1
|
van Thiel IAM, Botschuijver S, de Jonge WJ, Seppen J. Painful interactions: Microbial compounds and visceral pain. Biochim Biophys Acta Mol Basis Dis 2019; 1866:165534. [PMID: 31634534 DOI: 10.1016/j.bbadis.2019.165534] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 08/12/2019] [Accepted: 08/13/2019] [Indexed: 12/18/2022]
Abstract
Visceral pain, characterized by abdominal discomfort, originates from organs in the abdominal cavity and is a characteristic symptom in patients suffering from irritable bowel syndrome, vulvodynia or interstitial cystitis. Most organs in which visceral pain originates are in contact with the external milieu and continuously exposed to microbes. In order to maintain homeostasis and prevent infections, the immune- and nervous system in these organs cooperate to sense and eliminate (harmful) microbes. Recognition of microbial components or products by receptors expressed on cells from the immune and nervous system can activate immune responses but may also cause pain. We review the microbial compounds and their receptors that could be involved in visceral pain development.
Collapse
Affiliation(s)
- I A M van Thiel
- Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC, location AMC, Meibergdreef 69, 1105 BK Amsterdam, the Netherlands
| | - S Botschuijver
- Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC, location AMC, Meibergdreef 69, 1105 BK Amsterdam, the Netherlands
| | - W J de Jonge
- Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC, location AMC, Meibergdreef 69, 1105 BK Amsterdam, the Netherlands
| | - J Seppen
- Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC, location AMC, Meibergdreef 69, 1105 BK Amsterdam, the Netherlands.
| |
Collapse
|
2
|
Perkovska S, Méjean C, Ayoub MA, Li J, Hemery F, Corbani M, Laguette N, Ventura MA, Orcel H, Durroux T, Mouillac B, Mendre C. V 1b vasopressin receptor trafficking and signaling: Role of arrestins, G proteins and Src kinase. Traffic 2018; 19:58-82. [PMID: 29044966 DOI: 10.1111/tra.12535] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 10/13/2017] [Accepted: 10/13/2017] [Indexed: 11/29/2022]
Abstract
The signaling pathway of G protein-coupled receptors is strongly linked to their trafficking profile. Little is known about the molecular mechanisms involved in the vasopressin receptor V1b subtype (V1b R) trafficking and its impact on receptor signaling and regulation. For this purpose, we investigated the role of β-arrestins in receptor desensitization, internalization and recycling and attempted to dissect the V1b R-mediated MAP kinase pathway. Using MEF cells Knocked-out for β-arrestins 1 and 2, we demonstrated that both β-arrestins 1 and 2 play a fundamental role in internalization and recycling of V1b R with a rapid and transient V1b R-β-arrestin interaction in contrast to a slow and long-lasting β-arrestin recruitment of the V2 vasopressin receptor subtype (V2 R). Using V1b R-V2 R chimeras and V1b R C-terminus truncations, we demonstrated the critical role of the V1b R C-terminus in its interaction with β-arrestins thereby regulating the receptor internalization and recycling kinetics in a phosphorylation-independent manner. In parallel, V1b R MAP kinase activation was dependent on arrestins and Src-kinase but independent on G proteins. Interestingly, Src interacted with hV1b R at basal state and dissociated when receptor internalization occurred. Altogether, our data describe for the first time the trafficking profile and MAP kinase pathway of V1b R involving both arrestins and Src kinase family.
Collapse
Affiliation(s)
- Sanja Perkovska
- Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 5203, Institut de Génomique Fonctionnelle (IGF), Montpellier, France.,Institut National de la Santé et de la Recherche Médicale (INSERM), U1191, Montpellier, France.,Université de Montpellier, Montpellier, France
| | - Catherine Méjean
- Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 5203, Institut de Génomique Fonctionnelle (IGF), Montpellier, France.,Institut National de la Santé et de la Recherche Médicale (INSERM), U1191, Montpellier, France.,Université de Montpellier, Montpellier, France
| | - Mohammed Akli Ayoub
- Biology Department, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Juan Li
- Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 5203, Institut de Génomique Fonctionnelle (IGF), Montpellier, France.,Institut National de la Santé et de la Recherche Médicale (INSERM), U1191, Montpellier, France.,Université de Montpellier, Montpellier, France
| | - Floriane Hemery
- Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 5203, Institut de Génomique Fonctionnelle (IGF), Montpellier, France.,Institut National de la Santé et de la Recherche Médicale (INSERM), U1191, Montpellier, France.,Université de Montpellier, Montpellier, France
| | - Maithé Corbani
- Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 5203, Institut de Génomique Fonctionnelle (IGF), Montpellier, France.,Institut National de la Santé et de la Recherche Médicale (INSERM), U1191, Montpellier, France.,Université de Montpellier, Montpellier, France
| | - Nadine Laguette
- INSERM, U1016, Institut Cochin, Paris, France.,CNRS, UMR 8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Maria-Angeles Ventura
- INSERM, U1016, Institut Cochin, Paris, France.,CNRS, UMR 8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Hélène Orcel
- Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 5203, Institut de Génomique Fonctionnelle (IGF), Montpellier, France.,Institut National de la Santé et de la Recherche Médicale (INSERM), U1191, Montpellier, France.,Université de Montpellier, Montpellier, France
| | - Thierry Durroux
- Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 5203, Institut de Génomique Fonctionnelle (IGF), Montpellier, France.,Institut National de la Santé et de la Recherche Médicale (INSERM), U1191, Montpellier, France.,Université de Montpellier, Montpellier, France
| | - Bernard Mouillac
- Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 5203, Institut de Génomique Fonctionnelle (IGF), Montpellier, France.,Institut National de la Santé et de la Recherche Médicale (INSERM), U1191, Montpellier, France.,Université de Montpellier, Montpellier, France
| | - Christiane Mendre
- Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 5203, Institut de Génomique Fonctionnelle (IGF), Montpellier, France.,Institut National de la Santé et de la Recherche Médicale (INSERM), U1191, Montpellier, France.,Université de Montpellier, Montpellier, France
| |
Collapse
|
3
|
Sinniah A, Yazid S, Flower RJ. The Anti-allergic Cromones: Past, Present, and Future. Front Pharmacol 2017; 8:827. [PMID: 29184504 PMCID: PMC5694476 DOI: 10.3389/fphar.2017.00827] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 10/31/2017] [Indexed: 01/10/2023] Open
Abstract
The anti-allergic cromones were originally synthesized in the 1960s by Fisons Plc, and the first drug to emerge from this program, disodium cromoglycate was subsequently marketed for the treatment of asthma and other allergic conditions. Whilst early studies demonstrated that the ability of the cromones to prevent allergic reactions was due to their 'mast cell stabilizing' properties, the exact pharmacological mechanism by which this occurred, remained a mystery. Here, we briefly review the history of these drugs, recount some aspects of their pharmacology, and discuss two new explanations for their unique actions. We further suggest how these findings could be used to predict further uses for the cromones.
Collapse
Affiliation(s)
- Ajantha Sinniah
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Samia Yazid
- Trio Medicines Ltd., Hammersmith Medicines Research, London, United Kingdom
| | - Roderick J Flower
- Centre for Biochemical Pharmacology, William Harvey Research Institute, St Barts and the Royal London School of Medicine, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
4
|
Dorward DA, Lucas CD, Chapman GB, Haslett C, Dhaliwal K, Rossi AG. The role of formylated peptides and formyl peptide receptor 1 in governing neutrophil function during acute inflammation. THE AMERICAN JOURNAL OF PATHOLOGY 2015; 185:1172-84. [PMID: 25791526 DOI: 10.1016/j.ajpath.2015.01.020] [Citation(s) in RCA: 194] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 01/03/2015] [Accepted: 01/13/2015] [Indexed: 01/18/2023]
Abstract
Neutrophil migration to sites of inflammation and the subsequent execution of multiple functions are designed to contain and kill invading pathogens. These highly regulated and orchestrated processes are controlled by interactions between numerous receptors and their cognate ligands. Unraveling and identifying those that are central to inflammatory processes may represent novel therapeutic targets for the treatment of neutrophil-dominant inflammatory disorders in which dysregulated neutrophil recruitment, function, and elimination serve to potentiate rather than resolve an initial inflammatory insult. The first G protein-coupled receptor to be described on human neutrophils, formyl peptide receptor 1 (FPR1), is one such receptor that plays a significant role in the execution of these functions through multiple intracellular signaling pathways. Recent work has highlighted important observations with regard to both receptor function and the importance and functional relevance of FPR1 in the pathogenesis of a range of both sterile and infective inflammatory conditions. In this review, we explore the multiple components of neutrophil migration and function in both health and disease, with a focus on the role of FPR1 in these processes. The current understanding of FPR1 structure, function, and signaling is examined, alongside discussion of the potential importance of FPR1 in inflammatory diseases suggesting that FPR1 is a key regulator of the inflammatory environment.
Collapse
Affiliation(s)
- David A Dorward
- Medical Research Council Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh Medical School, Edinburgh, United Kingdom.
| | - Christopher D Lucas
- Medical Research Council Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh Medical School, Edinburgh, United Kingdom
| | - Gavin B Chapman
- Medical Research Council Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh Medical School, Edinburgh, United Kingdom
| | - Christopher Haslett
- Medical Research Council Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh Medical School, Edinburgh, United Kingdom
| | - Kevin Dhaliwal
- Medical Research Council Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh Medical School, Edinburgh, United Kingdom
| | - Adriano G Rossi
- Medical Research Council Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh Medical School, Edinburgh, United Kingdom
| |
Collapse
|
5
|
Cleyrat C, Darehshouri A, Anderson KL, Page C, Lidke DS, Volkmann N, Hanein D, Wilson BS. The architectural relationship of components controlling mast cell endocytosis. J Cell Sci 2013; 126:4913-25. [PMID: 23986485 DOI: 10.1242/jcs.128876] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Eukaryotic cells use multiple routes for receptor internalization. Here, we examine the topographical relationships of clathrin-dependent and clathrin-independent endocytic structures on the plasma membranes of leukemia-derived mast cells. The high affinity IgE receptor (FcεRI) utilizes both pathways, whereas transferrin receptor serves as a marker for the classical clathrin-mediated endocytosis pathway. Both receptors were tracked by live-cell imaging in the presence or absence of inhibitors that established their differential dependence on specific endocytic adaptor proteins. The topology of antigen-bound FcεRI, clathrin, dynamin, Arf6 and Eps15-positive structures were analyzed by 2D and 3D immunoelectron microscopy techniques, revealing their remarkable spatial relationships and unique geometry. We conclude that the mast cell plasma membrane has multiple specialized domains for endocytosis. Their close proximity might reflect shared components, such as lipids and adaptor proteins, that facilitate inward membrane curvature. Intersections between these specialized domains might represent sorting stations that direct cargo to specific endocytic pathways.
Collapse
Affiliation(s)
- Cédric Cleyrat
- Department of Pathology University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Pullen NA, Falanga YT, Morales JK, Ryan JJ. The Fyn-STAT5 Pathway: A New Frontier in IgE- and IgG-Mediated Mast Cell Signaling. Front Immunol 2012; 3:117. [PMID: 22593761 PMCID: PMC3350083 DOI: 10.3389/fimmu.2012.00117] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Accepted: 04/23/2012] [Indexed: 01/21/2023] Open
Abstract
Mast cells are central players in immune surveillance and activation, positioned at the host–environment interface. Understanding the signaling events controlling mast cell function, especially those that maintain host homeostasis, is an important and still less understood area of mast cell-mediated disease. With respect to allergic disease, it is well established that IgE and its high affinity receptor FcεRI are major mediators of mast cell activation. However, IgG-mediated signals can also modulate mast cell activities. Signals elicited by IgG binding to its cognate receptors (FcγR) are the basis for autoimmune disorders such as lupus and rheumatoid arthritis. Using knowledge of IgE-mediated mast cell signaling, recent work has begun to illuminate potential overlap between FcεRI and FcγR signal transduction. Herein we review the importance of Src family kinases in FcεRI and FcγR signaling, the role of the transcription factor STAT5, and impingement of the regulatory cytokines IL-4, IL-10, and TGFβ1 upon this network.
Collapse
Affiliation(s)
- Nicholas A Pullen
- Department of Biology, The Asthma and Allergic Disease Cooperative Research Center, Virginia Commonwealth University Richmond, VA, USA
| | | | | | | |
Collapse
|
7
|
Pullen NA, Barnstein BO, Falanga YT, Wang Z, Suzuki R, Tamang TDL, Khurana MC, Harry EA, Draber P, Bunting KD, Mizuno K, Wilson BS, Ryan JJ. Novel mechanism for Fc{epsilon}RI-mediated signal transducer and activator of transcription 5 (STAT5) tyrosine phosphorylation and the selective influence of STAT5B over mast cell cytokine production. J Biol Chem 2011; 287:2045-54. [PMID: 22130676 DOI: 10.1074/jbc.m111.311142] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Previous studies indicate that STAT5 expression is required for mast cell development, survival, and IgE-mediated function. STAT5 tyrosine phosphorylation is swiftly and transiently induced by activation of the high affinity IgE receptor, FcεRI. However, the mechanism for this mode of activation remains unknown. In this study we observed that STAT5 co-localizes with FcεRI in antigen-stimulated mast cells. This localization was supported by cholesterol depletion of membranes, which ablated STAT5 tyrosine phosphorylation. Through the use of various pharmacological inhibitors and murine knock-out models, we found that IgE-mediated STAT5 activation is dependent upon Fyn kinase, independent of Syk, PI3K, Akt, Bruton's tyrosine kinase, and JAK2, and enhanced in the context of Lyn kinase deficiency. STAT5 immunoprecipitation revealed that unphosphorylated protein preassociates with Fyn and that this association diminishes significantly during mast cell activation. SHP-1 tyrosine phosphatase deficiency modestly enhanced STAT5 phosphorylation. This effect was more apparent in the absence of Gab2, a scaffolding protein that docks with multiple negative regulators, including SHP-1, SHP-2, and Lyn. Targeting of STAT5A or B with specific siRNA pools revealed that IgE-mediated mast cell cytokine production is selectively dependent upon the STAT5B isoform. Altogether, these data implicate Fyn as the major positive mediator of STAT5 after FcεRI engagement and demonstrate importantly distinct roles for STAT5A and STAT5B in mast cell function.
Collapse
Affiliation(s)
- Nicholas A Pullen
- Department of Biology, Virginia Commonwealth University, Richmond, Virginia 23284, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Espinoza FA, Oliver JM, Wilson BS, Steinberg SL. Using hierarchical clustering and dendrograms to quantify the clustering of membrane proteins. Bull Math Biol 2011; 74:190-211. [PMID: 21751075 DOI: 10.1007/s11538-011-9671-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2010] [Accepted: 06/03/2011] [Indexed: 01/16/2023]
Abstract
Cell biologists have developed methods to label membrane proteins with gold nanoparticles and then extract spatial point patterns of the gold particles from transmission electron microscopy images using image processing software. Previously, the resulting patterns were analyzed using the Hopkins statistic, which distinguishes nonclustered from modestly and highly clustered distributions, but is not designed to quantify the number or sizes of the clusters. Clusters were defined by the partitional clustering approach which required the choice of a distance. Two points from a pattern were put in the same cluster if they were closer than this distance. In this study, we present a new methodology based on hierarchical clustering to quantify clustering. An intrinsic distance is computed, which is the distance that produces the maximum number of clusters in the biological data, eliminating the need to choose a distance. To quantify the extent of clustering, we compare the clustering distance between the experimental data being analyzed with that from simulated random data. Results are then expressed as a dimensionless number, the clustering ratio that facilitates the comparison of clustering between experiments. Replacing the chosen cluster distance by the intrinsic clustering distance emphasizes densely packed clusters that are likely more important to downstream signaling events.We test our new clustering analysis approach against electron microscopy images from an experiment in which mast cells were exposed for 1 or 2 minutes to increasing concentrations of antigen that crosslink IgE bound to its high affinity receptor, FcϵRI, then fixed and the FcϵRI β subunit labeled with 5 nm gold particles. The clustering ratio analysis confirms the increase in clustering with increasing antigen dose predicted from visual analysis and from the Hopkins statistic. Access to a robust and sensitive tool to both observe and quantify clustering is a key step toward understanding the detailed fine scale structure of the membrane, and ultimately to determining the role of spatial organization in the regulation of transmembrane signaling.
Collapse
Affiliation(s)
- Flor A Espinoza
- Department of Mathematics and Statistics, University of New Mexico, Albuquerque, NM 87131-1141, USA.
| | | | | | | |
Collapse
|
9
|
Spatio-temporal signaling in mast cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 716:91-106. [PMID: 21713653 DOI: 10.1007/978-1-4419-9533-9_6] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
This chapter summarizes the evidence for localized signaling domains in mast cells and basophils, with a particular focus on the high affinity IgE receptor, FcεRI and its crosstalk with other membrane proteins. It is noteworthy that a literature spanning 30 years established the FcεRI as a model receptor for studying activation-induced changes in receptor diffusion and lipid raft association. Now a combination of high resolution microscopy methods, including immunoelectron microscopy and sophisticated fluorescence-based techniques, provide new insight into the nanoscale spatial and temporal aspects of receptor topography on the mast cell plasma membrane. Physical crosslinking of FcεRI with multivalent ligands leads to formation of IgE receptor clusters, termed "signaling patches," that recruit downstream signaling molecules. However, classes of receptors that engage solely withmono valent ligands can also form distinctive signaling patches. The dynamic relationships between receptor diffusion, aggregation state, clustering, signal initiation and signal strength are discussed in the context of these recent findings.
Collapse
|
10
|
Thubagere A, Reinhard BM. Nanoparticle-induced apoptosis propagates through hydrogen-peroxide-mediated bystander killing: insights from a human intestinal epithelium in vitro model. ACS NANO 2010; 4:3611-22. [PMID: 20560658 DOI: 10.1021/nn100389a] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The ability to assess the risks of human exposure to engineered nanomaterials requires fundamental understanding of the fate and potential cytotoxicity of nonbiodegradable nanoparticles, for instance, after oral uptake. In this study, we quantify the impact of nanoparticles with low chemical toxicity on the intestinal membrane in a human intestinal in vitro model. Differentiated human colorectal adenocarcinoma cells, Caco-2, were cultured on a permeable support where they form an epithelial monolayer separating an apical and basal compartment. This model system allows a systematic characterization of the effect of nanoparticles on the cell viability as a function of size, surface chemistry, concentration, and incubation time. We used polystyrene (PS) nanoparticles (20 and 40 nm diameter) with two different surface chemistries (carboxylic acid and amines). The experiments performed show a strong decrease in cell viability as a response to nanoparticle exposure. Incubation times of <or=4 h are sufficient to induce dramatic losses in cell viability after an additional induction period of 4-12 h. Mapping the temporospatial distribution of dead cells in the Caco-2 cell monolayer using optical microscopy reveals that the nanoparticles induce apoptosis in individual cells, which then propagate across the cell monolayer through a "bystander killing effect". Addition of catalase, which selectively decomposes hydrogen peroxide, leads to a significant decrease in apoptosis levels, indicating that hydrogen peroxide causes the spread of apoptosis across the monolayer. Our findings confirm that ingested nonbiodegradable nanoparticles represent a potential health risk due to their detrimental impact on the intestinal membrane by destroying their barrier protection capability over time.
Collapse
Affiliation(s)
- Anupama Thubagere
- Department of Chemistry and The Photonics Center, Boston University, Boston, Massachusetts 02215, USA
| | | |
Collapse
|
11
|
Dufton N, Perretti M. Therapeutic anti-inflammatory potential of formyl-peptide receptor agonists. Pharmacol Ther 2010; 127:175-88. [PMID: 20546777 DOI: 10.1016/j.pharmthera.2010.04.010] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Accepted: 04/25/2010] [Indexed: 12/22/2022]
Abstract
The need for novel anti-inflammatory drugs justifies the search for innovative targets that could satisfy this goal. For quite some time now, we have proposed the study of endogenous anti-inflammation as a distinctive approach to the discovery of new drugs. This approach requires development of new compounds that activate specific receptor targets to downregulate the cellular and tissue pathways operative in the host during inflammation. Here we dwell on a family of G-protein coupled receptors (GPCR) termed FPRs, acronym for formyl-peptide receptors. With three and seven members in man and mouse, respectively, these receptors harness many biological functions, spanning odour perception and hair growth, to the control of multiple facets (pain; cell migration; oxidative burst; xenobiotic engulfment) of the inflammatory reaction. We focus on FPR biology with particular attention to molecules able to produce pharmacological effects by interacting with these GPCRs, describing endogenous agonists of FPRs and, more relevantly, the current development of synthetic agonists. Besides being potential leads for the development of the anti-inflammatory therapeutics of the future, these compounds could also help clarify the properties and roles that each FPR might play in the complex network of pathways that is inflammation. We conclude that FPR2 agonists could be valid warhorses for defining a novel philosophy for anti-inflammatory drug discovery programmes: mimicking - with new compounds - the way our body disposes of inflammation could be a viable approach to regulate aberrant inflammatory responses as in the case of several chronic rheumatic and cardiovascular pathologies.
Collapse
Affiliation(s)
- Neil Dufton
- The William Harvey Research Institute, Barts and The London School of Medicine, Queen Mary University of London, London, United Kingdom
| | | |
Collapse
|
12
|
Ye RD, Boulay F, Wang JM, Dahlgren C, Gerard C, Parmentier M, Serhan CN, Murphy PM. International Union of Basic and Clinical Pharmacology. LXXIII. Nomenclature for the formyl peptide receptor (FPR) family. Pharmacol Rev 2009; 61:119-61. [PMID: 19498085 DOI: 10.1124/pr.109.001578] [Citation(s) in RCA: 609] [Impact Index Per Article: 38.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Formyl peptide receptors (FPRs) are a small group of seven-transmembrane domain, G protein-coupled receptors that are expressed mainly by mammalian phagocytic leukocytes and are known to be important in host defense and inflammation. The three human FPRs (FPR1, FPR2/ALX, and FPR3) share significant sequence homology and are encoded by clustered genes. Collectively, these receptors bind an extraordinarily numerous and structurally diverse group of agonistic ligands, including N-formyl and nonformyl peptides of different composition, that chemoattract and activate phagocytes. N-formyl peptides, which are encoded in nature only by bacterial and mitochondrial genes and result from obligatory initiation of bacterial and mitochondrial protein synthesis with N-formylmethionine, is the only ligand class common to all three human receptors. Surprisingly, the endogenous anti-inflammatory peptide annexin 1 and its N-terminal fragments also bind human FPR1 and FPR2/ALX, and the anti-inflammatory eicosanoid lipoxin A4 is an agonist at FPR2/ALX. In comparison, fewer agonists have been identified for FPR3, the third member in this receptor family. Structural and functional studies of the FPRs have produced important information for understanding the general pharmacological principles governing all leukocyte chemoattractant receptors. This article aims to provide an overview of the discovery and pharmacological characterization of FPRs, to introduce an International Union of Basic and Clinical Pharmacology (IUPHAR)-recommended nomenclature, and to discuss unmet challenges, including the mechanisms used by these receptors to bind diverse ligands and mediate different biological functions.
Collapse
Affiliation(s)
- Richard D Ye
- Department of Pharmacology, University of Illinois College of Medicine, 835 South Wolcott Avenue, M/C 868, Chicago, Illinois 60612, USA.
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Fattakhova GV, Masilamani M, Narayanan S, Borrego F, Gilfillan AM, Metcalfe DD, Coligan JE. Endosomal trafficking of the ligated FcvarepsilonRI receptor. Mol Immunol 2008; 46:793-802. [PMID: 18945491 DOI: 10.1016/j.molimm.2008.09.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2008] [Revised: 08/29/2008] [Accepted: 09/03/2008] [Indexed: 12/21/2022]
Abstract
In addition to initiating signaling cascades leading to mast cell mediator release, aggregation of the high affinity IgE receptor (FcvarepsilonRI) leads to rapid internalization of the cross-linked receptor. However, little is known about the trafficking of the internalized FcvarepsilonRI. Here we demonstrate that in RBL-2H3 cells, aggregated FcvarepsilonRI appears in the early endosomal antigen 1 (EEA1(+)) domains of the early endosomes within 15min after ligation. Minimal co-localization of FcvarepsilonRI with Rab5 was observed by 30min, followed by its appearance in the Rab7(+) late endosomes and lysosomes at later time points. During endosomal sorting, FcvarepsilonRIalpha and gamma subunits remain associated. In Syk-deficient RBL-2H3 cells, the rate of transport to lysosomes is markedly increased. Taken together, our data demonstrate time-dependent sorting of aggregated FcvarepsilonRI within the endosomal-lysosomal network, and that Syk may play an essential role in regulating the trafficking and retention of FcvarepsilonRI in endosomes.
Collapse
Affiliation(s)
- Gul'nar V Fattakhova
- Receptor Cell Biology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, United States
| | | | | | | | | | | | | |
Collapse
|
14
|
Huang J, Chen K, Gong W, Zhou Y, Le Y, Bian X, Wang JM. Receptor "hijacking" by malignant glioma cells: a tactic for tumor progression. Cancer Lett 2008; 267:254-61. [PMID: 18433988 DOI: 10.1016/j.canlet.2008.03.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2008] [Revised: 02/26/2008] [Accepted: 03/11/2008] [Indexed: 01/25/2023]
Abstract
Gliomas are the most common and deadly tumors in the central nervous system (CNS). In the course of studying the role of chemoattractant receptors in tumor growth and metastasis, we discovered that highly malignant human glioblastoma and anaplastic astrocytoma specimens were stained positively for the formylpeptide receptor (FPR), which is normally expressed in myeloid cells and accounts for their chemotaxis and activation induced by bacterial peptides. Screening of human glioma cell lines revealed that FPR was expressed selectively in glioma cell lines with a more highly malignant phenotype. FPR expressed in glioblastoma cell lines mediates cell chemotaxis, proliferation and production of an angiogenic factor, vascular endothelial growth factor (VEGF), in response to agonists released by necrotic tumor cells. Furthermore, FPR in glioblastoma cells activates the receptor for epidermal growth factor (EGFR) by increasing the phosphorylation of a selected tyrosine residue in the intracellular tail of EGFR. Thus, FPR hijacked by human glioblastoma cells exploits the function of EGFR to promote rapid tumor progression.
Collapse
Affiliation(s)
- Jian Huang
- Laboratory of Molecular Immunoregulation, Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute at Frederick, Building 560, Room 31-76, Frederick, MD 21702-1201, USA
| | | | | | | | | | | | | |
Collapse
|
15
|
Clustering and colocalization in transmission immunoelectron microscopy: A brief review. Micron 2008; 39:1-6. [DOI: 10.1016/j.micron.2007.09.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2007] [Revised: 09/12/2007] [Accepted: 09/14/2007] [Indexed: 11/18/2022]
|
16
|
Zhang J, Steinberg SL, Wilson BS, Oliver JM, Williams LR. Markov Random Field Modeling of the Spatial Distribution of Proteins on Cell Membranes. Bull Math Biol 2007; 70:297-321. [PMID: 17906899 DOI: 10.1007/s11538-007-9259-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2006] [Accepted: 06/22/2007] [Indexed: 01/20/2023]
Abstract
Cell membranes display a range of receptors that bind ligands and activate signaling pathways. Signaling is characterized by dramatic changes in membrane molecular topography, including the co-clustering of receptors with signaling molecules and the segregation of other signaling molecules away from receptors. Electron microscopy of immunogold-labeled membranes is a critical technique to generate topographical information at the 5-10 nm resolution needed to understand how signaling complexes assemble and function. However, due to experimental limitations, only two molecular species can usually be labeled at a time. A formidable challenge is to integrate experimental data across multiple experiments where there are from 10 to 100 different proteins and lipids of interest and only the positions of two species can be observed simultaneously. As a solution, we propose the use of Markov random field (MRF) modeling to reconstruct the distribution of multiple cell membrane constituents from pair-wise data sets. MRFs are a powerful mathematical formalism for modeling correlations between states associated with neighboring sites in spatial lattices. The presence or absence of a protein of a specific type at a point on the cell membrane is a state. Since only two protein types can be observed, i.e., those bound to particles, and the rest cannot be observed, the problem is one of deducing the conditional distribution of a MRF with unobservable (hidden) states. Here, we develop a multiscale MRF model and use mathematical programming techniques to infer the conditional distribution of a MRF for proteins of three types from observations showing the spatial relationships between only two types. Application to synthesized data shows that the spatial distributions of three proteins can be reliably estimated. Application to experimental data provides the first maps of the spatial relationship between groups of three different signaling molecules. The work is an important step toward a more complete understanding of membrane spatial organization and dynamics during signaling.
Collapse
Affiliation(s)
- Jun Zhang
- Department of Computer Science, University of New Mexico, Albuquerque, NM 87131, USA
| | | | | | | | | |
Collapse
|