1
|
Tondeur EG, Voerman JS, Geleijnse MA, van Hofwegen LS, van Krimpen A, Koerner J, Mishra G, Song Z, Schliehe C. Sec22b and Stx4 Depletion Has No Major Effect on Cross-Presentation of PLGA Microsphere-Encapsulated Antigen and a Synthetic Long Peptide In Vitro. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:1203-1215. [PMID: 37638825 PMCID: PMC10592162 DOI: 10.4049/jimmunol.2200473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/08/2023] [Indexed: 08/29/2023]
Abstract
The induction of CTL responses by vaccines is important to combat infectious diseases and cancer. Biodegradable poly(lactic-co-glycolic acid) (PLGA) microspheres and synthetic long peptides are efficiently internalized by professional APCs and prime CTL responses after cross-presentation of Ags on MHC class I molecules. Specifically, they mainly use the cytosolic pathway of cross-presentation that requires endosomal escape, proteasomal processing, and subsequent MHC class I loading of Ags in the endoplasmic reticulum (ER) and/or the endosome. The vesicle SNARE protein Sec22b has been described as important for this pathway by mediating vesical trafficking for the delivery of ER-derived proteins to the endosome. As this function has also been challenged, we investigated the role of Sec22b in cross-presentation of the PLGA microsphere-encapsulated model Ag OVA and a related synthetic long peptide. Using CRISPR/Cas9-mediated genome editing, we generated Sec22b knockouts in two murine C57BL/6-derived APC lines and found no evidence for an essential role of Sec22b. Although pending experimental evidence, the target SNARE protein syntaxin 4 (Stx4) has been suggested to promote cross-presentation by interacting with Sec22b for the fusion of ER-derived vesicles with the endosome. In the current study, we show that, similar to Sec22b, Stx4 knockout in murine APCs had very limited effects on cross-presentation under the conditions tested. This study contributes to characterizing cross-presentation of two promising Ag delivery systems and adds to the discussion about the role of Sec22b/Stx4 in related pathways. Our data point toward SNARE protein redundancy in the cytosolic pathway of cross-presentation.
Collapse
Affiliation(s)
- Emma G.M. Tondeur
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Jane S.A. Voerman
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Mitchell A.A. Geleijnse
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Laure S. van Hofwegen
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Anneloes van Krimpen
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Julia Koerner
- Division of Immunology, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Gunja Mishra
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Ziye Song
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Christopher Schliehe
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|
2
|
Farquhar RE, Cheung TT, Logue MJE, McDonald FJ, Devor DC, Hamilton KL. Role of SNARE Proteins in the Insertion of KCa3.1 in the Plasma Membrane of a Polarized Epithelium. Front Physiol 2022; 13:905834. [PMID: 35832483 PMCID: PMC9271999 DOI: 10.3389/fphys.2022.905834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 06/01/2022] [Indexed: 11/29/2022] Open
Abstract
Targeting proteins to a specific membrane is crucial for proper epithelial cell function. KCa3.1, a calcium-activated, intermediate-conductance potassium channel, is targeted to the basolateral membrane (BLM) in epithelial cells. Surprisingly, the mechanism of KCa3.1 membrane targeting is poorly understood. We previously reported that targeting of KCa3.1 to the BLM of epithelial cells is Myosin-Vc-, Rab1-and Rab8-dependent. Here, we examine the role of the SNARE proteins VAMP3, SNAP-23 and syntaxin 4 (STX-4) in the targeting of KCa3.1 to the BLM of Fischer rat thyroid (FRT) epithelial cells. We carried out immunoblot, siRNA and Ussing chamber experiments on FRT cells, stably expressing KCa3.1-BLAP/Bir-A-KDEL, grown as high-resistance monolayers. siRNA-mediated knockdown of VAMP3 reduced BLM expression of KCa3.1 by 57 ± 5% (p ≤ 0.05, n = 5). Measurements of BLM-localized KCa3.1 currents, in Ussing chambers, demonstrated knockdown of VAMP3 reduced KCa3.1 current by 70 ± 4% (p ≤ 0.05, n = 5). Similarly, siRNA knockdown of SNAP-23 reduced the expression of KCa3.1 at the BLM by 56 ± 7% (p ≤ 0.01, n = 6) and reduced KCa3.1 current by 80 ± 11% (p ≤ 0.05, n = 6). Also, knockdown of STX-4 lowered the BLM expression of KCa3.1 by 54 ± 6% (p ≤ 0.05, n = 5) and reduced KCa3.1 current by 78 ± 11% (p ≤ 0.05, n = 5). Finally, co-immunoprecipitation experiments demonstrated associations between KCa3.1, VAMP3, SNAP-23 and STX-4. These data indicate that VAMP3, SNAP-23 and STX-4 are critical for the targeting KCa3.1 to BLM of polarized epithelial cells.
Collapse
Affiliation(s)
- Rachel E. Farquhar
- Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Tanya T. Cheung
- Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Matthew J. E. Logue
- Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Fiona J. McDonald
- Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Daniel C. Devor
- Department of Cell Biology, University of Pittsburgh, School of Medicine, Pittsburgh, PA, United States
| | - Kirk L. Hamilton
- Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
- *Correspondence: Kirk L. Hamilton,
| |
Collapse
|
3
|
Merz KE, Hwang J, Zhou C, Veluthakal R, McCown EM, Hamilton A, Oh E, Dai W, Fueger PT, Jiang L, Huss JM, Thurmond DC. Enrichment of the exocytosis protein STX4 in skeletal muscle remediates peripheral insulin resistance and alters mitochondrial dynamics via Drp1. Nat Commun 2022; 13:424. [PMID: 35058456 PMCID: PMC8776765 DOI: 10.1038/s41467-022-28061-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 01/05/2022] [Indexed: 12/15/2022] Open
Abstract
Mitochondrial dysfunction is implicated in skeletal muscle insulin resistance. Syntaxin 4 (STX4) levels are reduced in human diabetic skeletal muscle, and global transgenic enrichment of STX4 expression improves insulin sensitivity in mice. Here, we show that transgenic skeletal muscle-specific STX4 enrichment (skmSTX4tg) in mice reverses established insulin resistance and improves mitochondrial function in the context of diabetogenic stress. Specifically, skmSTX4tg reversed insulin resistance caused by high-fat diet (HFD) without altering body weight or food consumption. Electron microscopy of wild-type mouse muscle revealed STX4 localisation at or proximal to the mitochondrial membrane. STX4 enrichment prevented HFD-induced mitochondrial fragmentation and dysfunction through a mechanism involving STX4-Drp1 interaction and elevated AMPK-mediated phosphorylation at Drp1 S637, which favors fusion. Our findings challenge the dogma that STX4 acts solely at the plasma membrane, revealing that STX4 localises at/proximal to and regulates the function of mitochondria in muscle. These results establish skeletal muscle STX4 enrichment as a candidate therapeutic strategy to reverse peripheral insulin resistance.
Collapse
Affiliation(s)
- Karla E Merz
- Department of Molecular & Cellular Endocrinology, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA, USA
- Irell and Manella Graduate School of Biological Sciences, City of Hope, Duarte, CA, USA
- Amgen, Thousand Oaks, CA, USA
| | - Jinhee Hwang
- Department of Molecular & Cellular Endocrinology, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA, USA
| | - Chunxue Zhou
- Department of Molecular & Cellular Endocrinology, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA, USA
| | - Rajakrishnan Veluthakal
- Department of Molecular & Cellular Endocrinology, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA, USA
| | - Erika M McCown
- Department of Molecular & Cellular Endocrinology, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA, USA
| | - Angelica Hamilton
- Department of Molecular & Cellular Endocrinology, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA, USA
| | - Eunjin Oh
- Department of Molecular & Cellular Endocrinology, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA, USA
| | - Wenting Dai
- Department of Molecular & Cellular Endocrinology, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA, USA
| | - Patrick T Fueger
- Department of Molecular & Cellular Endocrinology, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA, USA
- Comprehensive Metabolic Phenotyping Core, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Lei Jiang
- Department of Molecular & Cellular Endocrinology, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA, USA
| | - Janice M Huss
- Department of Molecular & Cellular Endocrinology, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA, USA
- Washington University School of Medicine, St. Louis, MO, USA
| | - Debbie C Thurmond
- Department of Molecular & Cellular Endocrinology, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA, USA.
| |
Collapse
|
4
|
Motoike S, Taguchi K, Harada K, Asano M, Hide I, Tanaka S, Irifune M, Sakai N. Syntaxin 3 interacts with serotonin transporter and regulates its function. J Pharmacol Sci 2021; 145:297-307. [PMID: 33712280 DOI: 10.1016/j.jphs.2021.01.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 01/16/2021] [Accepted: 01/19/2021] [Indexed: 10/22/2022] Open
Abstract
Herein, we investigated the functional association of the serotonin transporter (SERT) with syntaxin-3 (STX3). We first overexpressed SERT and STX3 in various cells and examined their interaction, localization, and functional association. Immunoprecipitation studies revealed that STX3 interacted with SERT when expressed in COS-7 cells. Immunocytochemical studies revealed that SERT and STX3 were colocalized in the endoplasmic reticulum (ER) and Golgi apparatus. STX3 overexpression significantly reduced the uptake activity of SERT by attenuating its plasma membrane expression, suggesting that overexpressed STX3 anchors SERT in the ER and Golgi apparatus. STX3 knockdown did not affect the uptake activity of SERT but altered its glycosylation state. To elucidate the association of STX3 with SERT under physiological conditions, rather than overexpressing cells, we investigated this interaction in polarized Caco-2 cells, which endogenously express both proteins. Immunocytochemical studies revealed that SERT and STX3 were localized in microvilli-like structures at the apical plasma membrane. STX3 knockdown marginally but significantly decreased the serotonin uptake activity of Caco-2 cells, suggesting that STX3 positively regulates SERT function in Caco-2 cells, as opposed to SERT regulation by STX3 in overexpressing cells. Collectively, STX3 may colocalize with SERT during SERT membrane trafficking and regulate SERT function in an STX3-expressing lesion-dependent manner.
Collapse
Affiliation(s)
- Serika Motoike
- Department of Molecular and Pharmacological Neuroscience, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kausmi, Minami-ku, Hiroshima 734-8551, Japan; Department of Dental Anesthesiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kausmi, Minami-ku, Hiroshima 734-8551, Japan
| | - Kei Taguchi
- Department of Molecular and Pharmacological Neuroscience, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kausmi, Minami-ku, Hiroshima 734-8551, Japan
| | - Kana Harada
- Department of Molecular and Pharmacological Neuroscience, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kausmi, Minami-ku, Hiroshima 734-8551, Japan
| | - Masaya Asano
- Department of Molecular and Pharmacological Neuroscience, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kausmi, Minami-ku, Hiroshima 734-8551, Japan
| | - Izumi Hide
- Department of Molecular and Pharmacological Neuroscience, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kausmi, Minami-ku, Hiroshima 734-8551, Japan
| | - Shigeru Tanaka
- Department of Molecular and Pharmacological Neuroscience, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kausmi, Minami-ku, Hiroshima 734-8551, Japan
| | - Masahiro Irifune
- Department of Dental Anesthesiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kausmi, Minami-ku, Hiroshima 734-8551, Japan
| | - Norio Sakai
- Department of Molecular and Pharmacological Neuroscience, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kausmi, Minami-ku, Hiroshima 734-8551, Japan.
| |
Collapse
|
5
|
Röhl J, West ZE, Rudolph M, Zaharia A, Van Lonkhuyzen D, Hickey DK, Semmler ABT, Murray RZ. Invasion by activated macrophages requires delivery of nascent membrane-type-1 matrix metalloproteinase through late endosomes/lysosomes to the cell surface. Traffic 2019; 20:661-673. [PMID: 31297933 DOI: 10.1111/tra.12675] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 07/08/2019] [Accepted: 07/09/2019] [Indexed: 12/17/2022]
Abstract
Macrophage migration into injured or infected tissue is a key aspect in the pathophysiology of many diseases where inflammation is a driving factor. Membrane-type-1 matrix metalloproteinase (MT1-MMP) cleaves extracellular matrix components to facilitate invasion. Here we show that, unlike the constitutive MT1-MMP surface recycling seen in cancer cells, unactivated macrophages express low levels of MT1-MMP. Upon lipopolysaccharide (LPS) activation, MT1-MMP synthesis dramatically increases 10-fold at the surface by 15 hours. MT1-MMP is trafficked from the Golgi complex to the surface via late endosomes/lysosomes in a pathway regulated by the late endosome/lysosome R-SNAREs VAMP7 and VAMP8. These form two separate complexes with the surface Q-SNARE complex Stx4/SNAP23 to regulate MT1-MMP delivery to the plasma membrane. Loss of either one of these SNAREs leads to a reduction in surface MT1-MMP, gelatinase activity and reduced invasion. Thus, inhibiting MT1-MMP transport through this pathway could reduce macrophage migration and the resulting inflammation.
Collapse
Affiliation(s)
- Joan Röhl
- Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Zoe E West
- Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Maren Rudolph
- Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Andreea Zaharia
- Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Derek Van Lonkhuyzen
- Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Danica K Hickey
- Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Annalese B T Semmler
- Institute of Health and Biomedical Innovation, School of Clinical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Rachael Z Murray
- Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia
| |
Collapse
|
6
|
Madrigal MP, Portalés A, SanJuan MP, Jurado S. Postsynaptic SNARE Proteins: Role in Synaptic Transmission and Plasticity. Neuroscience 2018; 420:12-21. [PMID: 30458218 DOI: 10.1016/j.neuroscience.2018.11.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 10/03/2018] [Accepted: 11/10/2018] [Indexed: 12/30/2022]
Abstract
Soluble N-ethylmaleimide sensitive factor attachment protein receptor (SNARE) proteins mediate membrane fusion events in eukaryotic cells. Traditionally recognized as major players in regulating presynaptic neurotransmitter release, accumulative evidence over recent years has identified several SNARE proteins implicated in important postsynaptic processes such as neurotransmitter receptor trafficking and synaptic plasticity. Here we analyze the emerging data revealing this novel functional dimension for SNAREs with a focus on the molecular specialization of vesicular recycling and fusion in dendrites compared to those at axon terminals and its impact in synaptic transmission and plasticity.
Collapse
Affiliation(s)
| | - Adrián Portalés
- Instituto de Neurociencias CSIC-UMH, 03550 San Juan de Alicante, Spain
| | | | - Sandra Jurado
- Instituto de Neurociencias CSIC-UMH, 03550 San Juan de Alicante, Spain.
| |
Collapse
|
7
|
A Rationale for Mesoscopic Domain Formation in Biomembranes. Biomolecules 2018; 8:biom8040104. [PMID: 30274275 PMCID: PMC6316292 DOI: 10.3390/biom8040104] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 09/04/2018] [Accepted: 09/06/2018] [Indexed: 12/25/2022] Open
Abstract
Cell plasma membranes display a dramatically rich structural complexity characterized by functional sub-wavelength domains with specific lipid and protein composition. Under favorable experimental conditions, patterned morphologies can also be observed in vitro on model systems such as supported membranes or lipid vesicles. Lipid mixtures separating in liquid-ordered and liquid-disordered phases below a demixing temperature play a pivotal role in this context. Protein-protein and protein-lipid interactions also contribute to membrane shaping by promoting small domains or clusters. Such phase separations displaying characteristic length-scales falling in-between the nanoscopic, molecular scale on the one hand and the macroscopic scale on the other hand, are named mesophases in soft condensed matter physics. In this review, we propose a classification of the diverse mechanisms leading to mesophase separation in biomembranes. We distinguish between mechanisms relying upon equilibrium thermodynamics and those involving out-of-equilibrium mechanisms, notably active membrane recycling. In equilibrium, we especially focus on the many mechanisms that dwell on an up-down symmetry breaking between the upper and lower bilayer leaflets. Symmetry breaking is an ubiquitous mechanism in condensed matter physics at the heart of several important phenomena. In the present case, it can be either spontaneous (domain buckling) or explicit, i.e., due to an external cause (global or local vesicle bending properties). Whenever possible, theoretical predictions and simulation results are confronted to experiments on model systems or living cells, which enables us to identify the most realistic mechanisms from a biological perspective.
Collapse
|
8
|
Easton JA, Albuloushi AK, Kamps MAF, Brouns GHMR, Broers JLV, Coull BJ, Oji V, van Geel M, van Steensel MAM, Martin PE. A rare missense mutation in GJB3
(Cx31G45E) is associated with a unique cellular phenotype resulting in necrotic cell death. Exp Dermatol 2018; 28:1106-1113. [DOI: 10.1111/exd.13542] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/09/2018] [Indexed: 11/27/2022]
Affiliation(s)
- Jennifer A. Easton
- Department of Dermatology; Maastricht University Medical Centre; Maastricht The Netherlands
- GROW School for Oncology and Developmental Biology; Maastricht University; Maastricht The Netherlands
| | - Ahmad K. Albuloushi
- Department of Life Sciences; School of Health and Life Sciences; Glasgow Caledonian University; Glasgow UK
| | - Miriam A. F. Kamps
- Department of Dermatology; Maastricht University Medical Centre; Maastricht The Netherlands
- GROW School for Oncology and Developmental Biology; Maastricht University; Maastricht The Netherlands
- Department of Genetics and Cell Biology; Maastricht University; Maastricht The Netherlands
| | - Gladys H. M. R. Brouns
- Department of Dermatology; Maastricht University Medical Centre; Maastricht The Netherlands
| | - Jos L. V. Broers
- GROW School for Oncology and Developmental Biology; Maastricht University; Maastricht The Netherlands
- Department of Genetics and Cell Biology; Maastricht University; Maastricht The Netherlands
| | - Barry J. Coull
- Department of Dermatology; Maastricht University Medical Centre; Maastricht The Netherlands
- Division of Biological Chemistry and Drug Discovery; College of Life Sciences; University of Dundee; Dundee UK
| | - Vincent Oji
- Department of Dermatology; University Hospital Münster; Münster Germany
| | - Michel van Geel
- Department of Dermatology; Maastricht University Medical Centre; Maastricht The Netherlands
- GROW School for Oncology and Developmental Biology; Maastricht University; Maastricht The Netherlands
| | - Maurice A. M. van Steensel
- Department of Dermatology; Maastricht University Medical Centre; Maastricht The Netherlands
- GROW School for Oncology and Developmental Biology; Maastricht University; Maastricht The Netherlands
- Skin Research Institute of Singapore; Institute of Medical Biology, Immunos; Singapore
| | - Patricia E. Martin
- Department of Life Sciences; School of Health and Life Sciences; Glasgow Caledonian University; Glasgow UK
| |
Collapse
|
9
|
Giovannone AJ, Reales E, Bhattaram P, Fraile-Ramos A, Weimbs T. Tracking Endocytosis and Intracellular Trafficking of Epitope-tagged Syntaxin 3 by Antibody Feeding in Live, Polarized MDCK Cells. Bio Protoc 2018; 8:e2453. [PMID: 29564371 DOI: 10.21769/bioprotoc.2453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
The uptake and trafficking of cell surface receptors can be monitored by a technique called 'antibody-feeding' which uses an externally applied antibody to label the receptor on the surface of cultured, live cells. Here, we adapt the traditional antibody-feeding experiment to polarized epithelial cells (Madin-Darby Canine Kidney) grown on permeable Transwell supports. By adding two tandem extracellular Myc epitope tags to the C-terminus of the SNARE protein syntaxin 3 (Stx3), we provided a site where an antibody could bind, allowing us to perform antibody-feeding experiments on cells with distinct apical and basolateral membranes. With this procedure, we observed the endocytosis and intracellular trafficking of Stx3. Specifically, we assessed the internalization rate of Stx3 from the basolateral membrane and observed the ensuing endocytic route in both time and space using immunofluorescence microscopy on cells fixed at different time points. For cell lines that form a polarized monolayer containing distinct apical and basolateral membranes when cultured on permeable supports, e.g., MDCK or Caco-2, this protocol can measure the rate of endocytosis and follow the subsequent trafficking of a target protein from either limiting membrane.
Collapse
Affiliation(s)
- Adrian J Giovannone
- Department of Molecular, Cellular, and Developmental Biology and Neuroscience Research Institute, University of California, Santa Barbara, California, USA
| | - Elena Reales
- Department of Molecular, Cellular, and Developmental Biology and Neuroscience Research Institute, University of California, Santa Barbara, California, USA
| | - Pallavi Bhattaram
- Department of Molecular, Cellular, and Developmental Biology and Neuroscience Research Institute, University of California, Santa Barbara, California, USA
| | - Alberto Fraile-Ramos
- Universidad Complutense de Madrid, Departmento de Biología Celular, Facultad de Medicina, Plaza de Ramoń y Cajal, s/n Ciudad Universitaria, Madrid, Spain
| | - Thomas Weimbs
- Department of Molecular, Cellular, and Developmental Biology and Neuroscience Research Institute, University of California, Santa Barbara, California, USA
| |
Collapse
|
10
|
Benet J, Paillusson F, Kusumaatmaja H. On the critical Casimir interaction between anisotropic inclusions on a membrane. Phys Chem Chem Phys 2017; 19:24188-24196. [PMID: 28840923 DOI: 10.1039/c7cp03874g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Using a lattice model and a versatile thermodynamic integration scheme, we study the critical Casimir interactions between inclusions embedded in a two-dimensional critical binary mixtures. For single-domain inclusions we demonstrate that the interactions are very long range, and their magnitudes strongly depend on the affinity of the inclusions with the species in the binary mixtures, ranging from repulsive when two inclusions have opposing affinities to attractive when they have the same affinities. When one of the inclusions has no preference for either of the species, we find negligible critical Casimir interactions. For multiple-domain inclusions, mimicking the observations that membrane proteins often have several domains with varying affinities to the surrounding lipid species, the presence of domains with opposing affinities does not cancel the interactions altogether. Instead we can observe both attractive and repulsive interactions depending on their relative orientations. With increasing number of domains per inclusion, the range and magnitude of the effective interactions decrease in a similar fashion to those of electrostatic multipoles. Finally, clusters formed by multiple-domain inclusions can result in an effective affinity patterning due to the anisotropic character of the Casimir interactions between the building blocks.
Collapse
Affiliation(s)
- Jorge Benet
- Department of Physics, Durham University, Durham, DH1 3LE, UK.
| | | | | |
Collapse
|
11
|
Giovannone AJ, Reales E, Bhattaram P, Fraile-Ramos A, Weimbs T. Monoubiquitination of syntaxin 3 leads to retrieval from the basolateral plasma membrane and facilitates cargo recruitment to exosomes. Mol Biol Cell 2017; 28:2843-2853. [PMID: 28814500 PMCID: PMC5638587 DOI: 10.1091/mbc.e17-07-0461] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 08/09/2017] [Accepted: 08/11/2017] [Indexed: 01/02/2023] Open
Abstract
Monoubiquitination of Stx3 leads to efficient endocytosis from the basolateral plasma membrane and trafficking into the multivesicular body/exosomal pathway. Stx3 plays a role in cargo recruitment into exosomes. This pathway is exploited by HCMV for virion excretion. Syntaxin 3 (Stx3), a SNARE protein located and functioning at the apical plasma membrane of epithelial cells, is required for epithelial polarity. A fraction of Stx3 is localized to late endosomes/lysosomes, although how it traffics there and its function in these organelles is unknown. Here we report that Stx3 undergoes monoubiquitination in a conserved polybasic domain. Stx3 present at the basolateral—but not the apical—plasma membrane is rapidly endocytosed, targeted to endosomes, internalized into intraluminal vesicles (ILVs), and excreted in exosomes. A nonubiquitinatable mutant of Stx3 (Stx3-5R) fails to enter this pathway and leads to the inability of the apical exosomal cargo protein GPRC5B to enter the ILV/exosomal pathway. This suggests that ubiquitination of Stx3 leads to removal from the basolateral membrane to achieve apical polarity, that Stx3 plays a role in the recruitment of cargo to exosomes, and that the Stx3-5R mutant acts as a dominant-negative inhibitor. Human cytomegalovirus (HCMV) acquires its membrane in an intracellular compartment and we show that Stx3-5R strongly reduces the number of excreted infectious viral particles. Altogether these results suggest that Stx3 functions in the transport of specific proteins to apical exosomes and that HCMV exploits this pathway for virion excretion.
Collapse
Affiliation(s)
- Adrian J Giovannone
- Department of Molecular, Cellular, and Developmental Biology and Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA 93106
| | - Elena Reales
- Department of Molecular, Cellular, and Developmental Biology and Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA 93106
| | - Pallavi Bhattaram
- Department of Molecular, Cellular, and Developmental Biology and Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA 93106
| | - Alberto Fraile-Ramos
- Departamento de Biología Celular, Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Thomas Weimbs
- Department of Molecular, Cellular, and Developmental Biology and Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA 93106
| |
Collapse
|
12
|
Merklinger E, Schloetel JG, Weber P, Batoulis H, Holz S, Karnowski N, Finke J, Lang T. The packing density of a supramolecular membrane protein cluster is controlled by cytoplasmic interactions. eLife 2017; 6. [PMID: 28722652 PMCID: PMC5536946 DOI: 10.7554/elife.20705] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 07/17/2017] [Indexed: 01/24/2023] Open
Abstract
Molecule clustering is an important mechanism underlying cellular self-organization. In the cell membrane, a variety of fundamentally different mechanisms drive membrane protein clustering into nanometre-sized assemblies. To date, it is unknown whether this clustering process can be dissected into steps differentially regulated by independent mechanisms. Using clustered syntaxin molecules as an example, we study the influence of a cytoplasmic protein domain on the clustering behaviour. Analysing protein mobility, cluster size and accessibility to myc-epitopes we show that forces acting on the transmembrane segment produce loose clusters, while cytoplasmic protein interactions mediate a tightly packed state. We conclude that the data identify a hierarchy in membrane protein clustering likely being a paradigm for many cellular self-organization processes. DOI:http://dx.doi.org/10.7554/eLife.20705.001
Collapse
Affiliation(s)
- Elisa Merklinger
- Membrane Biochemistry, Life and Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Jan-Gero Schloetel
- Membrane Biochemistry, Life and Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Pascal Weber
- Membrane Biochemistry, Life and Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Helena Batoulis
- Membrane Biochemistry, Life and Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Sarah Holz
- Membrane Biochemistry, Life and Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Nora Karnowski
- Chemical Biology, Life and Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Jérôme Finke
- Membrane Biochemistry, Life and Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Thorsten Lang
- Membrane Biochemistry, Life and Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| |
Collapse
|
13
|
Soo Hoo L, Banna CD, Radeke CM, Sharma N, Albertolle ME, Low SH, Weimbs T, Vandenberg CA. The SNARE Protein Syntaxin 3 Confers Specificity for Polarized Axonal Trafficking in Neurons. PLoS One 2016; 11:e0163671. [PMID: 27662481 PMCID: PMC5035089 DOI: 10.1371/journal.pone.0163671] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 09/12/2016] [Indexed: 11/19/2022] Open
Abstract
Cell polarity and precise subcellular protein localization are pivotal to neuronal function. The SNARE machinery underlies intracellular membrane fusion events, but its role in neuronal polarity and selective protein targeting remain unclear. Here we report that syntaxin 3 is involved in orchestrating polarized trafficking in cultured rat hippocampal neurons. We show that syntaxin 3 localizes to the axonal plasma membrane, particularly to axonal tips, whereas syntaxin 4 localizes to the somatodendritic plasma membrane. Disruption of a conserved N-terminal targeting motif, which causes mislocalization of syntaxin 3, results in coincident mistargeting of the axonal cargos neuron-glia cell adhesion molecule (NgCAM) and neurexin, but not transferrin receptor, a somatodendritic cargo. Similarly, RNAi-mediated knockdown of endogenous syntaxin 3 leads to partial mistargeting of NgCAM, demonstrating that syntaxin 3 plays an important role in its targeting. Additionally, overexpression of syntaxin 3 results in increased axonal growth. Our findings suggest an important role for syntaxin 3 in maintaining neuronal polarity and in the critical task of selective trafficking of membrane protein to axons.
Collapse
Affiliation(s)
- Linda Soo Hoo
- Department of Molecular, Cellular, and Developmental Biology, University of California Santa Barbara, Santa Barbara, California, United States of America
- Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, California, United States of America
| | - Chris D. Banna
- Department of Molecular, Cellular, and Developmental Biology, University of California Santa Barbara, Santa Barbara, California, United States of America
- Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, California, United States of America
| | - Carolyn M. Radeke
- Department of Molecular, Cellular, and Developmental Biology, University of California Santa Barbara, Santa Barbara, California, United States of America
- Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, California, United States of America
| | - Nikunj Sharma
- Department of Molecular, Cellular, and Developmental Biology, University of California Santa Barbara, Santa Barbara, California, United States of America
- Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, California, United States of America
| | - Mary E. Albertolle
- Department of Molecular, Cellular, and Developmental Biology, University of California Santa Barbara, Santa Barbara, California, United States of America
- Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, California, United States of America
| | - Seng Hui Low
- Department of Molecular, Cellular, and Developmental Biology, University of California Santa Barbara, Santa Barbara, California, United States of America
- Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, California, United States of America
| | - Thomas Weimbs
- Department of Molecular, Cellular, and Developmental Biology, University of California Santa Barbara, Santa Barbara, California, United States of America
- Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, California, United States of America
| | - Carol A. Vandenberg
- Department of Molecular, Cellular, and Developmental Biology, University of California Santa Barbara, Santa Barbara, California, United States of America
- Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, California, United States of America
- * E-mail:
| |
Collapse
|
14
|
Destainville N, Schmidt TH, Lang T. Where Biology Meets Physics--A Converging View on Membrane Microdomain Dynamics. CURRENT TOPICS IN MEMBRANES 2015; 77:27-65. [PMID: 26781829 DOI: 10.1016/bs.ctm.2015.10.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
For several decades, the phenomenon of membrane component segregation into microdomains has been a well-known and highly debated subject, and varying concepts including the raft hypothesis, the fence-and-picket model, hydrophobic-mismatch, and specific protein-protein interactions have been offered as explanations. Here, we review the level of insight into the molecular architecture of membrane domains one is capable of obtaining through biological experimentation. Using SNARE proteins as a paradigm, comprehensive data suggest that several dozens of molecules crowd together into almost circular spots smaller than 100 nm. Such clusters are highly dynamical as they constantly capture and lose molecules. The organization has a strong influence on the functional availability of proteins and likely provides a molecular scaffold for more complex protein networks. Despite this high level of insight, fundamental open questions remain, applying not only to SNARE protein domains but more generally to all types of membrane domains. In this context, we explain the view of physical models and how they are beneficial in advancing our concept of micropatterning. While biological models generally remain qualitative and descriptive, physics aims towards making them quantitative and providing reproducible numbers, in order to discriminate between different mechanisms which have been proposed to account for experimental observations. Despite the fundamental differences in biological and physical approaches as far as cell membrane microdomains are concerned, we are able to show that convergence on common points of views is in reach.
Collapse
Affiliation(s)
- Nicolas Destainville
- Laboratoire de Physique Theorique (IRSAMC), Universite Toulouse 3-Paul Sabatier, UPS/CNRS, Toulouse, France
| | - Thomas H Schmidt
- Department of Membrane Biochemistry, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Thorsten Lang
- Department of Membrane Biochemistry, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| |
Collapse
|
15
|
Homsi Y, Schloetel JG, Scheffer KD, Schmidt TH, Destainville N, Florin L, Lang T. The extracellular δ-domain is essential for the formation of CD81 tetraspanin webs. Biophys J 2015; 107:100-13. [PMID: 24988345 DOI: 10.1016/j.bpj.2014.05.028] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 05/14/2014] [Accepted: 05/20/2014] [Indexed: 12/15/2022] Open
Abstract
CD81 is a ubiquitously expressed member of the tetraspanin family. It forms large molecular platforms, so-called tetraspanin webs that play physiological roles in a variety of cellular functions and are involved in viral and parasite infections. We have investigated which part of the CD81 molecule is required for the formation of domains in the cell membranes of T-cells and hepatocytes. Surprisingly, we find that large CD81 platforms assemble via the short extracellular δ-domain, independent from a strong primary partner binding and from weak interactions mediated by palmitoylation. The δ-domain is also essential for the platforms to function during viral entry. We propose that, instead of stable binary interactions, CD81 interactions via the small δ-domain, possibly involving a dimerization step, play the key role in organizing CD81 into large tetraspanin webs and controlling its function.
Collapse
Affiliation(s)
- Yahya Homsi
- Department of Membrane Biochemistry, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Jan-Gero Schloetel
- Department of Membrane Biochemistry, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Konstanze D Scheffer
- Department of Medical Microbiology and Hygiene, University Medical Centre of the Johannes Gutenberg University, Mainz, Germany
| | - Thomas H Schmidt
- Department of Membrane Biochemistry, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Nicolas Destainville
- Université Toulouse 3-Paul Sabatier, UPS, Laboratoire de Physique Théorique (IRSAMC), Toulouse, France
| | - Luise Florin
- Department of Medical Microbiology and Hygiene, University Medical Centre of the Johannes Gutenberg University, Mainz, Germany
| | - Thorsten Lang
- Department of Membrane Biochemistry, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany.
| |
Collapse
|
16
|
Milovanovic D, Jahn R. Organization and dynamics of SNARE proteins in the presynaptic membrane. Front Physiol 2015; 6:89. [PMID: 25852575 PMCID: PMC4365744 DOI: 10.3389/fphys.2015.00089] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Accepted: 03/05/2015] [Indexed: 01/19/2023] Open
Abstract
Our view of the lateral organization of lipids and proteins in the plasma membrane has evolved substantially in the last few decades. It is widely accepted that many, if not all, plasma membrane proteins and lipids are organized in specific domains. These domains vary widely in size, composition, and stability, and they represent platforms governing diverse cell functions. The presynaptic plasma membrane is a well-studied example of a membrane which undergoes rearrangements, especially during exo- and endocytosis. Many proteins and lipids involved in presynaptic function are known, and major efforts have been made to understand their spatial organization and dynamics. Here, we focus on the mechanisms underlying the organization of SNAREs, the key proteins of the fusion machinery, in distinct domains, and we discuss the functional significance of these clusters.
Collapse
Affiliation(s)
- Dragomir Milovanovic
- Department of Neurobiology, Max Planck Institute for Biophysical Chemistry Göttingen, Germany
| | - Reinhard Jahn
- Department of Neurobiology, Max Planck Institute for Biophysical Chemistry Göttingen, Germany
| |
Collapse
|
17
|
Enrich C, Rentero C, Hierro A, Grewal T. Role of cholesterol in SNARE-mediated trafficking on intracellular membranes. J Cell Sci 2015; 128:1071-81. [PMID: 25653390 DOI: 10.1242/jcs.164459] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The cell surface delivery of extracellular matrix (ECM) and integrins is fundamental for cell migration in wound healing and during cancer cell metastasis. This process is not only driven by several soluble NSF attachment protein (SNAP) receptor (SNARE) proteins, which are key players in vesicle transport at the cell surface and intracellular compartments, but is also tightly modulated by cholesterol. Cholesterol-sensitive SNAREs at the cell surface are relatively well characterized, but it is less well understood how altered cholesterol levels in intracellular compartments impact on SNARE localization and function. Recent insights from structural biology, protein chemistry and cell microscopy have suggested that a subset of the SNAREs engaged in exocytic and retrograde pathways dynamically 'sense' cholesterol levels in the Golgi and endosomal membranes. Hence, the transport routes that modulate cellular cholesterol distribution appear to trigger not only a change in the location and functioning of SNAREs at the cell surface but also in endomembranes. In this Commentary, we will discuss how disrupted cholesterol transport through the Golgi and endosomal compartments ultimately controls SNARE-mediated delivery of ECM and integrins to the cell surface and, consequently, cell migration.
Collapse
Affiliation(s)
- Carlos Enrich
- Departament de Biologia Cellular, Immunologia i Neurociències, Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS). Facultat de Medicina, Universitat de Barcelona, 08036-Barcelona, Spain
| | - Carles Rentero
- Departament de Biologia Cellular, Immunologia i Neurociències, Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS). Facultat de Medicina, Universitat de Barcelona, 08036-Barcelona, Spain
| | - Aitor Hierro
- Structural Biology Unit, CIC bioGUNE, Bizkaia Technology Park, 48160 Derio; IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain
| | - Thomas Grewal
- Faculty of Pharmacy, University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
18
|
Jurado S. The dendritic SNARE fusion machinery involved in AMPARs insertion during long-term potentiation. Front Cell Neurosci 2014; 8:407. [PMID: 25565955 PMCID: PMC4273633 DOI: 10.3389/fncel.2014.00407] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 11/11/2014] [Indexed: 12/14/2022] Open
Abstract
Sorting endosomes carry α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-type glutamate receptors (AMPARs) from their maturation sites to their final destination at the dendritic plasma membrane through both constitutive and regulated exocytosis. Insertion of functional AMPARs into the postsynaptic membrane is essential for maintaining fast excitatory synaptic transmission and plasticity. Despite this crucial role in neuronal function, the machinery mediating the fusion of AMPAR-containing endosomes in dendrites has been largely understudied in comparison to presynaptic vesicle exocytosis. Increasing evidence suggests that similarly to neurotransmitter release, AMPARs insertion relies on the formation of a SNARE complex (soluble NSF-attachment protein receptor), whose composition in dendrites has just begun to be elucidated. This review analyzes recent findings of the fusion machinery involved in regulated AMPARs insertion and discusses how dendritic exocytosis and AMPARs lateral diffusion may work together to support synaptic plasticity.
Collapse
Affiliation(s)
- Sandra Jurado
- Department of Pharmacology, University of Maryland School of MedicineBaltimore, MD, USA
| |
Collapse
|
19
|
Transcriptional expression of myelin basic protein in oligodendrocytes depends on functional syntaxin 4: a potential correlation with autocrine signaling. Mol Cell Biol 2014; 35:675-87. [PMID: 25512606 DOI: 10.1128/mcb.01389-14] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Myelination of axons by oligodendrocytes is essential for saltatory nerve conduction. To form myelin membranes, a coordinated synthesis and subsequent polarized transport of myelin components are necessary. Here, we show that as part of the mechanism to establish membrane polarity, oligodendrocytes exploit a polarized distribution of the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) machinery components syntaxins 3 and 4, localizing to the cell body and the myelin membrane, respectively. Our data further reveal that the expression of myelin basic protein (MBP), a myelin-specific protein that is synthesized "on site" after transport of its mRNA, depends on the correct functioning of the SNARE machinery, which is not required for mRNA granule assembly and transport per se. Thus, downregulation and overexpression of syntaxin 4 but not syntaxin 3 in oligodendrocyte progenitor cells but not immature oligodendrocytes impeded MBP mRNA transcription, thereby preventing MBP protein synthesis. The expression and localization of another myelin-specific protein, proteolipid protein (PLP), was unaltered. Strikingly, conditioned medium obtained from developing oligodendrocytes was able to rescue the block of MBP mRNA transcription in syntaxin 4-downregulated cells. These findings indicate that the initiation of the biosynthesis of MBP mRNA relies on a syntaxin 4-dependent mechanism, which likely involves activation of an autocrine signaling pathway.
Collapse
|
20
|
|
21
|
Hissa B, Pontes B, Roma PMS, Alves AP, Rocha CD, Valverde TM, Aguiar PHN, Almeida FP, Guimarães AJ, Guatimosim C, Silva AM, Fernandes MC, Andrews NW, Viana NB, Mesquita ON, Agero U, Andrade LO. Membrane cholesterol removal changes mechanical properties of cells and induces secretion of a specific pool of lysosomes. PLoS One 2013; 8:e82988. [PMID: 24376622 PMCID: PMC3869752 DOI: 10.1371/journal.pone.0082988] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 10/29/2013] [Indexed: 11/18/2022] Open
Abstract
In a previous study we had shown that membrane cholesterol removal induced unregulated lysosomal exocytosis events leading to the depletion of lysosomes located at cell periphery. However, the mechanism by which cholesterol triggered these exocytic events had not been uncovered. In this study we investigated the importance of cholesterol in controlling mechanical properties of cells and its connection with lysosomal exocytosis. Tether extraction with optical tweezers and defocusing microscopy were used to assess cell dynamics in mouse fibroblasts. These assays showed that bending modulus and surface tension increased when cholesterol was extracted from fibroblasts plasma membrane upon incubation with MβCD, and that the membrane-cytoskeleton relaxation time increased at the beginning of MβCD treatment and decreased at the end. We also showed for the first time that the amplitude of membrane-cytoskeleton fluctuation decreased during cholesterol sequestration, showing that these cells become stiffer. These changes in membrane dynamics involved not only rearrangement of the actin cytoskeleton, but also de novo actin polymerization and stress fiber formation through Rho activation. We found that these mechanical changes observed after cholesterol sequestration were involved in triggering lysosomal exocytosis. Exocytosis occurred even in the absence of the lysosomal calcium sensor synaptotagmin VII, and was associated with actin polymerization induced by MβCD. Notably, exocytosis triggered by cholesterol removal led to the secretion of a unique population of lysosomes, different from the pool mobilized by actin depolymerizing drugs such as Latrunculin-A. These data support the existence of at least two different pools of lysosomes with different exocytosis dynamics, one of which is directly mobilized for plasma membrane fusion after cholesterol removal.
Collapse
Affiliation(s)
- Barbara Hissa
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Bruno Pontes
- LPO-COPEA, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Paula Magda S. Roma
- Departamento de Física, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Ana Paula Alves
- Departamento de Física, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Carolina D. Rocha
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Thalita M. Valverde
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Pedro Henrique N. Aguiar
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Fernando P. Almeida
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Allan J. Guimarães
- Departamento de Microbiologia e Parasitologia, Instituto Biomédico, Universidade Federal Fluminense, Rio de Janeiro, RJ, Brazil
| | - Cristina Guatimosim
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Aristóbolo M. Silva
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Maria C. Fernandes
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, United States of America
| | - Norma W. Andrews
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, United States of America
| | - Nathan B. Viana
- LPO-COPEA, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- Instituto de Física, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Oscar N. Mesquita
- Departamento de Física, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Ubirajara Agero
- Departamento de Física, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Luciana O. Andrade
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
- * E-mail:
| |
Collapse
|
22
|
Molino D, Galli T. Biogenesis and transport of membrane domains-potential implications in brain pathologies. Biochimie 2013; 96:75-84. [PMID: 24075975 DOI: 10.1016/j.biochi.2013.09.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Accepted: 09/12/2013] [Indexed: 11/28/2022]
Abstract
Lipids in biological membranes show astonishing chemical diversity, but they also show some key conserved structures in different organisms. In addition, some of their biophysical properties have been related to specific functions. In this review, we aim to discuss the role of sphingolipids- and cholesterol-rich micro- and nano-membrane domains (MD) and highlight their pivotal role in lipid-protein clustering processes, vesicle biogenesis and membrane fusion. We further review potential connections between human pathologies and defects in MD biosynthesis, recycling and homeostasis. Brain, which is second only to the adipose tissues in term of lipid abundance, is particularly affected by MD defects which are linked to neurodegenerative disorders. Finally we propose a potential connection between MD and several nutrient-related processes and envision how diet and autophagy could bring insights towards understanding the impact of global lipid homeostasis on human health and disease.
Collapse
Affiliation(s)
- Diana Molino
- Institut Jacques Monod, UMR 7592, CNRS, Université Paris Diderot, Sorbonne Paris Cité, F-75205 Paris, France; INSERM ERL U950, Membrane Traffic in Neuronal and Epithelial Morphogenesis, F-75013 Paris, France.
| | | |
Collapse
|
23
|
Jurado S, Goswami D, Zhang Y, Molina AJM, Südhof TC, Malenka RC. LTP requires a unique postsynaptic SNARE fusion machinery. Neuron 2013; 77:542-58. [PMID: 23395379 DOI: 10.1016/j.neuron.2012.11.029] [Citation(s) in RCA: 153] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/30/2012] [Indexed: 11/29/2022]
Abstract
Membrane fusion during exocytosis is mediated by assemblies of SNARE (soluble NSF-attachment protein receptor) and SM (Sec1/Munc18-like) proteins. The SNARE/SM proteins involved in vesicle fusion during neurotransmitter release are well understood, whereas little is known about the protein machinery that mediates activity-dependent AMPA receptor (AMPAR) exocytosis during long-term potentiation (LTP). Using direct measurements of LTP in acute hippocampal slices and an in vitro LTP model of stimulated AMPAR exocytosis, we demonstrate that the Q-SNARE proteins syntaxin-3 and SNAP-47 are required for regulated AMPAR exocytosis during LTP but not for constitutive basal AMPAR exocytosis. In contrast, the R-SNARE protein synaptobrevin-2/VAMP2 contributes to both regulated and constitutive AMPAR exocytosis. Both the central complexin-binding and the N-terminal Munc18-binding sites of syntaxin-3 are essential for its postsynaptic role in LTP. Thus, postsynaptic exocytosis of AMPARs during LTP is mediated by a unique fusion machinery that is distinct from that used during presynaptic neurotransmitter release.
Collapse
Affiliation(s)
- Sandra Jurado
- Nancy Pritzker Laboratory, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, 265 Campus Drive, Stanford, CA 94305, USA
| | | | | | | | | | | |
Collapse
|
24
|
Keder A, Carmena A. Cytoplasmic protein motility and polarized sorting during asymmetric cell division. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2013; 2:797-808. [DOI: 10.1002/wdev.116] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
25
|
|
26
|
Xu J, Toops KA, Diaz F, Carvajal-Gonzalez JM, Gravotta D, Mazzoni F, Schreiner R, Rodriguez-Boulan E, Lakkaraju A. Mechanism of polarized lysosome exocytosis in epithelial cells. J Cell Sci 2012; 125:5937-43. [PMID: 23038769 DOI: 10.1242/jcs.109421] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Fusion of lysosomes with the plasma membrane is a calcium-dependent process that is crucial for membrane repair, limiting pathogen entry and clearing cellular debris. In non-polarized cells, lysosome exocytosis facilitates rapid resealing of torn membranes. Here, we investigate the mechanism of lysosome exocytosis in polarized epithelia, the main barrier between the organism and the external environment and the first line of defense against pathogens. We find that in polarized Madin-Darby canine kidney (MDCK) cells, calcium ionophores or pore-forming toxins cause lysosomes to fuse predominantly with the basolateral membrane. This polarized exocytosis is regulated by the actin cytoskeleton, membrane cholesterol and the clathrin adaptor AP-1. Depolymerization of actin, but not microtubules, causes apical lysosome fusion, supporting the hypothesis that cortical actin is a barrier to exocytosis. Overloading lysosomes with cholesterol inhibits exocytosis, suggesting that excess cholesterol paralyzes lysosomal traffic. The clathrin adaptor AP-1 is responsible for accurately targeting syntaxin 4 to the basolateral domain. In cells lacking either the ubiquitous AP-1A or the epithelial-specific AP-1B, syntaxin 4 is non-polar. This causes lysosomes to fuse with both the apical and basolateral membranes. Consistent with these findings, RNAi-mediated depletion of syntaxin 4 inhibits basolateral exocytosis in wild-type MDCK, and both apical and basolateral exocytosis in cells lacking AP-1A or AP-1B. Our results provide fundamental insight into the molecular machinery involved in membrane repair in polarized epithelia and suggest that AP-1 is a crucial regulator of this process.
Collapse
Affiliation(s)
- Jin Xu
- Department of Ophthalmology and Visual Sciences, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Oh E, Kalwat MA, Kim MJ, Verhage M, Thurmond DC. Munc18-1 regulates first-phase insulin release by promoting granule docking to multiple syntaxin isoforms. J Biol Chem 2012; 287:25821-33. [PMID: 22685295 DOI: 10.1074/jbc.m112.361501] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Attenuated levels of the Sec1/Munc18 (SM) protein Munc18-1 in human islet β-cells is coincident with type 2 diabetes, although how Munc18-1 facilitates insulin secretion remains enigmatic. Herein, using conventional Munc18-1(+/-) and β-cell specific Munc18-1(-/-) knock-out mice, we establish that Munc18-1 is required for the first phase of insulin secretion. Conversely, human islets expressing elevated levels of Munc18-1 elicited significant potentiation of only first-phase insulin release. Insulin secretory changes positively correlated with insulin granule number at the plasma membrane: Munc18-1-deficient cells lacked 35% of the normal component of pre-docked insulin secretory granules, whereas cells with elevated levels of Munc18-1 exhibited a ∼20% increase in pre-docked granule number. Pre-docked syntaxin 1-based SNARE complexes bound by Munc18-1 were detected in β-cell lysates but, surprisingly, were reduced by elevation of Munc18-1 levels. Paradoxically, elevated Munc18-1 levels coincided with increased binding of syntaxin 4 to VAMP2 at the plasma membrane. Accordingly, syntaxin 4 was a requisite for Munc18-1 potentiation of insulin release. Munc18c, the cognate SM isoform for syntaxin 4, failed to bind SNARE complexes. Given that Munc18-1 does not pair with syntaxin 4, these data suggest a novel indirect role for Munc18-1 in facilitating syntaxin 4-mediated granule pre-docking to support first-phase insulin exocytosis.
Collapse
Affiliation(s)
- Eunjin Oh
- Department of Pediatrics, Herman B. Wells Center, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | | | | | | | | |
Collapse
|
28
|
Reverter M, Rentero C, de Muga SV, Alvarez-Guaita A, Mulay V, Cairns R, Wood P, Monastyrskaya K, Pol A, Tebar F, Blasi J, Grewal T, Enrich C. Cholesterol transport from late endosomes to the Golgi regulates t-SNARE trafficking, assembly, and function. Mol Biol Cell 2012; 22:4108-23. [PMID: 22039070 PMCID: PMC3204072 DOI: 10.1091/mbc.e11-04-0332] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
This study shows that impaired cholesterol egress from late endosomes in cells with high annexin A6 levels is associated with altered soluble N-ethylmaleimide–sensitive fusion protein 23 (SNAP23) and syntaxin-4 cellular distribution and assembly and accumulation in Golgi membranes. This correlates with reduced secretion of cargo along the constitutive and SNAP23/syntaxin-4–dependent secretory pathway. Cholesterol regulates plasma membrane (PM) association and functioning of syntaxin-4 and soluble N-ethylmaleimide-sensitive fusion protein 23 (SNAP23) in the secretory pathway. However, the molecular mechanism and cellular cholesterol pools that determine the localization and assembly of these target membrane SNAP receptors (t-SNAREs) are largely unknown. We recently demonstrated that high levels of annexin A6 (AnxA6) induce accumulation of cholesterol in late endosomes, thereby reducing cholesterol in the Golgi and PM. This leads to an impaired supply of cholesterol needed for cytosolic phospholipase A2 (cPLA2) to drive Golgi vesiculation and caveolin transport to the cell surface. Using AnxA6-overexpressing cells as a model for cellular cholesterol imbalance, we identify impaired cholesterol egress from late endosomes and diminution of Golgi cholesterol as correlating with the sequestration of SNAP23/syntaxin-4 in Golgi membranes. Pharmacological accumulation of late endosomal cholesterol and cPLA2 inhibition induces a similar phenotype in control cells with low AnxA6 levels. Ectopic expression of Niemann-Pick C1 (NPC1) or exogenous cholesterol restores the location of SNAP23 and syntaxin-4 within the PM. Importantly, AnxA6-mediated mislocalization of these t-SNAREs correlates with reduced secretion of cargo via the SNAP23/syntaxin-4–dependent constitutive exocytic pathway. We thus conclude that inhibition of late endosomal export and Golgi cholesterol depletion modulate t-SNARE localization and functioning along the exocytic pathway.
Collapse
Affiliation(s)
- Meritxell Reverter
- Departament de Biologia Cel·lular, Immunologia i Neurociències, Universitat de Barcelona, 08036 Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Reverter M, Rentero C, de Muga SV, Alvarez-Guaita A, Mulay V, Cairns R, Wood P, Monastyrskaya K, Pol A, Tebar F, Blasi J, Grewal T, Enrich C. Cholesterol transport from late endosomes to the Golgi regulates t-SNARE trafficking, assembly, and function. Mol Biol Cell 2011. [DOI: 10.1091/mbc.e11-04-0332r] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Cholesterol regulates plasma membrane (PM) association and functioning of syntaxin-4 and soluble N-ethylmaleimide-sensitive fusion protein 23 (SNAP23) in the secretory pathway. However, the molecular mechanism and cellular cholesterol pools that determine the localization and assembly of these target membrane SNAP receptors (t-SNAREs) are largely unknown. We recently demonstrated that high levels of annexin A6 (AnxA6) induce accumulation of cholesterol in late endosomes, thereby reducing cholesterol in the Golgi and PM. This leads to an impaired supply of cholesterol needed for cytosolic phospholipase A2(cPLA2) to drive Golgi vesiculation and caveolin transport to the cell surface. Using AnxA6-overexpressing cells as a model for cellular cholesterol imbalance, we identify impaired cholesterol egress from late endosomes and diminution of Golgi cholesterol as correlating with the sequestration of SNAP23/syntaxin-4 in Golgi membranes. Pharmacological accumulation of late endosomal cholesterol and cPLA2inhibition induces a similar phenotype in control cells with low AnxA6 levels. Ectopic expression of Niemann-Pick C1 (NPC1) or exogenous cholesterol restores the location of SNAP23 and syntaxin-4 within the PM. Importantly, AnxA6-mediated mislocalization of these t-SNAREs correlates with reduced secretion of cargo via the SNAP23/syntaxin-4–dependent constitutive exocytic pathway. We thus conclude that inhibition of late endosomal export and Golgi cholesterol depletion modulate t-SNARE localization and functioning along the exocytic pathway.
Collapse
Affiliation(s)
- Meritxell Reverter
- Departament de Biologia Cel·lular, Immunologia i Neurociències, Facultat de Medicina, Universitat de Barcelona, 08036 Barcelona, Spain
| | - Carles Rentero
- Departament de Biologia Cel·lular, Immunologia i Neurociències, Facultat de Medicina, Universitat de Barcelona, 08036 Barcelona, Spain
| | - Sandra Vilà de Muga
- Departament de Biologia Cel·lular, Immunologia i Neurociències, Facultat de Medicina, Universitat de Barcelona, 08036 Barcelona, Spain
| | - Anna Alvarez-Guaita
- Departament de Biologia Cel·lular, Immunologia i Neurociències, Facultat de Medicina, Universitat de Barcelona, 08036 Barcelona, Spain
| | - Vishwaroop Mulay
- Faculty of Pharmacy, University of Sydney, Sydney, NSW 2006, Australia
| | - Rose Cairns
- Faculty of Pharmacy, University of Sydney, Sydney, NSW 2006, Australia
| | - Peta Wood
- Faculty of Pharmacy, University of Sydney, Sydney, NSW 2006, Australia
| | - Katia Monastyrskaya
- Urology Research Laboratory, Department of Clinical Research, University of Bern, 3000 Bern 9, Switzerland
| | - Albert Pol
- Departament de Biologia Cel·lular, Immunologia i Neurociències, Facultat de Medicina, Universitat de Barcelona, 08036 Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Facultat de Medicina, Universitat de Barcelona, 08036 Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain
| | - Francesc Tebar
- Departament de Biologia Cel·lular, Immunologia i Neurociències, Facultat de Medicina, Universitat de Barcelona, 08036 Barcelona, Spain
| | - Joan Blasi
- Department of Pathology and Experimental Therapeutics, IDIBELL–University of Barcelona, 08907 L'Hospitalet de Llobregat, Barcelona, Spain
| | - Thomas Grewal
- Faculty of Pharmacy, University of Sydney, Sydney, NSW 2006, Australia
| | - Carlos Enrich
- Departament de Biologia Cel·lular, Immunologia i Neurociències, Facultat de Medicina, Universitat de Barcelona, 08036 Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Facultat de Medicina, Universitat de Barcelona, 08036 Barcelona, Spain
| |
Collapse
|
30
|
Murray DH, Tamm LK. Molecular mechanism of cholesterol- and polyphosphoinositide-mediated syntaxin clustering. Biochemistry 2011; 50:9014-22. [PMID: 21916482 DOI: 10.1021/bi201307u] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The neuronal acceptor SNARE complex that functions as the receptor for synaptic vesicle docking and fusion at the presynaptic membrane is composed of the single-span transmembrane protein syntaxin-1A and the palmitoylated soluble protein SNAP-25. Previously, we explored interactions that promote the formation of syntaxin-1A clusters in membranes. Cholesterol activates clustering in native and model membranes, and its depletion in neuroendocrine cells results in a homogeneous distribution of the protein. However, as little as 1 mol % phosphatidylinositol 4,5-bisphosphate (PI-4,5-P(2)) or 20 mol % phosphatidylserine was found to disperse syntaxin-1A clusters [Murray, D. H., and Tamm, L. K. (2009) Biochemistry 48, 4617-4625]. Strong evidence suggests that syntaxin-1A and its synaptic vesicle cognate synaptobrevin both interact directly with PI-4,5-P(2) and that this interaction activates fusion. However, the molecular details of this interaction and its relationship to the partial dispersion of syntaxin-1A clusters remain largely unexplored. Hence, we mutated the polybasic juxtamembrane motif of syntaxin-1A and found several residues that partially or fully abrogate the electrostatic interaction with PI-4,5-P(2). We further show that even in the presence of physiological concentrations of phosphatidylserine, the PI-4,5-P(2)-syntaxin interaction is sufficiently strong to disrupt syntaxin-1A clustering. The stereochemistry of PI-4,5-P(2) is not critical for this interaction as other polyphosphoinositides have similar effects. Forming an acceptor SNARE complex between syntaxin-1A and SNAP-25 weakens but does not abrogate cholesterol/PI-4,5-P(2)-controlled cluster formation. Potential consequences of these interactions with respect to synaptic vesicle fusion are discussed.
Collapse
Affiliation(s)
- David H Murray
- Center for Membrane Biology and Department of Molecular Physiology and Biological Physics, University of Virginia, Virginia 22908, United States
| | | |
Collapse
|
31
|
Moreau D, Kumar P, Wang SC, Chaumet A, Chew SY, Chevalley H, Bard F. Genome-wide RNAi screens identify genes required for Ricin and PE intoxications. Dev Cell 2011; 21:231-44. [PMID: 21782526 DOI: 10.1016/j.devcel.2011.06.014] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2010] [Revised: 02/21/2011] [Accepted: 06/09/2011] [Indexed: 12/11/2022]
Abstract
Protein toxins such as Ricin and Pseudomonas exotoxin (PE) pose major public health challenges. Both toxins depend on host cell machinery for internalization, retrograde trafficking from endosomes to the ER, and translocation to cytosol. Although both toxins follow a similar intracellular route, it is unknown how much they rely on the same genes. Here we conducted two genome-wide RNAi screens identifying genes required for intoxication and demonstrating that requirements are strikingly different between PE and Ricin, with only 13% overlap. Yet factors required by both toxins are present from the endosomes to the ER, and, at the morphological level, the toxins colocalize in multiple structures. Interestingly, Ricin, but not PE, depends on Golgi complex integrity and colocalizes significantly with a medial Golgi marker. Our data are consistent with two intertwined pathways converging and diverging at multiple points and reveal the complexity of retrograde membrane trafficking in mammalian cells.
Collapse
Affiliation(s)
- Dimitri Moreau
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| | | | | | | | | | | | | |
Collapse
|
32
|
A network of networks: cytoskeletal control of compartmentalized function within dendritic spines. Curr Opin Neurobiol 2011; 20:578-87. [PMID: 20667710 DOI: 10.1016/j.conb.2010.06.009] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2010] [Revised: 06/04/2010] [Accepted: 06/26/2010] [Indexed: 12/19/2022]
Abstract
Almost 30 years ago, actin was identified as the major cytoskeletal component of dendritic spines. Since then, its role in the remarkable dynamics of spine morphology have been detailed with live-cell views establishing that spine shape dynamics are an important requirement for synaptogenesis and synaptic plasticity. However, the actin cytoskeleton is critical to numerous and varied processes within the spine which contribute to the maintenance and plasticity of synaptic function. Here, we argue that the spatial and temporal distribution of actin-dependent processes within spines suggests that the spine cytoskeleton should not be considered a single entity, but an interacting network of nodes or hubs that are independently regulated and balanced to maintain synapse function. Disruptions of this balance within the spine are likely to lead to psychiatric and neurological dysfunction.
Collapse
|
33
|
Reales E, Sharma N, Low SH, Fölsch H, Weimbs T. Basolateral sorting of syntaxin 4 is dependent on its N-terminal domain and the AP1B clathrin adaptor, and required for the epithelial cell polarity. PLoS One 2011; 6:e21181. [PMID: 21698262 PMCID: PMC3115984 DOI: 10.1371/journal.pone.0021181] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Accepted: 05/22/2011] [Indexed: 12/14/2022] Open
Abstract
Generation of epithelial cell polarity requires mechanisms to sort plasma membrane proteins to the apical and basolateral domains. Sorting involves incorporation into specific vesicular carriers and subsequent fusion to the correct target membranes mediated by specific SNARE proteins. In polarized epithelial cells, the SNARE protein syntaxin 4 localizes exclusively to the basolateral plasma membrane and plays an important role in basolateral trafficking pathways. However, the mechanism of basolateral targeting of syntaxin 4 itself has remained poorly understood. Here we show that newly synthesized syntaxin 4 is directly targeted to the basolateral plasma membrane in polarized Madin-Darby canine kidney (MDCK) cells. Basolateral targeting depends on a signal that is centered around residues 24–29 in the N-terminal domain of syntaxin 4. Furthermore, basolateral targeting of syntaxin 4 is dependent on the epithelial cell-specific clathrin adaptor AP1B. Disruption of the basolateral targeting signal of syntaxin 4 leads to non-polarized delivery to both the apical and basolateral surface, as well as partial intercellular retention in the trans-Golgi network. Importantly, disruption of the basolateral targeting signal of syntaxin 4 leads to the inability of MDCK cells to establish a polarized morphology which suggests that restriction of syntaxin 4 to the basolateral domain is required for epithelial cell polarity.
Collapse
Affiliation(s)
- Elena Reales
- Department of Molecular, Cellular, and Developmental Biology and Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, California, United States of America
| | - Nikunj Sharma
- Department of Molecular, Cellular, and Developmental Biology and Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, California, United States of America
| | - Seng Hui Low
- Department of Molecular, Cellular, and Developmental Biology and Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, California, United States of America
| | - Heike Fölsch
- Department of Cell and Molecular Biology, Northwestern University, Chicago, Illinois, United States of America
| | - Thomas Weimbs
- Department of Molecular, Cellular, and Developmental Biology and Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, California, United States of America
- * E-mail:
| |
Collapse
|
34
|
Abstract
CNS myelination by oligodendrocytes requires directed transport of myelin membrane components and a timely and spatially controlled membrane expansion. In this study, we show the functional involvement of the R-soluble N-ethylmaleimide-sensitive factor attachment protein receptor (R-SNARE) proteins VAMP3/cellubrevin and VAMP7/TI-VAMP in myelin membrane trafficking. VAMP3 and VAMP7 colocalize with the major myelin proteolipid protein (PLP) in recycling endosomes and late endosomes/lysosomes, respectively. Interference with VAMP3 or VAMP7 function using small interfering RNA-mediated silencing and exogenous expression of dominant-negative proteins diminished transport of PLP to the oligodendroglial cell surface. In addition, the association of PLP with myelin-like membranes produced by oligodendrocytes cocultured with cortical neurons was reduced. We furthermore identified Syntaxin-4 and Syntaxin-3 as prime acceptor Q-SNAREs of VAMP3 and VAMP7, respectively. Analysis of VAMP3-deficient mice revealed no myelination defects. Interestingly, AP-3δ-deficient mocha mice, which suffer from impaired secretion of lysosome-related organelles and missorting of VAMP7, exhibit a mild dysmyelination characterized by reduced levels of select myelin proteins, including PLP. We conclude that PLP reaches the cell surface via at least two trafficking pathways with distinct regulations: (1) VAMP3 mediates fusion of recycling endosome-derived vesicles with the oligodendroglial plasma membrane in the course of the secretory pathway; (2) VAMP7 controls exocytosis of PLP from late endosomal/lysosomal organelles as part of a transcytosis pathway. Our in vivo data suggest that exocytosis of lysosome-related organelles controlled by VAMP7 contributes to myelin biogenesis by delivering cargo to the myelin membrane.
Collapse
|
35
|
Grefen C, Honsbein A, Blatt MR. Ion transport, membrane traffic and cellular volume control. CURRENT OPINION IN PLANT BIOLOGY 2011; 14:332-9. [PMID: 21507708 DOI: 10.1016/j.pbi.2011.03.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Revised: 03/09/2011] [Accepted: 03/23/2011] [Indexed: 05/21/2023]
Abstract
Throughout their development, plants balance cell surface area and volume with ion transport and turgor. This balance lies at the core of cellular homeostatic networks and is central to the capacity to withstand abiotic as well as biotic stress. Remarkably, very little is known of its mechanics, notably how membrane traffic is coupled with osmotic solute transport and its control. Here we outline recent developments in the understanding of so-called SNARE proteins that form part of the machinery for membrane vesicle traffic in all eukaryotes. We focus on SNAREs active at the plasma membrane and the evidence for specialisation in enhanced, homeostatic and stress-related traffic. Recent studies have placed a canonical SNARE complex associated with the plasma membrane in pathogen defense, and the discovery of the first SNARE as a binding partner with ion channels has demonstrated a fundamental link to inorganic osmotic solute uptake. Work localising the channel binding site has now identified a new and previously uncharacterised motif, yielding important clues to a plausible mechanism coupling traffic and transport. We examine the evidence that this physical interaction serves to balance enhanced osmotic solute uptake with membrane expansion through mutual control of the two processes. We calculate that even during rapid cell expansion only a minute fraction of SNAREs present at the membrane need be engaged in vesicle traffic at any one time, a number surprisingly close to the known density of ion channels at the plant plasma membrane. Finally, we suggest a framework of alternative models coupling transport and traffic, and approachable through direct, experimental testing.
Collapse
Affiliation(s)
- Christopher Grefen
- Laboratory of Plant Physiology and Biophysics, Institute of Molecular, Cellular and Systems Biology, University of Glasgow, Glasgow, UK
| | | | | |
Collapse
|
36
|
Ca2+ induces clustering of membrane proteins in the plasma membrane via electrostatic interactions. EMBO J 2011; 30:1209-20. [PMID: 21364530 DOI: 10.1038/emboj.2011.53] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2010] [Accepted: 02/02/2011] [Indexed: 12/23/2022] Open
Abstract
Membrane proteins and membrane lipids are frequently organized in submicron-sized domains within cellular membranes. Factors thought to be responsible for domain formation include lipid-lipid interactions, lipid-protein interactions and protein-protein interactions. However, it is unclear whether the domain structure is regulated by other factors such as divalent cations. Here, we have examined in native plasma membranes and intact cells the role of the second messenger Ca(2+) in membrane protein organization. We find that Ca(2+) at low micromolar concentrations directly redistributes a structurally diverse array of membrane proteins via electrostatic effects. Redistribution results in a more clustered pattern, can be rapid and triggered by Ca(2+) influx through voltage-gated calcium channels and is reversible. In summary, the data demonstrate that the second messenger Ca(2+) strongly influences the organization of membrane proteins, thus adding a novel and unexpected factor that may control the domain structure of biological membranes.
Collapse
|
37
|
Geumann U, Schäfer C, Riedel D, Jahn R, Rizzoli SO. Synaptic membrane proteins form stable microdomains in early endosomes. Microsc Res Tech 2010; 73:606-17. [PMID: 19937745 DOI: 10.1002/jemt.20800] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
In the plasma membrane, membrane proteins are frequently organized in microdomains that are stabilized both by protein-protein and protein-lipid interactions, with the membrane lipid cholesterol being instrumental for microdomain stability. However, it is unclear whether such microdomains persist during endocytotic membrane trafficking. We used stimulated emission-depletion microscopy to investigate the domain structure of the endosomes. We developed a semiautomatic method for counting the individual domains, an approach that we have validated by immunoelectron microscopy. We found that in endosomes derived from neuroendocrine PC12 cells synaptophysin and several SNARE proteins are organized in microdomains. Cholesterol depletion by methyl-beta-cyclodextrin disintegrates most of the domains. Interestingly, no change in the frequency of microdomains was observed when endosomes were fused with protein-free liposomes of similar size (in what constitutes a novel approach in modifying acutely the lipid composition of organelles), regardless of whether the membrane lipid composition of the liposomes was similar or very different from that of the endosomes. Similarly, Rab depletion from the endosome membranes left the domain structure unaffected. Furthermore, labeled exogenous protein, introduced into endosomes by liposome fusion, equilibrated with the corresponding microdomains. We conclude that synaptic membrane proteins are organized in stable but dynamic clusters within endosomes, which are likely to persist during membrane recycling.
Collapse
Affiliation(s)
- Ulf Geumann
- Department of Neurobiology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, Göttingen 37077, Germany
| | | | | | | | | |
Collapse
|
38
|
Kennedy MJ, Davison IG, Robinson CG, Ehlers MD. Syntaxin-4 defines a domain for activity-dependent exocytosis in dendritic spines. Cell 2010; 141:524-35. [PMID: 20434989 DOI: 10.1016/j.cell.2010.02.042] [Citation(s) in RCA: 217] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2009] [Revised: 12/10/2009] [Accepted: 02/22/2010] [Indexed: 11/16/2022]
Abstract
Changes in postsynaptic membrane composition underlie many forms of learning-related synaptic plasticity in the brain. At excitatory glutamatergic synapses, fusion of intracellular vesicles at or near the postsynaptic plasma membrane is critical for dendritic spine morphology, retrograde synaptic signaling, and long-term synaptic plasticity. Whereas the molecular machinery for exocytosis in presynaptic terminals has been defined in detail, little is known about the location, kinetics, regulation, or molecules involved in postsynaptic exocytosis. Here, we show that an exocytic domain adjacent to the postsynaptic density (PSD) enables fusion of large, AMPA receptor-containing recycling compartments during elevated synaptic activity. Exocytosis occurs at microdomains enriched in the plasma membrane t-SNARE syntaxin 4 (Stx4), and disruption of Stx4 impairs both spine exocytosis and long-term potentiation (LTP) at hippocampal synapses. Thus, Stx4 defines an exocytic zone that directs membrane fusion for postsynaptic plasticity, revealing a novel specialization for local membrane traffic in dendritic spines.
Collapse
Affiliation(s)
- Matthew J Kennedy
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | |
Collapse
|
39
|
Emmer BT, Maric D, Engman DM. Molecular mechanisms of protein and lipid targeting to ciliary membranes. J Cell Sci 2010; 123:529-36. [PMID: 20145001 DOI: 10.1242/jcs.062968] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Cilia are specialized surface regions of eukaryotic cells that serve a variety of functions, ranging from motility to sensation and to regulation of cell growth and differentiation. The discovery that a number of human diseases, collectively known as ciliopathies, result from defective cilium function has expanded interest in these structures. Among the many properties of cilia, motility and intraflagellar transport have been most extensively studied. The latter is the process by which multiprotein complexes associate with microtubule motors to transport structural subunits along the axoneme to and from the ciliary tip. By contrast, the mechanisms by which membrane proteins and lipids are specifically targeted to the cilium are still largely unknown. In this Commentary, we review the current knowledge of protein and lipid targeting to ciliary membranes and outline important issues for future study. We also integrate this information into a proposed model of how the cell specifically targets proteins and lipids to the specialized membrane of this unique organelle.
Collapse
Affiliation(s)
- Brian T Emmer
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | | | | |
Collapse
|
40
|
Fang Z, Takizawa N, Wilson KA, Smith TC, Delprato A, Davidson MW, Lambright DG, Luna EJ. The membrane-associated protein, supervillin, accelerates F-actin-dependent rapid integrin recycling and cell motility. Traffic 2010; 11:782-99. [PMID: 20331534 DOI: 10.1111/j.1600-0854.2010.01062.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In migrating cells, the cytoskeleton coordinates signal transduction and redistribution of transmembrane proteins, including integrins and growth factor receptors. Supervillin is an F-actin- and myosin II-binding protein that tightly associates with signaling proteins in cholesterol-rich, 'lipid raft' membrane microdomains. We show here that supervillin also can localize with markers for early and sorting endosomes (EE/SE) and with overexpressed components of the Arf6 recycling pathway in the cell periphery. Supervillin tagged with the photoswitchable fluorescent protein, tdEos, moves both into and away from dynamic structures resembling podosomes at the basal cell surface. Rapid integrin recycling from EE/SE is inhibited in supervillin-knockdown cells, but the rates of integrin endocytosis and recycling from the perinuclear recycling center (PNRC) are unchanged. A lack of synergy between supervillin knockdown and the actin filament barbed-end inhibitor, cytochalasin D, suggests that both treatments affect actin-dependent rapid recycling. Supervillin also enhances signaling from the epidermal growth factor receptor (EGFR) to extracellular signal-regulated kinases (ERKs) 1 and 2 and increases the velocity of cell translocation. These results suggest that supervillin, F-actin and associated proteins coordinate a rapid, basolateral membrane recycling pathway that contributes to ERK signaling and actin-based cell motility.
Collapse
Affiliation(s)
- Zhiyou Fang
- Department of Cell Biology, University of Massachusetts Medical School, Biotech 4, Suite 306, 377 Plantation Street, Worcester, MA 01605, USA
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Formation and regulation of lipid microdomains in cell membranes: theory, modeling, and speculation. FEBS Lett 2009; 584:1678-84. [PMID: 19854186 DOI: 10.1016/j.febslet.2009.10.051] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2009] [Revised: 10/16/2009] [Accepted: 10/19/2009] [Indexed: 11/20/2022]
Abstract
Compositional lipid microdomains ("lipid rafts") in plasma membranes are believed to be important components of many cellular processes. The biophysical mechanisms by which cells regulate the size, lifetime, and spatial localization of these domains are rather poorly understood at the moment. Over the years, experimental studies of raft formation have inspired several phenomenological theories and speculations incorporating a wide variety of thermodynamic assumptions regarding lipid-lipid and lipid-protein interactions, and the potential role of active cellular processes on membrane structure. Here we critically review and discuss these theories, models, and speculations, and present our view on future directions.
Collapse
|
42
|
Murray DH, Tamm LK. Clustering of syntaxin-1A in model membranes is modulated by phosphatidylinositol 4,5-bisphosphate and cholesterol. Biochemistry 2009; 48:4617-25. [PMID: 19364135 DOI: 10.1021/bi9003217] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Syntaxin-1A is part of the SNARE complex that forms in membrane fusion in neuronal exocytosis of synaptic vesicles. Together with SNAP-25 the single-span transmembrane protein syntaxin-1A forms the receptor complex on the plasma membrane of neuroendocrine cells. Previous studies have shown that syntaxin-1A occurs in clusters that are different from lipid rafts in neuroendocrine plasma membranes. However, the interactions that promote these clusters have been largely unexplored. Here, we have reconstituted syntaxin-1A into lipid model membranes, and we show that syntaxin cluster formation depends on cholesterol in a lipid system that lacks sphingomyelin and therefore does not form liquid-ordered phases that are commonly believed to represent lipid rafts in cell membranes. Rather, the cholesterol-induced clustering of syntaxin is found to be reversed by as little as 1-5 mol % of the regulatory lipid phosphatidylinositol 4,5-bisphosphate (PI-4,5-P(2)), and PI-4,5-P(2) is shown to bind electrostatically to syntaxin, presumably mediated by the highly positively charged juxtamembrane domain of syntaxin. Possible implications of these results to the regulation of SNARE-mediated membrane fusion are discussed.
Collapse
Affiliation(s)
- David H Murray
- Center for Membrane Biology and Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia 22908, USA
| | | |
Collapse
|
43
|
Wang Z, Thurmond DC. Mechanisms of biphasic insulin-granule exocytosis - roles of the cytoskeleton, small GTPases and SNARE proteins. J Cell Sci 2009; 122:893-903. [PMID: 19295123 DOI: 10.1242/jcs.034355] [Citation(s) in RCA: 272] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The release of insulin from pancreatic islets requires negative regulation to ensure low levels of insulin release under resting conditions, as well as positive regulation to facilitate robust responsiveness to conditions of elevated fuel or glucose. The first phase of release involves the plasma-membrane fusion of a small pool of granules, termed the readily releasable pool; these granules are already at the membrane under basal conditions, and discharge their cargo in response to nutrient and also non-nutrient secretagogues. By contrast, second-phase secretion is evoked exclusively by nutrients, and involves the mobilization of intracellular granules to t-SNARE sites at the plasma membrane to enable the distal docking and fusion steps of insulin exocytosis. Nearly 40 years ago, the actin cytoskeleton was first recognized as a key mediator of biphasic insulin release, and was originally presumed to act as a barrier to block granule docking at the cell periphery. More recently, however, the discovery of cycling GTPases that are involved in F-actin reorganization in the islet beta-cell, combined with the availability of reagents that are more specific and tools with which to study the mechanisms that underlie granule movement, have contributed greatly to our understanding of the role of the cytoskeleton in regulating biphasic insulin secretion. Herein, we provide historical perspective and review recent progress that has been made towards integrating cytoskeletal reorganization and cycling of small Rho-, Rab- and Ras-family GTPases into our current models of stimulus-secretion coupling and second-phase insulin release.
Collapse
Affiliation(s)
- Zhanxiang Wang
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | |
Collapse
|
44
|
Mistry AC, Mallick R, Klein JD, Weimbs T, Sands JM, Fröhlich O. Syntaxin specificity of aquaporins in the inner medullary collecting duct. Am J Physiol Renal Physiol 2009; 297:F292-300. [PMID: 19515809 DOI: 10.1152/ajprenal.00196.2009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Proper targeting of the aquaporin-2 (AQP2) water channel to the collecting duct apical plasma membrane is critical for the urine concentrating mechanism and body water homeostasis. However, the trafficking mechanisms that recruit AQP2 to the plasma membrane are still unclear. Snapin is emerging as an important mediator in the initial interaction of trafficked proteins with target soluble N-ethylmaleimide-sensitive factor attachment protein (SNAP) receptor (t-SNARE) proteins, and this interaction is functionally important for AQP2 regulation. We show that in AQP2-Madin-Darby canine kidney cells subjected to adenoviral-mediated expression of both snapin and syntaxins, the association of AQP2 with both syntaxin-3 and syntaxin-4 is highly enhanced by the presence of snapin. In pull-down studies, snapin detected AQP2, syntaxin-3, syntaxin-4, and SNAP23 from the inner medullary collecting duct. AQP2 transport activity, as probed by AQP2's urea permeability, was greatly enhanced in oocytes that were coinjected with cRNAs of SNARE components (snapin+syntaxin-3+SNAP23) over those injected with AQP2 cRNA alone. It was not enhanced when syntaxin-3 was replaced by syntaxin-4 (snapin+syntaxin-4+SNAP23). On the other hand, the latter combination significantly enhanced the transport activity of the related AQP3 water channel while the presence of syntaxin-3 did not. This AQP-syntaxin interaction agrees with the polarity of these proteins' expression in the inner medullary collecting duct epithelium. Thus our findings suggest a selectivity of interactions between different aquaporin and syntaxin isoforms, and thus in the regulation of AQP2 and AQP3 activities in the plasma membrane. Snapin plays an important role as a linker between the water channel and the t-SNARE complex, leading to the fusion event, and the pairing with specific t-SNAREs is essential for the specificity of membrane recognition and fusion.
Collapse
Affiliation(s)
- Abinash C Mistry
- Department of Physiology, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | | | | | | | | | |
Collapse
|
45
|
Feldmann A, Winterstein C, White R, Trotter J, Krämer-Albers EM. Comprehensive analysis of expression, subcellular localization, and cognate pairing of SNARE proteins in oligodendrocytes. J Neurosci Res 2009; 87:1760-72. [DOI: 10.1002/jnr.22020] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
46
|
Mazelova J, Ransom N, Astuto-Gribble L, Wilson MC, Deretic D. Syntaxin 3 and SNAP-25 pairing, regulated by omega-3 docosahexaenoic acid, controls the delivery of rhodopsin for the biogenesis of cilia-derived sensory organelles, the rod outer segments. J Cell Sci 2009; 122:2003-13. [PMID: 19454479 DOI: 10.1242/jcs.039982] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The biogenesis of cilia-derived sensory organelles, the photoreceptor rod outer segments (ROS), is mediated by rhodopsin transport carriers (RTCs). The small GTPase Rab8 regulates ciliary targeting of RTCs, but their specific fusion sites have not been characterized. Here, we report that the Sec6/8 complex, or exocyst, is a candidate effector for Rab8. We also show that the Qa-SNARE syntaxin 3 is present in the rod inner segment (RIS) plasma membrane at the base of the cilium and displays a microtubule-dependent concentration gradient, whereas the Qbc-SNARE SNAP-25 is uniformly distributed in the RIS plasma membrane and the synapse. Treatment with omega-3 docosahexaenoic acid [DHA, 22:6(n-3)] causes increased co-immunoprecipitation and colocalization of SNAP-25 and syntaxin 3 at the base of the cilium, which results in the increased delivery of membrane to the ROS. This is particularly evident in propranolol-treated retinas, in which the DHA-mediated increase in SNARE pairing overcomes the tethering block, including dissociation of Sec8 into the cytosol. Together, our data indicate that the Sec6/8 complex, syntaxin 3 and SNAP-25 regulate rhodopsin delivery, probably by mediating docking and fusion of RTCs. We show further that DHA, an essential polyunsaturated fatty acid of the ROS, increases pairing of syntaxin 3 and SNAP-25 to regulate expansion of the ciliary membrane and ROS biogenesis.
Collapse
Affiliation(s)
- Jana Mazelova
- Department of Surgery, Division of Ophthalmology, University of New Mexico, Albuquerque, New Mexico 87131, USA
| | | | | | | | | |
Collapse
|
47
|
Nejsum LN, Nelson WJ. Epithelial cell surface polarity: the early steps. FRONT BIOSCI-LANDMRK 2009; 14:1088-98. [PMID: 19273117 DOI: 10.2741/3295] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Establishment and maintenance of epithelial cell surface polarity is of vital importance for the correct function of transporting epithelia. To maintain normal cell function, the distribution of apical and basal-lateral proteins is highly regulated and defects in expression levels or plasma membrane targeting can have severe consequences. It has been shown recently that initiation of cell-surface polarity occurs immediately upon cell-cell contact, and requires components of the lateral targeting patch, the Exocyst and the lateral SNARE complex to specify delivery of basolateral proteins to the site of cell-cell adhesion. The Exocyst and SNARE complex are present in the cytoplasm in single epithelial cells before adhesion. Upon initial cell-cell adhesion, E-cadherin accumulates at the forming contact between cells. Shortly hereafter, components of the lateral targeting patch, the Exocyst and the lateral SNARE complex, co-localize with E-cadherin at the forming contact, where they function in specifying the delivery of basal-lateral.
Collapse
Affiliation(s)
- Lene N Nejsum
- Departments of Biology, and Molecular and Cellular Physiology, The James H. Clark Center, Bio-X Program, Stanford University, 318 Campus Drive E200, Stanford, CA 94305-5430, USA.
| | | |
Collapse
|
48
|
Torkko JM, Manninen A, Schuck S, Simons K. Depletion of apical transport proteins perturbs epithelial cyst formation and ciliogenesis. J Cell Sci 2008; 121:1193-203. [PMID: 18349078 DOI: 10.1242/jcs.015495] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Epithelial cells are vital for maintaining the complex architecture and functions of organs in the body. Directed by cues from the extracellular matrix, cells polarize their surface into apical and basolateral domains, and connect by extensive cell-cell junctions to form tightly vowen epithelial layers. In fully polarized cells, primary cilia project from the apical surface. Madin-Darby canine kidney (MDCK) cells provide a model to study organization of cells as monolayers and also in 3D in cysts. In this study retrovirus-mediated RNA interference (RNAi) was used to generate a series of knockdowns (KDs) for proteins implicated in apical transport: annexin-13, caveolin-1, galectin-3, syntaxin-3, syntaxin-2 and VIP17 and/or MAL. Cyst cultures were then employed to study the effects of these KDs on epithelial morphogenesis. Depletion of these proteins by RNAi stalled the development of the apical lumen in cysts and resulted in impaired ciliogenesis. The most severe ciliary defects were observed in annexin-13 and syntaxin-3 KD cysts. Although the phenotypes demonstrate the robustness of the formation of the polarized membrane domains, they indicate the important role of apical membrane biogenesis in epithelial organization.
Collapse
Affiliation(s)
- Juha M Torkko
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | | | | | | |
Collapse
|
49
|
Jewell JL, Luo W, Oh E, Wang Z, Thurmond DC. Filamentous actin regulates insulin exocytosis through direct interaction with Syntaxin 4. J Biol Chem 2008; 283:10716-26. [PMID: 18285343 DOI: 10.1074/jbc.m709876200] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Glucose-induced insulin exocytosis is coupled to associations between F-actin and SNARE proteins, although the nature and function of these interactions remains unknown. Toward this end we show here that both Syntaxin 1A and Syntaxin 4 associated with F-actin in MIN6 cells and that each interaction was rapidly and transiently diminished by stimulation of cells with d-glucose. Of the two isoforms, only Syntaxin 4 was capable of interacting directly with F-actin in an in vitro sedimentation assay, conferred by the N-terminal 39-112 residues of Syntaxin 4. The 39-112 fragment was capable of selective competitive inhibitory action, disrupting endogenous F-actin-Syntaxin 4 binding in MIN6 cells. Disruption of F-actin-Syntaxin 4 binding correlated with enhanced glucose-stimulated insulin secretion, mediated by increased granule accumulation at the plasma membrane and increased Syntaxin 4 accessibility under basal conditions. However, no increase in basal level Syntaxin 4-VAMP2 association occurred with either latrunculin treatment or expression of the 39-112 fragment. Taken together, these data disclose a new underlying mechanism by which F-actin negatively regulates exocytosis via binding and blocking Syntaxin 4 accessibility, but they also reveal the existence of additional signals and/or steps required to trigger the subsequent docking and fusion steps of exocytosis.
Collapse
Affiliation(s)
- Jenna L Jewell
- Department of Biochemistry and Molecular Biology, Center for Diabetes Research, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | | | | | | | | |
Collapse
|
50
|
Mishra RS, Carnevale KA, Cathcart MK. iPLA2beta: front and center in human monocyte chemotaxis to MCP-1. ACTA ACUST UNITED AC 2008; 205:347-59. [PMID: 18208975 PMCID: PMC2271028 DOI: 10.1084/jem.20071243] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Monocyte chemoattractant protein-1 (MCP-1) directs migration of blood monocytes to inflamed tissues. Despite the central role of chemotaxis in immune responses, the regulation of chemotaxis by signal transduction pathways and their in vivo significance remain to be thoroughly deciphered. In this study, we examined the intracellular location and functions of two recently identified regulators of chemotaxis, Ca2+-independent phospholipase (iPLA2β) and cytosolic phospholipase (cPLA2α), and substantiate their in vivo importance. These enzymes are cytoplasmic in unstimulated monocytes. Upon MCP-1 stimulation, iPLA2β is recruited to the membrane-enriched pseudopod. In contrast, cPLA2α is recruited to the endoplasmic reticulum. Although iPLA2β or cPLA2α antisense oligodeoxyribonucleotide (ODN)–treated monocytes display reduced speed, iPLA2β also regulates directionality and actin polymerization. iPLA2β or cPLA2α antisense ODN–treated adoptively transferred mouse monocytes display a profound defect in migration to the peritoneum in vivo. These converging observations reveal that iPLA2β and cPLA2α regulate monocyte migration from different intracellular locations, with iPLA2β acting as a critical regulator of the cellular compass, and identify them as potential targets for antiinflammatory strategies.
Collapse
Affiliation(s)
- Ravi S Mishra
- Department of Cell Biology, Cleveland Clinic, Cleveland, OH 44195, USA
| | | | | |
Collapse
|