1
|
Ci M, Zhao G, Li C, Liu R, Hu X, Pan J, Shen Y, Zhang G, Li Y, Zhang L, Liang P, Cui H. OTUD4 promotes the progression of glioblastoma by deubiquitinating CDK1 and activating MAPK signaling pathway. Cell Death Dis 2024; 15:179. [PMID: 38429268 PMCID: PMC10907623 DOI: 10.1038/s41419-024-06569-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 02/15/2024] [Accepted: 02/21/2024] [Indexed: 03/03/2024]
Abstract
Glioblastoma, IDH-Wild type (GBM, CNS WHO Grade 4) is a highly heterogeneous and aggressive primary malignant brain tumor with high morbidity, high mortality, and poor patient prognosis. The global burden of GBM is increasing notably due to limited treatment options, drug delivery problems, and the lack of characteristic molecular targets. OTU deubiquitinase 4 (OTUD4) is a potential predictive factor for several cancers such as breast cancer, liver cancer, and lung cancer. However, its function in GBM remains unknown. In this study, we found that high expression of OTUD4 is positively associated with poor prognosis in GBM patients. Moreover, we provided in vitro and in vivo evidence that OTUD4 promotes the proliferation and invasion of GBM cells. Mechanism studies showed that, on the one hand, OTUD4 directly interacts with cyclin-dependent kinase 1 (CDK1) and stabilizes CDK1 by removing its K11, K29, and K33-linked polyubiquitination. On the other hand, OTUD4 binds to fibroblast growth factor receptor 1 (FGFR1) and reduces FGFR1's K6 and K27-linked polyubiquitination, thereby indirectly stabilizing CDK1, ultimately influencing the activation of the downstream MAPK signaling pathway. Collectively, our results revealed that OTUD4 promotes GBM progression via OTUD4-CDK1-MAPK axis, and may be a prospective therapeutic target for GBM treatment.
Collapse
Affiliation(s)
- Mingxin Ci
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing, 400715, China
- Jinfeng Laboratory, Chongqing, 401329, China
| | - Gaichao Zhao
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing, 400715, China
- Jinfeng Laboratory, Chongqing, 401329, China
| | - Chongyang Li
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing, 400715, China
- Jinfeng Laboratory, Chongqing, 401329, China
| | - Ruochen Liu
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing, 400715, China
- Jinfeng Laboratory, Chongqing, 401329, China
| | - Xiaosong Hu
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing, 400715, China
- Jinfeng Laboratory, Chongqing, 401329, China
| | - Jun Pan
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing, 400715, China
- Jinfeng Laboratory, Chongqing, 401329, China
| | - Yang Shen
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing, 400715, China
- Jinfeng Laboratory, Chongqing, 401329, China
| | - Guanghui Zhang
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing, 400715, China
- Jinfeng Laboratory, Chongqing, 401329, China
| | - Yongsen Li
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing, 400715, China
- Jinfeng Laboratory, Chongqing, 401329, China
| | - Li Zhang
- Department of Radiology and Nuclear Medicine, The First Hospital of HeBei Medical University, Hebei, 050000, China.
| | - Ping Liang
- Department of Neurosurgery, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014, China.
| | - Hongjuan Cui
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing, 400715, China.
- Jinfeng Laboratory, Chongqing, 401329, China.
| |
Collapse
|
2
|
Wang Q, Bode AM, Zhang T. Targeting CDK1 in cancer: mechanisms and implications. NPJ Precis Oncol 2023; 7:58. [PMID: 37311884 DOI: 10.1038/s41698-023-00407-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 05/25/2023] [Indexed: 06/15/2023] Open
Abstract
Cyclin dependent kinases (CDKs) are serine/threonine kinases that are proposed as promising candidate targets for cancer treatment. These proteins complexed with cyclins play a critical role in cell cycle progression. Most CDKs demonstrate substantially higher expression in cancer tissues compared with normal tissues and, according to the TCGA database, correlate with survival rate in multiple cancer types. Deregulation of CDK1 has been shown to be closely associated with tumorigenesis. CDK1 activation plays a critical role in a wide range of cancer types; and CDK1 phosphorylation of its many substrates greatly influences their function in tumorigenesis. Enrichment of CDK1 interacting proteins with Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis was conducted to demonstrate that the associated proteins participate in multiple oncogenic pathways. This abundance of evidence clearly supports CDK1 as a promising target for cancer therapy. A number of small molecules targeting CDK1 or multiple CDKs have been developed and evaluated in preclinical studies. Notably, some of these small molecules have also been subjected to human clinical trials. This review evaluates the mechanisms and implications of targeting CDK1 in tumorigenesis and cancer therapy.
Collapse
Affiliation(s)
- Qiushi Wang
- The Hormel Institute, University of Minnesota, 801 16th Ave NE, Austin, MN, 55912, USA
| | - Ann M Bode
- The Hormel Institute, University of Minnesota, 801 16th Ave NE, Austin, MN, 55912, USA.
| | - Tianshun Zhang
- The Hormel Institute, University of Minnesota, 801 16th Ave NE, Austin, MN, 55912, USA.
| |
Collapse
|
3
|
Cedeno-Rosario L, Honda D, Sunderland AM, Lewandowski MD, Taylor WR, Chadee DN. Phosphorylation of mixed lineage kinase MLK3 by cyclin-dependent kinases CDK1 and CDK2 controls ovarian cancer cell division. J Biol Chem 2022; 298:102263. [PMID: 35843311 PMCID: PMC9399292 DOI: 10.1016/j.jbc.2022.102263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 07/01/2022] [Accepted: 07/05/2022] [Indexed: 11/03/2022] Open
Abstract
Mixed lineage kinase 3 (MLK3) is a serine/threonine mitogen-activated protein kinase kinase kinase that promotes the activation of multiple mitogen-activated protein kinase pathways and is required for invasion and proliferation of ovarian cancer cells. Inhibition of MLK activity causes G2/M arrest in HeLa cells; however, the regulation of MLK3 during ovarian cancer cell cycle progression is not known. Here, we found that MLK3 is phosphorylated in mitosis and that inhibition of cyclin-dependent kinase 1 (CDK1) prevented MLK3 phosphorylation. In addition, we observed that c-Jun N-terminal kinase, a downstream target of MLK3 and a direct target of MKK4 (SEK1), was activated in G2 phase when CDK2 activity is increased and then inactivated at the beginning of mitosis concurrent with the increase in CDK1 and MLK3 phosphorylation. Using in vitro kinase assays and phosphomutants, we determined that CDK1 phosphorylates MLK3 on Ser548 and decreases MLK3 activity during mitosis, whereas CDK2 phosphorylates MLK3 on Ser770 and increases MLK3 activity during G1/S and G2 phases. We also found that MLK3 inhibition causes a reduction in cell proliferation and a cell cycle arrest in ovarian cancer cells, suggesting that MLK3 is required for ovarian cancer cell cycle progression. Taken together, our results suggest that phosphorylation of MLK3 by CDK1 and CDK2 is important for the regulation of MLK3 and c-Jun N-terminal kinase activities during G1/S, G2, and M phases in ovarian cancer cell division.
Collapse
Affiliation(s)
- Luis Cedeno-Rosario
- Department of Biological Sciences, College of Natural Sciences and Mathematics, The University of Toledo, Toledo, Ohio, USA
| | - David Honda
- Department of Biological Sciences, College of Natural Sciences and Mathematics, The University of Toledo, Toledo, Ohio, USA
| | - Autumn M Sunderland
- Department of Biological Sciences, College of Natural Sciences and Mathematics, The University of Toledo, Toledo, Ohio, USA
| | - Mark D Lewandowski
- Department of Biological Sciences, College of Natural Sciences and Mathematics, The University of Toledo, Toledo, Ohio, USA
| | - William R Taylor
- Department of Biological Sciences, College of Natural Sciences and Mathematics, The University of Toledo, Toledo, Ohio, USA
| | - Deborah N Chadee
- Department of Biological Sciences, College of Natural Sciences and Mathematics, The University of Toledo, Toledo, Ohio, USA.
| |
Collapse
|
4
|
Enhanced O-GlcNAc modification induced by the RAS/MAPK/CDK1 pathway is required for SOX2 protein expression and generation of cancer stem cells. Sci Rep 2022; 12:2910. [PMID: 35190631 PMCID: PMC8861017 DOI: 10.1038/s41598-022-06916-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 01/31/2022] [Indexed: 12/27/2022] Open
Abstract
Cancer stem cells (CSCs) have tumour initiation, self-renewal, and long-term tumour repopulation properties, and it is postulated that differentiated somatic cells can be reprogrammed to CSCs by oncogenic signals. We previously showed that oncogenic HRASV12 conferred tumour initiation capacity in tumour suppressor p53-deficient (p53−/−) primary mouse embryonic fibroblasts (MEFs) through transcription factor NF-κB-mediated enhancement of glucose uptake; however, the underlying mechanisms of RAS oncogene-induced CSC reprogramming have not been elucidated. Here, we found that the expression of the reprogramming factor SOX2 was induced by HRASV12 in p53−/− MEFs. Moreover, gene knockout studies revealed that SOX2 is an essential factor for the generation of CSCs by HRASV12 in mouse and human fibroblasts. We demonstrated that HRASV12-induced cyclin-dependent kinase 1 (CDK1) activity and subsequent enhancement of protein O-GlcNAcylation were required for SOX2 induction and CSC generation in these fibroblasts and cancer cell lines containing RAS mutations. Moreover, the CDK inhibitor dinaciclib and O-GlcNAcylation inhibitor OSMI1 reduced the number of CSCs derived from these cells. Taken together, our results reveal a signalling pathway and mechanism for CSC generation by oncogenic RAS and suggest the possibility that this signalling pathway is a therapeutic target for CSCs.
Collapse
|
5
|
Comprehensive Analysis of ERK1/2 Substrates for Potential Combination Immunotherapies. Trends Pharmacol Sci 2019; 40:897-910. [DOI: 10.1016/j.tips.2019.09.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 09/10/2019] [Accepted: 09/13/2019] [Indexed: 12/25/2022]
|
6
|
Kaibori Y, Saito Y, Nakayama Y. EphA2 phosphorylation at Ser897 by the Cdk1/MEK/ERK/RSK pathway regulates M-phase progression via maintenance of cortical rigidity. FASEB J 2019; 33:5334-5349. [PMID: 30668924 DOI: 10.1096/fj.201801519rr] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Successful cell division is accomplished by the proper formation of the mitotic spindle. Here, we show that EphA2 knockdown causes mitotic errors, including a delay in M-phase progression, asymmetric spindle positioning, multipolar spindles, and cell blebs. It has been known that EphA2 is phosphorylated at Tyr588, which is triggered by the ligand binding, and at Ser897 downstream of growth factor signaling. Upon mitotic entry, EphA2 is phosphorylated at Ser897, accompanied by a reduction in Tyr588 phosphorylation. This EphA2 phosphorylation at Ser897 is inhibited by MEK/ERK and 90 kDa ribosomal S6 kinase (RSK) inhibitors and is induced by the introduction of active cyclin-dependent kinase 1 (Cdk1) and cyclin B1. EphA2 knockdown-induced M-phase delay and cell blebs are rescued by wild type EphA2 expression but not by Ser897Ala mutant. The Ras homolog gene family member G (RhoG) guanine nucleotide exchange factor Ephexin4 interacts with EphA2 in a Ser897 phosphorylation-dependent manner, and its knockdown delays M-phase progression and causes RhoG delocalization. RhoG knockdown delays M-phase progression, and EphA2 knockdown-induced M-phase delay is partially rescued by the constitutively active RhoG mutant. These results suggest that, in EphA2-expressing cells, EphA2 phosphorylation at Ser897 participates in proper M-phase progression downstream of the Cdk1/MEK/ERK/RSK pathway because of its role in maintaining cortical rigidity via Ephexin4 and RhoG and thereby regulating mitotic spindle formation.-Kaibori, Y. Saito, Y., Nakayama, Y. EphA2 phosphorylation at Ser897 by the Cdk1/MEK/ERK/RSK pathway regulates M-phase progression via maintenance of cortical rigidity.
Collapse
Affiliation(s)
- Yuichiro Kaibori
- Department of Biochemistry and Molecular Biology, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Youhei Saito
- Department of Biochemistry and Molecular Biology, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Yuji Nakayama
- Department of Biochemistry and Molecular Biology, Kyoto Pharmaceutical University, Kyoto, Japan
| |
Collapse
|
7
|
Eisenhardt AE, Sprenger A, Röring M, Herr R, Weinberg F, Köhler M, Braun S, Orth J, Diedrich B, Lanner U, Tscherwinski N, Schuster S, Dumaz N, Schmidt E, Baumeister R, Schlosser A, Dengjel J, Brummer T. Phospho-proteomic analyses of B-Raf protein complexes reveal new regulatory principles. Oncotarget 2018; 7:26628-52. [PMID: 27034005 PMCID: PMC5042004 DOI: 10.18632/oncotarget.8427] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 03/07/2016] [Indexed: 12/19/2022] Open
Abstract
B-Raf represents a critical physiological regulator of the Ras/RAF/MEK/ERK-pathway and a pharmacological target of growing clinical relevance, in particular in oncology. To understand how B-Raf itself is regulated, we combined mass spectrometry with genetic approaches to map its interactome in MCF-10A cells as well as in B-Raf deficient murine embryonic fibroblasts (MEFs) and B-Raf/Raf-1 double deficient DT40 lymphoma cells complemented with wildtype or mutant B-Raf expression vectors. Using a multi-protease digestion approach, we identified a novel ubiquitination site and provide a detailed B-Raf phospho-map. Importantly, we identify two evolutionary conserved phosphorylation clusters around T401 and S419 in the B-Raf hinge region. SILAC labelling and genetic/biochemical follow-up revealed that these clusters are phosphorylated in the contexts of oncogenic Ras, sorafenib induced Raf dimerization and in the background of the V600E mutation. We further show that the vemurafenib sensitive phosphorylation of the T401 cluster occurs in trans within a Raf dimer. Substitution of the Ser/Thr-residues of this cluster by alanine residues enhances the transforming potential of B-Raf, indicating that these phosphorylation sites suppress its signaling output. Moreover, several B-Raf phosphorylation sites, including T401 and S419, are somatically mutated in tumors, further illustrating the importance of phosphorylation for the regulation of this kinase.
Collapse
Affiliation(s)
- Anja E Eisenhardt
- Institute of Molecular Medicine and Cell Research (IMMZ), Faculty of Medicine, Albert-Ludwigs-University (ALU), Freiburg, Germany.,Institute of Biology III, Faculty of Biology, ALU, Freiburg, Germany.,Centre for Biological Systems Analysis (ZBSA), Freiburg, Germany
| | - Adrian Sprenger
- Centre for Biological Systems Analysis (ZBSA), Freiburg, Germany.,Institute for Experimental and Clinical Pharmacology and Toxicology, ALU, Freiburg, Germany.,INSERM U976 and Universitéi Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Michael Röring
- Institute of Molecular Medicine and Cell Research (IMMZ), Faculty of Medicine, Albert-Ludwigs-University (ALU), Freiburg, Germany.,Institute of Biology III, Faculty of Biology, ALU, Freiburg, Germany.,Centre for Biological Systems Analysis (ZBSA), Freiburg, Germany.,Spemann Graduate School of Biology and Medicine (SGBM), ALU, Freiburg, Germany
| | - Ricarda Herr
- Institute of Molecular Medicine and Cell Research (IMMZ), Faculty of Medicine, Albert-Ludwigs-University (ALU), Freiburg, Germany.,Institute of Biology III, Faculty of Biology, ALU, Freiburg, Germany.,Centre for Biological Systems Analysis (ZBSA), Freiburg, Germany
| | - Florian Weinberg
- Institute of Molecular Medicine and Cell Research (IMMZ), Faculty of Medicine, Albert-Ludwigs-University (ALU), Freiburg, Germany.,Institute of Biology III, Faculty of Biology, ALU, Freiburg, Germany.,Centre for Biological Systems Analysis (ZBSA), Freiburg, Germany
| | - Martin Köhler
- Institute of Molecular Medicine and Cell Research (IMMZ), Faculty of Medicine, Albert-Ludwigs-University (ALU), Freiburg, Germany.,Institute of Biology III, Faculty of Biology, ALU, Freiburg, Germany.,Centre for Biological Systems Analysis (ZBSA), Freiburg, Germany.,Spemann Graduate School of Biology and Medicine (SGBM), ALU, Freiburg, Germany
| | - Sandra Braun
- Institute of Molecular Medicine and Cell Research (IMMZ), Faculty of Medicine, Albert-Ludwigs-University (ALU), Freiburg, Germany.,Institute of Biology III, Faculty of Biology, ALU, Freiburg, Germany.,Centre for Biological Systems Analysis (ZBSA), Freiburg, Germany
| | - Joachim Orth
- Institute for Experimental and Clinical Pharmacology and Toxicology, ALU, Freiburg, Germany
| | - Britta Diedrich
- Centre for Biological Systems Analysis (ZBSA), Freiburg, Germany.,Department of Dermatology, University Medical Centre, ALU, Freiburg, Germany
| | - Ulrike Lanner
- Centre for Biological Systems Analysis (ZBSA), Freiburg, Germany
| | - Natalja Tscherwinski
- Institute of Biology III, Faculty of Biology, ALU, Freiburg, Germany.,Centre for Biological Systems Analysis (ZBSA), Freiburg, Germany
| | - Simon Schuster
- Institute of Biology III, Faculty of Biology, ALU, Freiburg, Germany.,Centre for Biological Systems Analysis (ZBSA), Freiburg, Germany
| | - Nicolas Dumaz
- INSERM U976 and Universitéi Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Enrico Schmidt
- Institute of Biology III, Faculty of Biology, ALU, Freiburg, Germany.,Centre for Biological Systems Analysis (ZBSA), Freiburg, Germany
| | - Ralf Baumeister
- Institute of Biology III, Faculty of Biology, ALU, Freiburg, Germany.,Centre for Biological Systems Analysis (ZBSA), Freiburg, Germany.,Freiburg Institute for Advanced Studies (FRIAS), ALU, Freiburg, Germany.,Centre for Biological Signalling Studies BIOSS, ALU, Freiburg, Germany
| | - Andreas Schlosser
- Institute of Biology III, Faculty of Biology, ALU, Freiburg, Germany.,Centre for Biological Systems Analysis (ZBSA), Freiburg, Germany.,Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Würzburg, Germany
| | - Jörn Dengjel
- Centre for Biological Systems Analysis (ZBSA), Freiburg, Germany.,Department of Dermatology, University Medical Centre, ALU, Freiburg, Germany.,Freiburg Institute for Advanced Studies (FRIAS), ALU, Freiburg, Germany.,Centre for Biological Signalling Studies BIOSS, ALU, Freiburg, Germany.,Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Tilman Brummer
- Institute of Molecular Medicine and Cell Research (IMMZ), Faculty of Medicine, Albert-Ludwigs-University (ALU), Freiburg, Germany.,Institute of Biology III, Faculty of Biology, ALU, Freiburg, Germany.,Centre for Biological Systems Analysis (ZBSA), Freiburg, Germany.,Centre for Biological Signalling Studies BIOSS, ALU, Freiburg, Germany.,German Cancer Consortium (DKTK), Freiburg, Germany
| |
Collapse
|
8
|
Iwamoto E, Ueta N, Matsui Y, Kamijo K, Kuga T, Saito Y, Yamaguchi N, Nakayama Y. ERK Plays a Role in Chromosome Alignment and Participates in M-Phase Progression. J Cell Biochem 2015; 117:1340-51. [PMID: 26529125 DOI: 10.1002/jcb.25424] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 11/02/2015] [Indexed: 11/07/2022]
Abstract
Cell division, a prerequisite for cell proliferation, is a process in which each daughter cell inherits one complete set of chromosomes. The mitotic spindle is a dedicated apparatus for the alignment and segregation of chromosomes. Extracellular signal-regulated kinase (ERK) 1/2 plays crucial roles in cell cycle progression, particularly during M-phase. Although, association with the mitotic spindle has been reported, the precise roles played by ERK in the dynamics of the mitotic spindle and in M-phase progression remain to be elucidated. In this study, we used MEK inhibitors U0126 and GSK1120212 to dissect the roles of ERK in M-phase progression and chromosome alignment. Fluorescence microscopy revealed that ERK is localized to the spindle microtubules in a manner independent of Src kinase, which is one of the kinases upstream of ERK at mitotic entry. ERK inhibition induces an increase in the number of prophase cells and a decrease in the number of anaphase cells. Time-lapse imaging revealed that ERK inhibition perturbs chromosome alignment, thereby preventing cells from entering anaphase. These results suggest that ERK plays a role in M-phase progression by regulating chromosome alignment and demonstrate one of the mechanisms by which the aberration of ERK signaling may produce cancer cells.
Collapse
Affiliation(s)
- Erika Iwamoto
- Department of Biochemistry and Molecular Biology, Kyoto Pharmaceutical University, Kyoto, 607-8414, Japan
| | - Natsumi Ueta
- Department of Biochemistry and Molecular Biology, Kyoto Pharmaceutical University, Kyoto, 607-8414, Japan
| | - Yuki Matsui
- Department of Molecular Cell Biology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, 260-8675, Japan
| | - Keiju Kamijo
- Department of Anatomy, Anthropology and Cell Biology, Graduate School of Medicine, Tohoku University, Sendai, Miyagi, 980-8575, Japan
| | - Takahisa Kuga
- Department of Biochemistry and Molecular Biology, Kyoto Pharmaceutical University, Kyoto, 607-8414, Japan
| | - Youhei Saito
- Department of Biochemistry and Molecular Biology, Kyoto Pharmaceutical University, Kyoto, 607-8414, Japan
| | - Naoto Yamaguchi
- Department of Molecular Cell Biology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, 260-8675, Japan
| | - Yuji Nakayama
- Department of Biochemistry and Molecular Biology, Kyoto Pharmaceutical University, Kyoto, 607-8414, Japan
| |
Collapse
|
9
|
Wortzel I, Hanoch T, Porat Z, Hausser A, Seger R. Mitotic Golgi translocation of ERK1c is mediated by a PI4KIIIβ-14-3-3γ shuttling complex. J Cell Sci 2015; 128:4083-95. [PMID: 26459638 DOI: 10.1242/jcs.170910] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Accepted: 10/05/2015] [Indexed: 01/01/2023] Open
Abstract
Golgi fragmentation is a highly regulated process that allows division of the Golgi complex between the two daughter cells. The mitotic reorganization of the Golgi is accompanied by a temporary block in Golgi functioning, as protein transport in and out of the Golgi stops. Our group has previously demonstrated the involvement of the alternatively spliced variants ERK1c and MEK1b (ERK1 is also known as MAPK3, and MEK1 as MAP2K1) in mitotic Golgi fragmentation. We had also found that ERK1c translocates to the Golgi at the G2 to M phase transition, but the molecular mechanism underlying this recruitment remains unknown. In this study, we narrowed the translocation timing to prophase and prometaphase, and elucidated its molecular mechanism. We found that CDK1 phosphorylates Ser343 of ERK1c, thereby allowing the binding of phosphorylated ERK1c to a complex that consists of PI4KIIIβ (also known as PI4KB) and the 14-3-3γ dimer (encoded by YWHAB). The stability of the complex is regulated by protein kinase D (PKD)-mediated phosphorylation of PI4KIIIβ. The complex assembly induces the Golgi shuttling of ERK1c, where it is activated by MEK1b, and induces Golgi fragmentation. Our work shows that protein shuttling to the Golgi is not completely abolished at the G2 to M phase transition, thus integrating several independent Golgi-regulating processes into one coherent pathway.
Collapse
Affiliation(s)
- Inbal Wortzel
- Department of Biological Regulation, The Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Tamar Hanoch
- Department of Biological Regulation, The Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Ziv Porat
- Department of Biological Services, The Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Angelika Hausser
- University of Stuttgart, Institute of Cell Biology and Immunology, Stuttgart 70550, Germany
| | - Rony Seger
- Department of Biological Regulation, The Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
10
|
Mielgo A, Seguin L, Huang M, Camargo MF, Anand S, Franovic A, Weis SM, Advani SJ, Murphy EA, Cheresh DA. A MEK-independent role for CRAF in mitosis and tumor progression. Nat Med 2011; 17:1641-5. [PMID: 22081024 PMCID: PMC3233644 DOI: 10.1038/nm.2464] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2010] [Accepted: 08/08/2011] [Indexed: 02/08/2023]
Abstract
RAF kinases regulate cell proliferation and survival and can be dysregulated in tumors. The role of RAF in cell proliferation has been linked to its ability to activate mitogen-activated protein kinase kinase 1 (MEK) and mitogen-activated protein kinase 1 (ERK). Here we identify a MEK-independent role for RAF in tumor growth. Specifically, in mitotic cells, CRAF becomes phosphorylated on Ser338 and localizes to the mitotic spindle of proliferating tumor cells in vitro as well as in murine tumor models and in biopsies from individuals with cancer. Treatment of tumors with allosteric inhibitors, but not ATP-competitive RAF inhibitors, prevents CRAF phosphorylation on Ser338 and localization to the mitotic spindle and causes cell-cycle arrest at prometaphase. Furthermore, we identify phospho-Ser338 CRAF as a potential biomarker for tumor progression and a surrogate marker for allosteric RAF blockade. Mechanistically, CRAF, but not BRAF, associates with Aurora kinase A (Aurora-A) and Polo-like kinase 1 (Plk1) at the centrosomes and spindle poles during G2/M. Indeed, allosteric or genetic inhibition of phospho-Ser338 CRAF impairs Plk1 activation and accumulation at the kinetochores, causing prometaphase arrest, whereas a phospho-mimetic Ser338D CRAF mutant potentiates Plk1 activation, mitosis and tumor progression in mice. These findings show a previously undefined role for RAF in tumor progression beyond the RAF-MEK-ERK paradigm, opening new avenues for targeting RAF in cancer.
Collapse
Affiliation(s)
- Ainhoa Mielgo
- Department of Pathology, Moores Cancer Center, University of California San Diego, La Jolla, California, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Dent P, Tang Y, Yacoub A, Dai Y, Fisher PB, Grant S. CHK1 inhibitors in combination chemotherapy: thinking beyond the cell cycle. Mol Interv 2011; 11:133-40. [PMID: 21540473 DOI: 10.1124/mi.11.2.11] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Cellular sensing of DNA damage, along with concomitant cell cycle arrest, is mediated by a great many proteins and enzymes. One focus of pharmaceutical development has been the inhibition of DNA damage signaling, and checkpoint kinases (Chks) in particular, as a means to sensitize proliferating tumor cells to chemotherapies that damage DNA. 7-Hydroxystaurosporine, or UCN-01, is a clinically relevant and well-studied kinase activity inhibitor that exerts chemosensitizing effects by inhibition of Chk1, and a multitude of Chk1 inhibitors have entered development. Clinical development of UCN-01 has overcome many initial obstacles, but the drug has nevertheless failed to show a high level of clinical activity when combined with chemotherapeutic agents. One very likely reason for the lack of clinical efficacy of Chk1 inhibitors may be that the inhibition of Chk1 causes the compensatory activation of ATM and ERK1/2 pathways. Indeed, inhibition of many enzyme activities, not necessarily components of cell cycle regulation, may block Chk1 inhibitor-induced ERK1/2 activation and enhance the toxicity of Chk1 inhibitors. This review examines the rationally hypothesized actions of Chk1 inhibitors as cell cycle modulatory drugs as well as the impact of Chk1 inhibition upon other cell survival signaling pathways. An understanding of Chk1 inhibition in multiple signaling contexts will be essential to the therapeutic development of Chk1 inhibitors.
Collapse
Affiliation(s)
- Paul Dent
- Department of Neurosurgery, Virginia Commonwealth University, Massey Cancer Center, 401 College Street, Richmond, VA 23298-0035, USA.
| | | | | | | | | | | |
Collapse
|
12
|
Borysov SI, Granic A, Padmanabhan J, Walczak CE, Potter H. Alzheimer Aβ disrupts the mitotic spindle and directly inhibits mitotic microtubule motors. Cell Cycle 2011; 10:1397-410. [PMID: 21566458 DOI: 10.4161/cc.10.9.15478] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Chromosome mis-segregation and aneuploidy are greatly induced in Alzheimer's disease and models thereof by mutant forms of the APP and PS proteins and by their product, the Ab peptide. Here we employ human somatic cells and Xenopus egg extracts to show that Aβ impairs the assembly and maintenance of the mitotic spindle. Mechanistically, these defects result from Aβ's inhibition of mitotic motor kinesins, including Eg5, KIF4A and MCAK. In vitro studies show that oligomeric Aβ directly inhibits recombinant MCAK by a noncompetitive mechanism. In contrast, inhibition of Eg5 and KIF4A is competitive with respect to both ATP and microtubules, indicating that Aβ interferes with their interactions with the microtubules of the mitotic spindle. Consistently, increased levels of polymerized microtubules or of the microtubule stabilizing protein Tau significantly decrease the inhibitory effect of Aβ on Eg5 and KIF4A. Together, these results indicate that by disrupting the interaction between specific kinesins and microtubules and by exerting a direct inhibitory effect on the motor activity, excess Ab deregulates the mechanical forces that govern the spindle and thereby leads to the generation of defective mitotic structures. The resulting defect in neurogenesis can account for the over 30% aneuploid/hyperploid, degeneration-prone neurons observed in Alzheimer disease brain. The finding of mitotic motors including Eg5 in mature post-mitotic neurons implies that their inhibition by Ab may also disrupt neuronal function and plasticity.
Collapse
Affiliation(s)
- Sergiy I Borysov
- Eric Pfeiffer Suncoast Alzheimer's Center, College of Medicine, University of South Florida, Tampa, FL, USA
| | | | | | | | | |
Collapse
|
13
|
Lyman SK, Crawley SC, Gong R, Adamkewicz JI, McGrath G, Chew JY, Choi J, Holst CR, Goon LH, Detmer SA, Vaclavikova J, Gerritsen ME, Blake RA. High-content, high-throughput analysis of cell cycle perturbations induced by the HSP90 inhibitor XL888. PLoS One 2011; 6:e17692. [PMID: 21408192 PMCID: PMC3049797 DOI: 10.1371/journal.pone.0017692] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2010] [Accepted: 02/10/2011] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Many proteins that are dysregulated or mutated in cancer cells rely on the molecular chaperone HSP90 for their proper folding and activity, which has led to considerable interest in HSP90 as a cancer drug target. The diverse array of HSP90 client proteins encompasses oncogenic drivers, cell cycle components, and a variety of regulatory factors, so inhibition of HSP90 perturbs multiple cellular processes, including mitogenic signaling and cell cycle control. Although many reports have investigated HSP90 inhibition in the context of the cell cycle, no large-scale studies have examined potential correlations between cell genotype and the cell cycle phenotypes of HSP90 inhibition. METHODOLOGY/PRINCIPAL FINDINGS To address this question, we developed a novel high-content, high-throughput cell cycle assay and profiled the effects of two distinct small molecule HSP90 inhibitors (XL888 and 17-AAG [17-allylamino-17-demethoxygeldanamycin]) in a large, genetically diverse panel of cancer cell lines. The cell cycle phenotypes of both inhibitors were strikingly similar and fell into three classes: accumulation in M-phase, G2-phase, or G1-phase. Accumulation in M-phase was the most prominent phenotype and notably, was also correlated with TP53 mutant status. We additionally observed unexpected complexity in the response of the cell cycle-associated client PLK1 to HSP90 inhibition, and we suggest that inhibitor-induced PLK1 depletion may contribute to the striking metaphase arrest phenotype seen in many of the M-arrested cell lines. CONCLUSIONS/SIGNIFICANCE Our analysis of the cell cycle phenotypes induced by HSP90 inhibition in 25 cancer cell lines revealed that the phenotypic response was highly dependent on cellular genotype as well as on the concentration of HSP90 inhibitor and the time of treatment. M-phase arrest correlated with the presence of TP53 mutations, while G2 or G1 arrest was more commonly seen in cells bearing wt TP53. We draw upon previous literature to suggest an integrated model that accounts for these varying observations.
Collapse
Affiliation(s)
- Susan K Lyman
- Department of Molecular and Cellular Pharmacology, Exelixis, Inc., South San Francisco, California, United States of America.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Cui Y, Borysova MK, Johnson JO, Guadagno TM. Oncogenic B-RafV600E Induces Spindle Abnormalities, Supernumerary Centrosomes, and Aneuploidy in Human Melanocytic Cells. Cancer Res 2010; 70:675-84. [DOI: 10.1158/0008-5472.can-09-1491] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|