1
|
Popov IK, Tao J, Chang C. The RhoGEF protein Plekhg5 self-associates via its PH domain to regulate apical cell constriction. Mol Biol Cell 2024; 35:ar134. [PMID: 39196644 PMCID: PMC11481697 DOI: 10.1091/mbc.e24-04-0179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 08/12/2024] [Accepted: 08/19/2024] [Indexed: 08/30/2024] Open
Abstract
RhoGEFs are critical activators of Rho family small GTPases and regulate diverse biological processes, such as cell division and tissue morphogenesis. We reported previously that the RhoGEF gene plekhg5 controls apical constriction of bottle cells at the blastopore lip during Xenopus gastrulation, but the detailed mechanism of plekhg5 action is not understood in depth. In this study, we show that localization of Plekhg5 in the apical cortex depends on its N-terminal sequences and intact guanine nucleotide exchange activity, whereas the C-terminal sequences prevent ectopic localization of the protein to the basolateral compartment. We also reveal that Plekhg5 self-associates via its PH domain, and this interaction leads to functional rescue of two mutants that lack the N-terminal region and the guanine nucleotide exchange factor activity, respectively, in trans. A point mutation in the PH domain corresponding to a variant associated with human disease leads to loss of self-association and failure of the mutant to induce apical constriction. Taken together, our results suggest that PH-mediated self-association and N-terminal domain-mediated subcellular localization are both crucial for the function of Plekhg5 in inducing apical constriction.
Collapse
Affiliation(s)
- Ivan K. Popov
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Jiahui Tao
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Chenbei Chang
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294
| |
Collapse
|
2
|
A current overview of RhoA, RhoB, and RhoC functions in vascular biology and pathology. Biochem Pharmacol 2022; 206:115321. [DOI: 10.1016/j.bcp.2022.115321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 11/24/2022]
|
3
|
PLEKHG5 is a novel prognostic biomarker in glioma patients. Int J Clin Oncol 2019; 24:1350-1358. [DOI: 10.1007/s10147-019-01503-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Accepted: 06/30/2019] [Indexed: 12/30/2022]
|
4
|
Grun D, Adhikary G, Eckert RL. NRP-1 interacts with GIPC1 and SYX to activate p38 MAPK signaling and cancer stem cell survival. Mol Carcinog 2019; 58:488-499. [PMID: 30456845 PMCID: PMC6417965 DOI: 10.1002/mc.22943] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 11/09/2018] [Indexed: 01/13/2023]
Abstract
Epidermal cancer stem cells (ECS cells) comprise a limited population of cells that form aggressive, rapidly growing, and highly vascularized tumors. VEGF-A/NRP-1 signaling is a key driver of the ECS cell phenotype and aggressive tumor formation. However, relatively less is known regarding the downstream events following VEGF-A/NRP-1 interaction. In the present study, we show that VEGF-A/NRP-1, GIPC1, and Syx interact to increase RhoA-dependent p38 MAPK activity to enhance ECS cell spheroid formation, invasion, migration, and angiogenic potential. Inhibition or knockdown of NRP-1, GIPC1 or Syx attenuates RhoA and p38 activity to reduce the ECS cell phenotype, and NRP-1 knockout, or pharmacologic inhibition of VEGF-A/NRP-1 interaction or RhoA activity, reduces p38 MAPK activity and tumor growth. Moreover, expression of wild-type or constitutively-active RhoA, or p38, in NRP1-knockout cells, restores p38 activity and the ECS cell phenotype. These findings suggest that NRP-1 forms a complex with GIPC1 and Syx to activate RhoA/ROCK-dependent p38 activity to enhance the ECS cell phenotype and tumor formation.
Collapse
Affiliation(s)
- Daniel Grun
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Gautam Adhikary
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Richard L Eckert
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland.,Department of Dermatology, University of Maryland School of Medicine, Baltimore, Maryland.,Department of Reproductive Biology, University of Maryland School of Medicine, Baltimore, Maryland.,Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland
| |
Collapse
|
5
|
Popov IK, Ray HJ, Skoglund P, Keller R, Chang C. The RhoGEF protein Plekhg5 regulates apical constriction of bottle cells during gastrulation. Development 2018; 145:dev168922. [PMID: 30446627 PMCID: PMC6307888 DOI: 10.1242/dev.168922] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 11/07/2018] [Indexed: 12/12/2022]
Abstract
Apical constriction regulates epithelial morphogenesis during embryonic development, but how this process is controlled is not understood completely. Here, we identify a Rho guanine nucleotide exchange factor (GEF) gene plekhg5 as an essential regulator of apical constriction of bottle cells during Xenopus gastrulation. plekhg5 is expressed in the blastopore lip and its expression is sufficient to induce ectopic bottle cells in epithelia of different germ layers in a Rho-dependent manner. This activity is not shared by arhgef3, which encodes another organizer-specific RhoGEF. Plekhg5 protein is localized in the apical cell cortex via its pleckstrin homology domain, and the GEF activity enhances its apical recruitment. Plekhg5 induces apical actomyosin accumulation and cell elongation. Knockdown of plekhg5 inhibits activin-induced bottle cell formation and endogenous blastopore lip formation in gastrulating frog embryos. Apical accumulation of actomyosin, apical constriction and bottle cell formation fail to occur in these embryos. Taken together, our data indicate that transcriptional regulation of plekhg5 expression at the blastopore lip determines bottle cell morphology via local polarized activation of Rho by Plekhg5, which stimulates apical actomyosin activity to induce apical constriction.
Collapse
Affiliation(s)
- Ivan K Popov
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Heather J Ray
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Paul Skoglund
- Biology Department, University of Virginia, Charlottesville, VA 22903, USA
| | - Ray Keller
- Biology Department, University of Virginia, Charlottesville, VA 22903, USA
| | - Chenbei Chang
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
6
|
Lüningschrör P, Binotti B, Dombert B, Heimann P, Perez-Lara A, Slotta C, Thau-Habermann N, R von Collenberg C, Karl F, Damme M, Horowitz A, Maystadt I, Füchtbauer A, Füchtbauer EM, Jablonka S, Blum R, Üçeyler N, Petri S, Kaltschmidt B, Jahn R, Kaltschmidt C, Sendtner M. Plekhg5-regulated autophagy of synaptic vesicles reveals a pathogenic mechanism in motoneuron disease. Nat Commun 2017; 8:678. [PMID: 29084947 PMCID: PMC5662736 DOI: 10.1038/s41467-017-00689-z] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 07/20/2017] [Indexed: 12/13/2022] Open
Abstract
Autophagy-mediated degradation of synaptic components maintains synaptic homeostasis but also constitutes a mechanism of neurodegeneration. It is unclear how autophagy of synaptic vesicles and components of presynaptic active zones is regulated. Here, we show that Pleckstrin homology containing family member 5 (Plekhg5) modulates autophagy of synaptic vesicles in axon terminals of motoneurons via its function as a guanine exchange factor for Rab26, a small GTPase that specifically directs synaptic vesicles to preautophagosomal structures. Plekhg5 gene inactivation in mice results in a late-onset motoneuron disease, characterized by degeneration of axon terminals. Plekhg5-depleted cultured motoneurons show defective axon growth and impaired autophagy of synaptic vesicles, which can be rescued by constitutively active Rab26. These findings define a mechanism for regulating autophagy in neurons that specifically targets synaptic vesicles. Disruption of this mechanism may contribute to the pathophysiology of several forms of motoneuron disease. Accumulating evidence suggests that disruption of autophagy is associated with neurodegeneration. Here the authors show that Plekhg5 acts as a GEF for Rab26, a small GTPase that promotes the autophagy of synaptic vesicles in neurons; mice lacking Plekgh5 develop late-onset motoneuron degeneration.
Collapse
Affiliation(s)
- Patrick Lüningschrör
- Institute of Clinical Neurobiology, University Hospital Würzburg, 97078, Würzburg, Germany.,Department of Cell Biology, University of Bielefeld, 33501, Bielefeld, Germany
| | - Beyenech Binotti
- Department of Neurobiology, Max Planck Institute for Biophysical Chemistry, 37077, Göttingen, Germany
| | - Benjamin Dombert
- Institute of Clinical Neurobiology, University Hospital Würzburg, 97078, Würzburg, Germany
| | - Peter Heimann
- Department of Cell Biology, University of Bielefeld, 33501, Bielefeld, Germany
| | - Angel Perez-Lara
- Department of Neurobiology, Max Planck Institute for Biophysical Chemistry, 37077, Göttingen, Germany
| | - Carsten Slotta
- Department of Cell Biology, University of Bielefeld, 33501, Bielefeld, Germany
| | | | - Cora R von Collenberg
- Institute of Clinical Neurobiology, University Hospital Würzburg, 97078, Würzburg, Germany
| | - Franziska Karl
- Department of Neurology, University Hospital Würzburg, 97078, Würzburg, Germany
| | - Markus Damme
- Institut für Biochemie, Christian-Albrechts-Universität zu Kiel, 24098, Kiel, Germany
| | - Arie Horowitz
- Cardeza Vascular Biology Center, Departments of Medicine and Cancer Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Isabelle Maystadt
- Centre de Génétique Humaine, Institut de Pathologie et de Génétique, 6041, Gosselies, Belgium
| | - Annette Füchtbauer
- Department of Molecular Biology and Genetics, Aarhus University, 8000, Aarhus C, Denmark
| | | | - Sibylle Jablonka
- Institute of Clinical Neurobiology, University Hospital Würzburg, 97078, Würzburg, Germany
| | - Robert Blum
- Institute of Clinical Neurobiology, University Hospital Würzburg, 97078, Würzburg, Germany
| | - Nurcan Üçeyler
- Department of Neurology, University Hospital Würzburg, 97078, Würzburg, Germany
| | - Susanne Petri
- Department of Neurology, Hannover Medical School, 30625, Hannover, Germany.,Integrated Research and Treatment Center Transplantation (IFB-Tx) Hannover, Hannover Medical School, 30625, Hannover, Germany
| | - Barbara Kaltschmidt
- Department of Cell Biology, University of Bielefeld, 33501, Bielefeld, Germany.,Molecular Neurobiology, University of Bielefeld, 33615, Bielefeld, Germany
| | - Reinhard Jahn
- Department of Neurobiology, Max Planck Institute for Biophysical Chemistry, 37077, Göttingen, Germany
| | | | - Michael Sendtner
- Institute of Clinical Neurobiology, University Hospital Würzburg, 97078, Würzburg, Germany.
| |
Collapse
|
7
|
Iwatake M, Nishishita K, Okamoto K, Tsukuba T. The Rho-specific guanine nucleotide exchange factor Plekhg5 modulates cell polarity, adhesion, migration, and podosome organization in macrophages and osteoclasts. Exp Cell Res 2017; 359:415-430. [PMID: 28847484 DOI: 10.1016/j.yexcr.2017.08.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 08/06/2017] [Accepted: 08/17/2017] [Indexed: 12/28/2022]
Abstract
Osteoclasts are multinucleated bone-resorbing cells that are formed by fusion of monocyte/macrophage lineage. Osteoclasts and macrophages generate podosomes that are actin-based dynamic organelles implicated in cell adhesion, spreading, migration, and degradation. However, the detailed mechanisms of podosome organization remain unknown. Here, we identified the Rho-specific guanine-nucleotide exchange factor (Rho-GEF) Plekhg5 as an up-regulated gene during differentiation of osteoclasts from macrophages. Knockdown of Plekhg5 with small interfering RNA in both macrophages and osteoclasts induced larger cell formation with impaired cell polarity and resulted in an elongated and flattened shape. In macrophages, Plekhg5 depletion enhanced random migration, but impaired directional migration, adhesion, and matrix degradation. Plekhg5 in osteoclasts affected random migration, podosome organization, and bone resorption. Plekhg5 depletion affected signaling and localization of several Rho downstream effectors. In fact, end-binding protein 1 (EB1), cofilin and vinculin were abnormally localized in Plekhg5-depleted cells, and mDia1 and LIM kinase (LIMK)1 were upregulated in Plekhg5-depleted cells compared with control cells. However, overexpression of Plekhg5 in macrophages induced an increase in its mRNA level, but failed to increase the protein level, indicating that overexpressed Plekhg5 was degraded in macrophages but not HEK293T cells. Thus, Plekhg5 affects cell polarity, migration, adhesion, degradation, and podosome organization in macrophages and osteoclasts.
Collapse
Affiliation(s)
- Mayumi Iwatake
- Department of Dental Pharmacology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8588, Japan
| | - Kazuhisa Nishishita
- Department of Dental Pharmacology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8588, Japan
| | - Kuniaki Okamoto
- Department of Dental Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8558, Japan
| | - Takayuki Tsukuba
- Department of Dental Pharmacology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8588, Japan.
| |
Collapse
|
8
|
Horowitz A, Yang J, Cai J, Iacovitti L. The versatility of RhoA activities in neural differentiation. Small GTPases 2017; 10:26-32. [PMID: 28125332 DOI: 10.1080/21541248.2016.1273171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
In this commentary we discuss a paper we published recently on the activities of the GTPase RhoA during neural differentiation of murine embryonic stem cells, and relate our findings to previous studies. We narrate how we found that RhoA impedes neural differentiation by inhibiting the production as well as the secretion of noggin, a soluble factor that antagonizes bone morphogenetic protein. We discuss how the questions we tried to address shaped the study, and how embryonic stem cells isolated from a genetically modified mouse model devoid of Syx, a RhoA-specific guanine exchange factor, were used to address them. We detail several signaling pathways downstream of RhoA that are hindered by the absence of Syx, and obstructed by retinoic acid, resulting in an increase of noggin production; we explain how the lower RhoA activity and, consequently, the sparser peri-junctional stress fibers in Syx-/- cells facilitated noggin secretion; and we report unpublished results showing that pharmacological inhibition of RhoA accelerates the neuronal differentiation of human embryonic stem cells. Finally, we identify signaling mechanisms in our recent study that warrant further study, and speculate on the possibility of manipulating RhoA signaling in combination with other pathways to drive the differentiation of neuronal subtypes.
Collapse
Affiliation(s)
- Arie Horowitz
- a Cardeza Center for Vascular Biology, Department of Medicine , Sidney Kimmel Medical College, Thomas Jefferson University , Philadelphia , PA , USA.,b Department of Cancer Biology Sidney Kimmel Medical College , Thomas Jefferson University , Philadelphia , PA , USA
| | - Junning Yang
- a Cardeza Center for Vascular Biology, Department of Medicine , Sidney Kimmel Medical College, Thomas Jefferson University , Philadelphia , PA , USA
| | - Jingli Cai
- c Department of Neuroscience , Sidney Kimmel Medical College, Thomas Jefferson University , Philadelphia , PA , USA
| | - Lorraine Iacovitti
- c Department of Neuroscience , Sidney Kimmel Medical College, Thomas Jefferson University , Philadelphia , PA , USA
| |
Collapse
|
9
|
Abstract
Vascular endothelial growth factor (VEGF) plays a fundamental role in angiogenesis and endothelial cell biology, and has been the subject of intense study as a result. VEGF acts via a diverse and complex range of signaling pathways, with new targets constantly being discovered. This review attempts to summarize the current state of knowledge regarding VEGF cell signaling in endothelial and cardiovascular biology, with a particular emphasis on its role in angiogenesis.
Collapse
Affiliation(s)
- Ian Evans
- Centre for Cardiovascular Biology and Medicine, Division of Medicine, University College London, Rayne Building, 5 University Street, London, WC1E 6JF, UK,
| |
Collapse
|
10
|
Koo PK, Weitzman M, Sabanaygam CR, van Golen KL, Mochrie SGJ. Extracting Diffusive States of Rho GTPase in Live Cells: Towards In Vivo Biochemistry. PLoS Comput Biol 2015; 11:e1004297. [PMID: 26512894 PMCID: PMC4626024 DOI: 10.1371/journal.pcbi.1004297] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 04/26/2015] [Indexed: 11/19/2022] Open
Abstract
Resolving distinct biochemical interaction states when analyzing the trajectories of diffusing proteins in live cells on an individual basis remains challenging because of the limited statistics provided by the relatively short trajectories available experimentally. Here, we introduce a novel, machine-learning based classification methodology, which we call perturbation expectation-maximization (pEM), that simultaneously analyzes a population of protein trajectories to uncover the system of diffusive behaviors which collectively result from distinct biochemical interactions. We validate the performance of pEM in silico and demonstrate that pEM is capable of uncovering the proper number of underlying diffusive states with an accurate characterization of their diffusion properties. We then apply pEM to experimental protein trajectories of Rho GTPases, an integral regulator of cytoskeletal dynamics and cellular homeostasis, in vivo via single particle tracking photo-activated localization microcopy. Remarkably, pEM uncovers 6 distinct diffusive states conserved across various Rho GTPase family members. The variability across family members in the propensities for each diffusive state reveals non-redundant roles in the activation states of RhoA and RhoC. In a resting cell, our results support a model where RhoA is constantly cycling between activation states, with an imbalance of rates favoring an inactive state. RhoC, on the other hand, remains predominantly inactive. Single particle tracking is a powerful tool that captures the diffusive dynamics of proteins as they undergo various interactions in living cells. Uncovering different biochemical interactions by analyzing the diffusive behaviors of individual protein trajectories, however, is challenging due to the limited statistics provided by short trajectories and experimental noise sources which are intimately coupled into each protein’s localization. Here, we introduce a novel, unsupervised, machine-learning based classification methodology, which we call perturbation expectation-maximization (pEM), that simultaneously analyzes a population of protein trajectories to uncover the system of diffusive behaviors which collectively result from distinct biochemical interactions. We validate the performance of pEM in silico and in vivo on the biological system of Rho GTPase, a signal transduction protein responsible for regulating cytoskeletal dynamics. We envision that the presented methodology will be applicable to a wide range of single protein tracking data where different biochemical interactions result in distinct diffusive behaviors. More generally, this study brings us an important step closer to the possibility of monitoring the endogenous biochemistry of diffusing proteins within live cells with single molecule resolution.
Collapse
Affiliation(s)
- Peter K. Koo
- Department of Physics, Yale University, New Haven, Connecticut, United States of America
| | - Matthew Weitzman
- Department of Biological Sciences, University of Delaware, Newark, Delaware, United States of America
| | - Chandran R. Sabanaygam
- Delaware Biotechnology Institute, Bioimaging Center, Newark, Delaware, United States of America
| | - Kenneth L. van Golen
- Department of Biological Sciences, University of Delaware, Newark, Delaware, United States of America
| | - Simon G. J. Mochrie
- Department of Biological Sciences, University of Delaware, Newark, Delaware, United States of America
- Department of Applied Physics, Yale University, New Haven, Connecticut, United States of America
- * E-mail:
| |
Collapse
|
11
|
Yoshida A, Shimizu A, Asano H, Kadonosono T, Kondoh SK, Geretti E, Mammoto A, Klagsbrun M, Seo MK. VEGF-A/NRP1 stimulates GIPC1 and Syx complex formation to promote RhoA activation and proliferation in skin cancer cells. Biol Open 2015. [PMID: 26209534 PMCID: PMC4582117 DOI: 10.1242/bio.010918] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Neuropilin-1 (NRP1) has been identified as a VEGF-A receptor. DJM-1, a human skin cancer cell line, expresses endogenous VEGF-A and NRP1. In the present study, the RNA interference of VEGF-A or NRP1 suppressed DJM-1 cell proliferation. Furthermore, the overexpression of the NRP1 wild type restored shNRP1-treated DJM-1 cell proliferation, whereas NRP1 cytoplasmic deletion mutants did not. A co-immunoprecipitation analysis revealed that VEGF-A induced interactions between NRP1 and GIPC1, a scaffold protein, and complex formation between GIPC1 and Syx, a RhoGEF. The knockdown of GIPC1 or Syx reduced active RhoA and DJM-1 cell proliferation without affecting the MAPK or Akt pathway. C3 exoenzyme or Y27632 inhibited the VEGF-A-induced proliferation of DJM-1 cells. Conversely, the overexpression of the constitutively active form of RhoA restored the proliferation of siVEGF-A-treated DJM-1 cells. Furthermore, the inhibition of VEGF-A/NRP1 signaling upregulated p27, a CDK inhibitor. A cell-penetrating oligopeptide that targeted GIPC1/Syx complex formation inhibited the VEGF-A-induced activation of RhoA and suppressed DJM-1 cell proliferation. In conclusion, this new signaling pathway of VEGF-A/NRP1 induced cancer cell proliferation by forming a GIPC1/Syx complex that activated RhoA to degrade the p27 protein.
Collapse
Affiliation(s)
- Ayumi Yoshida
- Division of Engineering (Biotechnology), Graduate School of Engineering, Kyoto Sangyo University, Kyoto 603-8555, Japan
| | - Akio Shimizu
- Department of Molecular Biosciences, Faculty of Life Sciences, Kyoto Sangyo University, Kyoto 603-8047, Japan
| | - Hirotsugu Asano
- Department of Molecular Biosciences, Faculty of Life Sciences, Kyoto Sangyo University, Kyoto 603-8047, Japan
| | - Tetsuya Kadonosono
- Biofunctional Engineering, Graduate School of Bioscience & Biotechnology, Tokyo Institute of Technology, Tokyo 226-8503, Japan
| | - Shinae Kizaka Kondoh
- Biofunctional Engineering, Graduate School of Bioscience & Biotechnology, Tokyo Institute of Technology, Tokyo 226-8503, Japan
| | - Elena Geretti
- Vascular Biology Program, Boston Children's Hospital, Departments of Surgery and Pathology and Harvard Medical School, Boston, MA 02115, USA
| | - Akiko Mammoto
- Vascular Biology Program, Boston Children's Hospital, Departments of Surgery and Pathology and Harvard Medical School, Boston, MA 02115, USA
| | - Michael Klagsbrun
- Vascular Biology Program, Boston Children's Hospital, Departments of Surgery and Pathology and Harvard Medical School, Boston, MA 02115, USA
| | - Misuzu Kurokawa Seo
- Division of Engineering (Biotechnology), Graduate School of Engineering, Kyoto Sangyo University, Kyoto 603-8555, Japan Department of Molecular Biosciences, Faculty of Life Sciences, Kyoto Sangyo University, Kyoto 603-8047, Japan
| |
Collapse
|
12
|
Goicoechea SM, Awadia S, Garcia-Mata R. I'm coming to GEF you: Regulation of RhoGEFs during cell migration. Cell Adh Migr 2014; 8:535-49. [PMID: 25482524 PMCID: PMC4594598 DOI: 10.4161/cam.28721] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Cell migration is a highly regulated multistep process that requires the coordinated regulation of cell adhesion, protrusion, and contraction. These processes require numerous protein–protein interactions and the activation of specific signaling pathways. The Rho family of GTPases plays a key role in virtually every aspect of the cell migration cycle. The activation of Rho GTPases is mediated by a large and diverse family of proteins; the guanine nucleotide exchange factors (RhoGEFs). GEFs work immediately upstream of Rho proteins to provide a direct link between Rho activation and cell–surface receptors for various cytokines, growth factors, adhesion molecules, and G protein-coupled receptors. The regulated targeting and activation of RhoGEFs is essential to coordinate the migratory process. In this review, we summarize the recent advances in our understanding of the role of RhoGEFs in the regulation of cell migration.
Collapse
Key Words
- DH, Dbl-homology
- DHR, DOCK homology region
- DOCK, dedicator of cytokinesis
- ECM, extracellular matrix
- EGF, epidermal growth factor
- FA, focal adhesion
- FN, fibronectin
- GAP, GTPase activating protein
- GDI, guanine nucleotide dissociation inhibitor
- GEF, guanine nucleotide exchange factor
- GPCR, G protein-coupled receptor
- HGF, hepatocyte growth factor
- LPA, lysophosphatidic acid
- MII, myosin II
- PA, phosphatidic acid
- PDGF, platelet-derived growth factor
- PH, pleckstrin-homology
- PIP2, phosphatidylinositol 4, 5-bisphosphate
- PIP3, phosphatidylinositol (3, 4, 5)-trisphosphate.
- Rho GEFs
- Rho GTPases
- bFGF, basic fibroblast growth factor
- cell migration
- cell polarization
- focal adhesions
- guanine nucleotide exchange factors
Collapse
Affiliation(s)
- Silvia M Goicoechea
- a Department of Biological Sciences ; University of Toledo ; Toledo , OH USA
| | | | | |
Collapse
|
13
|
Ngok SP, Lin WH, Anastasiadis PZ. Establishment of epithelial polarity--GEF who's minding the GAP? J Cell Sci 2014; 127:3205-15. [PMID: 24994932 DOI: 10.1242/jcs.153197] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Cell polarization is a fundamental process that underlies epithelial morphogenesis, cell motility, cell division and organogenesis. Loss of polarity predisposes tissues to developmental disorders and contributes to cancer progression. The formation and establishment of epithelial cell polarity is mediated by the cooperation of polarity protein complexes, namely the Crumbs, partitioning defective (Par) and Scribble complexes, with Rho family GTPases, including RhoA, Rac1 and Cdc42. The activation of different GTPases triggers distinct downstream signaling pathways to modulate protein-protein interactions and cytoskeletal remodeling. The spatio-temporal activation and inactivation of these small GTPases is tightly controlled by a complex interconnected network of different regulatory proteins, including guanine-nucleotide-exchange factors (GEFs), GTPase-activating proteins (GAPs), and guanine-nucleotide-dissociation inhibitors (GDIs). In this Commentary, we focus on current understanding on how polarity complexes interact with GEFs and GAPs to control the precise location and activation of Rho GTPases (Crumbs for RhoA, Par for Rac1, and Scribble for Cdc42) to promote apical-basal polarization in mammalian epithelial cells. The mutual exclusion of GTPase activities, especially that of RhoA and Rac1, which is well established, provides a mechanism through which polarity complexes that act through distinct Rho GTPases function as cellular rheostats to fine-tune specific downstream pathways to differentiate and preserve the apical and basolateral domains. This article is part of a Minifocus on Establishing polarity.
Collapse
Affiliation(s)
- Siu P Ngok
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Griffin Cancer Research Building, Room 307, 4500 San Pablo Road, Jacksonville, FL 32224, USA
| | - Wan-Hsin Lin
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Griffin Cancer Research Building, Room 307, 4500 San Pablo Road, Jacksonville, FL 32224, USA
| | - Panos Z Anastasiadis
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Griffin Cancer Research Building, Room 307, 4500 San Pablo Road, Jacksonville, FL 32224, USA
| |
Collapse
|
14
|
Ngok SP, Anastasiadis PZ. Rho GEFs in endothelial junctions: Effector selectivity and signaling integration determine junctional response. Tissue Barriers 2013; 1:e27132. [PMID: 24790803 DOI: 10.4161/tisb.27132] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 11/07/2013] [Accepted: 11/08/2013] [Indexed: 12/31/2022] Open
Abstract
Rho GTPases are cytoskeleton-regulating proteins that mediate the formation of intercellular junctions. Their localized activation by Rho GEFs (guanine-nucleotide exchange factors) and the selective activation of downstream effectors have emerged as areas of active research in the cell adhesion field. We reported recently that the Rho-specific GEFs Syx (Synectin-binding RhoA exchange factor) and TEM4 (Tumor Endothelial Marker 4) are both essential for endothelial junction maturation and barrier function. Syx is recruited to cell contacts via its C-terminal PDZ binding motif and it's interaction with Mupp1 and the Crumbs polarity complex, while the junctional localization of TEM4 requires it's N-terminal domain and interaction with the cadherin-catenin complex. Our findings support multiple roles for RhoA in junction formation and maintenance. They also suggest that selective coupling of RhoA activation to Dia1 and/or ROCK signaling is critical for determining endothelial junction integrity.
Collapse
Affiliation(s)
- Siu P Ngok
- Department of Cancer Biology; Mayo Clinic Comprehensive Cancer Center; Jacksonville, FL, USA
| | - Panos Z Anastasiadis
- Department of Cancer Biology; Mayo Clinic Comprehensive Cancer Center; Jacksonville, FL, USA
| |
Collapse
|
15
|
The Rho guanine nucleotide exchange factor Syx regulates the balance of dia and ROCK activities to promote polarized-cancer-cell migration. Mol Cell Biol 2013; 33:4909-18. [PMID: 24126053 DOI: 10.1128/mcb.00565-13] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The role of RhoA in promoting directed cell migration has been complicated by studies showing that it is activated both in the front and the rear of migrating cells. We report here that the RhoA-specific guanine nucleotide exchange factor Syx is required for the polarity of actively migrating brain and breast tumor cells. This function of Syx is mediated by the selective activation of the RhoA downstream effector Dia1, the subsequent reorganization of microtubules, and the downregulation of focal adhesions and actin stress fibers. The data argue that directed cell migration requires the precise spatiotemporal regulation of Dia1 and ROCK activities in the cell. The recruitment of Syx to the cell membrane and the subsequent selective activation of Dia1 signaling, coupled with the suppression of ROCK and activation of cofilin-mediated actin reorganization, plays a key role in establishing cell polarity during directed cell migration.
Collapse
|
16
|
NG2 regulates directional migration of oligodendrocyte precursor cells via Rho GTPases and polarity complex proteins. J Neurosci 2013; 33:10858-74. [PMID: 23804106 DOI: 10.1523/jneurosci.5010-12.2013] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The transmembrane proteoglycan NG2 is expressed by oligodendrocyte precursor cells (OPC), which migrate to axons during developmental myelination and remyelinate in the adult after migration to injured sites. Highly invasive glial tumors also express NG2. Despite the fact that NG2 has been implicated in control of OPC migration, its mode of action remains unknown. Here, we show in vitro and in vivo that NG2 controls migration of OPC through the regulation of cell polarity. In stab wounds in adult mice we show that NG2 controls orientation of OPC toward the wound. NG2 stimulates RhoA activity at the cell periphery via the MUPP1/Syx1 signaling pathway, which favors the bipolar shape of migrating OPC and thus directional migration. Upon phosphorylation of Thr-2256, downstream signaling of NG2 switches from RhoA to Rac stimulation. This triggers process outgrowth through regulators of front-rear polarity and we show using a phospho-mimetic form of NG2 that indeed NG2 recruits proteins of the CRB and the PAR polarity complexes to stimulate Rac activity via the GEF Tiam1. Our findings demonstrate that NG2 is a core organizer of Rho GTPase activity and localization in the cell, which controls OPC polarity and directional migration. This work also reveals CRB and PAR polarity complexes as new effectors of NG2 signaling in the establishment of front-rear polarity.
Collapse
|
17
|
Patel M, Côté JF. Ras GTPases' interaction with effector domains: Breaking the families' barrier. Commun Integr Biol 2013; 6:e24298. [PMID: 23986800 PMCID: PMC3737747 DOI: 10.4161/cib.24298] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Revised: 03/13/2013] [Accepted: 03/14/2013] [Indexed: 01/01/2023] Open
Abstract
The Ras superfamily of proteins consists of five branches: Ras, Rho, Arf, Rab and Ran subfamilies. These proteins are involved in a plethora of biological functions spanning cytoskeletal organization, cell proliferation, transcription and intracellular trafficking. Ras-Binding Domains (RBDs) have classically been identified as autonomous ubiquitin-like folded regions that bind certain activated Ras GTPases of the Ras subfamily. In general, RBDs in many proteins have been tagged with membrane-targeting functions as in the case of the well-characterized c-Raf-RBD/Ras interaction. However, it is becoming apparent that the definition and functions of RBDs need to be revamped in order to reflect the new discoveries associated with this domain. Here, we discuss in more detail the recent advances associated with these RBDs. We highlight research identifying RBDs in formins, ELMOs and the RhoGEF, Syx and discuss the emerging role for RBDs in controlling autoinhibition relief and the newly recognized versatility of RBDs to interact with Rho and Arf family GTPases. In addition, these recent findings raise the exciting hypothesis that functional RBDs remain hidden in the proteome and are ready to be uncovered.
Collapse
Affiliation(s)
- Manishha Patel
- Institut de Recherches Cliniques de Montréal (IRCM); Montréal, QC Canada
| | | |
Collapse
|
18
|
Ngok SP, Geyer R, Kourtidis A, Storz P, Anastasiadis PZ. Phosphorylation-mediated 14-3-3 protein binding regulates the function of the rho-specific guanine nucleotide exchange factor (RhoGEF) Syx. J Biol Chem 2013; 288:6640-50. [PMID: 23335514 DOI: 10.1074/jbc.m112.432682] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Syx is a Rho-specific guanine nucleotide exchange factor (GEF) that localizes at cell-cell junctions and promotes junction stability by activating RhoA and the downstream effector Diaphanous homolog 1 (Dia1). Previously, we identified several molecules, including 14-3-3 proteins, as Syx-interacting partners. In the present study, we show that 14-3-3 isoforms interact with Syx at both its N- and C-terminal regions in a phosphorylation-dependent manner. We identify the protein kinase D-mediated phosphorylation of serine 92 on Syx, and additional phosphorylation at serine 938, as critical sites for 14-3-3 association. Our data indicate that the binding of 14-3-3 proteins inhibits the GEF activity of Syx. Furthermore, we show that phosphorylation-deficient, 14-3-3-uncoupled Syx exhibits increased junctional targeting and increased GEF activity, resulting in the strengthening of the circumferential junctional actin ring in Madin-Darby canine kidney cells. These findings reveal a novel means of regulating junctional Syx localization and function by phosphorylation-induced 14-3-3 binding and further support the importance of Syx function in maintaining stable cell-cell contacts.
Collapse
Affiliation(s)
- Siu P Ngok
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Jacksonville, Florida 32224, USA
| | | | | | | | | |
Collapse
|
19
|
Abstract
Spatio-temporal control of RhoA GTPase is critical for regulation of cell migration, attachment to extracellular matrix, and cell-cell adhesions. Activation of RhoA is mediated by guanine nucleotide exchange factors (GEFs), a diverse family of enzymes that are controlled by multiple signaling pathways regulating actin cytoskeleton and cell migration. GEFs can be regulated by different mechanisms. Growing evidence demonstrates that phosphorylation serves as one of the predominant signals controlling activity, interactions, and localization of RhoGEFs. It acts as a positive and a negative regulator, and allows for regulation of RhoGEFs by multiple signaling cascades. Although there are common trends in phosphorylation-mediated regulation of some RhoGEF homologs, the majority of GEFs utilize distinct mechanisms that are dictated by their unique structure and interaction networks. This diversity enables multiple signaling pathways to use different RhoGEFs for regulation of a single central-RhoA. Here, we review current examples of phosphorylation-mediated regulation of GEFs for RhoA and its role in cell migration, discuss mechanisms, and provide insights into potential future directions.
Collapse
Affiliation(s)
- Maulik Patel
- Department of Pharmacology; University of Illinois at Chicago; Chicago, IL USA
| | - Andrei V Karginov
- Department of Pharmacology; University of Illinois at Chicago; Chicago, IL USA
| |
Collapse
|
20
|
Abstract
Vascular endothelial growth factors (VEGF) and their receptors play a central role in the development of cardiovascular system and in vasculature-related processes in the adult organism. Given the critical role of this signaling cascade, intricate control systems have evolved to regulate its function. A new layer of added complexity has been the demonstration of the importance of endocytosis and intracellular trafficking of VEGF receptors in the regulation of VEGF signaling. In this review, we consider an evolving link between VEGF receptor endocytosis, trafficking, and signaling and their biological function.
Collapse
Affiliation(s)
- Michael Simons
- Department of Internal Medicine, Section of Cardiovascular Medicine, Yale Cardiovascular Research Center, New Haven, Connecticut, USA.
| |
Collapse
|
21
|
Ngok SP, Geyer R, Liu M, Kourtidis A, Agrawal S, Wu C, Seerapu HR, Lewis-Tuffin LJ, Moodie KL, Huveldt D, Marx R, Baraban JM, Storz P, Horowitz A, Anastasiadis PZ. VEGF and Angiopoietin-1 exert opposing effects on cell junctions by regulating the Rho GEF Syx. ACTA ACUST UNITED AC 2012; 199:1103-15. [PMID: 23253477 PMCID: PMC3529520 DOI: 10.1083/jcb.201207009] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
VEGF causes translocation of Syx from endothelial cell junctions, promoting junction disassembly, whereas Angtiopoietin-1 maintains Syx at the junctions and stabilizes them. Vascular endothelial growth factor (VEGF) and Ang1 (Angiopoietin-1) have opposing effects on vascular permeability, but the molecular basis of these effects is not fully known. We report in this paper that VEGF and Ang1 regulate endothelial cell (EC) junctions by determining the localization of the RhoA-specific guanine nucleotide exchange factor Syx. Syx was recruited to junctions by members of the Crumbs polarity complex and promoted junction integrity by activating Diaphanous. VEGF caused translocation of Syx from cell junctions, promoting junction disassembly, whereas Ang1 maintained Syx at the junctions, inducing junction stabilization. The VEGF-induced translocation of Syx from EC junctions was caused by PKD1 (protein kinase D1)-mediated phosphorylation of Syx at Ser806, which reduced Syx association to its junctional anchors. In support of the pivotal role of Syx in regulating EC junctions, syx−/− mice had defective junctions, resulting in vascular leakiness, edema, and impaired heart function.
Collapse
Affiliation(s)
- Siu P Ngok
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Jacksonville, FL 32224, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Wu C, Horowitz A. Membrane traffic as a coordinator of cell migration and junction remodeling. Commun Integr Biol 2012; 4:703-5. [PMID: 22446532 DOI: 10.4161/cib.17140] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The change in the overall shape of developing organs is a consequence of the cumulative movement, reshaping, and proliferation of the individual mural cells that make up the walls of these organs. Recent observations suggest that the shape and the position of endothelial cells (ECs) in growing blood vessels are highly dynamic, implying that these cells remodel their junctions extensively and do not preserve their initial relative positions. In order to determine the mechanisms that confer the dynamic behavior of mural ECs, we tracked the trafficking of a cell junction protein complex that consists of the RhoA-specific guanine exchange factor (GEF) Syx, the scaffold protein Mupp1, and the phospholipid binding protein Amot.1 We found that RhoA co-trafficked with this complex on the same endocytic vesicles, and that its cellular activity pattern was determined by Rab13-dependent trafficking. The vesicles were targeted by a Rab13-associated protein complex to Tyr(1175)-phosphorylated VEGFR2 at the leading edge of ECs migrating under a VEGF gradient. These results indicate that the dynamic behavior of ECs in sprouting vessels is conferred by using the same protein complex for the regulation of both cell junctions and cell motility. Together with previous studies that demonstrated regulation of Rac signaling by Rab5-dependent trafficking,(2) it appears now that membrane traffic is tightly coupled to the regulation of Rho GTPases, and, consequently, to the regulation of the actin cytoskeleton, cell junctions, and cell migration.
Collapse
Affiliation(s)
- Chuanshen Wu
- Department of Molecular Cardiology, Cleveland Clinic Lerner College of Medicine; Cleveland, OH USA
| | | |
Collapse
|
23
|
Goh LL, Manser E. The GTPase-deficient Rnd proteins are stabilized by their effectors. J Biol Chem 2012; 287:31311-20. [PMID: 22807448 DOI: 10.1074/jbc.m111.327056] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Rnd proteins are Rho family GTP-binding proteins with cellular functions that antagonize RhoA signaling. We recently described a new Rnd3 effector Syx, also named PLEKHG5, that interacts with Rnds via a Raf1-like "Ras-binding domain." Syx is a multidomain RhoGEF that participates in early zebrafish development. Here we demonstrated that Rnd1, Rnd2, and Rnd3 stability is acutely dependent on interaction with their effectors such as Syx or p190 RhoGAP. Although Rnd3 turnover is blocked by treatment of cells with MG132, we provide evidence that such turnover is mediated indirectly by effects on the Rnd3 effectors, rather than on Rnd3 itself, which is not significantly ubiquitinated. The minimal regions of Syx and p190 RhoGAP that bind Rnd3 are not sequence-related but have similar effects. We have identified features that allow for Rnd3 turnover including a conserved Lys-45 close to the switch I region and the C-terminal membrane-binding domain of Rnd3, which cannot be substituted by the equivalent Cdc42 CAAX sequence. By contrast, an effector binding-defective mutant of Rnd3 when overexpressed undergoes turnover at normal rates. Interestingly the activity of the RhoA-regulated kinase ROCK stimulates Rnd3 turnover. This study suggests that Rnd proteins are regulated through feedback mechanisms in cells where the level of effectors and RhoA activity influence the stability of Rnd proteins. This effector feedback behavior is analogous to the ability of ACK1 and PAK1 to prolong the lifetime of the active GTP-bound state of Cdc42 and Rac1.
Collapse
Affiliation(s)
- Liuh Ling Goh
- Rho GTPases Signaling Group, Institute of Medical Biology, 8A Biomedical Grove, 06-06 Immunos Building 138648, Singapore
| | | |
Collapse
|
24
|
Wild JRL, Staton CA, Chapple K, Corfe BM. Neuropilins: expression and roles in the epithelium. Int J Exp Pathol 2012; 93:81-103. [PMID: 22414290 DOI: 10.1111/j.1365-2613.2012.00810.x] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Initially found expressed in neuronal and then later in endothelial cells, it is well established that the transmembrane glycoproteins neuropilin-1 (NRP1) and neuropilin-2 (NRP2) play essential roles in axonal growth and guidance and in physiological and pathological angiogenesis. Neuropilin expression and function in epithelial cells has received little attention when compared with neuronal and endothelial cells. Overexpression of NRPs is shown to enhance growth, correlate with invasion and is associated with poor prognosis in various tumour types, especially those of epithelial origin. The contribution of NRP and its ligands to tumour growth and metastasis has spurred a strong interest in NRPs as novel chemotherapy drug targets. Given NRP's role as a multifunctional co-receptor with an ability to bind with disparate ligand families, this has sparked new areas of research implicating NRPs in diverse biological functions. Here, we review the growing body of research demonstrating NRP expression and role in the normal and neoplastic epithelium.
Collapse
Affiliation(s)
- Jonathan R L Wild
- Molecular Gastroenterology Research Group, Academic Unit of Surgical Oncology, Department of Oncology, University of Sheffield, The Medical School, Sheffield, UK
| | | | | | | |
Collapse
|
25
|
Lin L, Tran T, Hu S, Cramer T, Komuniecki R, Steven RM. RHGF-2 is an essential Rho-1 specific RhoGEF that binds to the multi-PDZ domain scaffold protein MPZ-1 in Caenorhabditis elegans. PLoS One 2012; 7:e31499. [PMID: 22363657 PMCID: PMC3282746 DOI: 10.1371/journal.pone.0031499] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Accepted: 01/12/2012] [Indexed: 11/18/2022] Open
Abstract
RhoGEF proteins activate the Rho family of small GTPases and thus play a key role in regulating fundamental cellular processes such as cell morphology and polarity, cell cycle progression and gene transcription. We identified a Caenorhabditis elegans RhoGEF protein, RHGF-2, as a binding partner of the C. elegans multi-PDZ domain scaffold protein MPZ-1 (MUPP1 in mammals). RHGF-2 exhibits significant identity to the mammalian RhoGEFs PLEKHG5/Tech/Syx and contains a class I C-terminal PDZ binding motif (SDV) that interacts most strongly to MPZ-1 PDZ domain eight. RHGF-2 RhoGEF activity is specific to the C. elegans RhoA homolog RHO-1 as determined by direct binding, GDP/GTP exchange and serum response element-driven reporter activity. rhgf-2 is an essential gene since rhgf-2 deletion mutants do not elongate during embryogenesis and hatch as short immobile animals that arrest development. Interestingly, the expression of a functional rhgf-2::gfp transgene appears to be exclusively neuronal and rhgf-2 overexpression results in loopy movement with exaggerated body bends. Transient expression of RHGF-2 in N1E-115 neuroblastoma cells prevents neurite outgrowth similar to constitutive RhoA activation in these cells. Together, these observations indicate neuronally expressed RHGF-2 is an essential RHO-1 specific RhoGEF that binds most strongly to MPZ-1 PDZ domain eight and is required for wild-type C. elegans morphology and growth.
Collapse
Affiliation(s)
- Li Lin
- Department of Biological Sciences, University of Toledo, Toledo, Ohio, United States of America
| | - Thuy Tran
- Department of Biological Sciences, University of Toledo, Toledo, Ohio, United States of America
| | - Shuang Hu
- Department of Biological Sciences, University of Toledo, Toledo, Ohio, United States of America
| | - Todd Cramer
- Department of Biological Sciences, University of Toledo, Toledo, Ohio, United States of America
| | - Richard Komuniecki
- Department of Biological Sciences, University of Toledo, Toledo, Ohio, United States of America
| | - Robert M. Steven
- Department of Biological Sciences, University of Toledo, Toledo, Ohio, United States of America
- * E-mail:
| |
Collapse
|
26
|
Carbajo-Lozoya J, Lutz S, Feng Y, Kroll J, Hammes HP, Wieland T. Angiotensin II modulates VEGF-driven angiogenesis by opposing effects of type 1 and type 2 receptor stimulation in the microvascular endothelium. Cell Signal 2012; 24:1261-9. [PMID: 22374305 DOI: 10.1016/j.cellsig.2012.02.005] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Revised: 02/14/2012] [Accepted: 02/14/2012] [Indexed: 11/19/2022]
Abstract
Vascular endothelial growth factor (VEGF) is a main stimulator of pathological vessel formation. Nevertheless, increasing evidence suggests that Angiotensin II (Ang II) can play an augmentory role in this process. We thus analyzed the contribution of the two Ang II receptor types, AT(1)R and AT(2)R, in a mouse model of VEGF-driven angiogenesis, i.e. oxygen-induced proliferative retinopathy. Application of the AT(1)R antagonist telmisartan but not the AT(2)R antagonist PD123,319 largely attenuated the pathological response. A direct effect of Ang II on endothelial cells (EC) was analyzed by assessing angiogenic responses in primary bovine retinal and immortalized rat microvascular EC. Selective stimulation of the AT(1)R by Ang II in the presence of PD123,319 revealed a pro-angiogenic activity which further increased VEGF-driven EC sprouting and migration. In contrast, selective stimulation of the AT(2)R by either CGP42112A or Ang II in the presence of telmisartan inhibited the VEGF-driven angiogenic response. Using specific inhibitors (pertussis toxin, RGS proteins, kinase inhibitors) we identified G(12/13) and G(i) dependent signaling pathways as the mediators of the AT(1)R-induced angiogenesis and the AT(2)R-induced inhibition, respectively. As AT(1)R and AT(2)R stimulation displays opposing effects on the activity of the monomeric GTPase RhoA and pro-angiogenic responses to Ang II and VEGF requires activation of Rho-dependent kinase (ROCK), we conclude that the opposing effects of the Ang II receptors on VEGF-driven angiogenesis converge on the regulation of activity of RhoA-ROCK-dependent EC migration.
Collapse
MESH Headings
- Angiotensin II/metabolism
- Angiotensin Receptor Antagonists/pharmacology
- Animals
- Cattle
- Cell Movement
- Cells, Cultured
- Endothelial Cells/cytology
- Endothelial Cells/metabolism
- Endothelium, Vascular/cytology
- Endothelium, Vascular/growth & development
- Endothelium, Vascular/metabolism
- GTP-Binding Protein alpha Subunits, G12-G13/metabolism
- Mice
- Mice, Inbred C57BL
- Microvessels/cytology
- Microvessels/growth & development
- Microvessels/metabolism
- Neovascularization, Pathologic
- Neovascularization, Physiologic
- Rats
- Receptor, Angiotensin, Type 1/metabolism
- Receptor, Angiotensin, Type 2/metabolism
- Retina/pathology
- Retina/ultrastructure
- Vascular Endothelial Growth Factor A/metabolism
Collapse
Affiliation(s)
- Javier Carbajo-Lozoya
- Institute of Experimental and Clinical Pharmacology and Toxicology, Medical Faculty Mannheim, University of Heidelberg, Maybachstrasse 14, D-68169 Mannheim, Germany
| | | | | | | | | | | |
Collapse
|
27
|
Valluru M, Staton CA, Reed MWR, Brown NJ. Transforming Growth Factor-β and Endoglin Signaling Orchestrate Wound Healing. Front Physiol 2011; 2:89. [PMID: 22164144 PMCID: PMC3230065 DOI: 10.3389/fphys.2011.00089] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Accepted: 11/10/2011] [Indexed: 12/17/2022] Open
Abstract
Physiological wound healing is a complex process requiring the temporal and spatial co-ordination of various signaling networks, biomechanical forces, and biochemical signaling pathways in both hypoxic and non-hypoxic conditions. Although a plethora of factors are required for successful physiological tissue repair, transforming growth factor beta (TGF-β) expression has been demonstrated throughout wound healing and shown to regulate many processes involved in tissue repair, including production of ECM, proteases, protease inhibitors, migration, chemotaxis, and proliferation of macrophages, fibroblasts of the granulation tissue, epithelial and capillary endothelial cells. TGF-β mediates these effects by stimulating signaling pathways through a receptor complex which contains Endoglin. Endoglin is expressed in a broad spectrum of proliferating and stem cells with elevated expression during hypoxia, and regulates important cellular functions such as proliferation and adhesion via Smad signaling. This review focuses on how the TGF-β family and Endoglin, regulate stem cell availability, and modulate cellular behavior within the wound microenvironment, includes current knowledge of the signaling pathways involved, and explores how this information may be applicable to inflammatory and/or angiogenic diseases such as fibrosis, rheumatoid arthritis and metastatic cancer.
Collapse
Affiliation(s)
- Manoj Valluru
- Department of Oncology, Microcirculation Research Group, Faculty of Medicine, Dentistry and Health, University of Sheffield Sheffield, UK
| | | | | | | |
Collapse
|
28
|
Chen W, Gassner B, Börner S, Nikolaev VO, Schlegel N, Waschke J, Steinbronn N, Strasser R, Kuhn M. Atrial natriuretic peptide enhances microvascular albumin permeability by the caveolae-mediated transcellular pathway. Cardiovasc Res 2011; 93:141-51. [PMID: 22025581 PMCID: PMC3243041 DOI: 10.1093/cvr/cvr279] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
AIMS Cardiac atrial natriuretic peptide (ANP) participates in the maintenance of arterial blood pressure and intravascular volume homeostasis. The hypovolaemic effects of ANP result from coordinated actions in the kidney and systemic microcirculation. Hence, ANP, via its guanylyl cyclase-A (GC-A) receptor and intracellular cyclic GMP as second messenger, stimulates endothelial albumin permeability. Ultimately, this leads to a shift of plasma fluid into interstitial pools. Here we studied the role of caveolae-mediated transendothelial albumin transport in the hyperpermeability effects of ANP. METHODS AND RESULTS Intravital microscopy studies of the mouse cremaster microcirculation showed that ANP stimulates the extravasation of fluorescent albumin from post-capillary venules and causes arteriolar vasodilatation. The hyperpermeability effect was prevented in mice with conditional, endothelial deletion of GC-A (EC GC-A KO) or with deleted caveolin-1 (cav-1), the caveolae scaffold protein. In contrast, the vasodilating effect was preserved. Concomitantly, the acute hypovolaemic action of ANP was abolished in EC GC-A KO and Cav-1(-/-) mice. In cultured microvascular rat fat pad and mouse lung endothelial cells, ANP stimulated uptake and transendothelial transport of fluorescent albumin without altering endothelial electrical resistance. The stimulatory effect on albumin uptake was prevented in GC-A- or cav-1-deficient pulmonary endothelia. Finally, preparation of caveolin-enriched lipid rafts from mouse lung and western blotting showed that GC-A and cGMP-dependent protein kinase I partly co-localize with Cav-1 in caveolae microdomains. CONCLUSION ANP enhances transendothelial caveolae-mediated albumin transport via its GC-A receptor. This ANP-mediated cross-talk between the heart and the microcirculation is critically involved in the regulation of intravascular volume.
Collapse
Affiliation(s)
- Wen Chen
- Institute of Physiology, University of Würzburg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Wu C, Agrawal S, Vasanji A, Drazba J, Sarkaria S, Xie J, Welch CM, Liu M, Anand-Apte B, Horowitz A. Rab13-dependent trafficking of RhoA is required for directional migration and angiogenesis. J Biol Chem 2011; 286:23511-20. [PMID: 21543326 DOI: 10.1074/jbc.m111.245209] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Angiogenesis requires concomitant remodeling of cell junctions and migration, as exemplified by recent observations of extensive endothelial cell movement along growing blood vessels. We report that a protein complex that regulates cell junctions is required for VEGF-driven directional migration and for angiogenesis in vivo. The complex consists of RhoA and Syx, a RhoA guanine exchange factor cross-linked by the Crumbs polarity protein Mupp1 to angiomotin, a phosphatidylinositol-binding protein. The Syx-associated complex translocates to the leading edge of migrating cells by membrane trafficking that requires the tight junction recycling GTPase Rab13. In turn, Rab13 associates with Grb2, targeting Syx and RhoA to Tyr(1175)-phosphorylated VEGFR2 at the leading edge. Rab13 knockdown in zebrafish impeded sprouting of intersegmental vessels and diminished the directionality of their tip cells. These results indicate that endothelial cell mobility in sprouting vessels is facilitated by shuttling the same protein complex from disassembling junctions to the leading edges of cells.
Collapse
Affiliation(s)
- Chuanshen Wu
- Department of Molecular Cardiology, Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio 44195, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Liao G, Ma X, Liu G. An RNA-zipcode-independent mechanism that localizes Dia1 mRNA to the perinuclear ER through interactions between Dia1 nascent peptide and Rho-GTP. J Cell Sci 2011; 124:589-99. [PMID: 21266463 DOI: 10.1242/jcs.072421] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Signal-peptide-mediated ER localization of mRNAs encoding for membrane and secreted proteins, and RNA-zipcode-mediated intracellular targeting of mRNAs encoding for cytosolic proteins are two well-known mechanisms for mRNA localization. Here, we report a previously unidentified mechanism by which mRNA encoding for Dia1, a cytosolic protein without the signal peptide, is localized to the perinuclear ER in an RNA-zipcode-independent manner in fibroblasts. Dia1 mRNA localization is also independent of the actin and microtubule cytoskeleton but requires translation and the association of Dia1 nascent peptide with the ribosome-mRNA complex. Sequence mapping suggests that interactions of the GTPase binding domain of Dia1 peptide with active Rho are important for Dia1 mRNA localization. This mechanism can override the β-actin RNA zipcode and redirect β-actin mRNA to the perinuclear region, providing a new way to manipulate intracellular mRNA localization.
Collapse
Affiliation(s)
- Guoning Liao
- Center for Cell Biology and Cancer Research, Albany Medical College, Albany, NY 12208, USA
| | | | | |
Collapse
|
31
|
Goh LL, Manser E. The RhoA GEF Syx is a target of Rnd3 and regulated via a Raf1-like ubiquitin-related domain. PLoS One 2010; 5:e12409. [PMID: 20811643 PMCID: PMC2928299 DOI: 10.1371/journal.pone.0012409] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2010] [Accepted: 08/04/2010] [Indexed: 12/20/2022] Open
Abstract
Background Rnd3 (RhoE) protein belongs to the unique branch of Rho family GTPases that has low intrinsic GTPase activity and consequently remains constitutively active [1], [2]. The current consensus is that Rnd1 and Rnd3 function as important antagonists of RhoA signaling primarily by activating the ubiquitous p190 RhoGAP [3], but not by inhibiting the ROCK family kinases. Methodology/Principal Findings Rnd3 is abundant in mouse embryonic stem (mES) cells and in an unbiased two-step affinity purification screen we identified a new Rnd3 target, termed synectin-binding RhoA exchange factor (Syx), by mass spectrometry. The Syx interaction with Rnd3 does not occur through the Syx DH domain but utilizes a region similar to the classic Raf1 Ras-binding domain (RBD), and most closely related to those in RGS12 and RGS14. We show that Syx behaves as a genuine effector of Rnd3 (and perhaps Rnd1), with binding characteristics similar to p190-RhoGAP. Morpholino-oligonucleotide knockdown of Syx in zebrafish at the one cell stage resulted in embryos with shortened anterior-posterior body axis: this phenotype was effectively rescued by introducing mouse Syx1b mRNA. A Rnd3-binding defective mutant of Syx1b mutated in the RBD (E164A/R165D) was more potent in rescuing the embryonic defects than wild-type Syx1b, showing that Rnd3 negatively regulates Syx activity in vivo. Conclusions/Significance This study uncovers a well defined Rnd3 effector Syx which is widely expressed and directly impacts RhoA activation. Experiments conducted in vivo indicate that Rnd3 negatively regulates Syx, and that as a RhoA-GEF it plays a key role in early embryonic cell shape changes. Thus a connection to signaling via the planar cell polarity pathway is suggested.
Collapse
Affiliation(s)
- Liuh Ling Goh
- Rho GTPases in Stem Cells (RGS) Group, Institute of Medical Biology (IMB), Singapore, Singapore
| | - Ed Manser
- Rho GTPases in Stem Cells (RGS) Group, Institute of Medical Biology (IMB), Singapore, Singapore
- Small G-Protein Signaling and Kinases (sGSK) Group, Institute of Molecular and Cell Biology (IMCB), Neuroscience Research Partnership, Singapore, Singapore
- * E-mail:
| |
Collapse
|
32
|
Wu D, Haruta A, Wei Q. GIPC1 interacts with MyoGEF and promotes MDA-MB-231 breast cancer cell invasion. J Biol Chem 2010; 285:28643-50. [PMID: 20634288 DOI: 10.1074/jbc.m110.107649] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
GIPC1/synectin, a single PDZ domain-containing protein, binds to numerous proteins and is involved in multiple biological processes, including cell migration. We reported previously that MyoGEF, a guanine nucleotide exchange factor, plays a role in regulating breast cancer cell polarization and invasion. Here, we identify GIPC1 as an interacting partner of MyoGEF. Both in vitro and in vivo binding assays show that the GIPC1 PDZ domain binds to the PDZ-binding motif at the C terminus of MyoGEF. Immunofluorescence analysis shows that GIPC1 and MyoGEF colocalize to the cell leading edge. Depletion of GIPC1 by RNAi in MDA-MB-231 cells causes cells to shift from a polarized to a rounded morphology. Matrigel invasion assays show that RNAi-mediated depletion of GIPC1 dramatically decreases MDA-MB-231 cell invasion. Notably, an anti-MyoGEF peptide antibody, whose epitope is located at the C terminus of MyoGEF, interferes with GIPC1-MyoGEF complex formation. Treatment of MDA-MB-231 cells with the anti-MyoGEF peptide antibody disrupts cell polarization and invasion. Thus, our results suggest that GIPC1-MyoGEF complex formation plays an important role in regulating MDA-MB-231 breast cancer cell polarization and invasion.
Collapse
Affiliation(s)
- Di Wu
- Department of Biochemistry, Kansas State University, Manhattan, Kansas 66506, USA
| | | | | |
Collapse
|
33
|
Abstract
NRPs (neuropilins) are receptors for class 3 semaphorins, polypeptides essential for axonal guidance, and for members of the VEGF (vascular endothelial growth factor) family of angiogenic cytokines. While mutant mouse studies show that NRP1 is essential for neuronal and cardiovascular development, little is known concerning the molecular mechanisms through which NRPs mediate the functions of their ligands in different cell types. NRP1 forms complexes with its co-receptors and is required for optimal function, but NRPs lack a clearly defined signalling domain and the role of NRP1 in receptor signalling and the function of the NRP1 cytosolic domain are unclear. Growing evidence indicates, however, that NRP1 plays a selective role in signalling at least in part via its C-terminal domain and interaction with intracellular binding partners.
Collapse
|
34
|
Kuhn M, Völker K, Schwarz K, Carbajo-Lozoya J, Flögel U, Jacoby C, Stypmann J, van Eickels M, Gambaryan S, Hartmann M, Werner M, Wieland T, Schrader J, Baba HA. The natriuretic peptide/guanylyl cyclase--a system functions as a stress-responsive regulator of angiogenesis in mice. J Clin Invest 2009; 119:2019-30. [PMID: 19487812 DOI: 10.1172/jci37430] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2008] [Accepted: 04/08/2009] [Indexed: 12/22/2022] Open
Abstract
Cardiac atrial natriuretic peptide (ANP) and B-type natriuretic peptide (BNP) modulate blood pressure and volume by activation of the receptor guanylyl cyclase-A (GC-A) and subsequent intracellular cGMP formation. Here we report what we believe to be a novel function of these peptides as paracrine regulators of vascular regeneration. In mice with systemic deletion of the GC-A gene, vascular regeneration in response to critical hind limb ischemia was severely impaired. Similar attenuation of ischemic angiogenesis was observed in mice with conditional, endothelial cell-restricted GC-A deletion (here termed EC GC-A KO mice). In contrast, smooth muscle cell-restricted GC-A ablation did not affect ischemic neovascularization. Immunohistochemistry and RT-PCR revealed BNP expression in activated satellite cells within the ischemic muscle, suggesting that local BNP elicits protective endothelial effects. Since within the heart, BNP is mainly induced in cardiomyocytes by mechanical load, we investigated whether the natriuretic peptide/GC-A system also regulates angiogenesis accompanying load-induced cardiac hypertrophy. EC GC-A KO hearts showed diminished angiogenesis, mild fibrosis, and diastolic dysfunction. In vitro BNP/GC-A stimulated proliferation and migration of cultured microvascular endothelia by activating cGMP-dependent protein kinase I and phosphorylating vasodilator-stimulated phosphoprotein and p38 MAPK. We therefore conclude that BNP, produced by activated satellite cells within ischemic skeletal muscle or by cardiomyocytes in response to pressure load, regulates the regeneration of neighboring endothelia via GC-A. This paracrine communication might be critically involved in coordinating muscle regeneration/hypertrophy and angiogenesis.
Collapse
Affiliation(s)
- Michaela Kuhn
- Institute of Physiology, University of Würzburg, Würzburg, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
|
36
|
Dubash AD, Menold MM, Samson T, Boulter E, García-Mata R, Doughman R, Burridge K. Chapter 1 Focal Adhesions: New Angles on an Old Structure. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2009; 277:1-65. [DOI: 10.1016/s1937-6448(09)77001-7] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
37
|
Abstract
Tubular structures are a fundamental anatomic theme recurring in a wide range of animal species. In mammals, tubulogenesis underscores the development of several systems and organs, including the vascular system, the lungs, and the kidneys. All tubular systems are hierarchical, branching into segments of gradually diminishing diameter. There are only 2 cell types that form the lumen of tubular systems: either endothelial cells in the vascular system or epithelial cells in all other organs. The most important feature in determining the morphology of the tubular systems is the frequency and geometry of branching. Hence, deciphering the molecular mechanisms underlying the sprouting of new branches from preexisting ones is the key to understanding the formation of tubular systems. The morphological similarity between the various tubular systems is underscored by similarities between the signaling pathways which control their branching. A prominent feature common to these pathways is their duality--an agonist counterbalanced by an inhibitor. The formation of the tracheal system in Drosophila melanogaster is driven by fibroblast growth factor and inhibited by Sprouty/Notch. In vertebrates, the analogous pathways are fibroblast growth factor and transforming growth factor-beta in epithelial tubular systems or vascular endothelial growth factor and Notch in the vascular system.
Collapse
Affiliation(s)
- Arie Horowitz
- Angiogenesis Research Center and Section of Cardiology, Dartmouth Medical School, Lebanon, NH 03756, USA.
| | | |
Collapse
|
38
|
The Amot/Patj/Syx signaling complex spatially controls RhoA GTPase activity in migrating endothelial cells. Blood 2008; 113:244-53. [PMID: 18824598 DOI: 10.1182/blood-2008-04-153874] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Controlled regulation of Rho GTPase activity is an essential component mediating growth factor-stimulated migration. We have previously shown that angiomotin (Amot), a membrane-associated scaffold protein, plays a critical role during vascular patterning and endothelial migration during embryogenesis. However, the signaling pathways by which Amot controls directional migration are not known. Here we have used peptide pull-down and yeast 2-hybrid (Y2H) screening to identify proteins that interact with the C-terminal PDZ-binding motifs of Amot and its related proteins AmotL1 and 2. We report that Amot and its related proteins bind to the RhoA GTPase exchange factor (RhoGEF) protein Syx. We show that Amot forms a ternary complex together with Patj (or its paralogue Mupp1) and Syx. Using FRET analysis, we provide evidence that Amot controls targeting of RhoA activity to lamellipodia in vitro. We also report that, similar to Amot, morpholino knockdown of Syx in zebrafish results in inhibition of migration of intersegmental arteries. Taken together, our results indicate that the directional migration of capillaries in the embryo is governed by the Amot:Patj/Mupp1:Syx signaling that controls local GTPase activity.
Collapse
|
39
|
Garnaas MK, Moodie KL, Liu ML, Samant GV, Li K, Marx R, Baraban JM, Horowitz A, Ramchandran R. Syx, a RhoA guanine exchange factor, is essential for angiogenesis in Vivo. Circ Res 2008; 103:710-6. [PMID: 18757825 DOI: 10.1161/circresaha.108.181388] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Rho GTPases play an important and versatile role in several biological processes. In this study, we identified the zebrafish ortholog of the mammalian Rho A guanine exchange factor, synectin-binding guanine exchange factor (Syx), and determined its in vivo function in the zebrafish and the mouse. We found that Syx is expressed specifically in the vasculature of these organisms. Loss-of-function studies in the zebrafish and mouse point to a specific role for Syx in angiogenic sprouting in the developing vascular bed. Importantly, vasculogenesis and angioblast differentiation steps were unaffected in syx knockdown zebrafish embryos, and the vascular sprouting defects were partially rescued by the mouse ortholog. Syx knockdown in vitro impairs vascular endothelial growth factor-A-induced endothelial cell migration and angiogenesis. We have also uncovered a potential mechanism of endothelial sprout guidance in which angiomotin, a component of endothelial cell junctions, plays an additive role with Syx in directing endothelial sprouts. These results identify Syx as an essential contributor to angiogenesis in vivo.
Collapse
Affiliation(s)
- Maija K Garnaas
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Salikhova A, Wang L, Lanahan AA, Liu M, Simons M, Leenders WPJ, Mukhopadhyay D, Horowitz A. Vascular endothelial growth factor and semaphorin induce neuropilin-1 endocytosis via separate pathways. Circ Res 2008; 103:e71-9. [PMID: 18723443 DOI: 10.1161/circresaha.108.183327] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The neuropilin (Nrp)1 receptor is essential for both nervous and vascular system development. Nrp1 is unusually versatile, because it transmits both chemoattractive and repulsive signals in response to vascular endothelial growth factor (VEGF)-A and class 3 semaphorins, respectively. Both Nrp1 and VEGF receptor 2 undergo ligand-dependent endocytosis. We sought to establish the endocytic pathway of Nrp1 and to determine whether uptake is required for its signaling. Whereas Nrp1 underwent clathrin-dependent endocytosis in response to VEGFA(165) treatment, semaphorin 3C (sema3C) induced lipid raft-dependent endocytosis. The myosin VI PDZ (postsynaptic density 95, Disk large, Zona occludens-1) adaptor protein synectin was essential for Nrp1 trafficking. Sema3C failed to inhibit migration of synectin(-/-) endothelial cells, mirroring the lower migratory response of these cells to VEGFA(165). These results show that the endocytic pathway of Nrp1 is determined by its ligand and that the trafficking of Nrp1 is essential for its signaling.
Collapse
Affiliation(s)
- Anna Salikhova
- Angiogenesis Research Center, Dartmouth Medical School, Lebanon, NH 03756, USA
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Estévez MA, Henderson JA, Ahn D, Zhu XR, Poschmann G, Lübbert H, Marx R, Baraban JM. The neuronal RhoA GEF, Tech, interacts with the synaptic multi-PDZ-domain-containing protein, MUPP1. J Neurochem 2008; 106:1287-97. [PMID: 18537874 DOI: 10.1111/j.1471-4159.2008.05472.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Tech is a RhoA guanine nucleotide exchange factor (GEF) that is highly enriched in hippocampal and cortical neurons. To help define its function, we have conducted studies aimed at identifying partner proteins that bind to its C-terminal PDZ ligand motif. Yeast two hybrid studies using the Tech C-terminal segment as bait identified MUPP1, a protein that contains 13 PDZ domains and has been localized to the post-synaptic compartment, as a candidate partner protein for Tech. Co-transfection of Tech and MUPP1 in human embryonic kidney 293 cells confirmed that these full-length proteins interact in a PDZ-dependent fashion. Furthermore, we confirmed that endogenous Tech co-precipitates with MUPP1, but not PSD-95, from hippocampal and cortical extracts prepared from rat brain. In addition, immunostaining of primary cortical cultures revealed co-localization of MUPP1 and Tech puncta in the vicinity of synapses. In assessing which PDZ domains of MUPP1 mediate binding to Tech, we found that Tech can bind to either PDZ domain 10 or 13 of MUPP1 as mutation of both these domains is needed to disrupt their interaction. Taken together, these findings demonstrate that Tech binds to MUPP1 and suggest that it regulates RhoA signaling pathways in the vicinity of synapses.
Collapse
Affiliation(s)
- Marcel A Estévez
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
NRPs (neuropilins) are co-receptors for class 3 semaphorins, polypeptides with key roles in axonal guidance, and for members of the VEGF (vascular endothelial growth factor) family of angiogenic cytokines. They lack a defined signalling role, but are thought to mediate functional responses as a result of complex formation with other receptors, such as plexins in the case of semaphorins and VEGF receptors (e.g. VEGFR2). Mutant mouse studies show that NRP1 is essential for neuronal and cardiovascular development, whereas NRP2 has a more restricted role in neuronal patterning and lymphangiogenesis, but recent findings indicate that NRPs may have additional biological roles in other physiological and disease-related settings. In particular, NRPs are highly expressed in diverse tumour cell lines and human neoplasms and have been implicated in tumour growth and vascularization in vivo. However, despite the wealth of information regarding the probable biological roles of these molecules, many aspects of the regulation of cellular function via NRPs remain uncertain, and little is known concerning the molecular mechanisms through which NRPs mediate the functions of their various ligands in different cell types.
Collapse
|
43
|
The nuclear RhoA exchange factor Net1 interacts with proteins of the Dlg family, affects their localization, and influences their tumor suppressor activity. Mol Cell Biol 2007; 27:8683-97. [PMID: 17938206 DOI: 10.1128/mcb.00157-07] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Net1 is a RhoA-specific guanine nucleotide exchange factor which localizes to the nucleus at steady state. A deletion in its N terminus redistributes the protein to the cytosol, where it activates RhoA and can promote transformation. Net1 contains a PDZ-binding motif at the C terminus which is essential for its transformation properties. Here, we found that Net1 interacts through its PDZ-binding motif with tumor suppressor proteins of the Dlg family, including Dlg1/SAP97, SAP102, and PSD95. The interaction between Net1 and its PDZ partners promotes the translocation of the PDZ proteins to nuclear subdomains associated with PML bodies. Interestingly, the oncogenic mutant of Net1 is unable to shuttle the PDZ proteins to the nucleus, although these proteins still associate as clusters in the cytosol. Our results suggest that the ability of oncogenic Net1 to transform cells may be in part related to its ability to sequester tumor suppressor proteins like Dlg1 in the cytosol, thereby interfering with their normal cellular function. In agreement with this, the transformation potential of oncogenic Net1 is reduced when it is coexpressed with Dlg1 or SAP102. Together, our results suggest that the interaction between Net1 and Dlg1 may contribute to the mechanism of Net1-mediated transformation.
Collapse
|
44
|
Catching a GEF by its tail. Trends Cell Biol 2006; 17:36-43. [PMID: 17126549 DOI: 10.1016/j.tcb.2006.11.004] [Citation(s) in RCA: 132] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2006] [Revised: 10/19/2006] [Accepted: 11/15/2006] [Indexed: 12/30/2022]
Abstract
The activation of Rho GTPases is mediated by guanine-nucleotide exchange factors (GEFs), which catalyze the exchange of GDP for GTP. Rho-GEFs are a very diverse family, with >70 members in humans. Bioinformatics analysis of the human Rho-GEFs shows that approximately 40% contain a putative PDZ-binding motif at the C-terminus. PDZ domains are protein-protein interaction domains that act as scaffolds to concentrate signaling molecules at specialized regions in the cell. We propose that the interaction between Rho-GEFs and PDZ-domain proteins is a general mechanism that controls Rho-GEF targeting and activation, helping to restrict and concentrate the exchange activity to appropriate subcellular destinations. Here, we summarize recent data that highlight the importance of these interactions in Rho-GEF regulation.
Collapse
|