1
|
Baytshtok V, DiMattia MA, Lima CD. Structural basis for a nucleoporin exportin complex between RanBP2, SUMO1-RanGAP1, the E2 Ubc9, Crm1 and the Ran GTPase. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.04.616749. [PMID: 39763778 PMCID: PMC11703149 DOI: 10.1101/2024.10.04.616749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/14/2025]
Abstract
The human nucleoporin RanBP2/Nup358 interacts with SUMO1-modified RanGAP1 and the SUMO E2 Ubc9 at the nuclear pore complex (NPC) to promote export and disassembly of exportin Crm1/Ran(GTP)/cargo complexes. In mitosis, RanBP2/SUMO1-RanGAP1/Ubc9 remains intact after NPC disassembly and is recruited to kinetochores and mitotic spindles by Crm1 where it contributes to mitotic progression. Interestingly, RanBP2 binds SUMO1-RanGAP1/Ubc9 via motifs that also catalyze SUMO E3 ligase activity. Here, we resolve cryo-EM structures of a RanBP2 C-terminal fragment in complex with Crm1, SUMO1-RanGAP1/Ubc9, and two molecules of Ran(GTP). These structures reveal several unanticipated interactions with Crm1 including a nuclear export signal (NES) for RanGAP1, the deletion of which mislocalizes RanGAP1 and the Ran GTPase in cells. Our structural and biochemical results support models in which RanBP2 E3 ligase activity is dependent on Crm1, the RanGAP1 NES and Ran GTPase cycling.
Collapse
Affiliation(s)
- Vladimir Baytshtok
- Structural Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY 10065
- These authors contributed equally
| | - Michael A DiMattia
- Structural Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY 10065
- Current address: Schrödinger New York, 1540 Broadway, 24th Floor, New York, NY 10036, USA
- These authors contributed equally
| | - Christopher D Lima
- Structural Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY 10065
- Howard Hughes Medical Institute, 1275 York Avenue, New York, NY 10065
| |
Collapse
|
2
|
Chen S, Lyanguzova M, Kaufhold R, Plevock Haase KM, Lee H, Arnaoutov A, Dasso M. Association of RanGAP to nuclear pore complex component, RanBP2/Nup358, is required for pupal development in Drosophila. Cell Rep 2021; 37:110151. [PMID: 34965423 PMCID: PMC11166264 DOI: 10.1016/j.celrep.2021.110151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 01/15/2021] [Accepted: 12/01/2021] [Indexed: 11/16/2022] Open
Abstract
Ran's GTPase-activating protein (RanGAP) is tethered to the nuclear envelope (NE) in multicellular organisms. We investigated the consequences of RanGAP localization in human tissue culture cells and Drosophila. In tissue culture cells, disruption of RanGAP1 NE localization surprisingly has neither obvious impacts on viability nor nucleocytoplasmic transport of a model substrate. In Drosophila, we identified a region within nucleoporin dmRanBP2 required for direct tethering of dmRanGAP to the NE. A dmRanBP2 mutant lacking this region shows no apparent growth defects during larval stages but arrests at the early pupal stage. A direct fusion of dmRanGAP to the dmRanBP2 mutant rescues this arrest, indicating that dmRanGAP recruitment to dmRanBP2 per se is necessary for the pupal ecdysis sequence. Our results indicate that while the NE localization of RanGAP is widely conserved in multicellular organisms, the targeting mechanisms are not. Further, we find a requirement for this localization during pupal development.
Collapse
Affiliation(s)
- Shane Chen
- Division of Molecular and Cellular Biology, National Institutes for Child Health and Human Development, 49 Convent Drive, Building 49, Room 5A30, Bethesda, MD 20892, USA
| | - Maria Lyanguzova
- Division of Molecular and Cellular Biology, National Institutes for Child Health and Human Development, 49 Convent Drive, Building 49, Room 5A30, Bethesda, MD 20892, USA
| | - Ross Kaufhold
- Division of Molecular and Cellular Biology, National Institutes for Child Health and Human Development, 49 Convent Drive, Building 49, Room 5A30, Bethesda, MD 20892, USA
| | - Karen M Plevock Haase
- Division of Molecular and Cellular Biology, National Institutes for Child Health and Human Development, 49 Convent Drive, Building 49, Room 5A30, Bethesda, MD 20892, USA
| | - Hangnoh Lee
- Division of Molecular and Cellular Biology, National Institutes for Child Health and Human Development, 49 Convent Drive, Building 49, Room 5A30, Bethesda, MD 20892, USA
| | - Alexei Arnaoutov
- Division of Molecular and Cellular Biology, National Institutes for Child Health and Human Development, 49 Convent Drive, Building 49, Room 5A30, Bethesda, MD 20892, USA
| | - Mary Dasso
- Division of Molecular and Cellular Biology, National Institutes for Child Health and Human Development, 49 Convent Drive, Building 49, Room 5A30, Bethesda, MD 20892, USA.
| |
Collapse
|
3
|
Fu G, Tu LC, Zilman A, Musser SM. Investigating molecular crowding within nuclear pores using polarization-PALM. eLife 2017; 6:e28716. [PMID: 28949296 PMCID: PMC5693140 DOI: 10.7554/elife.28716] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 09/25/2017] [Indexed: 12/25/2022] Open
Abstract
The key component of the nuclear pore complex (NPC) controlling permeability, selectivity, and the speed of nucleocytoplasmic transport is an assembly of natively unfolded polypeptides, which contain phenylalanine-glycine (FG) binding sites for nuclear transport receptors. The architecture and dynamics of the FG-network have been refractory to characterization due to the paucity of experimental methods able to probe the mobility and density of the FG-polypeptides and embedded macromolecules within intact NPCs. Combining fluorescence polarization, super-resolution microscopy, and mathematical analyses, we examined the rotational mobility of fluorescent probes at various locations within the FG-network under different conditions. We demonstrate that polarization PALM (p-PALM) provides a rich source of information about low rotational mobilities that are inaccessible with bulk fluorescence anisotropy approaches, and anticipate that p-PALM is well-suited to explore numerous crowded cellular environments. In total, our findings indicate that the NPC's internal organization consists of multiple dynamic environments with different local properties.
Collapse
Affiliation(s)
- Guo Fu
- Department of Molecular and Cellular Medicine, College of MedicineThe Texas A&M University Health Science CenterCollege StationUnited States
| | - Li-Chun Tu
- Department of Molecular and Cellular Medicine, College of MedicineThe Texas A&M University Health Science CenterCollege StationUnited States
| | - Anton Zilman
- Department of PhysicsUniversity of TorontoTorontoCanada
- Institute for Biomaterials and Biomedical EngineeringUniversity of TorontoTorontoCanada
| | - Siegfried M Musser
- Department of Molecular and Cellular Medicine, College of MedicineThe Texas A&M University Health Science CenterCollege StationUnited States
| |
Collapse
|
4
|
Asakawa H, Yang HJ, Hiraoka Y, Haraguchi T. Virtual Nuclear Envelope Breakdown and Its Regulators in Fission Yeast Meiosis. Front Cell Dev Biol 2016; 4:5. [PMID: 26870731 PMCID: PMC4735346 DOI: 10.3389/fcell.2016.00005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 01/15/2016] [Indexed: 11/24/2022] Open
Abstract
Ran, a small GTPase, is required for the spindle formation and nuclear envelope (NE) formation. After NE breakdown (NEBD) during mitosis in metazoan cells, the Ran-GTP gradient across the NE is lost and Ran-GTP becomes concentrated around chromatin, thus affecting the stability of microtubules and promoting the assembly of spindle microtubules and segregation of chromosomes. Mitosis in which chromosomes are segregated subsequent to NEBD is called “open mitosis.” In contrast, many fungi undergo a process termed “closed mitosis” in which chromosome segregation and spindle formation occur without NEBD. Although the fission yeast Schizosaccharomyces pombe undergoes a closed mitosis, it exhibits a short period during meiosis (anaphase of the second meiosis; called “anaphase II”) when nuclear and cytoplasmic proteins are mixed in the presence of intact NE and nuclear pore complexes (NPC). This “virtual” nuclear envelope breakdown (vNEBD) involves changes in the localization of RanGAP1, an activator of Ran-GTP hydrolysis. Recently, Nup132, a component of the structural core Nup107-160 subcomplex of the NPC, has been shown to be involved in the maintenance of the nuclear cytoplasmic barrier in yeast meiosis. In this review, we highlight the possible roles of RanGAP1 and Nup132 in vNEBD and discuss the biological significance of vNEBD in S. pombe meiosis.
Collapse
Affiliation(s)
- Haruhiko Asakawa
- Graduate School of Frontier Biosciences, Osaka University Suita, Japan
| | - Hui-Ju Yang
- Graduate School of Frontier Biosciences, Osaka University Suita, Japan
| | - Yasushi Hiraoka
- Graduate School of Frontier Biosciences, Osaka UniversitySuita, Japan; Cell Biology Group, Advanced ICT Research Institute Kobe, National Institute of Information and Communications TechnologyKobe, Japan; Graduate School of Science, Department of Biology, Osaka UniversityToyonaka, Japan
| | - Tokuko Haraguchi
- Graduate School of Frontier Biosciences, Osaka UniversitySuita, Japan; Cell Biology Group, Advanced ICT Research Institute Kobe, National Institute of Information and Communications TechnologyKobe, Japan; Graduate School of Science, Department of Biology, Osaka UniversityToyonaka, Japan
| |
Collapse
|
5
|
Cha K, Sen P, Raghunayakula S, Zhang XD. The Cellular Distribution of RanGAP1 Is Regulated by CRM1-Mediated Nuclear Export in Mammalian Cells. PLoS One 2015; 10:e0141309. [PMID: 26506250 PMCID: PMC4624696 DOI: 10.1371/journal.pone.0141309] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2015] [Accepted: 10/07/2015] [Indexed: 11/19/2022] Open
Abstract
The Ran GTPase activating protein RanGAP1 plays an essential role in nuclear transport by stimulating RanGTP hydrolysis in the cytoplasmic compartment. In mammalian cells, unmodified RanGAP1 is predominantly cytoplasmic, whereas modification by small ubiquitin-related modifier protein (SUMO) targets RanGAP1 to the cytoplasmic filaments of nuclear pore complex (NPC). Although RanGAP1 contains nine putative nuclear export signals and a nuclear localization signal, little is known if RanGAP1 shuttles between the nuclear and cytoplasmic compartments and how its primary localization in the cytoplasm and at the NPC is regulated. Here we show that inhibition of CRM1-mediated nuclear export using RNAi-knockdown of CRM1 and inactivation of CRM1 by leptomycin B (LMB) results in nuclear accumulation of RanGAP1. LMB treatment induced a more robust redistribution of RanGAP1 from the cytoplasm to the nucleoplasm compared to CRM1 RNAi and also uniquely triggered a decrease or loss of RanGAP1 localization at the NPC, suggesting that LMB treatment is more effective in inhibiting CRM1-mediated nuclear export of RanGAP1. Our time-course analysis of LMB treatment reveals that the NPC-associated RanGAP1 is much more slowly redistributed to the nucleoplasm than the cytoplasmic RanGAP1. Furthermore, LMB-induced nuclear accumulation of RanGAP1 is positively correlated with an increase in levels of SUMO-modified RanGAP1, suggesting that SUMOylation of RanGAP1 may mainly take place in the nucleoplasm. Lastly, we demonstrate that the nuclear localization signal at the C-terminus of RanGAP1 is required for its nuclear accumulation in cells treated with LMB. Taken together, our results elucidate that RanGAP1 is actively transported between the nuclear and cytoplasmic compartments, and that the cytoplasmic and NPC localization of RanGAP1 is dependent on CRM1-mediated nuclear export.
Collapse
Affiliation(s)
- Keith Cha
- Department of Biological Sciences, Wayne State University, Detroit, Michigan, United States of America
| | - Progga Sen
- Department of Biological Sciences, Wayne State University, Detroit, Michigan, United States of America
| | - Sarita Raghunayakula
- Department of Biological Sciences, Wayne State University, Detroit, Michigan, United States of America
| | - Xiang-Dong Zhang
- Department of Biological Sciences, Wayne State University, Detroit, Michigan, United States of America
| |
Collapse
|
6
|
Abstract
Segregation Distorter (SD) is an autosomal meiotic drive gene complex found worldwide in natural populations of Drosophila melanogaster. During spermatogenesis, SD induces dysfunction of SD(+) spermatids so that SD/SD(+) males sire almost exclusively SD-bearing progeny rather than the expected 1:1 Mendelian ratio. SD is thus evolutionarily "selfish," enhancing its own transmission at the expense of its bearers. Here we review the molecular and evolutionary genetics of SD. Genetic analyses show that the SD is a multilocus gene complex involving two key loci--the driver, Segregation distorter (Sd), and the target of drive, Responder (Rsp)--and at least three upward modifiers of distortion. Molecular analyses show that Sd encodes a truncated duplication of the gene RanGAP, whereas Rsp is a large pericentromeric block of satellite DNA. The Sd-RanGAP protein is enzymatically wild type but mislocalized within cells and, for reasons that remain unclear, appears to disrupt the histone-to-protamine transition in drive-sensitive spermatids bearing many Rsp satellite repeats but not drive-insensitive spermatids bearing few or no Rsp satellite repeats. Evolutionary analyses show that the Sd-RanGAP duplication arose recently within the D. melanogaster lineage, exploiting the preexisting and considerably older Rsp satellite locus. Once established, the SD haplotype collected enhancers of distortion and suppressors of recombination. Further dissection of the molecular genetic and cellular basis of SD-mediated distortion seems likely to provide insights into several important areas currently understudied, including the genetic control of spermatogenesis, the maintenance and evolution of satellite DNAs, the possible roles of small interfering RNAs in the germline, and the molecular population genetics of the interaction of genetic linkage and natural selection.
Collapse
|
7
|
Asakawa H, Hiraoka Y, Haraguchi T. Nuclear translocation of RanGAP1 coincides with virtual nuclear envelope breakdown in fission yeast meiosis. Commun Integr Biol 2011; 4:312-4. [PMID: 21980566 DOI: 10.4161/cib.4.3.14808] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2011] [Accepted: 01/12/2011] [Indexed: 01/30/2023] Open
Abstract
In higher eukaryotes, mitosis proceeds with nuclear envelope breakdown (NEBD) and disassembly of the nuclear pore complex (NPC); this is designated "open" mitosis. On the other hand, in many fungi, mitosis and chromosome segregation takes place without NEBD; this is designated "closed" mitosis. In a recent study on Schizosaccharomyces pombe, a closed mitosis organism, we reported a novel phenomenon that is equivalent to NEBD: a mixing of nuclear proteins and cytoplasmic proteins occurred transiently for a few minutes in meiosis without physical breakdown of the nuclear envelope. We designated this event virtual nuclear envelope breakdown (V-NEBD). In S. pombe, nuclear translocation of Rna1, a RanGAP1 homolog in S. pombe, occurs during meiosis, and this translocation of Rna1 leads to collapse of the Ran-GTP gradient across the nuclear envelope and occurs coincidently with V-NEBD. Here, we describe possible roles of RanGAP1 in V-NEBD in S. pombe and provide insights into the roles V-NEBD may play in meiosis.
Collapse
Affiliation(s)
- Haruhiko Asakawa
- Graduate School of Frontier Biosciences; Osaka University; Suita, Japan
| | | | | |
Collapse
|
8
|
Kaláb P, Soderholm J. The design of Förster (fluorescence) resonance energy transfer (FRET)-based molecular sensors for Ran GTPase. Methods 2010; 51:220-32. [PMID: 20096786 DOI: 10.1016/j.ymeth.2010.01.022] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2010] [Accepted: 01/19/2010] [Indexed: 01/01/2023] Open
Abstract
The application of FRET-based molecular biosensors provided confirmation of the central model of Ran GTPase function and led to important new insights into its physiological role. In many fields of cell biology, methods employing FRET are a standard approach that is becoming increasingly accessible due to advances in instrumentation and available fluorophores. However, the optimal design of a FRET sensor remains to be the cornerstone of any successful FRET application. Utilizing the recent literature on FRET applications and our studies on Ran, we outline the basic considerations involved in designing molecular FRET sensors. We point to several broadly applicable principles that were used in many different FRET sensors that can detect a wide range of molecular events. Using the FRET sensors for Ran that we created as examples, we then focus on the practical aspects of FRET assays. We describe the preparation of a bipartite FRET sensor consisting of ECFP-Ran and EYFP-importin beta and its validation as a reporter for FRET-based high throughput screening in small molecule libraries. Finally, we review the design and optimization of monomolecular FRET sensors that monitor the RanGTP-RanBP1 interaction, and of sensors detecting the RanGTP-regulated importin beta cargo release.
Collapse
Affiliation(s)
- Petr Kaláb
- National Cancer Institute, NIH, Bethesda, MD 20892-4256, USA.
| | | |
Collapse
|
9
|
Scott RJ, Cairo LV, Van de Vosse DW, Wozniak RW. The nuclear export factor Xpo1p targets Mad1p to kinetochores in yeast. J Cell Biol 2009; 184:21-9. [PMID: 19139260 PMCID: PMC2615093 DOI: 10.1083/jcb.200804098] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2008] [Accepted: 12/09/2008] [Indexed: 12/28/2022] Open
Abstract
Nuclear pore complexes (NPCs) mediate all nucleocytoplasmic traffic and provide docking sites for the spindle assembly checkpoint (SAC) protein Mad1p. Upon SAC activation, Mad1p is recruited onto kinetochores and rapidly cycles between NPCs and kinetochores. We examined the mechanism of Mad1p movement onto kinetochores and show that it is controlled by two components of the nuclear transport machinery, the exportin Xpo1p and Ran-guanosine triphosphate (GTP). Mad1p contains a nuclear export signal (NES) that is recognized by Xpo1p. The NES, Xpo1p, and RanGTP are all required for Mad1p recruitment onto kinetochores in checkpoint-activated cells. Consistent with this function, Xpo1p also accumulates on kinetochores after SAC activation. We have also shown that Xpo1p and RanGTP are required for the dynamic cycling of Mad1p between NPCs and kinetochores in checkpoint-arrested cells. These results reveal an important function for Xpo1p in mediating intranuclear transport events and identify a signaling pathway between kinetochores and NPCs.
Collapse
Affiliation(s)
- Robert J Scott
- Department of Cell Biology, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | |
Collapse
|
10
|
Ohba T, Nishijima H, Nishitani H, Nishimoto T. Schizosaccharomyces pombe Snf2SR, a novel SNF2 family protein, interacts with Ran GTPase and modulates both RanGEF and RanGAP activities. Genes Cells 2008; 13:571-82. [PMID: 18422602 DOI: 10.1111/j.1365-2443.2008.01190.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Snf2SR, a suppressor of rna1(ts), which is a temperature-sensitive mutation in Schizosaccharomyces pombe RanGAP (GTPase activating protein), possesses both the SNF2 and the helicase domains conserved in the chromatin remodeling SNF2 ATPase/helicase protein family. We have now clarified a function of Snf2SR. Snf2SR indeed showed DNA-stimulated ATPase activity, proving that it is a member of the SNF2 ATPase/helicase family. Consistent with this role, Snf2SR was localized in the nucleus and cell fractionation analysis revealed that Snf2SR was tightly associated with the nuclear matrix. The disruption of snf2SR(+) was detrimental for a cell proliferation of S. pombe. Snf2SR that did not enhance RanGAP activity by itself, but abolished histone-H3-mediated RanGAP inhibition, as previously reported for the histone H3 methyltransferase, Clr4, another rna1(ts) suppressor. In contrast to Clr4, Snf2SR directly bound to the GDP-bound form of the S. pombe Ran homologue Spi1 and enhanced the nucleotide exchange activity of Pim1, the S. pombe RanGEF (guanine nucleotide exchange factor). Over-expression of Spi1-G18V, a Ran GTPase mutant fixed in the GTP-bound form, was lethal to S. pombe Deltasnf2SR. Together, our results indicate that Snf2SR is involved in the Ran GTPase cycle in vivo.
Collapse
Affiliation(s)
- Tomoyuki Ohba
- Department of Molecular Biology, Graduate School of Medical Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | | | | | | |
Collapse
|
11
|
Sekiguchi T, Hayashi N, Wang Y, Kobayashi H. Genetic evidence that Ras-like GTPases, Gtr1p, and Gtr2p, are involved in epigenetic control of gene expression in Saccharomyces cerevisiae. Biochem Biophys Res Commun 2008; 368:748-54. [PMID: 18258182 DOI: 10.1016/j.bbrc.2008.01.133] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2008] [Accepted: 01/29/2008] [Indexed: 12/23/2022]
Abstract
Gtr1p and Gtr2p of Saccharomyces cerevisiae are members of the Ras-like GTP binding family and interact genetically with Prp20p (yeast RCC1), which is a guanine nucleotide exchange factor for Gsp1p (yeast homolog of Ran, involved in nuclear export). Recently, Gtr1p and Gtr2p were suggested to be molecular switches in the rapamycin-sensitive TOR signaling pathway. Here, we show that Gtr1p and Gtr2p genetically interact with the chromatin remodeling factor Ino80p. Gtr2p interacted physically with both Rvb1p and Rvb2p. Consistent with these results, Gtr2p localized to chromatin and could activate transcription. Gtr1p and Gtr2p were found to be involved in chromatin silencing in the vicinity of telomeres. Gtr1p and Gtr2p were required to repress nitrogen catabolite-repressed genes, which are repressed by the TOR signaling pathway. We propose that Gtr1p and Gtr2p are involved in epigenetic control of gene expression in the TOR signaling pathway.
Collapse
Affiliation(s)
- Takeshi Sekiguchi
- Department of Molecular Biology, Graduate School of Medical Science, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka 812-8582, Japan
| | | | | | | |
Collapse
|
12
|
Hayashi N, Kobayashi M, Shimizu H, Yamamoto KI, Murakami S, Nishimoto T. Mutations in Ran system affected telomere silencing in Saccharomyces cerevisiae. Biochem Biophys Res Commun 2007; 363:788-94. [PMID: 17904525 DOI: 10.1016/j.bbrc.2007.09.054] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2007] [Accepted: 09/11/2007] [Indexed: 11/29/2022]
Abstract
The Ran GTPase system regulates the direction and timing of several cellular events, such as nuclear-cytosolic transport, centrosome formation, and nuclear envelope assembly in telophase. To gain insight into the Ran system's involvement in chromatin formation, we investigated gene silencing at the telomere in several mutants of the budding yeast Saccharomyces cerevisiae, which had defects in genes involved in the Ran system. A mutation of the RanGAP gene, rna1-1, caused reduced silencing at the telomere, and partial disruption of the nuclear Ran binding factor, yrb2-delta2, increased this silencing. The reduced telomere silencing in rna1-1 cells was suppressed by a high dosage of the SIR3 gene or the SIT4 gene. Furthermore, hyperphosphorylated Sir3 protein accumulated in the rna1-1 mutant. These results suggest that RanGAP is required for the heterochromatin structure at the telomere in budding yeast.
Collapse
Affiliation(s)
- Naoyuki Hayashi
- Department of Molecular Pathology, Cancer Research Institute, Kanazawa University, Kanazawa, Ishikawa 920-0934, Japan.
| | | | | | | | | | | |
Collapse
|
13
|
Oki M, Ma L, Wang Y, Hatanaka A, Miyazato C, Tatebayashi K, Nishitani H, Uchida H, Nishimoto T. Identification of novel suppressors for Mog1 implies its involvement in RNA metabolism, lipid metabolism and signal transduction. Gene 2007; 400:114-21. [PMID: 17651922 DOI: 10.1016/j.gene.2007.06.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2006] [Revised: 06/05/2007] [Accepted: 06/08/2007] [Indexed: 11/21/2022]
Abstract
Mog1 is conserved from yeast to mammal, but its function is obscure. We isolated yeast genes that rescued a temperature-sensitive death of S. cerevisiae Scmog1Delta, and of S. pombe Spmog1(ts). Scmog1Delta was rescued by Opi3p, a phospholipid N-methyltransferase, in addition to S. cerevisiae Ran-homologue Gsp1p, and a RanGDP binding protein Ntf2p. On the other hand, Spmog1(ts) was rescued by Cid13 that is a poly (A) polymerase specific for suc22(+) mRNA encoding a subunit of ribonucleotide reductase, Ssp1 that is a protein kinase involved in stress response pathway, and Crp79 that is required for mRNA export, in addition to Spi1, S. pombe Ran-homologue, and Nxt2, S. pombe homologue of Ntf2p. Consistent with the identification of those suppressors, lack of ScMog1p dislocates Opi3p from the nuclear membrane and all of Spmog1(ts) showed the nuclear accumulation of mRNA. Furthermore, SpMog1 was co-precipitated with Nxt2 and Cid13.
Collapse
Affiliation(s)
- Masaya Oki
- Department of Molecular Biology, Graduate School of Medical Science, Kyushu University, Fukuoka 812-8582, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
|
15
|
Current awareness on yeast. Yeast 2007. [DOI: 10.1002/yea.1322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
16
|
Rich RL, Myszka DG. Survey of the year 2006 commercial optical biosensor literature. J Mol Recognit 2007; 20:300-66. [DOI: 10.1002/jmr.862] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
17
|
Presgraves DC. Does genetic conflict drive rapid molecular evolution of nuclear transport genes inDrosophila? Bioessays 2007; 29:386-91. [PMID: 17373698 DOI: 10.1002/bies.20555] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The Segregation Distorter (SD) system of Drosophila melanogaster is one the best-characterized meiotic drive complexes known. SD gains an unfair transmission advantage through heterozygous SD/SD(+) males by incapacitating SD(+)-bearing spermatids so that virtually all progeny inherit SD. Segregation distorter (Sd), the primary distorting locus in the SD complex, is a truncated duplication of the RanGAP gene, a major regulator of the small GTPase Ran, which has several functions including the maintenance of the nucleocytoplasmic RanGTP concentration gradient that mediates nuclear transport. The truncated Sd-RanGAP protein is enzymatically active but mislocalizes to the nucleus where it somehow causes distortion. Here I present data consistent with the idea that wild-type RanGAP, and possibly other loci able to influence the RanGTP gradient, has been caught up in an ancient genetic conflict that predates the SD complex. The legacy of this conflict could include the unexpectedly rapid evolution of nuclear transport-related proteins, the accumulation of chromosomal inversions, the recruitment of gene duplications, and the turnover of repetitive sequences in the centric heterochromatin.
Collapse
Affiliation(s)
- Daven C Presgraves
- Department of Biology, University of Rochester, Rochester, NY 14627, USA.
| |
Collapse
|