density CpGs is vulnerable to disruption of UHRF1 ubiquitin ligase activity and DNMT1 ubiquitin reading activity through UIM1. Hypomethylation of low-density CpGs in this manner induces formation of partially methylated domains (PMD), a methylation signature observed across human cancers. Furthermore, disrupting DNMT1 UIM2 function abolishes DNA methylation maintenance. Collectively, we show DNMT1-dependent DNA methylation inheritance is a ubiquitin-regulated process and suggest a disrupted UHRF1-DNMT1 ubiquitin signaling axis contributes to the development of PMDs in human cancers.
Collapse
|
15
|
Song Y, Liu H, Xian Q, Gui C, Xu M, Zhou Y. Mechanistic insights into UHRF1‑mediated DNA methylation by structure‑based functional clarification of UHRF1 domains (Review). Oncol Lett 2023; 26:542. [PMID: 38020304 PMCID: PMC10660443 DOI: 10.3892/ol.2023.14129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
Epigenetic modification is crucial for transmitting genetic information, while abnormalities in DNA methylation modification are primarily associated with cancer and neurological diseases. As a multifunctional epigenetic modifier, ubiquitin like with PHD and ring finger domains 1 (UHRF1) mainly affects cell energy metabolism and cell cycle control. It also inhibits the transcription of tumor suppressor genes through DNA and/or histone methylation modifications, promoting the occurrence and development of cancer. Therefore, comprehensively understanding the molecular mechanism of the epigenetic modification of UHRF1 in tumors will help identify targets for inhibiting the expression and function of UHRF1. Notably, each domain of UHRF1 functions as a whole and differently. Thus, the abnormality of any domain can lead to a change in phenotype or disease. However, the specific regulatory mechanism and proteins of each domain have not been fully elucidated. The present review aimed to contribute to the study of the regulatory mechanism of UHRF1 to a greater extent in different cancers and provide ideas for drug research by clarifying the function of UHRF1 domains.
Collapse
Affiliation(s)
- Yiying Song
- Department of Clinical Laboratory Diagnosis, Jinan Central Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Haiting Liu
- Department of Critical Care Medicine, Jinan Zhangqiu Hospital of Traditional Chinese Medicine, Jinan, Shandong 250200, P.R. China
| | - Qingqing Xian
- Department of Clinical Laboratory Diagnosis, Jinan Central Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Chengzhi Gui
- Department of Clinical Laboratory Diagnosis, Shandong First Medical University, Jinan, Shandong 250012, P.R. China
| | - Mingjie Xu
- Medical Research and Laboratory Diagnostic Center, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250013, P.R. China
| | - Yunying Zhou
- Department of Clinical Laboratory Diagnosis, Jinan Central Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
- Department of Clinical Laboratory Diagnosis, Shandong First Medical University, Jinan, Shandong 250012, P.R. China
- Medical Research and Laboratory Diagnostic Center, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250013, P.R. China
| |
Collapse
|
16
|
Qi X, Liu Y, Peng Y, Fu Y, Fu Y, Yin L, Li X. UHRF1 promotes spindle assembly and chromosome congression by catalyzing EG5 polyubiquitination. J Cell Biol 2023; 222:e202210093. [PMID: 37728657 PMCID: PMC10510743 DOI: 10.1083/jcb.202210093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 05/18/2023] [Accepted: 08/24/2023] [Indexed: 09/21/2023] Open
Abstract
UHRF1 is an epigenetic coordinator bridging DNA methylation and histone modifications. Additionally, UHRF1 regulates DNA replication and cell cycle, and its deletion induces G1/S or G2/M cell cycle arrest. The roles of UHRF1 in the regulation of G2/M transition remain poorly understood. UHRF1 depletion caused chromosome misalignment, thereby inducing cell cycle arrest at mitotic metaphase, and these cells exhibited the defects of spindle geometry, prominently manifested as shorter spindles. Mechanistically, UHRF1 protein directly interacts with EG5, a kinesin motor protein, during mitosis. Furthermore, UHRF1 induced EG5 polyubiquitination at the site of K1034 and further promoted the interaction of EG5 with spindle assembly factor TPX2, thereby ensuring accurate EG5 distribution to the spindles during metaphase. Our study clarifies a novel UHRF1 function as a nuclear protein catalyzing EG5 polyubiquitination for proper spindle architecture and faithful genomic transmission, which is independent of its roles in epigenetic regulation and DNA damage repair inside the nucleus. These findings revealed a previously unknown mechanism of UHRF1 in controlling mitotic spindle architecture and chromosome behavior and provided mechanistic evidence for UHRF1 deletion-mediated G2/M arrest.
Collapse
Affiliation(s)
- Xuli Qi
- Department of Oncology, Center for Molecular Medicine, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Molecular Radiation Oncology, Xiangya Hospital, Central South University, Changsha, China
| | - Youhong Liu
- Department of Oncology, Center for Molecular Medicine, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Molecular Radiation Oncology, Xiangya Hospital, Central South University, Changsha, China
| | - Yuchong Peng
- Center for Clinical Precision Pharmacy, The First Affiliated Hospital, Guangdong Pharmaceutical University, Guangzhou, China
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital, Guangdong Pharmaceutical University, Guangzhou, China
- NMPA Key Laboratory for Technology Research and Evaluation of Pharmacovigilance, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yuxin Fu
- Department of Oncology, Center for Molecular Medicine, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Molecular Radiation Oncology, Xiangya Hospital, Central South University, Changsha, China
| | - Yongming Fu
- Center for Clinical Precision Pharmacy, The First Affiliated Hospital, Guangdong Pharmaceutical University, Guangzhou, China
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital, Guangdong Pharmaceutical University, Guangzhou, China
- NMPA Key Laboratory for Technology Research and Evaluation of Pharmacovigilance, Guangdong Pharmaceutical University, Guangzhou, China
| | - Linglong Yin
- Department of Oncology, Center for Molecular Medicine, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Molecular Radiation Oncology, Xiangya Hospital, Central South University, Changsha, China
- Center for Clinical Precision Pharmacy, The First Affiliated Hospital, Guangdong Pharmaceutical University, Guangzhou, China
- School of Clinical Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Xiong Li
- Center for Clinical Precision Pharmacy, The First Affiliated Hospital, Guangdong Pharmaceutical University, Guangzhou, China
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital, Guangdong Pharmaceutical University, Guangzhou, China
- NMPA Key Laboratory for Technology Research and Evaluation of Pharmacovigilance, Guangdong Pharmaceutical University, Guangzhou, China
- School of Clinical Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
17
|
Ashraf W, Ahmad T, Reynoird N, Hamiche A, Mély Y, Bronner C, Mousli M. Natural and Synthetic Anticancer Epidrugs Targeting the Epigenetic Integrator UHRF1. Molecules 2023; 28:5997. [PMID: 37630248 PMCID: PMC10459542 DOI: 10.3390/molecules28165997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/06/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Cancer is one of the leading causes of death worldwide, and its incidence and mortality are increasing each year. Improved therapeutic strategies against cancer have progressed, but remain insufficient to invert this trend. Along with several other risk factors, abnormal genetic and epigenetic regulations play a critical role in the initiation of cellular transformation, as well as tumorigenesis. The epigenetic regulator UHRF1 (ubiquitin-like, containing PHD and RING finger domains 1) is a multidomain protein with oncogenic abilities overexpressed in most cancers. Through the coordination of its multiple domains and other epigenetic key players, UHRF1 regulates DNA methylation and histone modifications. This well-coordinated dialogue leads to the silencing of tumor-suppressor genes (TSGs) and facilitates tumor cells' resistance toward anticancer drugs, ultimately promoting apoptosis escape and uncontrolled proliferation. Several studies have shown that the downregulation of UHRF1 with natural compounds in tumor cells induces the reactivation of various TSGs, inhibits cell growth, and promotes apoptosis. In this review, we discuss the underlying mechanisms and the potential of various natural and synthetic compounds that can inhibit/minimize UHRF1's oncogenic activities and/or its expression.
Collapse
Affiliation(s)
- Waseem Ashraf
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan;
| | - Tanveer Ahmad
- Institut Pour L’avancée des Biosciences, Centre de Recherche UGA, INSERM U1209, CNRS 5309, Université Grenoble Alpes, 38058 Grenoble, France; (T.A.); (N.R.)
| | - Nicolas Reynoird
- Institut Pour L’avancée des Biosciences, Centre de Recherche UGA, INSERM U1209, CNRS 5309, Université Grenoble Alpes, 38058 Grenoble, France; (T.A.); (N.R.)
| | - Ali Hamiche
- Department of Functional Genomics, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U1258, CNRS UMR 7104, Université de Strasbourg, Equipe Labellisée Ligue Contre le Cancer, 67401 Illkirch, France;
| | - Yves Mély
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Faculté de Pharmacie, Université de Strasbourg, 67401 Illkirch, France;
| | - Christian Bronner
- Department of Functional Genomics, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U1258, CNRS UMR 7104, Université de Strasbourg, Equipe Labellisée Ligue Contre le Cancer, 67401 Illkirch, France;
| | - Marc Mousli
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Faculté de Pharmacie, Université de Strasbourg, 67401 Illkirch, France;
| |
Collapse
|
18
|
Uemura S, Maenohara S, Inoue K, Ogonuki N, Matoba S, Ogura A, Kurumizaka M, Yamagata K, Sharif J, Koseki H, Ueda K, Unoki M, Sasaki H. UHRF1 is essential for proper cytoplasmic architecture and function of mouse oocytes and derived embryos. Life Sci Alliance 2023; 6:e202301904. [PMID: 37225425 PMCID: PMC10209520 DOI: 10.26508/lsa.202301904] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 05/14/2023] [Accepted: 05/15/2023] [Indexed: 05/26/2023] Open
Abstract
Ubiquitin-like with PHD and RING finger domains 1 (UHRF1) is a protein essential for the maintenance of DNA methylation in somatic cells. However, UHRF1 is predominantly localized in the cytoplasm of mouse oocytes and preimplantation embryos, where it may play a role unrelated to the nuclear function. We herein report that oocyte-specific Uhrf1 KO results in impaired chromosome segregation, abnormal cleavage division, and preimplantation lethality of derived embryos. Our nuclear transfer experiment showed that the phenotype is attributable to cytoplasmic rather than nuclear defects of the zygotes. A proteomic analysis of KO oocytes revealed the down-regulation of proteins associated with microtubules including tubulins, which occurred independently of transcriptomic changes. Intriguingly, cytoplasmic lattices were disorganized, and mitochondria, endoplasmic reticulum, and components of the subcortical maternal complex were mislocalized. Thus, maternal UHRF1 regulates the proper cytoplasmic architecture and function of oocytes and preimplantation embryos, likely through a mechanism unrelated to DNA methylation.
Collapse
Affiliation(s)
- Shuhei Uemura
- Division of Epigenomics and Development, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Shoji Maenohara
- Division of Epigenomics and Development, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kimiko Inoue
- Bioresource Engineering Division, RIKEN BioResource Research Center (BRC), Ibaraki, Japan
| | - Narumi Ogonuki
- Bioresource Engineering Division, RIKEN BioResource Research Center (BRC), Ibaraki, Japan
| | - Shogo Matoba
- Bioresource Engineering Division, RIKEN BioResource Research Center (BRC), Ibaraki, Japan
| | - Atsuo Ogura
- Bioresource Engineering Division, RIKEN BioResource Research Center (BRC), Ibaraki, Japan
| | - Mayuko Kurumizaka
- Center for Genetic Analysis of Biological Responses, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Kazuo Yamagata
- Center for Genetic Analysis of Biological Responses, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- Faculty of Biology-Oriented Science and Technology, KINDAI University, Wakayama, Japan
| | - Jafar Sharif
- Laboratory for Developmental Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Haruhiko Koseki
- Laboratory for Developmental Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Koji Ueda
- Cancer Proteomics Group, Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Motoko Unoki
- Division of Epigenomics and Development, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
- Department of Human Genetics, School of International Health, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hiroyuki Sasaki
- Division of Epigenomics and Development, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| |
Collapse
|
19
|
Saha G, Roy S, Basu M, Ghosh MK. USP7 - a crucial regulator of cancer hallmarks. Biochim Biophys Acta Rev Cancer 2023; 1878:188903. [PMID: 37127084 DOI: 10.1016/j.bbcan.2023.188903] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 04/28/2023] [Accepted: 04/28/2023] [Indexed: 05/03/2023]
Abstract
Over the course of three decades of study, the deubiquitinase Herpesvirus associated Ubiquitin-Specific Protease/Ubiquitin-Specific Protease 7 (HAUSP/USP7) has gradually come to be recognized as a crucially important molecule in cellular physiology. The fact that USP7 is overexpressed in a number of cancers, including breast, prostate, colorectal, and lung cancers, supports the idea that USP7 is also an important regulator of tumorigenesis. In this review, we discuss USP7's function in relation to the cancer hallmarks described by Hanahan and Weinberg. This post-translational modifier can support increased proliferation, block unfavorable growth signals, stop cell death, and support an unstable cellular genome by manipulating key players in the pertinent signalling circuit. It is interesting to note that USP7 also aids in the stabilization of molecules that support angiogenesis and metastasis. Targeting USP7 has now emerged as a crucial component of USP7 research because pharmacological inhibition of USP7 supports p53-mediated cell cycle arrest and apoptosis. Efficacious USP7 inhibition is currently being investigated in both synthetic and natural compounds, but issues with selectivity and a lack of co-crystal structure have hindered USP7 inhibition from being tested in clinical settings. Moreover, the development of new, more effective USP7 inhibitors and their encouraging implications by numerous groups give us a glimmer of hope for USP7-targeting medications as effective substitutes for hazardous cancer chemotherapeutics.
Collapse
Affiliation(s)
- Gouranga Saha
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector-V, Salt Lake, Kolkata-700091 & 4, Raja S.C. Mullick Road, Jadavpur, Kolkata, PIN - 700032, India
| | - Srija Roy
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector-V, Salt Lake, Kolkata-700091 & 4, Raja S.C. Mullick Road, Jadavpur, Kolkata, PIN - 700032, India
| | - Malini Basu
- Department of Microbiology, Dhruba Chand Halder College, University of Calcutta, Kolkata, PIN - 743372, India
| | - Mrinal K Ghosh
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector-V, Salt Lake, Kolkata-700091 & 4, Raja S.C. Mullick Road, Jadavpur, Kolkata, PIN - 700032, India.
| |
Collapse
|
20
|
Luo G, Xu W, Chen X, Xu W, Yang S, Wang J, Lin Y, Reinach PS, Yan D. The RNA m5C Methylase NSUN2 Modulates Corneal Epithelial Wound Healing. Invest Ophthalmol Vis Sci 2023; 64:5. [PMID: 36862118 PMCID: PMC9983701 DOI: 10.1167/iovs.64.3.5] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023] Open
Abstract
Purpose The emerging epitranscriptomics offers insights into the physiopathological roles of various RNA modifications. The RNA methylase NOP2/Sun domain family member 2 (NSUN2) catalyzes 5-methylcytosine (m5C) modification of mRNAs. However, the role of NSUN2 in corneal epithelial wound healing (CEWH) remains unknown. Here we describe the functional mechanisms of NSUN2 in mediating CEWH. Methods RT-qPCR, Western blot, dot blot, and ELISA were used to determine the NSUN2 expression and overall RNA m5C level during CEWH. NSUN2 silencing or overexpression was performed to explore its involvement in CEWH both in vivo and in vitro. Multi-omics was integrated to reveal the downstream target of NSUN2. MeRIP-qPCR, RIP-qPCR, and luciferase assay, as well as in vivo and in vitro functional assays, clarified the molecular mechanism of NSUN2 in CEWH. Results The NSUN2 expression and RNA m5C level increased significantly during CEWH. NSUN2 knockdown significantly delayed CEWH in vivo and inhibited human corneal epithelial cells (HCEC) proliferation and migration in vitro, whereas NSUN2 overexpression prominently enhanced HCEC proliferation and migration. Mechanistically, we found that NSUN2 increased ubiquitin-like containing PHD and RING finger domains 1 (UHRF1) translation through the binding of RNA m5C reader Aly/REF export factor. Accordingly, UHRF1 knockdown significantly delayed CEWH in vivo and inhibited HCEC proliferation and migration in vitro. Furthermore, UHRF1 overexpression effectively rescued the inhibitory effect of NSUN2 silencing on HCEC proliferation and migration. Conclusions NSUN2-mediated m5C modification of UHRF1 mRNA modulates CEWH. This finding highlights the critical importance of this novel epitranscriptomic mechanism in control of CEWH.
Collapse
Affiliation(s)
- Guangying Luo
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China,State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou, Zhejiang, China
| | - Weiwei Xu
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China,State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou, Zhejiang, China
| | - Xiaoyan Chen
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China,State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou, Zhejiang, China
| | - Wenji Xu
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China,State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou, Zhejiang, China
| | - Shuai Yang
- Laboratory of RNA Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Jiao Wang
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China,State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou, Zhejiang, China
| | - Yong Lin
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China,State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou, Zhejiang, China
| | - Peter S. Reinach
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China,State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou, Zhejiang, China
| | - Dongsheng Yan
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China,State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou, Zhejiang, China
| |
Collapse
|
21
|
Yaacobi-Artzi S, Kalo D, Roth Z. Seasonal variation in the morphokinetics of in-vitro-derived bovine embryos is associated with the blastocyst developmental competence and gene expression. FRONTIERS IN REPRODUCTIVE HEALTH 2022; 4:1030949. [PMID: 36406891 PMCID: PMC9670144 DOI: 10.3389/frph.2022.1030949] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 10/05/2022] [Indexed: 11/06/2022] Open
Abstract
Summer heat stress is a major cause of reduced development of preimplantation embryos. Nevertheless, seasonal effects on embryo morphokinetics have been less studied. We used a non-invasive time-lapse system that allows continuous monitoring of embryos to study the seasonal impact on embryo morphokinetics. The experiments were performed during the cold and the hot seasons. Cumulus-oocyte complexes were aspirated from ovaries, in-vitro-matured, and fertilized. Putative zygotes were cultured in an incubator equipped with a time-lapse system. The cleavage and blastocyst formation rates were lower in the hot vs. the cold season (p < 0.01). The kinetics of the embryos differed between seasons, reflected by a delay in the second cleavage in the hot vs. the cold season (p < 0.03). The distribution of the embryos into different morphological grades (good, fair, and poor) throughout the first three cleavages differed between seasons, with a higher proportion of good-grade embryos in the hot season (p < 0.03). Cleaved embryos were categorized as either normal or abnormal, based on their first cleavage pattern. Normal cleavage was defined as when the first cleavage resulted in two equal blastomeres and further classified as either synchronous or asynchronous, according to their subsequent cleavages. Abnormal cleavage was defined as when the embryo directly cleaved into more than two blastomeres, it cleaved unequally into two unevenly sized blastomeres, or when the fusion of already divided blastomeres occurred. The proportion of abnormally cleaved embryos was higher in the hot season vs. the cold one (p < 0.01), reflected by a higher proportion of unequally cleaved embryos (p < 0.02). In the cold season, abnormally cleaved embryos had a lower potential to develop into blastocysts relative to their normally cleaved counterparts (p < 0.001). Blastocysts that developed in the cold and the hot seasons differed in the expression of genes that related to the cell cycle (STAT1; p < 0.01), stress (HSF1; p < 0.03), and embryo development (ZP3; p < 0.05). A higher expression level was recorded for the STAT1 and UHRF1 genes in blastocysts that developed from unequally vs. the synchronously cleaved embryos (p < 0.04). We provide the first evidence for a seasonal effect on embryo morphokinetics, which might explain the reduced embryo development during the hot season.
Collapse
|
22
|
Park S, Sater AHA, Fahrmann JF, Irajizad E, Cai Y, Katayama H, Vykoukal J, Kobayashi M, Dennison JB, Garcia-Manero G, Mullighan CG, Gu Z, Konopleva M, Hanash S. Novel UHRF1-MYC Axis in Acute Lymphoblastic Leukemia. Cancers (Basel) 2022; 14:cancers14174262. [PMID: 36077796 PMCID: PMC9455066 DOI: 10.3390/cancers14174262] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 08/16/2022] [Indexed: 11/16/2022] Open
Abstract
Ubiquitin-like, containing PHD and RING finger domain, (UHRF) family members are overexpressed putative oncogenes in several cancer types. We evaluated the protein abundance of UHRF family members in acute leukemia. A marked overexpression of UHRF1 protein was observed in ALL compared with AML. An analysis of human leukemia transcriptomic datasets revealed concordant overexpression of UHRF1 in B-Cell and T-Cell ALL compared with CLL, AML, and CML. In-vitro studies demonstrated reduced cell viability with siRNA-mediated knockdown of UHRF1 in both B-ALL and T-ALL, associated with reduced c-Myc protein expression. Mechanistic studies indicated that UHRF1 directly interacts with c-Myc, enabling ALL expansion via the CDK4/6-phosphoRb axis. Our findings highlight a previously unknown role of UHRF1 in regulating c-Myc protein expression and implicate UHRF1 as a potential therapeutic target in ALL.
Collapse
Affiliation(s)
- Soyoung Park
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ali H. Abdel Sater
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Johannes F. Fahrmann
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ehsan Irajizad
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yining Cai
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Hiroyuki Katayama
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jody Vykoukal
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Makoto Kobayashi
- Department of Basic Pathology, School of Medicine, Fukushima Medical University, Fukushima 960-1295, Japan
| | - Jennifer B. Dennison
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Guillermo Garcia-Manero
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Charles G. Mullighan
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Zhaohui Gu
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Marina Konopleva
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Samir Hanash
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Correspondence:
| |
Collapse
|
23
|
Mandal P, Eswara K, Yerkesh Z, Kharchenko V, Zandarashvili L, Szczepski K, Bensaddek D, Jaremko Ł, Black BE, Fischle W. Molecular basis of hUHRF1 allosteric activation for synergistic histone modification binding by PI5P. SCIENCE ADVANCES 2022; 8:eabl9461. [PMID: 36001657 PMCID: PMC9401617 DOI: 10.1126/sciadv.abl9461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
Chromatin marks are recognized by distinct binding modules, many of which are embedded in multidomain proteins. How the different functionalities of such complex chromatin modulators are regulated is often unclear. Here, we delineated the interplay of the H3 amino terminus- and K9me-binding activities of the multidomain hUHRF1 protein. We show that the phosphoinositide PI5P interacts simultaneously with two distant flexible linker regions connecting distinct domains of hUHRF1. The binding is dependent on both, the polar head group, and the acyl part of the phospholipid and induces a conformational rearrangement juxtaposing the H3 amino terminus and K9me3 recognition modules of the protein. In consequence, the two features of the H3 tail are bound in a multivalent, synergistic manner. Our work highlights a previously unidentified molecular function for PI5P outside of the context of lipid mono- or bilayers and establishes a molecular paradigm for the allosteric regulation of complex, multidomain chromatin modulators by small cellular molecules.
Collapse
Affiliation(s)
- Papita Mandal
- Bioscience Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Kingdom of Saudi Arabia
| | - Karthik Eswara
- Bioscience Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Kingdom of Saudi Arabia
| | - Zhadyra Yerkesh
- Bioscience Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Kingdom of Saudi Arabia
| | - Vladlena Kharchenko
- Bioscience Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Kingdom of Saudi Arabia
| | - Levani Zandarashvili
- Department of Biochemistry and Biophysics, Penn Center for Genome Integrity, Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kacper Szczepski
- Bioscience Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Kingdom of Saudi Arabia
| | - Dalila Bensaddek
- Core Laboratories, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Kingdom of Saudi Arabia
| | - Łukasz Jaremko
- Bioscience Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Kingdom of Saudi Arabia
| | - Ben E. Black
- Department of Biochemistry and Biophysics, Penn Center for Genome Integrity, Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Wolfgang Fischle
- Bioscience Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Kingdom of Saudi Arabia
| |
Collapse
|
24
|
Comprehensive Pan-Cancer Analysis Reveals the Role of UHRF1-Mediated DNA Methylation and Immune Infiltration in Renal Cell Carcinoma. JOURNAL OF ONCOLOGY 2022; 2022:3842547. [PMID: 35656341 PMCID: PMC9152404 DOI: 10.1155/2022/3842547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/07/2022] [Accepted: 04/12/2022] [Indexed: 11/17/2022]
Abstract
Ubiquitin-like PHD and ring finger domain protein 1 (UHRF1) are members of the multifunctional UHRF family, which can participate in DNA methylation change and histone posttranslational change through particular domains and participate in the event and development of tumors. The purpose of this study was to decide the molecular traits and potential medicine-based importance of UHRF1 that helped settle methylated immune infiltration in generalized cancer by carefully studying the relationship between UHRF1 expression and a variety of tumors and to further check for truth the functional role of UHRF1 in kidney-related cancer. A comprehensive analysis of UHRF1 in 33 cancers was performed based on TCGA database. This research involves analysis of mRNA expression profiles, prognostic value, immune infiltration, immune neoantigens, TMB, microsatellite instability, DNA methylation, and gene set enrichment analysis (GSEA). Both immune infiltration and DNA methylation were used to evaluate the importance and method of UHRF1 in renal cancer. The results showed that tumor tissue had higher expression level of UHRF1 than usual tissue. The high expression level of UHRF1 is related to the survival rate of renal cancer. UHRF1 expression was associated with tumor mutation load and microsatellite instability in different cancer types, and enrichment analysis identified terminology and pathways associated with UHRF1. This study showed that UHRF1 plays an important role in the group of objects and development of 33 tumors. UHRF1 may serve as a biomarker of immune infiltration and poor outlook of cancer.
Collapse
|
25
|
Nuclear UHRF1 is a gate-keeper of cellular AMPK activity and function. Cell Res 2022; 32:54-71. [PMID: 34561619 PMCID: PMC8724286 DOI: 10.1038/s41422-021-00565-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 08/24/2021] [Indexed: 01/03/2023] Open
Abstract
The AMP-activated protein kinase (AMPK) is a central regulator of energy homeostasis. Although much has been learned on how low energy status and glucose starvation activate AMPK, how AMPK activity is properly controlled in vivo is still poorly understood. Here we report that UHRF1, an epigenetic regulator highly expressed in proliferating and cancer cells, interacts with AMPK and serves to suppress AMPK activity under both basal and stressed conditions. As a nuclear protein, UHRF1 promotes AMPK nuclear retention and strongly suppresses nuclear AMPK activity toward substrates H2B and EZH2. Importantly, we demonstrate that UHRF1 also robustly inhibits AMPK activity in the cytoplasm compartment, most likely as a consequence of AMPK nucleocytoplasmic shuttling. Mechanistically, we found that UHRF1 has no obvious effect on AMPK activation by upstream kinases LKB1 and CAMKK2 but inhibits AMPK activity by acting as a bridging factor targeting phosphatase PP2A to dephosphorylate AMPK. Hepatic overexpression of UHRF1 showed profound effects on glucose and lipid metabolism in wild-type mice but not in those with the liver-specific knockout of AMPKα1/α2, whereas knockdown of UHRF1 in adipose tissue led to AMPK activation and reduced sizes of adipocytes and lipogenic activity, highlighting the physiological significance of this regulation in glucose and lipid metabolism. Thus, our study identifies UHRF1 as a novel AMPK gate-keeper with critical roles in cellular metabolism.
Collapse
|
26
|
HAUSP Is a Key Epigenetic Regulator of the Chromatin Effector Proteins. Genes (Basel) 2021; 13:genes13010042. [PMID: 35052383 PMCID: PMC8774506 DOI: 10.3390/genes13010042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 12/18/2022] Open
Abstract
HAUSP (herpes virus-associated ubiquitin-specific protease), also known as Ubiquitin Specific Protease 7, plays critical roles in cellular processes, such as chromatin biology and epigenetics, through the regulation of different signaling pathways. HAUSP is a main partner of the “Epigenetic Code Replication Machinery,” ECREM, a large protein complex that includes several epigenetic players, such as the ubiquitin-like containing plant homeodomain (PHD) and an interesting new gene (RING), finger domains 1 (UHRF1), as well as DNA methyltransferase 1 (DNMT1), histone deacetylase 1 (HDAC1), histone methyltransferase G9a, and histone acetyltransferase TIP60. Due to its deubiquitinase activity and its ability to team up through direct interactions with several epigenetic regulators, mainly UHRF1, DNMT1, TIP60, the histone lysine methyltransferase EZH2, and the lysine-specific histone demethylase LSD1, HAUSP positions itself at the top of the regulatory hierarchies involved in epigenetic silencing of tumor suppressor genes in cancer. This review highlights the increasing role of HAUSP as an epigenetic master regulator that governs a set of epigenetic players involved in both the maintenance of DNA methylation and histone post-translational modifications.
Collapse
|
27
|
Newkirk SJ, An W. UHRF1: a jack of all trades, and a master epigenetic regulator during spermatogenesis. Biol Reprod 2021; 102:1147-1152. [PMID: 32101289 DOI: 10.1093/biolre/ioaa026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 02/26/2020] [Indexed: 01/03/2023] Open
Affiliation(s)
- Simon J Newkirk
- Department of Pharmaceutical Sciences, South Dakota State University, Brookings, SD, USA
| | - Wenfeng An
- Department of Pharmaceutical Sciences, South Dakota State University, Brookings, SD, USA
| |
Collapse
|
28
|
Ahmad T, Ashraf W, Ibrahim A, Zaayter L, Muller CD, Hamiche A, Mély Y, Bronner C, Mousli M. TIP60 governs the auto‑ubiquitination of UHRF1 through USP7 dissociation from the UHRF1/USP7 complex. Int J Oncol 2021; 59:89. [PMID: 34558642 PMCID: PMC8480382 DOI: 10.3892/ijo.2021.5269] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 05/05/2021] [Indexed: 12/11/2022] Open
Abstract
Tat interactive protein, 60 kDa (TIP60) is an important partner of ubiquitin-like, containing PHD and RING finger domains 1 (UHRF1), ensuring various cellular processes through its acetyltransferase activity. TIP60 is believed to play a tumor suppressive role, partly explained by its downregulated expression in a number of cancers. The aim of the present study was to investigate the role and mechanisms of action of TIP60 in the regulation of UHRF1 expression. The results revealed that TIP60 overexpression downregulated the UHRF1 and DNA methyltransferase 1 (DNMT1) expression levels. TIP60 interfered with USP7-UHRF1 association and induced the degradation of UHRF1 in an auto-ubiquitination-dependent manner. Moreover, TIP60 activated the p73-mediated apoptotic pathway. Taken together, the data of the present study suggest that the tumor suppressor role of TIP60 is mediated by its regulation to UHRF1.
Collapse
Affiliation(s)
- Tanveer Ahmad
- Laboratory of Bioimaging and Pathologies, CNRS UMR‑7021, Faculty of Pharmacy, University of Strasbourg, 67401 Illkirch, France
| | - Waseem Ashraf
- Laboratory of Bioimaging and Pathologies, CNRS UMR‑7021, Faculty of Pharmacy, University of Strasbourg, 67401 Illkirch, France
| | - Abdulkhaleg Ibrahim
- Institute of Genetics and Molecular and Cellular Biology (IGBMC), INSERM U1258 CNRS UMR 7104, University of Strasbourg, 67400 Illkirch, France
| | - Liliyana Zaayter
- Laboratory of Bioimaging and Pathologies, CNRS UMR‑7021, Faculty of Pharmacy, University of Strasbourg, 67401 Illkirch, France
| | - Christian D Muller
- Hubert Curien Pluridisciplinary Institute (IPHC), CNRS UMR‑7178, University of Strasbourg, 67401 Illkirch, France
| | - Ali Hamiche
- Institute of Genetics and Molecular and Cellular Biology (IGBMC), INSERM U1258 CNRS UMR 7104, University of Strasbourg, 67400 Illkirch, France
| | - Yves Mély
- Laboratory of Bioimaging and Pathologies, CNRS UMR‑7021, Faculty of Pharmacy, University of Strasbourg, 67401 Illkirch, France
| | - Christian Bronner
- Institute of Genetics and Molecular and Cellular Biology (IGBMC), INSERM U1258 CNRS UMR 7104, University of Strasbourg, 67400 Illkirch, France
| | - Marc Mousli
- Laboratory of Bioimaging and Pathologies, CNRS UMR‑7021, Faculty of Pharmacy, University of Strasbourg, 67401 Illkirch, France
| |
Collapse
|
29
|
A Fast Ubiquitination of UHRF1 Oncogene Is a Unique Feature and a Common Mechanism of Thymoquinone in Cancer Cells. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11167633] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Downregulation of the ubiquitin-like containing PHD and ring finger 1 (UHRF1) oncogene in cancer cells in response to natural anticancer drugs, including thymoquinone (TQ), is a key event that induces apoptosis. TQ can induce UHRF1 autoubiquitination via the E3 ligase activity of its RING domain, most likely through the downregulation of herpes virus-associated ubiquitin-specific protease (HAUSP). In this study, we evaluated whether HAUSP downregulation and fast ubiquitination of UHRF1 are prerequisites for UHRF1 degradation in response to TQ in cancer cells and whether doxorubicin can mimic the effects of TQ on UHRF1 ubiquitination. RNA sequencing was performed to investigate differentially expressed genes in TQ-treated Jurkat cells. The protein expression of UHRF1, HAUSP and Bcl-2 was detected by means of Western blot analysis. The proliferation of human colon cancer (HCT-116) and Jurkat cells was analyzed via the WST-1 assay. RNA sequencing data revealed that TQ significantly decreased HAUSP expression. TQ triggered UHRF1 to undergo rapid ubiquitination as the first step in its degradation and the inhibition of its cell proliferation. TQ-induced UHRF1 ubiquitination is associated with HAUSP downregulation. Like TQ, doxorubicin induced a similar dose- and time-dependent downregulation of UHRF1 in cancer cells, but UHRF1 did not undergo ubiquitination as detected in response to TQ. Furthermore, TQ decreased Bcl-2 expression without triggering its ubiquitination. A fast UHRF1 ubiquitination is an indispensable event for its degradation in response to TQ but not for its responses to doxorubicin. TQ appears to trigger ubiquitination of UHRF1 but not of the Bcl-2 oncogene, thereby identifying UHRF1 as a specific target of TQ for cancer therapy.
Collapse
|
30
|
Mancini M, Magnani E, Macchi F, Bonapace IM. The multi-functionality of UHRF1: epigenome maintenance and preservation of genome integrity. Nucleic Acids Res 2021; 49:6053-6068. [PMID: 33939809 PMCID: PMC8216287 DOI: 10.1093/nar/gkab293] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 04/02/2021] [Accepted: 04/12/2021] [Indexed: 12/23/2022] Open
Abstract
During S phase, the cooperation between the macromolecular complexes regulating DNA synthesis, epigenetic information maintenance and DNA repair is advantageous for cells, as they can rapidly detect DNA damage and initiate the DNA damage response (DDR). UHRF1 is a fundamental epigenetic regulator; its ability to coordinate DNA methylation and histone code is unique across proteomes of different species. Recently, UHRF1’s role in DNA damage repair has been explored and recognized to be as important as its role in maintaining the epigenome. UHRF1 is a sensor for interstrand crosslinks and a determinant for the switch towards homologous recombination in the repair of double-strand breaks; its loss results in enhanced sensitivity to DNA damage. These functions are finely regulated by specific post-translational modifications and are mediated by the SRA domain, which binds to damaged DNA, and the RING domain. Here, we review recent studies on the role of UHRF1 in DDR focusing on how it recognizes DNA damage and cooperates with other proteins in its repair. We then discuss how UHRF1’s epigenetic abilities in reading and writing histone modifications, or its interactions with ncRNAs, could interlace with its role in DDR.
Collapse
Affiliation(s)
- Monica Mancini
- Department of Biotechnology and Life Sciences, University of Insubria, Busto Arsizio, VA 21052, Italy
| | - Elena Magnani
- Program in Biology, New York University Abu Dhabi, Abu Dhabi, PO Box 129188, United Arab Emirates
| | - Filippo Macchi
- Program in Biology, New York University Abu Dhabi, Abu Dhabi, PO Box 129188, United Arab Emirates
| | - Ian Marc Bonapace
- Department of Biotechnology and Life Sciences, University of Insubria, Busto Arsizio, VA 21052, Italy
| |
Collapse
|
31
|
Abdullah O, Omran Z, Hosawi S, Hamiche A, Bronner C, Alhosin M. Thymoquinone Is a Multitarget Single Epidrug That Inhibits the UHRF1 Protein Complex. Genes (Basel) 2021; 12:genes12050622. [PMID: 33922029 PMCID: PMC8143546 DOI: 10.3390/genes12050622] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/17/2021] [Accepted: 04/20/2021] [Indexed: 02/07/2023] Open
Abstract
Silencing of tumor suppressor genes (TSGs) through epigenetic mechanisms, mainly via abnormal promoter DNA methylation, is considered a main mechanism of tumorigenesis. The abnormal DNA methylation profiles are transmitted from the cancer mother cell to the daughter cells through the involvement of a macromolecular complex in which the ubiquitin-like containing plant homeodomain (PHD), and an interesting new gene (RING) finger domains 1 (UHRF1), play the role of conductor. Indeed, UHRF1 interacts with epigenetic writers, such as DNA methyltransferase 1 (DNMT1), histone methyltransferase G9a, erasers like histone deacetylase 1 (HDAC1), and functions as a hub protein. Thus, targeting UHRF1 and/or its partners is a promising strategy for epigenetic cancer therapy. The natural compound thymoquinone (TQ) exhibits anticancer activities by targeting several cellular signaling pathways, including those involving UHRF1. In this review, we highlight TQ as a potential multitarget single epidrug that functions by targeting the UHRF1/DNMT1/HDAC1/G9a complex. We also speculate on the possibility that TQ might specifically target UHRF1, with subsequent regulatory effects on other partners.
Collapse
Affiliation(s)
- Omeima Abdullah
- College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia; (O.A.); (Z.O.)
| | - Ziad Omran
- College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia; (O.A.); (Z.O.)
| | - Salman Hosawi
- Department of Biochemistry, Faculty of Science, Cancer and Mutagenesis Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Ali Hamiche
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS UMR7104, INSERM U964, Université de Strasbourg, 67404 Illkirch, France; (A.H.); (C.B.)
| | - Christian Bronner
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS UMR7104, INSERM U964, Université de Strasbourg, 67404 Illkirch, France; (A.H.); (C.B.)
| | - Mahmoud Alhosin
- Department of Biochemistry, Faculty of Science, Cancer and Mutagenesis Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Correspondence: ; Tel.: +966-597-959-354
| |
Collapse
|
32
|
Wang H, Lu Y, Wang M, Wu Y, Wang X, Li Y. Roles of E3 ubiquitin ligases in gastric cancer carcinogenesis and their effects on cisplatin resistance. J Mol Med (Berl) 2021; 99:193-212. [PMID: 33392633 DOI: 10.1007/s00109-020-02015-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 11/15/2020] [Accepted: 11/20/2020] [Indexed: 12/28/2022]
Abstract
Although gastric cancer (GC) is one of the most common cancers with high incidence and mortality rates, its pathogenesis is still not elucidated. GC carcinogenesis is complicated and involved in the activation of oncoproteins and inactivation of tumor suppressors. The ubiquitin-proteasome system (UPS) is crucial for protein degradation and regulation of physiological and pathological processes. E3 ubiquitin ligases are pivotal enzymes in UPS, containing various subfamily proteins. Previous studies report that some E3 ligases, including SKP2, CUL1, and MDM2, act as oncoproteins in GC carcinogenesis. On the other hand, FBXW7, FBXL5, FBXO31, RNF43, and RNF180 exert as tumor suppressors in GC carcinogenesis. Moreover, E3 ligases modulate cell growth, cell apoptosis, and cell cycle; thus, it is complicated to confer cisplatin resistance/sensitivity in GC cells. The intrinsic and acquired cisplatin resistance limits its clinical application against GC. In this review, we explore oncogenic and tumor suppressive roles of E3 ligases in GC carcinogenesis and focus on the effects of E3 ligases on cisplatin resistance in GC cells, which will provide novel therapeutic targets for GC therapy, especially for cisplatin-resistant patients.
Collapse
Affiliation(s)
- Huizhen Wang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Yida Lu
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Mingliang Wang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Youliang Wu
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Xiaodong Wang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Yongxiang Li
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China.
| |
Collapse
|
33
|
Lou C, Ye X, Chen G, Zhu J, Kang J. Screening inhibitors for blocking UHRF1-methylated DNA interaction with capillary electrophoresis. J Chromatogr A 2020; 1636:461790. [PMID: 33340746 DOI: 10.1016/j.chroma.2020.461790] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/27/2020] [Accepted: 12/04/2020] [Indexed: 11/19/2022]
Abstract
Epigenetic inheritance in mammals relies in part on propagation of DNA methylation patterns throughout development. UHRF1 (ubiquitin-like containing PHD and RING finger domains 1) is required for maintenance the methylation pattern. It was reported that UHRF1 is overexpressed in a number of cancer types, and its depletion has been established to inhibit growth and invasion of cancer cells. It has been considered as a new therapeutic target for cancer. In the present work, we described a method for screening inhibitors for blocking the formation of UHRF1-methylated DNA (mDNA) complex by using nonequilibrium capillary electrophoresis of the equilibrium mixture (NECEEM). A recombinant UHRF1 with the SRA domain (residues 408-643), a fluorescently labeled double strand mDNA (12 mer) and a known inhibitor mitoxantrone were employed for proof of concept. The method allows to measure the dissociation constant (Kd) of the UHRF1-mDNA complex as well as the rate kinetic constant for complex formation (kon) and dissociation (koff). A small chemical library composed of 60 natural compounds were used to validate the method. Sample pooling strategy was employed to improve the screening throughput. The merit of the method was confirmed by the discovery of two natural products proanthocyanidins and baicalein as the new inhibitors for blocking the formation of UHRF1-mDNA complex. Our work demonstrated that CE represents a straightforward and robust technique for studying UHRF1-mDNA interaction and screening of the inhibitors.
Collapse
Affiliation(s)
- Chunli Lou
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China; School of physical science and technology, ShanghaiTech University, Haike Road 100, Shanghai, 200120, China; University of Chinese Academy of Sciences
| | - Xiongzhen Ye
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China; School of physical science and technology, ShanghaiTech University, Haike Road 100, Shanghai, 200120, China; University of Chinese Academy of Sciences
| | - Ge Chen
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 26 Qiuyue Road, Shanghai 201210, China
| | - Jidong Zhu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 26 Qiuyue Road, Shanghai 201210, China
| | - Jingwu Kang
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China; School of physical science and technology, ShanghaiTech University, Haike Road 100, Shanghai, 200120, China.
| |
Collapse
|
34
|
Valles GJ, Bezsonova I, Woodgate R, Ashton NW. USP7 Is a Master Regulator of Genome Stability. Front Cell Dev Biol 2020; 8:717. [PMID: 32850836 PMCID: PMC7419626 DOI: 10.3389/fcell.2020.00717] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 07/13/2020] [Indexed: 12/25/2022] Open
Abstract
Genetic alterations, including DNA mutations and chromosomal abnormalities, are primary drivers of tumor formation and cancer progression. These alterations can endow cells with a selective growth advantage, enabling cancers to evade cell death, proliferation limits, and immune checkpoints, to metastasize throughout the body. Genetic alterations occur due to failures of the genome stability pathways. In many cancers, the rate of alteration is further accelerated by the deregulation of these processes. The deubiquitinating enzyme ubiquitin specific protease 7 (USP7) has recently emerged as a key regulator of ubiquitination in the genome stability pathways. USP7 is also deregulated in many cancer types, where deviances in USP7 protein levels are correlated with cancer progression. In this work, we review the increasingly evident role of USP7 in maintaining genome stability, the links between USP7 deregulation and cancer progression, as well as the rationale of targeting USP7 in cancer therapy.
Collapse
Affiliation(s)
- Gabrielle J Valles
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, CT, United States
| | - Irina Bezsonova
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, CT, United States
| | - Roger Woodgate
- Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Nicholas W Ashton
- Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
35
|
Perego MC, Morrell BC, Zhang L, Schütz LF, Spicer LJ. Developmental and hormonal regulation of ubiquitin-like with plant homeodomain and really interesting new gene finger domains 1 gene expression in ovarian granulosa and theca cells of cattle. J Anim Sci 2020; 98:5866609. [PMID: 32614952 DOI: 10.1093/jas/skaa205] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 06/25/2020] [Indexed: 12/27/2022] Open
Abstract
Ubiquitin-like with plant homeodomain and really interesting new gene finger domains 1 (UHRF1) is a multi-domain nuclear protein that plays an important role in epigenetics and tumorigenesis, but its role in normal ovarian follicle development remains unknown. Thus, the present study evaluated if UHRF1 mRNA abundance in bovine follicular cells is developmentally and hormonally regulated, and if changes in UHRF1 are associated with changes in DNA methylation in follicular cells. Abundance of UHRF1 mRNA was greater in granulosa cells (GC) and theca cells (TC) from small (<6 mm) than large (≥8 mm) follicles and was greater in small-follicle GC than TC. In GC and TC, fibroblast growth factor 9 (FGF9) treatment increased (P < 0.05) UHRF1 expression by 2-fold. Also, luteinizing hormone (LH) and insulin-like growth factor 1 (IGF1) increased (P < 0.05) UHRF1 expression in TC by 2-fold, and forskolin (an adenylate cyclase inducer) alone or combined with IGF1 increased (P < 0.05) UHRF1 expression by 3-fold. An E2F transcription factor inhibitor (E2Fi) decreased (P < 0.05) UHRF1 expression by 44% in TC and by 99% in GC. Estradiol, progesterone, and dibutyryl-cAMP decreased (P < 0.05) UHRF1 mRNA abundance in GC. Treatment of GC with follicle-stimulating hormone (FSH) alone had no effect but when combined with IGF1 enhanced the UHRF1 mRNA abundance by 2.7-fold. Beauvericin (a mycotoxin) completely inhibited the FSH plus IGF1-induced UHRF1 expression in small-follicle GC. Treatments that increased UHRF1 mRNA (i.e., FGF9) in GC tended to decrease (by 63%; P < 0.10) global DNA methylation, and those that decreased UHRF1 mRNA (i.e., E2Fi) in GC tended to increase (by 2.4-fold; P < 0.10) global DNA methylation. Collectively, these results suggest that UHRF1 expression in both GC and TC is developmentally and hormonally regulated, and that UHRF1 may play a role in follicular growth and development as well as be involved in ovarian epigenetic processes.
Collapse
Affiliation(s)
| | - Breanne C Morrell
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK
| | | | | | - Leon J Spicer
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK
| |
Collapse
|
36
|
Tu Z, Deng X, Hou S, Feng A, Zhang Q. UHRF1 predicts poor prognosis by triggering cell cycle in lung adenocarcinoma. J Cell Mol Med 2020; 24:8069-8077. [PMID: 32495469 PMCID: PMC7348181 DOI: 10.1111/jcmm.15438] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 05/02/2020] [Accepted: 05/12/2020] [Indexed: 02/06/2023] Open
Abstract
Accumulating evidence suggests that ubiquitin‐like with plant homeodomain and ring finger domains 1 (UHRF1) is overexpressed in non‐small cell lung cancer (NSCLC); however, the expression and function of UHRF1 in the subtype of NSCLC are still unclear. Here, we investigate the expression and prognosis traits of UHRF1 in large NSCLC cohorts and explore the molecular characters during UHRF1 up‐regulation. We find that UHRF1 is predominantly overexpressed in lung squamous cell carcinoma (SCC). Surprisingly, the up‐regulated UHRF1 is only associated with the overall survival of lung adenocarcinoma (ADC) and knockdown of UHRF1 dramatically attenuates ADC tumorigenesis. Mechanically, we identify a hub gene that includes a total of 55 UHRF1‐related genes, which are tightly associated with cell cycle pathway and yield to the poor clinical outcome in ADC patients. What's more, we observe knockdown of UHRF1 only affects ADC cells cycle and induces cell apoptosis. These results suggest that up‐regulated UHRF1 only contributes to lung ADC survival by triggering cell cycle pathway, and it may be a prognostic biomarker for lung ADC patients.
Collapse
Affiliation(s)
- Zhenbo Tu
- Department of Immunology, School of Basic Medical Science, Wuhan University, Wuhan, China
| | - Xinzhou Deng
- Department of Clinical Oncology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Shengqi Hou
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Anlin Feng
- Department of Internal Medicine, College of Medicine-Phoenix, University of Arizona, Phoenix, AZ, USA
| | - Qiuping Zhang
- Department of Immunology, School of Basic Medical Science, Wuhan University, Wuhan, China
| |
Collapse
|
37
|
Goto D, Komeda K, Uwatoko N, Nakashima M, Koike M, Kawai K, Kodama Y, Miyazawa A, Tanaka I, Hase T, Morise M, Hasegawa Y, Kawabe T, Sato M. UHRF1, a Regulator of Methylation, as a Diagnostic and Prognostic Marker for Lung Cancer. Cancer Invest 2020; 38:240-249. [PMID: 32212938 DOI: 10.1080/07357907.2020.1747483] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
We evaluated the value of UHRF1, a regulator of methylation, as a biomarker for lung cancer. UHRF1 is expressed at higher levels in both lung adenocarcinoma (AD) and squamous cell carcinoma (SQ); however, a meta-analysis showed that UHRF1 expression is correlated with worse survival in patients with AD but not in those with SQ. UHRF1 knockdown suppressed the growth of lung cancer cell lines through G1 cell cycle arrest in some cell lines. These results suggest that UHRF1 may server as a diagnostic marker for AD and SQ and as a prognostic marker for AD in lung cancer.
Collapse
Affiliation(s)
- Daiki Goto
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kazuki Komeda
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Department of Pathophysiological Laboratory Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Natsuki Uwatoko
- Department of Pathophysiological Laboratory Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Moeka Nakashima
- Department of Pathophysiological Laboratory Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Mayu Koike
- Department of Pathophysiological Laboratory Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kaho Kawai
- Department of Pathophysiological Laboratory Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yuta Kodama
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Ayako Miyazawa
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Ichidai Tanaka
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tetsunari Hase
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masahiro Morise
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | | | - Tsutomu Kawabe
- Department of Pathophysiological Laboratory Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Mitsuo Sato
- Department of Pathophysiological Laboratory Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
38
|
Lin Y, Chen Z, Zheng Y, Liu Y, Gao J, Lin S, Chen S. MiR-506 Targets UHRF1 to Inhibit Colorectal Cancer Proliferation and Invasion via the KISS1/PI3K/NF-κ B Signaling Axis. Front Cell Dev Biol 2019; 7:266. [PMID: 31803739 PMCID: PMC6873823 DOI: 10.3389/fcell.2019.00266] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 10/18/2019] [Indexed: 12/24/2022] Open
Abstract
Background The UHRF1 gene is an epigenetic modification factor that mediates tumor suppressor gene silencing in a variety of cancers. Related studies have reported that UHRF1 can inhibit the expression of the KISS1 gene. However, the regulatory mechanism underlying UHRF1 expression in colorectal cancer (CRC) is still unclear. The aim of this study was to gain a better understanding of the regulation of UHRF1 expression in CRC and to determine whether it regulates the mechanism by which KISS1 promotes CRC metastasis. Methods In the present study, the levels of miR-506, UHRF1 and KISS1 expression in CRC tissues and in human CRC cell lines were studied using quantitative real-time PCR (qRT-PCR) and Western blotting. Cell proliferation, migration, and invasion assays are used to detect cell proliferation, migration, and invasion. A dual-luciferase reporter system was used to confirm the target gene of miR-506. Results This study found that UHRF1 protein is highly expressed in CRC tissues and negatively correlated with KISS1 protein expression. UHRF1 overexpression activates the PI3K/NF-κB signaling pathway by inhibiting the mRNA expression levels of pathway mediators. Bioinformatics analysis and luciferase reporter gene assays confirmed that miR-506 targets UHRF1. Conclusion This study identified the regulation of UHRF1 expression in CRC and the mechanism of CRC metastasis. UHRF1 may be a new potential target molecule for future CRC metastasis treatment.
Collapse
Affiliation(s)
- Yilin Lin
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Zhihua Chen
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Yan Zheng
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Yisu Liu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Ji Gao
- School of Nursing, Fujian Medical University, Fuzhou, China
| | - Suyong Lin
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Shaoqin Chen
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| |
Collapse
|
39
|
UHRF1-KAT7-mediated regulation of TUSC3 expression via histone methylation/acetylation is critical for the proliferation of colon cancer cells. Oncogene 2019; 39:1018-1030. [PMID: 31582837 DOI: 10.1038/s41388-019-1032-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 09/13/2019] [Accepted: 09/18/2019] [Indexed: 01/24/2023]
Abstract
The epigenetic factor UHRF1 regulates transcription by modulating DNA methylation and histone modification, and plays critical roles in proliferation, development, and tumorigenesis. Here, we show that Wnt/c-Myc signaling upregulates UHRF1, which in turn downregulates TUSC3, a candidate tumor suppressor gene that is frequently deleted or downregulated in several cancers. We also show that UHRF1-mediated downregulation of TUSC3 is required for the proliferation of colon cancer cells. Furthermore, we demonstrate that UHRF1 suppresses TUSC3 expression by interacting with methylated H3K14 and thereby suppressing the acetylation of H3K14 by the histone acetyltransferase KAT7. Our study provides evidence for the significance of UHRF1-KAT7-mediated regulation of histone methylation/acetylation in the proliferation of tumor cells and in a diverse set of biological processes controlled by Wnt/c-Myc signaling.
Collapse
|
40
|
Sun X, Cui Y, Feng H, Liu H, Liu X. TGF-β signaling controls Foxp3 methylation and T reg cell differentiation by modulating Uhrf1 activity. J Exp Med 2019; 216:2819-2837. [PMID: 31515281 PMCID: PMC6888975 DOI: 10.1084/jem.20190550] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 07/28/2019] [Accepted: 08/28/2019] [Indexed: 01/02/2023] Open
Abstract
Regulatory T (T reg) cells are required for the maintenance of immune homeostasis. Both TGF-β signaling and epigenetic modifications are important for Foxp3 induction, but how TGF-β signaling participates in the epigenetic regulation of Foxp3 remains largely unknown. Here we showed that T cell-specific ablation of Uhrf1 resulted in T reg-biased differentiation in TCR-stimulated naive T cells in the absence of TGF-β signaling, and these Foxp3+ T cells had a suppressive function. Adoptive transfer of Uhrf1 -/- naive T cells could significantly suppress colitis due to increased iT reg cell generation. Mechanistically, Uhrf1 was induced upon TCR stimulation and participated in the maintenance of DNA methylation patterns of T reg cell-specific genes during cell division, while it was phosphorylated upon TGF-β stimulation and sequestered outside the nucleus, and ultimately underwent proteasome-dependent degradation. Collectively, our study reveals a novel epigenetic mechanism of TGF-β-mediated iT reg cell differentiation by modulating Uhrf1 activity and suggests that Uhrf1 may be a potential therapeutic target in inflammatory diseases for generating stable iT reg cells.
Collapse
Affiliation(s)
- Xiang Sun
- State Key Laboratory of Cell Biology, Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Yu Cui
- State Key Laboratory of Cell Biology, Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Haiyun Feng
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Haifeng Liu
- State Key Laboratory of Cell Biology, Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Xiaolong Liu
- State Key Laboratory of Cell Biology, Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China .,School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| |
Collapse
|
41
|
Polepalli S, George SM, Valli Sri Vidya R, Rodrigues GS, Ramachandra L, Chandrashekar R, M DN, Rao PP, Pestell RG, Rao M. Role of UHRF1 in malignancy and its function as a therapeutic target for molecular docking towards the SRA domain. Int J Biochem Cell Biol 2019; 114:105558. [DOI: 10.1016/j.biocel.2019.06.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 05/30/2019] [Accepted: 06/14/2019] [Indexed: 01/07/2023]
|
42
|
UHRF1 Promotes Proliferation of Human Adipose-Derived Stem Cells and Suppresses Adipogenesis via Inhibiting Peroxisome Proliferator-Activated Receptor γ. BIOMED RESEARCH INTERNATIONAL 2019; 2019:9456847. [PMID: 31428652 PMCID: PMC6681597 DOI: 10.1155/2019/9456847] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 06/11/2019] [Accepted: 06/24/2019] [Indexed: 12/11/2022]
Abstract
Once the adipose tissue is enlarged for the purpose of saving excess energy intake, obesity may be observed. Ubiquitin-like with PHD and RING Finger domains 1 (UHRF1) is helpful in repairing damaged DNA as it increases the resistance of cancer cells against cytocidal drugs. Peroxisome proliferator-activated receptor γ (PPARγ), an important nucleus transcription factor participating in adipogenesis, has been extensively reported. To date, no study has indicated whether UHRF1 can regulate proliferation and differentiation of human adipose-derived stem cells (hADSCs). Hence, this study aimed to utilize overexpression or downregulation of UHRF1 to explore the possible mechanism of proliferation and differentiation of hADSCs. We here used lentivirus, containing UHRF1 (LV-UHRF1) and siRNA-UHRF1 to transfect hADSCs, on which Cell Counting Kit-8 (CCK-8), cell growth curve, colony formation assay, and EdU proliferation assay were applied to evaluate proliferation of hADSCs, cells cycle was investigated by flow cytometry, and adipogenesis was detected by Oil Red O staining and Western blotting. Our results showed that UHRF1 can promote proliferation of hADSCs after overexpression of UHRF1, while proliferation of hADSCs was reduced through downregulation of UHRF1, and UHRF1 can control proliferation of hADSCs through transition from G1-phase to S-phase; besides, we found that UHRF1 negatively regulates adipogenesis of hADSCs via PPARγ. In summary, the results may provide a new insight regarding the role of UHRF1 on regulating proliferation and differentiation of hADSCs.
Collapse
|
43
|
Yang Y, Liu G, Qin L, Ye L, Zhu F, Ying Y. Overexpression of UHRF1 and its potential role in the development of invasive ductal breast cancer validated by integrative bioinformatics and immunohistochemistry analyses. Transl Cancer Res 2019; 8:1086-1096. [PMID: 35116851 PMCID: PMC8797458 DOI: 10.21037/tcr.2019.06.19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 05/28/2019] [Indexed: 12/24/2022]
Abstract
BACKGROUND Increasing evidence has highlighted the role of ubiquitin-like PHD and RING finger domain-containing protein 1 (UHRF1) in the development of cancers, including hepatocellular carcinoma, pancreatic cancer, and bladder cancer. However, the correlation between UHRF1 and breast cancer remains unclear. The present study aimed to analyze the expression of UHRF1 and its role in the development of invasive ductal breast cancer (IDC) by integrating multilevel expression data and immunohistochemistry analysis. METHODS The Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) databases were used to gather UHRF1 expression data on IDC. Additionally, immunohistochemistry analysis was used to investigate the correlations between UHRF1 expression and the clinical characteristics of IDC. RESULTS The GEO and TCGA databases indicated that UHRF1 was up-regulated in IDC. Consistently, the immunohistochemical specimens showed that the significant overexpression of UHRF1 in IDC, and its expression level showed an increasing trend from ductal carcinomas in situ to IDC. Notably, the increased levels of UHRF1 were closely correlated with estrogen receptor expression, pathological grade, and the prognosis of the disease. In addition, patients with a high UHRF1 expression had a poorer prognosis. CONCLUSIONS In conclusion, our findings suggested that UHRF1 plays a promoting role in breast tumorigenesis, and the over-expression of UHRF1 could serve as a biomarker for the prognosis in invasive ductal carcinomas in breast cancer.
Collapse
Affiliation(s)
- Yichen Yang
- Department of Pathophysiology, Jiangxi Medical College of Nanchang University, Nanchang 330006, China
| | - Guanjun Liu
- Department of Oncology, Henan Provincial People's Hospital, Zhengzhou 450003, China
| | - Lifang Qin
- Department of Pathology, Xinxiang Center Hospital, Xinxiang 450003, China
| | - Li Ye
- Department of Pathology, Xinxiang Center Hospital, Xinxiang 450003, China
| | - Fangheng Zhu
- Department of Pathology, Xinxiang Center Hospital, Xinxiang 450003, China
| | - Ying Ying
- Department of Pathophysiology, Jiangxi Medical College of Nanchang University, Nanchang 330006, China
| |
Collapse
|
44
|
Lin Y, Chen Z, Lin S, Zheng Y, Liu Y, Gao J, Chen S. MiR-202 inhibits the proliferation and invasion of colorectal cancer by targeting UHRF1. Acta Biochim Biophys Sin (Shanghai) 2019; 51:598-606. [PMID: 31058289 DOI: 10.1093/abbs/gmz042] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Indexed: 12/11/2022] Open
Abstract
The purpose of this study was to investigate the expression of microRNA-202 (miR-202) and its role in colorectal cancer (CRC) in vivo and in vitro. We examined the expression of miR-202 in CRC tissues by quantitative real-time PCR (qRT-PCR) assay. Lentiviral vectors were constructed to overexpress or inhibit the expression of miR-202 in the CRC cell lines HCT116 and SW480 to determine its effects on cell invasion and proliferation. We found that overexpression of miR-202 significantly inhibited the proliferation and invasion of HCT116 cells. MiRNA target gene prediction, dual luciferase assay, and western blot analysis demonstrated that miR-202 regulated ubiquitin-like with PHD and RING finger domain 1 (UHRF1) expression in both cell lines. The effect of miR-202 on cell proliferation and invasion was partially reversed by activating the expression of UHRF1. Furthermore, miR-202 induced tumor formation in HCT116 xenograft BALB/c nude mice. Mice vaccinated with miR-202-overexpressing cells had smaller tumors and lower UHRF1 expression than the control group. These results indicate the possibility that miR-202 is under-expressed in CRC tissues, and that miR-202 inhibits the proliferation and invasion of CRC via targeting UHRF1. MiR-202 is a potential therapeutic target for CRC.
Collapse
Affiliation(s)
- Yilin Lin
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Zhihua Chen
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Suyong Lin
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Yan Zheng
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Yisu Liu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Ji Gao
- Fujian University of Medicine, School of Nursing, Fuzhou, China
| | - Shaoqin Chen
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| |
Collapse
|
45
|
Mahmood N, Rabbani SA. DNA Methylation Readers and Cancer: Mechanistic and Therapeutic Applications. Front Oncol 2019; 9:489. [PMID: 31245293 PMCID: PMC6579900 DOI: 10.3389/fonc.2019.00489] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 05/23/2019] [Indexed: 12/14/2022] Open
Abstract
DNA methylation is a major epigenetic process that regulates chromatin structure which causes transcriptional activation or repression of genes in a context-dependent manner. In general, DNA methylation takes place when methyl groups are added to the appropriate bases on the genome by the action of "writer" molecules known as DNA methyltransferases. How these methylation marks are read and interpreted into different functionalities represents one of the main mechanisms through which the genes are switched "ON" or "OFF" and typically involves different types of "reader" proteins that can recognize and bind to the methylated regions. A tightly balanced regulation exists between the "writers" and "readers" in order to mediate normal cellular functions. However, alterations in normal methylation pattern is a typical hallmark of cancer which alters the way methylation marks are written, read and interpreted in different disease states. This unique characteristic of DNA methylation "readers" has identified them as attractive therapeutic targets. In this review, we describe the current state of knowledge on the different classes of DNA methylation "readers" identified thus far along with their normal biological functions, describe how they are dysregulated in cancer, and discuss the various anti-cancer therapies that are currently being developed and evaluated for targeting these proteins.
Collapse
Affiliation(s)
- Niaz Mahmood
- Department of Medicine, McGill University Health Centre, Montréal, QC, Canada
| | - Shafaat A Rabbani
- Department of Medicine, McGill University Health Centre, Montréal, QC, Canada
| |
Collapse
|
46
|
Niinuma T, Kitajima H, Kai M, Yamamoto E, Yorozu A, Ishiguro K, Sasaki H, Sudo G, Toyota M, Hatahira T, Maruyama R, Tokino T, Nakase H, Sugai T, Suzuki H. UHRF1 depletion and HDAC inhibition reactivate epigenetically silenced genes in colorectal cancer cells. Clin Epigenetics 2019; 11:70. [PMID: 31064417 PMCID: PMC6505222 DOI: 10.1186/s13148-019-0668-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 04/23/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Ubiquitin-like protein containing PHD and RING finger domains 1 (UHRF1) is a major regulator of epigenetic mechanisms and is overexpressed in various human malignancies. In this study, we examined the involvement of UHRF1 in aberrant DNA methylation and gene silencing in colorectal cancer (CRC). RESULTS CRC cell lines were transiently transfected with siRNAs targeting UHRF1, after which DNA methylation was analyzed using dot blots, bisulfite pyrosequencing, and Infinium HumanMethylation450 BeadChip assays. Gene expression was analyzed using RT-PCR and gene expression microarrays. Depletion of UHRF1 rapidly induced genome-wide DNA demethylation in CRC cells. Infinium BeadChip assays and bisulfite pyrosequencing revealed significant demethylation across entire genomic regions, including CpG islands, gene bodies, intergenic regions, and repetitive elements. Despite the substantial demethylation, however, UHRF1 depletion only minimally reversed CpG island hypermethylation-associated gene silencing. By contrast, the combination of UHRF1 depletion and histone deacetylase (HDAC) inhibition reactivated the silenced genes and strongly suppressed CRC cell proliferation. The combination of UHRF1 depletion and HDAC inhibition also induced marked changes in the gene expression profiles such that cell cycle-related genes were strikingly downregulated. CONCLUSIONS Our results suggest that (i) maintenance of DNA methylation in CRC cells is highly dependent on UHRF1; (ii) UHRF1 depletion rapidly induces DNA demethylation, though it is insufficient to fully reactivate the silenced genes; and (iii) dual targeting of UHRF1 and HDAC may be an effective new therapeutic strategy.
Collapse
Affiliation(s)
- Takeshi Niinuma
- Department of Molecular Biology, Sapporo Medical University School of Medicine, S1, W17, Chuo-ku, Sapporo, 060-8556, Japan
| | - Hiroshi Kitajima
- Department of Molecular Biology, Sapporo Medical University School of Medicine, S1, W17, Chuo-ku, Sapporo, 060-8556, Japan
| | - Masahiro Kai
- Department of Molecular Biology, Sapporo Medical University School of Medicine, S1, W17, Chuo-ku, Sapporo, 060-8556, Japan
| | - Eiichiro Yamamoto
- Department of Molecular Biology, Sapporo Medical University School of Medicine, S1, W17, Chuo-ku, Sapporo, 060-8556, Japan.,Department of Gastroenterology and Hepatology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Akira Yorozu
- Department of Molecular Biology, Sapporo Medical University School of Medicine, S1, W17, Chuo-ku, Sapporo, 060-8556, Japan
| | - Kazuya Ishiguro
- Department of Gastroenterology and Hepatology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Hajime Sasaki
- Department of Molecular Biology, Sapporo Medical University School of Medicine, S1, W17, Chuo-ku, Sapporo, 060-8556, Japan.,Department of Gastroenterology and Hepatology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Gota Sudo
- Department of Molecular Biology, Sapporo Medical University School of Medicine, S1, W17, Chuo-ku, Sapporo, 060-8556, Japan.,Department of Gastroenterology and Hepatology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Mutsumi Toyota
- Department of Molecular Biology, Sapporo Medical University School of Medicine, S1, W17, Chuo-ku, Sapporo, 060-8556, Japan
| | - Tomo Hatahira
- Department of Molecular Biology, Sapporo Medical University School of Medicine, S1, W17, Chuo-ku, Sapporo, 060-8556, Japan
| | - Reo Maruyama
- Project for Cancer Epigenomics, Cancer Institute, Japanese Foundation for Cancer, Tokyo, Japan
| | - Takashi Tokino
- Department of Medical Genome Science, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Hiroshi Nakase
- Department of Gastroenterology and Hepatology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Tamotsu Sugai
- Department of Molecular Diagnostic Pathology, Iwate Medical University, Morioka, Japan
| | - Hiromu Suzuki
- Department of Molecular Biology, Sapporo Medical University School of Medicine, S1, W17, Chuo-ku, Sapporo, 060-8556, Japan.
| |
Collapse
|
47
|
UHRF1 promotes renal cell carcinoma progression through epigenetic regulation of TXNIP. Oncogene 2019; 38:5686-5699. [PMID: 31043707 DOI: 10.1038/s41388-019-0822-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 07/18/2017] [Accepted: 03/29/2019] [Indexed: 12/24/2022]
Abstract
UHRF1 is an important epigenetic regulator that belongs to the UHRF family. Overexpression of UHRF1 has been found in many kinds of tumors and its overexpression is associated with poor prognosis and short survival in certain cancer types. However, its function in renal cell carcinoma (RCC) is not clear. Here we report that RCC tumor tissues had obviously higher UHRF1 expression than normal renal tissues. Downregulation of UHRF1 by siRNA or shRNA in RCC cell lines resulted in decreased cell viability, inhibited cell migration and invasion, and increased apoptosis. UHRF1 knockdown RCC xenografts also resulted in obviously inhibited tumor growth in vivo. After downregulation of UHRF1 in RCC cells, the expression of TXNIP was upregulated. In addition, after UHRF1 and TXNIP were simultaneously downregulated, cell viability and cell invasion increased, whereas cell apoptosis decreased compared with UHRF1 single downregulated cells. We also showed that UHRF1 could recruit HDAC1 to the TXNIP promoter and mediate the deacetylation of histone H3K9, resulting in the inhibition of TXNIP expression. Our results confirm that UHRF1 has oncogenic function in RCC and UHRF1 may promote tumor progression through epigenetic regulation of TXNIP. UHRF1 might be used as a therapeutic target for RCC treatment.
Collapse
|
48
|
Overexpression of UHRF1 promoted the proliferation of vascular smooth cells via the regulation of Geminin protein levels. Biosci Rep 2019; 39:BSR20181341. [PMID: 30710064 PMCID: PMC6390124 DOI: 10.1042/bsr20181341] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 01/14/2019] [Accepted: 01/31/2019] [Indexed: 11/17/2022] Open
Abstract
Geminin is an inhibitor of DNA replication licensing and cell cycle. Our previous study demonstrates that Geminin plays an important role in regulating phenotypic diversity and growth of vascular smooth cells (VSMCs). Ubiquitin-like with PHD and RING Finger domains 1 (UHRF1) is an epigenetic coordinator, whose RING domain confers intrinsic E3 ligase activity, mediating the ubiquitination of several proteins and the protein-protein interaction. Aberrant expression of UHRF1 was related to aggressiveness of multiple human malignancies, where knockdown of UHRF1 led to decreased proliferation of cancer cells. However, it is unclear whether proper UHRF1 function is involved in aberrant proliferation and phenotypic switching of VSMCs via altering Geminin protein levels. In present study, in UHRF1-overexpressing A10 cells, 3H-thymidine and 5-ethynyl-20-deoxyuridine (EdU) and CCK8 were used to examine the proliferation of VSMCs. RT-PCR and Western blot analyses were performed to investigate whether UHRF1-mediated effects were achieved by altering Geminin expression in VSMCs. RNA-seq analysis was performed to dissect related mechanisms or signaling pathways of these effects. The results of in vitro experiments suggested that UHRF1 prompted proliferation and cell cycle of VSMCs via the down-regulation of Geminin protein levels with no change in Geminin mRNA expression. Besides, PI3K-Akt signaling pathway was increased upon UHRF1 up-regulation. Our study demonstrated that overexpressing UHRF1 was involved in VSMCs proliferation through reducing inhibitory Geminin protein levels to promote cell cycle as well as activating PI3K-Akt signaling. This may provide key knowledge for the development of better strategies to prevent diseases related to VSMCs abnormal proliferation.
Collapse
|
49
|
Georges A, Coyaud E, Marcon E, Greenblatt J, Raught B, Frappier L. USP7 Regulates Cytokinesis through FBXO38 and KIF20B. Sci Rep 2019; 9:2724. [PMID: 30804394 PMCID: PMC6389929 DOI: 10.1038/s41598-019-39368-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 01/18/2019] [Indexed: 01/13/2023] Open
Abstract
The ubiquitin specific protease 7 (USP7 or HAUSP) is known to regulate a variety of cellular processes by binding and deubiquitylating specific target proteins. To gain a more comprehensive understanding of its interactions and functions, we used affinity purification coupled to mass spectrometry to profile USP7 interactions. This revealed a novel interaction with FBXO38, a poorly characterized F-box protein. We showed that USP7 stabilizes FBXO38 dependent on its catalytic activity by protecting FBXO38 from proteasomal degradation. We used a BioID approach to profile the protein interactions (and putative functions) of FBXO38, revealing an interaction with KIF20B, a Kinesin-6 protein required for efficient cytokinesis. FBXO38 was shown to function independently from an SCF complex to stabilize KIF20B. Consequently, depletion of either FBXO38 or USP7 led to dramatic decreases in KIF20B levels and KIF20B at the midbody, which were manifested in cytokinetic defects. Furthermore, cytokinetic defects associated with USP7 silencing were rescued by restoring FBXO38 or KIF20B. The results indicate a novel mechanism of regulating cytokinesis through USP7 and FBXO38.
Collapse
Affiliation(s)
- Anna Georges
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Etienne Coyaud
- The Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, M5G 1L7, Canada
| | - Edyta Marcon
- Donnelly Centre, University of Toronto, Toronto, Canada
| | - Jack Greenblatt
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada.,Donnelly Centre, University of Toronto, Toronto, Canada
| | - Brian Raught
- The Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, M5G 1L7, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Lori Frappier
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
50
|
Coordinated Dialogue between UHRF1 and DNMT1 to Ensure Faithful Inheritance of Methylated DNA Patterns. Genes (Basel) 2019; 10:genes10010065. [PMID: 30669400 PMCID: PMC6360023 DOI: 10.3390/genes10010065] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 12/22/2018] [Accepted: 01/11/2019] [Indexed: 12/19/2022] Open
Abstract
DNA methylation, catalyzed by DNA methyltransferases (DNMTs), is an epigenetic mark that needs to be faithfully replicated during mitosis in order to maintain cell phenotype during successive cell divisions. This epigenetic mark is located on the 5′-carbon of the cytosine mainly within cytosine–phosphate–guanine (CpG) dinucleotides. DNA methylation is asymmetrically positioned on both DNA strands, temporarily generating a hemi-methylated state after DNA replication. Hemi-methylation is a particular status of DNA that is recognized by ubiquitin-like containing plant homeodomain (PHD) and really interesting new gene (RING) finger domains 1 (UHRF1) through its SET- (Su(var)3-9, Enhancer-of-zeste and Trithorax) and RING-associated (SRA) domain. This interaction is considered to be involved in the recruitment of DNMT1 to chromatin in order to methylate the adequate cytosine on the newly synthetized DNA strand. The UHRF1/DNMT1 tandem plays a pivotal role in the inheritance of DNA methylation patterns, but the fine-tuning mechanism remains a mystery. Indeed, because DNMT1 experiences difficulties in finding the cytosine to be methylated, it requires the help of a guide, i.e., of UHRF1, which exhibits higher affinity for hemi-methylated DNA vs. non-methylated DNA. Two models of the UHRF1/DNMT1 dialogue were suggested to explain how DNMT1 is recruited to chromatin: (i) an indirect communication via histone H3 ubiquitination, and (ii) a direct interaction of UHRF1 with DNMT1. In the present review, these two models are discussed, and we try to show that they are compatible with each other.
Collapse
|