1
|
Fortini F, Vieceli Dalla Sega F, Lazzarini E, Aquila G, Sysa-Shah P, Bertero E, Ascierto A, Severi P, Ouambo Talla AW, Schirone A, Gabrielson K, Morciano G, Patergnani S, Pedriali G, Pinton P, Ferrari R, Tremoli E, Ameri P, Rizzo P. ErbB2-NOTCH1 axis controls autophagy in cardiac cells. Biofactors 2024. [PMID: 38994725 DOI: 10.1002/biof.2091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 06/16/2024] [Indexed: 07/13/2024]
Abstract
Although the epidermal growth factor receptor 2 (ErbB2) and Notch1 signaling pathways have both significant roles in regulating cardiac biology, their interplay in the heart remains poorly investigated. Here, we present evidence of a crosstalk between ErbB2 and Notch1 in cardiac cells, with effects on autophagy and proliferation. Overexpression of ErbB2 in H9c2 cardiomyoblasts induced Notch1 activation in a post-transcriptional, p38-dependent manner, while ErbB2 inhibition with the specific inhibitor, lapatinib, reduced Notch1 activation. Moreover, incubation of H9c2 cells with lapatinib resulted in stalled autophagic flux and decreased proliferation, consistent with the established cardiotoxicity of this and other ErbB2-targeting drugs. Confirming the findings in H9c2 cells, exposure of primary neonatal mouse cardiomyocytes to exogenous neuregulin-1, which engages ErbB2, stimulated proliferation, and this effect was abrogated by concomitant inhibition of the enzyme responsible for Notch1 activation. Furthermore, the hearts of transgenic mice specifically overexpressing ErbB2 in cardiomyocytes had increased levels of active Notch1 and of Notch-related genes. These data expand the knowledge of ErbB2 and Notch1 functions in the heart and may allow better understanding the mechanisms of the cardiotoxicity of ErbB2-targeting cancer treatments.
Collapse
Affiliation(s)
| | | | - Edoardo Lazzarini
- Laboratory for Cardiovascular Theranostics, Cardiocentro Ticino Institute, Ente Ospedaliero Cantonale Lugano, Lugano, Switzerland
- Euler Institute, Faculty of Biomedical Sciences, Università della Svizzera italiana, Lugano, Switzerland
| | - Giorgio Aquila
- Department of Translational Medicine and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Polina Sysa-Shah
- The Brady Urological Institute and Department of Urology, Johns Hopkins University, School of Medicine, Baltimore, Maryland, USA
| | - Edoardo Bertero
- Department of Internal Medicine and Specialties (Di.M.I.), University of Genova, Genova, Italy
| | - Alessia Ascierto
- Department of Translational Medicine and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Paolo Severi
- Department of Translational Medicine and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Achille Wilfred Ouambo Talla
- Department of Translational Medicine and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Alessio Schirone
- Oncology and Hematology Department, Azienda Ospedaliero-Universitaria di Ferrara, Ferrara, Italy
| | - Kathleen Gabrielson
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland, USA
| | - Giampaolo Morciano
- GVM Care & Research, Maria Cecilia Hospital, Ravenna, Italy
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Simone Patergnani
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Gaia Pedriali
- GVM Care & Research, Maria Cecilia Hospital, Ravenna, Italy
| | - Paolo Pinton
- GVM Care & Research, Maria Cecilia Hospital, Ravenna, Italy
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Roberto Ferrari
- Department of Translational Medicine and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Elena Tremoli
- GVM Care & Research, Maria Cecilia Hospital, Ravenna, Italy
| | - Pietro Ameri
- Department of Internal Medicine and Specialties (Di.M.I.), University of Genova, Genova, Italy
- Cardiac, Thoracic, and Vascular Department, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Paola Rizzo
- GVM Care & Research, Maria Cecilia Hospital, Ravenna, Italy
- Department of Translational Medicine and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| |
Collapse
|
2
|
Pan Y, Wang C, Zhou W, Shi Y, Meng X, Muhammad Y, Hammer RD, Jia B, Zheng H, Li DP, Liu Z, Hildebrandt G, Kang X. Inhibiting AGTR1 reduces AML burden and protects the heart from cardiotoxicity in mouse models. Sci Transl Med 2024; 16:eadl5931. [PMID: 38896605 PMCID: PMC11250918 DOI: 10.1126/scitranslmed.adl5931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 05/29/2024] [Indexed: 06/21/2024]
Abstract
Clinical treatment of acute myeloid leukemia (AML) largely relies on intensive chemotherapy. However, the application of chemotherapy is often hindered by cardiotoxicity. Patient sequence data revealed that angiotensin II receptor type 1 (AGTR1) is a shared target between AML and cardiovascular disease (CVD). We found that inhibiting AGTR1 sensitized AML to chemotherapy and protected the heart against chemotherapy-induced cardiotoxicity in a human AML cell-transplanted mouse model. These effects were regulated by the AGTR1-Notch1 axis in AML cells and cardiomyocytes from mice. In mouse cardiomyocytes, AGTR1 was hyperactivated by AML and chemotherapy. AML leukemogenesis increased the expression of the angiotensin-converting enzyme and led to increased production of angiotensin II, the ligand of AGTR1, in an MLL-AF9-driven AML mouse model. In this model, the AGTR1-Notch1 axis regulated a variety of genes involved with cell stemness and chemotherapy resistance. AML cell stemness was reduced after Agtr1a deletion in the mouse AML cell transplant model. Mechanistically, Agtr1a deletion decreased γ-secretase formation, which is required for transmembrane Notch1 cleavage and release of the Notch1 intracellular domain into the nucleus. Using multiomics, we identified AGTR1-Notch1 signaling downstream genes and found decreased binding between these gene sequences with Notch1 and chromatin enhancers, as well as increased binding with silencers. These findings describe an AML/CVD association that may be used to improve AML treatment.
Collapse
MESH Headings
- Animals
- Humans
- Mice
- Amyloid Precursor Protein Secretases/metabolism
- Cardiotoxicity/metabolism
- Cardiotoxicity/pathology
- Cell Line, Tumor
- Disease Models, Animal
- Heart/drug effects
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/genetics
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/pathology
- Receptor, Angiotensin, Type 1/metabolism
- Receptor, Angiotensin, Type 1/genetics
- Receptor, Notch1/metabolism
- Signal Transduction/drug effects
Collapse
Affiliation(s)
- Yi Pan
- Center for Precision Medicine, Department of Medicine, University of Missouri School of Medicine, Columbia, MO 65212, USA
- Ellis Fischel Cancer Center at MU Health Care, University of Missouri, Columbia, MO 65212, USA
| | - Chen Wang
- Center for Precision Medicine, Department of Medicine, University of Missouri School of Medicine, Columbia, MO 65212, USA
- Ellis Fischel Cancer Center at MU Health Care, University of Missouri, Columbia, MO 65212, USA
| | - WenXuan Zhou
- Center for Precision Medicine, Department of Medicine, University of Missouri School of Medicine, Columbia, MO 65212, USA
- Ellis Fischel Cancer Center at MU Health Care, University of Missouri, Columbia, MO 65212, USA
| | - Yao Shi
- Center for Precision Medicine, Department of Medicine, University of Missouri School of Medicine, Columbia, MO 65212, USA
- Ellis Fischel Cancer Center at MU Health Care, University of Missouri, Columbia, MO 65212, USA
| | - XiaDuo Meng
- Center for Precision Medicine, Department of Medicine, University of Missouri School of Medicine, Columbia, MO 65212, USA
- Ellis Fischel Cancer Center at MU Health Care, University of Missouri, Columbia, MO 65212, USA
| | - Yasir Muhammad
- Ellis Fischel Cancer Center at MU Health Care, University of Missouri, Columbia, MO 65212, USA
- Division of Hematology and Oncology, Department of Medicine, University of Missouri School of Medicine, Columbia, MO 65212, USA
| | - Richard D Hammer
- Department of Pathology and Anatomical Sciences, University of Missouri School of Medicine, Columbia, MO 65212, USA
| | - Bei Jia
- Division of Hematology/Oncology, Penn State University College of Medicine, Hershey, PA 17033, USA
| | - Hong Zheng
- Division of Hematology/Oncology, Penn State University College of Medicine, Hershey, PA 17033, USA
| | - De-Pei Li
- Center for Precision Medicine, Department of Medicine, University of Missouri School of Medicine, Columbia, MO 65212, USA
- Division of Cardiovascular Medicine, Department of Medicine, University of Missouri School of Medicine, Columbia, MO 65212, USA
| | - Zhenguo Liu
- Center for Precision Medicine, Department of Medicine, University of Missouri School of Medicine, Columbia, MO 65212, USA
- Division of Cardiovascular Medicine, Department of Medicine, University of Missouri School of Medicine, Columbia, MO 65212, USA
| | - Gerhard Hildebrandt
- Ellis Fischel Cancer Center at MU Health Care, University of Missouri, Columbia, MO 65212, USA
- Division of Hematology and Oncology, Department of Medicine, University of Missouri School of Medicine, Columbia, MO 65212, USA
| | - XunLei Kang
- Center for Precision Medicine, Department of Medicine, University of Missouri School of Medicine, Columbia, MO 65212, USA
- Ellis Fischel Cancer Center at MU Health Care, University of Missouri, Columbia, MO 65212, USA
- Division of Hematology and Oncology, Department of Medicine, University of Missouri School of Medicine, Columbia, MO 65212, USA
| |
Collapse
|
3
|
Santillán-Morales V, Rodriguez-Espinosa N, Muñoz-Estrada J, Alarcón-Elizalde S, Acebes Á, Benítez-King G. Biomarkers in Alzheimer's Disease: Are Olfactory Neuronal Precursors Useful for Antemortem Biomarker Research? Brain Sci 2024; 14:46. [PMID: 38248261 PMCID: PMC10813897 DOI: 10.3390/brainsci14010046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/09/2023] [Accepted: 12/11/2023] [Indexed: 01/23/2024] Open
Abstract
Alzheimer's disease (AD), as the main cause of dementia, affects millions of people around the world, whose diagnosis is based mainly on clinical criteria. Unfortunately, the diagnosis is obtained very late, when the neurodegenerative damage is significant for most patients. Therefore, the exhaustive study of biomarkers is indispensable for diagnostic, prognostic, and even follow-up support. AD is a multifactorial disease, and knowing its underlying pathological mechanisms is crucial to propose new and valuable biomarkers. In this review, we summarize some of the main biomarkers described in AD, which have been evaluated mainly by imaging studies in cerebrospinal fluid and blood samples. Furthermore, we describe and propose neuronal precursors derived from the olfactory neuroepithelium as a potential resource to evaluate some of the widely known biomarkers of AD and to gear toward searching for new biomarkers. These neuronal lineage cells, which can be obtained directly from patients through a non-invasive and outpatient procedure, display several characteristics that validate them as a surrogate model to study the central nervous system, allowing the analysis of AD pathophysiological processes. Moreover, the ease of obtaining and harvesting endows them as an accessible and powerful resource to evaluate biomarkers in clinical practice.
Collapse
Affiliation(s)
- Valeria Santillán-Morales
- Laboratory of Neuropharmacology, Clinical Research, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City 14370, Mexico; (V.S.-M.); (S.A.-E.)
| | - Norberto Rodriguez-Espinosa
- Department of Neurology, University Hospital Nuestra Señora de Candelaria, 38010 Tenerife, Spain;
- Department of Internal Medicine, Dermatology and Psychiatry, Faculty of Health Sciences, University of La Laguna (ULL), 38200 Tenerife, Spain
| | - Jesús Muñoz-Estrada
- Department of Computational Biomedicine, Cedars Sinai Medical Center, Los Angeles, CA 90069, USA;
| | - Salvador Alarcón-Elizalde
- Laboratory of Neuropharmacology, Clinical Research, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City 14370, Mexico; (V.S.-M.); (S.A.-E.)
| | - Ángel Acebes
- Department of Basic Medical Sciences, Institute of Biomedical Technologies (ITB), University of La Laguna (ULL), 38200 Tenerife, Spain
| | - Gloria Benítez-King
- Laboratory of Neuropharmacology, Clinical Research, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City 14370, Mexico; (V.S.-M.); (S.A.-E.)
| |
Collapse
|
4
|
A Novel NIR-FRET Biosensor for Reporting PS/γ-Secretase Activity in Live Cells. SENSORS 2020; 20:s20215980. [PMID: 33105735 PMCID: PMC7660074 DOI: 10.3390/s20215980] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/15/2020] [Accepted: 10/19/2020] [Indexed: 12/26/2022]
Abstract
Presenilin (PS)/γ-secretase plays a pivotal role in essential cellular events via proteolytic processing of transmembrane proteins that include APP and Notch receptors. However, how PS/γ-secretase activity is spatiotemporally regulated by other molecular and cellular factors and how the changes in PS/γ-secretase activity influence signaling pathways in live cells are poorly understood. These questions could be addressed by engineering a new tool that enables multiplexed imaging of PS/γ-secretase activity and additional cellular events in real-time. Here, we report the development of a near-infrared (NIR) FRET-based PS/γ-secretase biosensor, C99 720-670 probe, which incorporates an immediate PS/γ-secretase substrate APP C99 with miRFP670 and miRFP720 as the donor and acceptor fluorescent proteins, respectively. Extensive validation demonstrates that the C99 720-670 biosensor enables quantitative monitoring of endogenous PS/γ-secretase activity on a cell-by-cell basis in live cells (720/670 ratio: 2.47 ± 0.66 (vehicle) vs. 3.02 ± 1.17 (DAPT), ** p < 0.01). Importantly, the C99 720-670 and the previously developed APP C99 YPet-Turquoise-GL (C99 Y-T) biosensors simultaneously report PS/γ-secretase activity. This evidences the compatibility of the C99 720-670 biosensor with cyan (CFP)-yellow fluorescent protein (YFP)-based FRET biosensors for reporting other essential cellular events. Multiplexed imaging using the novel NIR biosensor C99 720-670 would open a new avenue to better understand the regulation and consequences of changes in PS/γ-secretase activity.
Collapse
|
5
|
Ho HY, Lin FCF, Chen PN, Chen MK, Hsin CH, Yang SF, Lin CW. Tricetin Suppresses Migration and Presenilin-1 Expression of Nasopharyngeal Carcinoma through Akt/GSK-3β Pathway. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2020; 48:1203-1220. [PMID: 32668971 DOI: 10.1142/s0192415x20500597] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Lymph node migration results in poor prognoses for nasopharyngeal carcinoma (NPC) patients. Tricetin, a flavonoid derivative, regulates tumorigenesis activity through its antiproliferative and antimetastatic properties. However, the molecular mechanism of tricetin affecting the migration and invasion of NPC cells remains poorly understood. In this paper, we examined the antimetastatic properties of tricetin in human NPC cells. Our results demonstrated that tricetin at noncytotoxic concentrations (0-80 3M) noticeably reduced the migration and invasion of NPC cells (HONE-1, NPC-39, and NPC-BM). Moreover, tricetin suppressed the indicative protease, presenilin-1 (PS-1), as indicated by protease array. PS-1 was transcriptionally inhibited via the Akt signaling pathway but not mitogen-activated protein kinase pathways, such as the JNK, p38, and ERK1/2 pathways. In addition to upregulating GSK-3[Formula: see text] phosphorylation through Akt suppression, tricetin may downregulate the activity of PS-1. Overall, our study provides new insight into the role of tricetin-induced molecular regulation in the suppression of NPC metastasis and suggests that tricetin has prospective therapeutic applications for patients with NPC.
Collapse
Affiliation(s)
- Hsin-Yu Ho
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Frank Cheau-Feng Lin
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Department of Surgery, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Pei-Ni Chen
- Institute of Biochemistry, Microbiology and Immunology, Chung Shan Medical University, Taichung, Taiwan
| | - Mu-Kuan Chen
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Department of Otorhinolaryngology-Head and Neck Surgery, Changhua Christian Hospital, Changhua, Taiwan
| | - Chung-Han Hsin
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Department of Otolaryngology, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Chiao-Wen Lin
- Institute of Oral Sciences, Chung Shan Medical University, Taichung, Taiwan.,Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
6
|
Escamilla-Ayala A, Wouters R, Sannerud R, Annaert W. Contribution of the Presenilins in the cell biology, structure and function of γ-secretase. Semin Cell Dev Biol 2020; 105:12-26. [DOI: 10.1016/j.semcdb.2020.02.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 02/06/2020] [Accepted: 02/17/2020] [Indexed: 01/25/2023]
|
7
|
Kalovyrna N, Apokotou O, Boulekou S, Paouri E, Boutou A, Georgopoulos S. A 3'UTR modification of the TNF-α mouse gene increases peripheral TNF-α and modulates the Alzheimer-like phenotype in 5XFAD mice. Sci Rep 2020; 10:8670. [PMID: 32457323 PMCID: PMC7250826 DOI: 10.1038/s41598-020-65378-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 04/28/2020] [Indexed: 01/06/2023] Open
Abstract
Tumor necrosis factor-α (TNF-α) is a pro-inflammatory cytokine, involved in Alzheimer's disease pathogenesis. Anti-TNF-α therapeutic approaches currently used in autoimmune diseases have been proposed as a therapeutic strategy in AD. We have previously examined the role of TNF-α and anti-TNF-α drugs in AD, using 5XFAD mice, and we have found a significant role for peripheral TNF-α in brain inflammation. Here we investigated the role of mouse TNF-α on the AD-like phenotype of 5XFAD mice using a knock-in mouse with deletion of the 3'UTR of the endogenous TNF-α (TNFΔARE/+) that develops rheumatoid arthritis and Crohn's disease. 5XFAD/TNFΔARE/+ mice showed significantly decreased amyloid deposition. Interestingly, microglia but not astrocytes were activated in 5XFAD/ TNFΔARE/+ brains. This microglial activation was associated with increased infiltrating peripheral leukocytes and perivascular macrophages and synaptic degeneration. APP levels and APP processing enzymes involved in Aβ production remained unchanged, suggesting that the reduced amyloid burden can be attributed to the increased microglial and perivascular macrophage activation caused by TNF-α. Peripheral TNF-α levels were increased while brain TNF-α remained the same. These data provide further evidence for peripheral TNF-α as a mediator of inflammation between the periphery and the brain.
Collapse
Affiliation(s)
- Nikoleta Kalovyrna
- Laboratory of Cellular Neurobiology, Center of Basic Research, Biomedical Research Foundation, Academy of Athens, 11527, Athens, Greece
| | - Olympia Apokotou
- Laboratory of Cellular Neurobiology, Center of Basic Research, Biomedical Research Foundation, Academy of Athens, 11527, Athens, Greece
| | - Sotiria Boulekou
- Laboratory of Cellular Neurobiology, Center of Basic Research, Biomedical Research Foundation, Academy of Athens, 11527, Athens, Greece
| | - Evi Paouri
- Laboratory of Cellular Neurobiology, Center of Basic Research, Biomedical Research Foundation, Academy of Athens, 11527, Athens, Greece
| | - Athena Boutou
- Laboratory of Cellular Neurobiology, Center of Basic Research, Biomedical Research Foundation, Academy of Athens, 11527, Athens, Greece
| | - Spiros Georgopoulos
- Laboratory of Cellular Neurobiology, Center of Basic Research, Biomedical Research Foundation, Academy of Athens, 11527, Athens, Greece.
| |
Collapse
|
8
|
Phosphorylation Signaling in APP Processing in Alzheimer's Disease. Int J Mol Sci 2019; 21:ijms21010209. [PMID: 31892243 PMCID: PMC6981488 DOI: 10.3390/ijms21010209] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 12/23/2019] [Accepted: 12/24/2019] [Indexed: 12/13/2022] Open
Abstract
The abnormal accumulation of amyloid-β (Aβ) in the central nervous system is a hallmark of Alzheimer’s disease (AD). The regulation of the processing of the single- transmembrane amyloid precursor protein (APP) plays an important role in the generation of Aβ in the brain. The phosphorylation of APP and key enzymes involved in the proteolytic processing of APP has been demonstrated to be critical for modulating the generation of Aβ by either altering the subcellular localization of APP or changing the enzymatic activities of the secretases responsible for APP processing. In addition, the phosphorylation may also have an impact on the physiological function of these proteins. In this review, we summarize the kinases and signaling pathways that may participate in regulating the phosphorylation of APP and secretases and how this further affects the function and processing of APP and Aβ pathology. We also discuss the potential of approaches that modulate these phosphorylation-signaling pathways or kinases as interventions for AD pathology.
Collapse
|
9
|
Miyagawa K, Shi M, Chen PI, Hennigs JK, Zhao Z, Wang M, Li CG, Saito T, Taylor S, Sa S, Cao A, Wang L, Snyder MP, Rabinovitch M. Smooth Muscle Contact Drives Endothelial Regeneration by BMPR2-Notch1-Mediated Metabolic and Epigenetic Changes. Circ Res 2019; 124:211-224. [PMID: 30582451 DOI: 10.1161/circresaha.118.313374] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
RATIONALE Maintaining endothelial cells (EC) as a monolayer in the vessel wall depends on their metabolic state and gene expression profile, features influenced by contact with neighboring cells such as pericytes and smooth muscle cells (SMC). Failure to regenerate a normal EC monolayer in response to injury can result in occlusive neointima formation in diseases such as atherosclerosis and pulmonary arterial hypertension. OBJECTIVE We investigated the nature and functional importance of contact-dependent communication between SMC and EC to maintain EC integrity. METHODS AND RESULTS We found that in SMC and EC contact cocultures, BMPR2 (bone morphogenetic protein receptor 2) is required by both cell types to produce collagen IV to activate ILK (integrin-linked kinase). This enzyme directs p-JNK (phospho-c-Jun N-terminal kinase) to the EC membrane, where it stabilizes presenilin1 and releases N1ICD (Notch1 intracellular domain) to promote EC proliferation. This response is necessary for EC regeneration after carotid artery injury. It is deficient in EC-SMC Bmpr2 double heterozygous mice in association with reduced collagen IV production, decreased N1ICD, and attenuated EC proliferation, but can be rescued by targeting N1ICD to EC. Deletion of EC- Notch1 in transgenic mice worsens hypoxia-induced pulmonary hypertension, in association with impaired EC regenerative function associated with loss of precapillary arteries. We further determined that N1ICD maintains EC proliferative capacity by increasing mitochondrial mass and by inducing the phosphofructokinase PFKFB3 (fructose-2,6-bisphosphatase 3). Chromatin immunoprecipitation sequencing analyses showed that PFKFB3 is required for citrate-dependent H3K27 acetylation at enhancer sites of genes regulated by the acetyl transferase p300 and by N1ICD or the N1ICD target MYC and necessary for EC proliferation and homeostasis. CONCLUSIONS Thus, SMC-EC contact is required for activation of Notch1 by BMPR2, to coordinate metabolism with chromatin remodeling of genes that enable EC regeneration, and to maintain monolayer integrity and vascular homeostasis in response to injury.
Collapse
Affiliation(s)
- Kazuya Miyagawa
- From the Department of Pediatrics (K.M., P.-I.C., J.K.H., C.G.L., T.S., S.T., S.S., A.C., L.W., M.R.), Stanford University School of Medicine, CA.,Cardiovascular Institute (K.M., M.S., P.-I.C., J.K.H., Z.Z., M.W., C.G.L., T.S., S.T., S.S., A.C., L.W., M.P.S., M.R.), Stanford University School of Medicine, CA.,Vera Moulton Wall Center for Pulmonary Vascular Disease (K.M., P.-I.C., J.K.H., C.G.L., T.S., S.T., S.S., A.C., L.W., M.R.), Stanford University School of Medicine, CA
| | - Minyi Shi
- Department of Genetics (M.S., Z.Z., M.P.S.), Stanford University School of Medicine, CA.,Cardiovascular Institute (K.M., M.S., P.-I.C., J.K.H., Z.Z., M.W., C.G.L., T.S., S.T., S.S., A.C., L.W., M.P.S., M.R.), Stanford University School of Medicine, CA
| | - Pin-I Chen
- From the Department of Pediatrics (K.M., P.-I.C., J.K.H., C.G.L., T.S., S.T., S.S., A.C., L.W., M.R.), Stanford University School of Medicine, CA.,Cardiovascular Institute (K.M., M.S., P.-I.C., J.K.H., Z.Z., M.W., C.G.L., T.S., S.T., S.S., A.C., L.W., M.P.S., M.R.), Stanford University School of Medicine, CA.,Vera Moulton Wall Center for Pulmonary Vascular Disease (K.M., P.-I.C., J.K.H., C.G.L., T.S., S.T., S.S., A.C., L.W., M.R.), Stanford University School of Medicine, CA
| | - Jan K Hennigs
- From the Department of Pediatrics (K.M., P.-I.C., J.K.H., C.G.L., T.S., S.T., S.S., A.C., L.W., M.R.), Stanford University School of Medicine, CA.,Cardiovascular Institute (K.M., M.S., P.-I.C., J.K.H., Z.Z., M.W., C.G.L., T.S., S.T., S.S., A.C., L.W., M.P.S., M.R.), Stanford University School of Medicine, CA.,Vera Moulton Wall Center for Pulmonary Vascular Disease (K.M., P.-I.C., J.K.H., C.G.L., T.S., S.T., S.S., A.C., L.W., M.R.), Stanford University School of Medicine, CA
| | - Zhixin Zhao
- Department of Genetics (M.S., Z.Z., M.P.S.), Stanford University School of Medicine, CA.,Cardiovascular Institute (K.M., M.S., P.-I.C., J.K.H., Z.Z., M.W., C.G.L., T.S., S.T., S.S., A.C., L.W., M.P.S., M.R.), Stanford University School of Medicine, CA
| | - Mouer Wang
- Department of Medicine (M.W.), Stanford University School of Medicine, CA.,Cardiovascular Institute (K.M., M.S., P.-I.C., J.K.H., Z.Z., M.W., C.G.L., T.S., S.T., S.S., A.C., L.W., M.P.S., M.R.), Stanford University School of Medicine, CA
| | - Caiyun G Li
- From the Department of Pediatrics (K.M., P.-I.C., J.K.H., C.G.L., T.S., S.T., S.S., A.C., L.W., M.R.), Stanford University School of Medicine, CA.,Cardiovascular Institute (K.M., M.S., P.-I.C., J.K.H., Z.Z., M.W., C.G.L., T.S., S.T., S.S., A.C., L.W., M.P.S., M.R.), Stanford University School of Medicine, CA.,Vera Moulton Wall Center for Pulmonary Vascular Disease (K.M., P.-I.C., J.K.H., C.G.L., T.S., S.T., S.S., A.C., L.W., M.R.), Stanford University School of Medicine, CA
| | - Toshie Saito
- From the Department of Pediatrics (K.M., P.-I.C., J.K.H., C.G.L., T.S., S.T., S.S., A.C., L.W., M.R.), Stanford University School of Medicine, CA.,Cardiovascular Institute (K.M., M.S., P.-I.C., J.K.H., Z.Z., M.W., C.G.L., T.S., S.T., S.S., A.C., L.W., M.P.S., M.R.), Stanford University School of Medicine, CA.,Vera Moulton Wall Center for Pulmonary Vascular Disease (K.M., P.-I.C., J.K.H., C.G.L., T.S., S.T., S.S., A.C., L.W., M.R.), Stanford University School of Medicine, CA
| | - Shalina Taylor
- From the Department of Pediatrics (K.M., P.-I.C., J.K.H., C.G.L., T.S., S.T., S.S., A.C., L.W., M.R.), Stanford University School of Medicine, CA.,Cardiovascular Institute (K.M., M.S., P.-I.C., J.K.H., Z.Z., M.W., C.G.L., T.S., S.T., S.S., A.C., L.W., M.P.S., M.R.), Stanford University School of Medicine, CA.,Vera Moulton Wall Center for Pulmonary Vascular Disease (K.M., P.-I.C., J.K.H., C.G.L., T.S., S.T., S.S., A.C., L.W., M.R.), Stanford University School of Medicine, CA
| | - Silin Sa
- From the Department of Pediatrics (K.M., P.-I.C., J.K.H., C.G.L., T.S., S.T., S.S., A.C., L.W., M.R.), Stanford University School of Medicine, CA.,Cardiovascular Institute (K.M., M.S., P.-I.C., J.K.H., Z.Z., M.W., C.G.L., T.S., S.T., S.S., A.C., L.W., M.P.S., M.R.), Stanford University School of Medicine, CA.,Vera Moulton Wall Center for Pulmonary Vascular Disease (K.M., P.-I.C., J.K.H., C.G.L., T.S., S.T., S.S., A.C., L.W., M.R.), Stanford University School of Medicine, CA
| | - Aiqin Cao
- From the Department of Pediatrics (K.M., P.-I.C., J.K.H., C.G.L., T.S., S.T., S.S., A.C., L.W., M.R.), Stanford University School of Medicine, CA.,Cardiovascular Institute (K.M., M.S., P.-I.C., J.K.H., Z.Z., M.W., C.G.L., T.S., S.T., S.S., A.C., L.W., M.P.S., M.R.), Stanford University School of Medicine, CA.,Vera Moulton Wall Center for Pulmonary Vascular Disease (K.M., P.-I.C., J.K.H., C.G.L., T.S., S.T., S.S., A.C., L.W., M.R.), Stanford University School of Medicine, CA
| | - Lingli Wang
- From the Department of Pediatrics (K.M., P.-I.C., J.K.H., C.G.L., T.S., S.T., S.S., A.C., L.W., M.R.), Stanford University School of Medicine, CA.,Cardiovascular Institute (K.M., M.S., P.-I.C., J.K.H., Z.Z., M.W., C.G.L., T.S., S.T., S.S., A.C., L.W., M.P.S., M.R.), Stanford University School of Medicine, CA.,Vera Moulton Wall Center for Pulmonary Vascular Disease (K.M., P.-I.C., J.K.H., C.G.L., T.S., S.T., S.S., A.C., L.W., M.R.), Stanford University School of Medicine, CA
| | - Michael P Snyder
- Department of Genetics (M.S., Z.Z., M.P.S.), Stanford University School of Medicine, CA.,Cardiovascular Institute (K.M., M.S., P.-I.C., J.K.H., Z.Z., M.W., C.G.L., T.S., S.T., S.S., A.C., L.W., M.P.S., M.R.), Stanford University School of Medicine, CA
| | - Marlene Rabinovitch
- From the Department of Pediatrics (K.M., P.-I.C., J.K.H., C.G.L., T.S., S.T., S.S., A.C., L.W., M.R.), Stanford University School of Medicine, CA.,Cardiovascular Institute (K.M., M.S., P.-I.C., J.K.H., Z.Z., M.W., C.G.L., T.S., S.T., S.S., A.C., L.W., M.P.S., M.R.), Stanford University School of Medicine, CA.,Vera Moulton Wall Center for Pulmonary Vascular Disease (K.M., P.-I.C., J.K.H., C.G.L., T.S., S.T., S.S., A.C., L.W., M.R.), Stanford University School of Medicine, CA
| |
Collapse
|
10
|
Guan PP, Liang YY, Cao LL, Yu X, Wang P. Cyclooxygenase-2 Induced the β-Amyloid Protein Deposition and Neuronal Apoptosis Via Upregulating the Synthesis of Prostaglandin E 2 and 15-Deoxy-Δ 12,14-prostaglandin J 2. Neurotherapeutics 2019; 16:1255-1268. [PMID: 31392591 PMCID: PMC6985346 DOI: 10.1007/s13311-019-00770-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
Elevated levels of cyclooxygenase-2 (COX-2) and prostaglandins (PGs) have been shown to be involved in the pathogenesis of Alzheimer's disease. Analysis of the underlying mechanisms elucidated a function of sequential PGE2 and PGD2 synthesis in regulating β-amyloid protein (Aβ) deposition by modulating tumor necrosis factor α (TNF-α)-dependent presenilin (PS)1/2 activity in COX-2 and APP/PS1 crossed mice. Specifically, COX-2 overexpression accelerates the expression of microsomal PGE synthase-1 (mPGES-1) and lipocalin-type prostaglandin D synthase (L-PGDS), leading to the synthesis of PGE2 and 15-deoxy-Δ12,14-prostaglandin J2 (15d-PGJ2) in 6-month-old APP/PS1 mice. Consequently, PGE2 has the ability to increase Aβ production by enhancing the expression of PS1/2 in a TNF-α-dependent manner, which accelerates the cognitive decline of COX-2/APP/PS1 mice. More interestingly, low concentrations of 15d-PGJ2 treatment facilitate the effects of PGE2 on the deposition of Aβ via TNF-α-dependent PS1/2 mechanisms. In contrast, high concentrations of 15d-PGJ2 treatment inhibit the deposition of Aβ via suppressing the expression of TNF-α-dependent PS1/2. In this regard, a high concentration of 15d-PGJ2 appears to be a therapeutic agent against Alzheimer's disease. However, the high 15d-PGJ2 concentration treatment induces neuronal apoptosis via increasing the protein levels of Bax, cleaved caspase-3, and DFF45, which further impairs the learning ability of APP/PS1 mice.
Collapse
Affiliation(s)
- Pei-Pei Guan
- College of Life and Health Sciences, Northeastern University, No. 3-11, Wenhua Road, Shenyang, 110819, China
| | - Yun-Yue Liang
- College of Life and Health Sciences, Northeastern University, No. 3-11, Wenhua Road, Shenyang, 110819, China
| | - Long-Long Cao
- College of Life and Health Sciences, Northeastern University, No. 3-11, Wenhua Road, Shenyang, 110819, China
| | - Xin Yu
- College of Life and Health Sciences, Northeastern University, No. 3-11, Wenhua Road, Shenyang, 110819, China
| | - Pu Wang
- College of Life and Health Sciences, Northeastern University, No. 3-11, Wenhua Road, Shenyang, 110819, China.
| |
Collapse
|
11
|
El-Gazar AA, Soubh AA, Mohamed EA, Awad AS, El-Abhar HS. Morin post-treatment confers neuroprotection in a novel rat model of mild repetitive traumatic brain injury by targeting dementia markers, APOE, autophagy and Wnt/β-catenin signaling pathway. Brain Res 2019; 1717:104-116. [DOI: 10.1016/j.brainres.2019.04.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 03/19/2019] [Accepted: 04/03/2019] [Indexed: 02/07/2023]
|
12
|
Ruan Y, Guo SJ, Wang X, Dong D, Shen DH, Zhu J, Zheng XY. Kainic Acid Impairs the Memory Behavior of APP23 Mice by Increasing Brain Amyloid Load through a Tumor Necrosis Factor-α-Dependent Mechanism. J Alzheimers Dis 2019; 64:103-116. [PMID: 29782313 DOI: 10.3233/jad-171137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Kainic acid (KA) was recently identified as an epileptogenic and neuroexcitotoxic agent that is responsible for inducing learning and memory deficits in various neurodegenerative diseases, such as Alzheimer's disease (AD). However, the mechanism by which KA acts upon AD remains unclear. To this end, we presently investigated the roles of KA in processing amyloid-β protein precursor (AβPP) and amyloid-β protein (Aβ) loads during the course of AD development and progression. Specifically, KA treatment clearly caused the upregulation of tumor necrosis factor α (TNF-α) via activation of the PI3-K/AKT, ERK1/2, and p65 pathways in glial cells. TNF-α secreted from glial cells was then found to be responsible for stimulating the expression of BACE-1 and PS1/2, which resulted in the production and deposition of Aβ in neurons. Finally, the accumulation and aggregation of Aβ lead to the cognitive decline of APP23 mice. These results indicate that KA accelerates the progression of AD by inducing the crosstalk between glial cells and neurons.
Collapse
Affiliation(s)
- Yang Ruan
- Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Shi-Jie Guo
- Department of Neonatology, The First Hospital of Jilin University, Changchun, China
| | - Xu Wang
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Dong Dong
- Department of Radiology, The First Hospital of Jilin University, Changchun, China
| | - Dong-Hui Shen
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Jie Zhu
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China.,Department of Neurobiology, Care Sciences and Society, Karolinska Institute, Stockholm, Sweden
| | - Xiang-Yu Zheng
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
13
|
Carter CJ. Autism genes and the leukocyte transcriptome in autistic toddlers relate to pathogen interactomes, infection and the immune system. A role for excess neurotrophic sAPPα and reduced antimicrobial Aβ. Neurochem Int 2019; 126:36-58. [PMID: 30862493 DOI: 10.1016/j.neuint.2019.03.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 02/22/2019] [Accepted: 03/06/2019] [Indexed: 12/20/2022]
Abstract
Prenatal and early childhood infections have been implicated in autism. Many autism susceptibility genes (206 Autworks genes) are localised in the immune system and are related to immune/infection pathways. They are enriched in the host/pathogen interactomes of 18 separate microbes (bacteria/viruses and fungi) and to the genes regulated by bacterial toxins, mycotoxins and Toll-like receptor ligands. This enrichment was also observed for misregulated genes from a microarray study of leukocytes from autistic toddlers. The upregulated genes from this leukocyte study also matched the expression profiles in response to numerous infectious agents from the Broad Institute molecular signatures database. They also matched genes related to sudden infant death syndrome and autism comorbid conditions (autoimmune disease, systemic lupus erythematosus, diabetes, epilepsy and cardiomyopathy) as well as to estrogen and thyrotropin responses and to those upregulated by different types of stressors including oxidative stress, hypoxia, endoplasmic reticulum stress, ultraviolet radiation or 2,4-dinitrofluorobenzene, a hapten used to develop allergic skin reactions in animal models. The oxidative/integrated stress response is also upregulated in the autism brain and may contribute to myelination problems. There was also a marked similarity between the expression signatures of autism and Alzheimer's disease, and 44 shared autism/Alzheimer's disease genes are almost exclusively expressed in the blood-brain barrier. However, in contrast to Alzheimer's disease, levels of the antimicrobial peptide beta-amyloid are decreased and the levels of the neurotrophic/myelinotrophic soluble APP alpha are increased in autism, together with an increased activity of α-secretase. sAPPα induces an increase in glutamatergic and a decrease in GABA-ergic synapses creating and excitatory/inhibitory imbalance that has also been observed in autism. A literature survey showed that multiple autism genes converge on APP processing and that many are able to increase sAPPalpha at the expense of beta-amyloid production. A genetically programmed tilt of this axis towards an overproduction of neurotrophic/gliotrophic sAPPalpha and underproduction of antimicrobial beta-amyloid may explain the brain overgrowth and myelination dysfunction, as well as the involvement of pathogens in autism.
Collapse
Affiliation(s)
- C J Carter
- PolygenicPathways, 41C Marina, Saint Leonard's on Sea, TN38 0BU, East Sussex, UK.
| |
Collapse
|
14
|
Rezazadeh M, Hosseinzadeh H, Moradi M, Salek Esfahani B, Talebian S, Parvin S, Gharesouran J. Genetic discoveries and advances in late‐onset Alzheimer’s disease. J Cell Physiol 2019; 234:16873-16884. [DOI: 10.1002/jcp.28372] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 01/20/2019] [Accepted: 01/24/2019] [Indexed: 12/26/2022]
Affiliation(s)
- Maryam Rezazadeh
- Department of Medical Genetics Faculty of Medicine, Tabriz University of Medical Sciences Tabriz Iran
- Division of Medical Genetics Tabriz Children’s Hospital, Tabriz University of Medical Sciences Tabriz Iran
| | | | - Mohsen Moradi
- Department of Medical Genetics Faculty of Medicine, Tabriz University of Medical Sciences Tabriz Iran
| | - Behnaz Salek Esfahani
- Department of Medical Genetics Faculty of Medicine, Tabriz University of Medical Sciences Tabriz Iran
| | - Shahrzad Talebian
- Department of Medical Genetics Faculty of Medicine, Tabriz University of Medical Sciences Tabriz Iran
| | - Shaho Parvin
- Department of Medical Genetics Faculty of Medicine, Tabriz University of Medical Sciences Tabriz Iran
| | - Jalal Gharesouran
- Department of Medical Genetics Faculty of Medicine, Tabriz University of Medical Sciences Tabriz Iran
- Division of Medical Genetics Tabriz Children’s Hospital, Tabriz University of Medical Sciences Tabriz Iran
| |
Collapse
|
15
|
Naranjo R, González P, Lopez-Hurtado A, Dopazo XM, Mellström B, Naranjo JR. Inhibition of the Neuronal Calcium Sensor DREAM Modulates Presenilin-2 Endoproteolysis. Front Mol Neurosci 2018; 11:449. [PMID: 30559648 PMCID: PMC6287014 DOI: 10.3389/fnmol.2018.00449] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 11/21/2018] [Indexed: 11/14/2022] Open
Abstract
Deregulated intracellular Ca2+ and protein homeostasis underlie synaptic dysfunction and are common features in neurodegenerative diseases. DREAM, also known as calsenilin or KChIP-3, is a multifunctional Ca2+ binding protein of the neuronal calcium sensor superfamily with specific functions through protein-DNA and protein-protein interactions. Small-molecules able to bind DREAM, like the anti-diabetic drug repaglinide, disrupt some of the interactions with other proteins and modulate DREAM activity on Kv4 channels or on the processing of activating transcription factor 6 (ATF6). Here, we show the interaction of endogenous DREAM and presenilin-2 (PS2) in mouse brain and, using DREAM deficient mice or transgenic mice overexpressing a dominant active DREAM (daDREAM) mutant in the brain, we provide genetic evidence of the role of DREAM in the endoproteolysis of endogenous PS2. We show that repaglinide disrupts the interaction between DREAM and the C-terminal PS2 fragment (Ct-PS2) by coimmunoprecipitation assays. Exposure to sub-micromolar concentrations of repaglinide reduces the levels of Ct-PS2 fragment in N2a neuroblastoma cells. These results suggest that the interaction between DREAM and PS2 may represent a new target for modulation of PS2 processing, which could have therapeutic potential in Alzheimer’s disease (AD) treatment.
Collapse
Affiliation(s)
- Rocío Naranjo
- Spanish Network for Biomedical Research in Neurodegenerative Diseases (CIBERNED), ISCIII, Madrid, Spain.,National Biotechnology Center (CNB), CSIC, Madrid, Spain
| | - Paz González
- Spanish Network for Biomedical Research in Neurodegenerative Diseases (CIBERNED), ISCIII, Madrid, Spain.,National Biotechnology Center (CNB), CSIC, Madrid, Spain
| | - Alejandro Lopez-Hurtado
- Spanish Network for Biomedical Research in Neurodegenerative Diseases (CIBERNED), ISCIII, Madrid, Spain.,National Biotechnology Center (CNB), CSIC, Madrid, Spain
| | - Xosé M Dopazo
- Spanish Network for Biomedical Research in Neurodegenerative Diseases (CIBERNED), ISCIII, Madrid, Spain.,National Biotechnology Center (CNB), CSIC, Madrid, Spain
| | - Britt Mellström
- Spanish Network for Biomedical Research in Neurodegenerative Diseases (CIBERNED), ISCIII, Madrid, Spain.,National Biotechnology Center (CNB), CSIC, Madrid, Spain
| | - José R Naranjo
- Spanish Network for Biomedical Research in Neurodegenerative Diseases (CIBERNED), ISCIII, Madrid, Spain.,National Biotechnology Center (CNB), CSIC, Madrid, Spain
| |
Collapse
|
16
|
Abstract
Elevated levels of cyclooxygenase-2 (COX-2) and prostaglandins (PGs) are involved in the pathogenesis of Alzheimer's disease (AD), which is characterized by the accumulation of β-amyloid protein (Aβ) and tau hyperphosphorylation. However, the gaps in our knowledge of the roles of COX-2 and PGs in AD have not been filled. Here, we summarized the literature showing that COX-2 dysregulation obviously influences abnormal cleavage of β-amyloid precursor protein, aggregation and deposition of Aβ in β-amyloid plaques and the inclusion of phosphorylated tau in neurofibrillary tangles. Neuroinflammation, oxidative stress, synaptic plasticity, neurotoxicity, autophagy, and apoptosis have been assessed to elucidate the mechanisms of COX-2 regulation of AD. Notably, an imbalance of these factors ultimately produces cognitive decline. The current review substantiates our understanding of the mechanisms of COX-2-induced AD and establishes foundations for the design of feasible therapeutic strategies to treat AD.-Guan, P.-P., Wang, P. Integrated communications between cyclooxygenase-2 and Alzheimer's disease.
Collapse
Affiliation(s)
- Pei-Pei Guan
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Pu Wang
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| |
Collapse
|
17
|
Yu X, Guan PP, Zhu D, Liang YY, Wang T, Wang ZY, Wang P. Magnesium Ions Inhibit the Expression of Tumor Necrosis Factor α and the Activity of γ-Secretase in a β-Amyloid Protein-Dependent Mechanism in APP/PS1 Transgenic Mice. Front Mol Neurosci 2018; 11:172. [PMID: 29899688 PMCID: PMC5988891 DOI: 10.3389/fnmol.2018.00172] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 05/07/2018] [Indexed: 11/19/2022] Open
Abstract
Alzheimer’s disease (AD) is a neurodegenerative disease characterized by cognitive impairment. The neuropathological features of AD are the aggregation of extracellular amyloid β-protein (Aβ) and tau phosphorylation. Recently, AD was found to be associated with magnesium ion (Mg2+) deficit and tumor necrosis factor-alpha (TNF-α) elevation in the serum or brains of AD patients. To study the relationship between Mg2+ and TNF-α, we used human- or mouse-derived glial and neuronal cell lines or APP/PS1 transgenic (Tg) mice as in vitro and in vivo experimental models, respectively. Our data demonstrates that magnesium-L-threonate (MgT) can decrease the expression of TNF-α by restoring the levels of Mg2+ in glial cells. In addition, PI3-K/AKT and NF-κB signals play critical roles in mediating the effects of Mg2+ on suppressing the expression of TNF-α. In neurons, Mg2+ elevation showed similar suppressive effects on the expression of presenilin enhancer 2 (PEN2) and nicastrin (NCT) through a PI3-K/AKT and NF-κB-dependent mechanism. As the major components of γ-secretase, overexpression of presenilin 1 (PS1), PEN2 and NCT potentially promote the synthesis of Aβ, which in turn activates TNF-α in glial cells. Reciprocally, TNF-α stimulates the expression of PEN2 and NCT in neurons. The crosstalk between TNF-α and Aβ in glial cells and neurons could ultimately aggravate the development and progression of AD.
Collapse
Affiliation(s)
- Xin Yu
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Pei-Pei Guan
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Di Zhu
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Yun-Yue Liang
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Tao Wang
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Zhan-You Wang
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Pu Wang
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| |
Collapse
|
18
|
Paouri E, Tzara O, Zenelak S, Georgopoulos S. Genetic Deletion of Tumor Necrosis Factor-α Attenuates Amyloid-β Production and Decreases Amyloid Plaque Formation and Glial Response in the 5XFAD Model of Alzheimer's Disease. J Alzheimers Dis 2018; 60:165-181. [PMID: 28826177 DOI: 10.3233/jad-170065] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Increasing evidence suggests that neuroinflammation comprises a major characteristic of Alzheimer's disease (AD). Tumor necrosis factor-α (TNF-α) is a pleiotropic pro-inflammatory cytokine implicated in neurodegenerative diseases including AD, and has been proposed as a potent therapeutic target for AD. Although a number of studies focusing on pharmacological or genetic manipulation of TNF-α and its receptors in AD mice have provided significant knowledge regarding the role of TNF-α signaling pathway in the pathogenesis of AD, the consequences of TNF-α genetic deletion have not been thoroughly examined. Here, we focused on the effect of TNF-α deficiency on the amyloid phenotype of 5XFAD mice. Our analysis revealed that amyloid deposition, amyloid-β (Aβ) levels, and AβPP-carboxyterminal fragments are significantly reduced in the brains of 5XFAD/TNF-α-/- mice compared to the 5XFAD/TNF-α+/+. We found decreased protein levels of β- and α-secretases in the 5XFAD/TNF-α-/- brains, suggesting for an effect of TNF-α on AβPP processing and Aβ generation. We also show for the first time that TNF-α affects PS1in vivo, as 5XFAD mice lacking TNF-α expression display reduced PS1-carboxyterminal fragments implying for diminished PS1 activity. Moreover, TNF-α deficiency decreases microglial and astrocytic activation and significantly restricts the phagocytic activity of macrophages against Aβ, supporting for reduced responsiveness of phagocytes toward Aβ. Overall, our results reveal that TNF-α genetic deletion in 5XFAD mice attenuates amyloid plaque formation by lowering Aβ generation through the reduction of functionally active PS1 and β-secretase rather than promoting Aβ clearance by phagocytic cells. Our data further suggest TNF-α inhibition as a therapeutic approach for AD.
Collapse
Affiliation(s)
- Evi Paouri
- Laboratory of Cellular Neurobiology, Center of Basic Research, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Ourania Tzara
- Laboratory of Cellular Neurobiology, Center of Basic Research, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Sofia Zenelak
- Laboratory of Cellular Neurobiology, Center of Basic Research, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Spiros Georgopoulos
- Laboratory of Cellular Neurobiology, Center of Basic Research, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| |
Collapse
|
19
|
Schiel KA. A new etiologic model for Alzheimers Disease. Med Hypotheses 2018; 111:27-35. [DOI: 10.1016/j.mehy.2017.12.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Revised: 11/19/2017] [Accepted: 12/12/2017] [Indexed: 01/26/2023]
|
20
|
Regulated intramembrane proteolysis: emergent role in cell signalling pathways. Biochem Soc Trans 2017; 45:1185-1202. [PMID: 29079648 DOI: 10.1042/bst20170002] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 08/27/2017] [Accepted: 08/29/2017] [Indexed: 12/12/2022]
Abstract
Receptor signalling events including those initiated following activation of cytokine and growth factor receptors and the well-characterised death receptors (tumour necrosis factor receptor, type 1, FasR and TRAIL-R1/2) are initiated at the cell surface through the recruitment and formation of intracellular multiprotein signalling complexes that activate divergent signalling pathways. Over the past decade, research studies reveal that many of these receptor-initiated signalling events involve the sequential proteolysis of specific receptors by membrane-bound proteases and the γ-secretase protease complexes. Proteolysis enables the liberation of soluble receptor ectodomains and the generation of intracellular receptor cytoplasmic domain fragments. The combined and sequential enzymatic activity has been defined as regulated intramembrane proteolysis and is now a fundamental signal transduction process involved in the termination or propagation of receptor signalling events. In this review, we discuss emerging evidence for a role of the γ-secretase protease complexes and regulated intramembrane proteolysis in cell- and immune-signalling pathways.
Collapse
|
21
|
Yi B, Jahangir A, Evans AK, Briggs D, Ravina K, Ernest J, Farimani AB, Sun W, Rajadas J, Green M, Feinberg EN, Pande VS, Shamloo M. Discovery of novel brain permeable and G protein-biased beta-1 adrenergic receptor partial agonists for the treatment of neurocognitive disorders. PLoS One 2017; 12:e0180319. [PMID: 28746336 PMCID: PMC5529018 DOI: 10.1371/journal.pone.0180319] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 06/14/2017] [Indexed: 01/09/2023] Open
Abstract
The beta-1 adrenergic receptor (ADRB1) is a promising therapeutic target intrinsically involved in the cognitive deficits and pathological features associated with Alzheimer's disease (AD). Evidence indicates that ADRB1 plays an important role in regulating neuroinflammatory processes, and activation of ADRB1 may produce neuroprotective effects in neuroinflammatory diseases. Novel small molecule modulators of ADRB1, engineered to be highly brain permeable and functionally selective for the G protein with partial agonistic activity, could have tremendous value both as pharmacological tools and potential lead molecules for further preclinical development. The present study describes our ongoing efforts toward the discovery of functionally selective partial agonists of ADRB1 that have potential therapeutic value for AD and neuroinflammatory disorders, which has led to the identification of the molecule STD-101-D1. As a functionally selective agonist of ADRB1, STD-101-D1 produces partial agonistic activity on G protein signaling with an EC50 value in the low nanomolar range, but engages very little beta-arrestin recruitment compared to the unbiased agonist isoproterenol. STD-101-D1 also inhibits the tumor necrosis factor α (TNFα) response induced by lipopolysaccharide (LPS) both in vitro and in vivo, and shows high brain penetration. Other than the therapeutic role, this newly identified, functionally selective, partial agonist of ADRB1 is an invaluable research tool to study mechanisms of G protein-coupled receptor signal transduction.
Collapse
MESH Headings
- Adrenergic beta-1 Receptor Agonists/chemistry
- Adrenergic beta-1 Receptor Agonists/pharmacokinetics
- Adrenergic beta-1 Receptor Agonists/therapeutic use
- Alzheimer Disease/drug therapy
- Alzheimer Disease/metabolism
- Animals
- Brain/metabolism
- CHO Cells
- Cell Line, Tumor
- Cells, Cultured
- Cricetinae
- Cricetulus
- Crystallography, X-Ray
- Drug Discovery
- GTP-Binding Proteins/metabolism
- Humans
- Magnetic Resonance Spectroscopy
- Male
- Mice, Inbred C57BL
- Models, Chemical
- Models, Molecular
- Molecular Structure
- Neurocognitive Disorders/drug therapy
- Neurocognitive Disorders/metabolism
- Permeability
- Phenyl Ethers/chemistry
- Phenyl Ethers/pharmacokinetics
- Phenyl Ethers/therapeutic use
- Propanolamines/chemistry
- Propanolamines/pharmacokinetics
- Propanolamines/therapeutic use
- Protein Binding
- Rats, Sprague-Dawley
- Receptors, Adrenergic, beta-1/chemistry
- Receptors, Adrenergic, beta-1/metabolism
- Structure-Activity Relationship
Collapse
Affiliation(s)
- Bitna Yi
- Department of Neurosurgery, Stanford University School of Medicine, Palo Alto, California, United States of America
| | - Alam Jahangir
- Department of Neurosurgery, Stanford University School of Medicine, Palo Alto, California, United States of America
| | - Andrew K. Evans
- Department of Neurosurgery, Stanford University School of Medicine, Palo Alto, California, United States of America
| | - Denise Briggs
- Department of Neurosurgery, Stanford University School of Medicine, Palo Alto, California, United States of America
| | - Kristine Ravina
- Department of Neurosurgery, Stanford University School of Medicine, Palo Alto, California, United States of America
| | - Jacqueline Ernest
- Department of Neurosurgery, Stanford University School of Medicine, Palo Alto, California, United States of America
| | - Amir B. Farimani
- Department of Chemistry, Stanford University, Stanford, California, United States of America
| | - Wenchao Sun
- Biomaterials and Advanced Drug Delivery Laboratory, Stanford University School of Medicine, Palo Alto, California, United States of America
| | - Jayakumar Rajadas
- Biomaterials and Advanced Drug Delivery Laboratory, Stanford University School of Medicine, Palo Alto, California, United States of America
| | - Michael Green
- Department of Neurosurgery, Stanford University School of Medicine, Palo Alto, California, United States of America
| | - Evan N. Feinberg
- Department of Chemistry, Stanford University, Stanford, California, United States of America
| | - Vijay S. Pande
- Department of Chemistry, Stanford University, Stanford, California, United States of America
| | - Mehrdad Shamloo
- Department of Neurosurgery, Stanford University School of Medicine, Palo Alto, California, United States of America
- * E-mail:
| |
Collapse
|
22
|
Oliveira J, Costa M, de Almeida MSC, da Cruz e Silva OA, Henriques AG. Protein Phosphorylation is a Key Mechanism in Alzheimer’s Disease. J Alzheimers Dis 2017; 58:953-978. [DOI: 10.3233/jad-170176] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Joana Oliveira
- Department of Medical Sciences, Neuroscience and Signalling Laboratory, iBiMED, University of Aveiro, Aveiro, Portugal
| | - Márcio Costa
- Department of Medical Sciences, Neuroscience and Signalling Laboratory, iBiMED, University of Aveiro, Aveiro, Portugal
| | | | - Odete A.B. da Cruz e Silva
- Department of Medical Sciences, Neuroscience and Signalling Laboratory, iBiMED, University of Aveiro, Aveiro, Portugal
| | - Ana Gabriela Henriques
- Department of Medical Sciences, Neuroscience and Signalling Laboratory, iBiMED, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
23
|
Zheng SQ, Gong ZY, Lu CD, Wang P. Prostaglandin I 2 is responsible for ameliorating prostaglandin E 2 stress in stimulating the expression of tumor necrosis factor α in a β-amyloid protein -dependent mechanism. Oncotarget 2017; 8:102801-102819. [PMID: 29262525 PMCID: PMC5732691 DOI: 10.18632/oncotarget.18462] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Accepted: 05/08/2017] [Indexed: 01/01/2023] Open
Abstract
Cyclooxygenase-2 (COX-2) has been found to be induced during the early stage of Alzheimer's disease (AD). Using mouse-derived astrocyte and APP/PS1 transgenic (Tg) mice as model systems, we firstly elucidated the mechanisms underlying COX-2 metabolic production including prostaglandin (PG)E2- and PGI2-mediated tumor necrosis factor α (TNF-α) regulation. Specifically, PGE2 accumulation in astrocyte activated the p38 and JNK/c-Jun signaling pathways via phosphorylation, resulting in TNF-α expression. In contrast, the administration of PGI2 attenuated the effects of PGE2 in stimulating the production of TNF-α by inhibiting the activity of TNF-α promoter and the binding activity of AP1 on the promoter of TNF-α. Moreover, our data also showed that not only Aβ1-42 oligomers but also Aβ1-42 fibrils have the ability to involve in mediating the antagonistic effects of PGE2 and PGI2 on regulating the expression of TNF-α via a p38- and JNK/c-Jun-dependent, AP1-transactivating mechanism. Reciprocally, the production of TNF-α finally accelerated the deposition of β-amyloid protein (Aβ)1-42 in β-amyloid plaques (APs), which contribute to the cognitive decline of AD.
Collapse
Affiliation(s)
- Shao-Qin Zheng
- The College of Life and Health Sciences, Northeastern University, Shenyang, P. R. China
| | - Zi-Yi Gong
- The College of Life and Health Sciences, Northeastern University, Shenyang, P. R. China
| | - Chen-Di Lu
- The College of Life and Health Sciences, Northeastern University, Shenyang, P. R. China
| | - Pu Wang
- The College of Life and Health Sciences, Northeastern University, Shenyang, P. R. China
| |
Collapse
|
24
|
Maesako M, Horlacher J, Zoltowska KM, Kastanenka KV, Kara E, Svirsky S, Keller LJ, Li X, Hyman BT, Bacskai BJ, Berezovska O. Pathogenic PS1 phosphorylation at Ser367. eLife 2017; 6. [PMID: 28132667 PMCID: PMC5279945 DOI: 10.7554/elife.19720] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2016] [Accepted: 01/05/2017] [Indexed: 11/13/2022] Open
Abstract
The high levels of serine (S) and threonine (T) residues within the Presenilin 1 (PS1) N-terminus and in the large hydrophilic loop region suggest that the enzymatic function of PS1/γ-secretase can be modulated by its ‘phosphorylated’ and ‘dephosphorylated’ states. However, the functional outcome of PS1 phosphorylation and its significance for Alzheimer’s disease (AD) pathogenesis is poorly understood. Here, comprehensive analysis using FRET-based imaging reveals that activity-driven and Protein Kinase A-mediated PS1 phosphorylation at three domains (domain 1: T74, domain 2: S310 and S313, domain 3: S365, S366, and S367), with S367 being critical, is responsible for the PS1 pathogenic ‘closed’ conformation, and resulting increase in the Aβ42/40 ratio. Moreover, we have established novel imaging assays for monitoring PS1 conformation in vivo, and report that PS1 phosphorylation induces the pathogenic conformational shift in the living mouse brain. These phosphorylation sites represent potential new targets for AD treatment. DOI:http://dx.doi.org/10.7554/eLife.19720.001 Alzheimer’s disease is a widely recognised disorder caused by the progressive deterioration and death of brain cells. A key feature of the disease is the formation of structures called plaques in the brain. Plaques occur when many copies of a molecule known as amyloid beta stick together outside of the brain cells. Healthy brains also produce amyloid beta but it is in a different form, which cannot form plaques. One in twenty people with Alzheimer’s disease have a family history of the disease. Of these, many are linked to changes in a gene that produces a protein called Presenilin 1 (or PS1 for short). Cells need PS1 to make amyloid beta and the altered versions of PS1 produce the type of amyloid beta that causes Alzheimer’s disease. Yet, in cases that do not run in families, the gene for PS1 is unchanged but the PS1 protein still produces the form of amyloid beta that is linked to Alzheimer’s disease. Maesako, Horlacher et al. wanted to find out how seemingly healthy PS1 proteins can be made to produce plaque-forming amyloid betas. Studies of PS1 from mice revealed that small chemical modifications, called phosphate groups, could be attached to PS1 in a process called phosphorylation. Modified PS1 proteins produce harmful amyloid betas and removing the modifications was enough to make PS1 behave normally again. Maesako, Horlacher et al. found three points in the PS1 protein where phosphorylation could change the behaviour of the protein, the most important one is a site called Ser367. Further investigation showed that an enzyme called Protein Kinase A (PKA) phosphorylates PS1; this enzyme is also able to attach phosphate groups to many different proteins. Maesako, Horlacher et al. went on to show that PS1 is phosphorylated in samples from people with Alzheimer’s disease, suggesting that this is a plausible cause for some cases of the disease. Finding a way to prevent phosphorylation or remove phosphate groups from PS1 could be the first step towards treating these cases of Alzheimer’s disease. DOI:http://dx.doi.org/10.7554/eLife.19720.002
Collapse
Affiliation(s)
- Masato Maesako
- Alzheimer's Disease Research Laboratory, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, United States
| | - Jana Horlacher
- Alzheimer's Disease Research Laboratory, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, United States.,Department of Neurology, University of Ulm, Ulm, Germany
| | - Katarzyna M Zoltowska
- Alzheimer's Disease Research Laboratory, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, United States
| | - Ksenia V Kastanenka
- Alzheimer's Disease Research Laboratory, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, United States
| | - Eleanna Kara
- Alzheimer's Disease Research Laboratory, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, United States
| | - Sarah Svirsky
- Alzheimer's Disease Research Laboratory, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, United States
| | - Laura J Keller
- Alzheimer's Disease Research Laboratory, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, United States
| | - Xuejing Li
- Alzheimer's Disease Research Laboratory, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, United States
| | - Bradley T Hyman
- Alzheimer's Disease Research Laboratory, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, United States
| | - Brian J Bacskai
- Alzheimer's Disease Research Laboratory, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, United States
| | - Oksana Berezovska
- Alzheimer's Disease Research Laboratory, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, United States
| |
Collapse
|
25
|
Wang P, Guan P, Guo J, Cao L, Xu G, Yu X, Wang Y, Wang Z. Prostaglandin I2 upregulates the expression of anterior pharynx-defective-1α and anterior pharynx-defective-1β in amyloid precursor protein/presenilin 1 transgenic mice. Aging Cell 2016; 15:861-71. [PMID: 27240539 PMCID: PMC5013024 DOI: 10.1111/acel.12495] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/30/2016] [Indexed: 12/30/2022] Open
Abstract
Cyclooxygenase‐2 (COX‐2) has been recently identified to be involved in the pathogenesis of Alzheimer's disease (AD). Yet, the role of an important COX‐2 metabolic product, prostaglandin (PG) I2, in the pathogenesis of AD remains unknown. Using human‐ and mouse‐derived neuronal cells as well as amyloid precursor protein/presenilin 1 (APP/PS1) transgenic mice as model systems, we elucidated the mechanism of anterior pharynx‐defective (APH)‐1α and pharynx‐defective‐1β induction. In particular, we found that PGI2 production increased during the course of AD development. Then, PGI2 accumulation in neuronal cells activates PKA/CREB and JNK/c‐Jun signaling pathways by phosphorylation, which results in APH‐1α/1β expression. As PGI2 is an important metabolic by‐product of COX‐2, its suppression by NS398 treatment decreases the expression of APH‐1α/1β in neuronal cells and APP/PS1 mice. More importantly, β‐amyloid protein (Aβ) oligomers in the cerebrospinal fluid (CSF) of APP/PS1 mice are critical for stimulating the expression of APH‐1α/1β, which was blocked by NS398 incubation. Finally, the induction of APH‐1α/1β was confirmed in the brains of patients with AD. Thus, these findings not only provide novel insights into the mechanism of PGI2‐induced AD progression but also are instrumental for improving clinical therapies to combat AD.
Collapse
Affiliation(s)
- Pu Wang
- College of Life and Health Sciences Northeastern University Shenyang 110819 China
| | - Pei‐Pei Guan
- College of Life and Health Sciences Northeastern University Shenyang 110819 China
| | - Jing‐Wen Guo
- College of Life and Health Sciences Northeastern University Shenyang 110819 China
| | - Long‐Long Cao
- College of Life and Health Sciences Northeastern University Shenyang 110819 China
| | - Guo‐Biao Xu
- College of Life and Health Sciences Northeastern University Shenyang 110819 China
| | - Xin Yu
- College of Life and Health Sciences Northeastern University Shenyang 110819 China
| | - Yue Wang
- College of Life and Health Sciences Northeastern University Shenyang 110819 China
| | - Zhan‐You Wang
- College of Life and Health Sciences Northeastern University Shenyang 110819 China
| |
Collapse
|
26
|
Hsu EC, Kulp SK, Huang HL, Tu HJ, Salunke SB, Sullivan NJ, Sun D, Wicha MS, Shapiro CL, Chen CS. Function of Integrin-Linked Kinase in Modulating the Stemness of IL-6-Abundant Breast Cancer Cells by Regulating γ-Secretase-Mediated Notch1 Activation in Caveolae. Neoplasia 2016; 17:497-508. [PMID: 26152358 PMCID: PMC4719004 DOI: 10.1016/j.neo.2015.06.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 05/19/2015] [Accepted: 06/02/2015] [Indexed: 01/02/2023] Open
Abstract
Interleukin-6 (IL-6) and Notch signaling are important regulators of breast cancer stem cells (CSCs), which drive the malignant phenotype through self-renewal, differentiation, and development of therapeutic resistance. We investigated the role of integrin-linked kinase (ILK) in regulating IL-6–driven Notch1 activation and the ability to target breast CSCs through ILK inhibition. Ectopic expression/short hairpin RNA-mediated knockdown of ILK, pharmacological inhibition of ILK with the small molecule T315, Western blot analysis, immunofluorescence, and luciferase reporter assays were used to evaluate the regulation of IL-6–driven Notch1 activation by ILK in IL-6–producing triple-negative breast cancer cell lines (MDA-MB-231, SUM-159) and in MCF-7 and MCF-7IL-6 cells. The effects of ILK on γ-secretase complex assembly and cellular localization were determined by immunofluorescence, Western blots of membrane fractions, and immunoprecipitation. In vivo effects of T315-induced ILK inhibition on CSCs in SUM-159 xenograft models were assessed by mammosphere assays, flow cytometry, and tumorigenicity assays. Results show that the genetic knockdown or pharmacological inhibition of ILK suppressed Notch1 activation and the abundance of the γ-secretase components presenilin-1, nicastrin, and presenilin enhancer 2 at the posttranscriptional level via inhibition of caveolin-1-dependent membrane assembly of the γ-secretase complex. Accordingly, knockdown of ILK inhibited breast CSC-like properties in vitro and the breast CSC subpopulation in vivo in xenograft tumor models. Based on these findings, we propose a novel function of ILK in regulating γ-secretase–mediated Notch1 activation, which suggests the targeting of ILK as a therapeutic approach to suppress IL-6–induced breast CSCs.
Collapse
Affiliation(s)
- En-Chi Hsu
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Samuel K Kulp
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Han-Li Huang
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Huang-Ju Tu
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Santosh B Salunke
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Nicholas J Sullivan
- Department of Molecular Virology, Immunology, and Medical Genetics, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Duxin Sun
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan Comprehensive Cancer Center, Ann Arbor, MI, USA
| | - Max S Wicha
- Department of Internal Medicine, University of Michigan Comprehensive Cancer Center, Ann Arbor, MI, USA
| | - Charles L Shapiro
- Division of Medical Oncology, Department of Internal Medicine, College of Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Ching-Shih Chen
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA; Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
27
|
Duggan SP, McCarthy JV. Beyond γ-secretase activity: The multifunctional nature of presenilins in cell signalling pathways. Cell Signal 2015; 28:1-11. [PMID: 26498858 DOI: 10.1016/j.cellsig.2015.10.006] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 10/19/2015] [Indexed: 01/24/2023]
Abstract
The presenilins are the catalytic subunit of the membrane-embedded tetrameric γ-secretase protease complexes. More that 90 transmembrane proteins have been reported to be γ-secretase substrates, including the widely studied amyloid precursor protein (APP) and the Notch receptor, which are precursors for the generation of amyloid-β peptides and biologically active APP intracellular domain (AICD) and Notch intracellular domain (NICD). The diversity of γ-secretase substrates highlights the importance of presenilin-dependent γ-secretase protease activities as a regulatory mechanism in a range of biological systems. However, there is also a growing body of evidence that supports the existence of γ-secretase-independent functions for the presenilins in the regulation and progression of an array of cell signalling pathways. In this review, we will present an overview of current literature that proposes evolutionarily conserved presenilin functions outside of the γ-secretase complex, with a focus on the suggested role of the presenilins in the regulation of Wnt/β-catenin signalling, protein trafficking and degradation, calcium homeostasis and apoptosis.
Collapse
Affiliation(s)
- Stephen P Duggan
- Signal Transduction Laboratory, School of Biochemistry & Cell Biology, ABCRF, Western Gateway Building, University College Cork, Cork, Ireland
| | - Justin V McCarthy
- Signal Transduction Laboratory, School of Biochemistry & Cell Biology, ABCRF, Western Gateway Building, University College Cork, Cork, Ireland.
| |
Collapse
|
28
|
Jo EH, Ahn JS, Mo JS, Yoon JH, Ann EJ, Baek HJ, Lee HJ, Kim SH, Kim MY, Park HS. Akt1 phosphorylates Nicastrin to regulate its protein stability and activity. J Neurochem 2015; 134:799-810. [DOI: 10.1111/jnc.13173] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 04/02/2015] [Accepted: 05/05/2015] [Indexed: 11/28/2022]
Affiliation(s)
- Eun-Hye Jo
- Hormone Research Center; School of Biological Sciences and Technology; Chonnam National University; Gwangju Korea
| | - Ji-Seon Ahn
- Hormone Research Center; School of Biological Sciences and Technology; Chonnam National University; Gwangju Korea
| | - Jung-Soon Mo
- Hormone Research Center; School of Biological Sciences and Technology; Chonnam National University; Gwangju Korea
| | - Ji-Hye Yoon
- Hormone Research Center; School of Biological Sciences and Technology; Chonnam National University; Gwangju Korea
| | - Eun-Jung Ann
- Hormone Research Center; School of Biological Sciences and Technology; Chonnam National University; Gwangju Korea
| | - Hyeong-Jin Baek
- Hormone Research Center; School of Biological Sciences and Technology; Chonnam National University; Gwangju Korea
| | - Hye-Jin Lee
- Hormone Research Center; School of Biological Sciences and Technology; Chonnam National University; Gwangju Korea
| | - Seol-Hee Kim
- Hormone Research Center; School of Biological Sciences and Technology; Chonnam National University; Gwangju Korea
| | - Mi-Yeon Kim
- Hormone Research Center; School of Biological Sciences and Technology; Chonnam National University; Gwangju Korea
| | - Hee-Sae Park
- Hormone Research Center; School of Biological Sciences and Technology; Chonnam National University; Gwangju Korea
| |
Collapse
|
29
|
Loss of Presenilin 2 Function Is Associated with Defective LPS-Mediated Innate Immune Responsiveness. Mol Neurobiol 2015; 53:3428-3438. [PMID: 26081153 DOI: 10.1007/s12035-015-9285-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 06/03/2015] [Indexed: 10/23/2022]
Abstract
The importance of presenilin-dependent γ-secretase protease activities in the development, neurogenesis, and immune system is highlighted by the diversity of its substrates and characterization of Psen1- and Psen2-deficient transgenic animals. Functional differences between presenilin 1 (PS1) and presenilin 2 (PS2) are incompletely understood. In this study, we have identified a Psen2-specific function, not shared by Psen1 in Toll-like receptor signaling. We show that immortalized fibroblasts and bone marrow-derived macrophages from Psen2- but not Psen1-deficient mice display reduced responsiveness to lipopolysaccharide (LPS) with decreased nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and mitogen-activated protein kinase (MAPK) activity and diminished pro-inflammatory cytokine production. In whole animal in vivo responses, Psen2-deficient animals have abnormal systemic production of LPS-stimulated pro-inflammatory cytokines. Mechanistically, we demonstrate that Psen2 deficiency is paralleled by reduced transcription of tlr4 mRNA and loss of LPS-induced tlr4 mRNA transcription regulation. These observations illustrate a novel PS2-dependent means of modulating LPS-mediated immune responses and identify a functional distinction between PS1 and PS2 in innate immunity.
Collapse
|
30
|
Yun HM, Jin P, Park KR, Hwang J, Jeong HS, Kim EC, Jung JK, Oh KW, Hwang BY, Han SB, Hong JT. Thiacremonone Potentiates Anti-Oxidant Effects to Improve Memory Dysfunction in an APP/PS1 Transgenic Mice Model. Mol Neurobiol 2015; 53:2409-20. [DOI: 10.1007/s12035-015-9208-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2014] [Accepted: 05/03/2015] [Indexed: 01/01/2023]
|
31
|
Matz A, Halamoda-Kenzaoui B, Hamelin R, Mosser S, Alattia JR, Dimitrov M, Moniatte M, Fraering PC. Identification of new Presenilin-1 phosphosites: implication for γ-secretase activity and Aβ production. J Neurochem 2015; 133:409-21. [PMID: 25458374 DOI: 10.1111/jnc.12996] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 11/02/2014] [Accepted: 11/10/2014] [Indexed: 02/02/2023]
Abstract
An important pathological hallmark of Alzheimer's disease (AD) is the deposition of amyloid-beta (Aβ) peptides in the brain parenchyma, leading to neuronal death and impaired learning and memory. The protease γ-secretase is responsible for the intramembrane proteolysis of the amyloid-β precursor protein (APP), which leads to the production of the toxic Aβ peptides. Thus, an attractive therapeutic strategy to treat AD is the modulation of the γ-secretase activity, to reduce Aβ42 production. Because phosphorylation of proteins is a post-translational modification known to modulate the activity of many different enzymes, we used electrospray (LC-MS/MS) mass spectrometry to identify new phosphosites on highly purified human γ-secretase. We identified 11 new single or double phosphosites in two well-defined domains of Presenilin-1 (PS1), the catalytic subunit of the γ-secretase complex. Next, mutagenesis and biochemical approaches were used to investigate the role of each phosphosite in the maturation and activity of γ-secretase. Together, our results suggest that the newly identified phosphorylation sites in PS1 do not modulate γ-secretase activity and the production of the Alzheimer's Aβ peptides. Individual PS1 phosphosites shall probably not be considered therapeutic targets for reducing cerebral Aβ plaque formation in AD. In this study, we identified 11 new phosphosites in Presenilin-1 (PS1), the catalytic subunit of the Alzheimer's γ-secretase complex. By combining a mutagenesis approach with cell-based and cell-free γ-secretase assays, we demonstrate that the new phosphosites do not modulate the maturation and activity of γ-secretase. Individual PS1 phosphosites shall thus not be considered therapeutic targets for reducing cerebral Aβ plaque formation in Alzheimer's Disease. Aβ, amyloid beta.
Collapse
Affiliation(s)
- Alexandre Matz
- Brain Mind Institute and School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Chen WT, Hsieh YF, Huang YJ, Lin CC, Lin YT, Liu YC, Lien CC, Cheng IHJ. G206D Mutation of Presenilin-1 Reduces Pen2 Interaction, Increases Aβ42/Aβ40 Ratio and Elevates ER Ca(2+) Accumulation. Mol Neurobiol 2014; 52:1835-1849. [PMID: 25394380 DOI: 10.1007/s12035-014-8969-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 10/28/2014] [Indexed: 12/23/2022]
Abstract
Early-onset familial Alzheimer's disease (AD) is most commonly associated with the mutations in presenilin-1 (PS1). PS1 is the catalytic component of the γ-secretase complex, which cleaves amyloid precursor protein to produce amyloid-β (Aβ), the major cause of AD. Presenilin enhancer 2 (Pen2) is critical for activating γ-secretase and exporting PS1 from endoplasmic reticulum (ER). Among all the familial AD-linked PS1 mutations, mutations at the G206 amino acid are the most adjacent position to the Pen2 binding site. Here, we characterized the effect of a familial AD-linked PS1 G206D mutation on the PS1-Pen2 interaction and the accompanied alteration in γ-secretase-dependent and -independent functions. We found that the G206D mutation reduced PS1-Pen2 interaction, but did not abolish γ-secretase formation and PS1 endoproteolysis. For γ-secretase-dependent function, the G206D mutation increased Aβ42 production but not Notch cleavage. For γ-secretase-independent function, this mutation disrupted the ER calcium homeostasis but not lysosomal calcium homeostasis and autophagosome maturation. Impaired ER calcium homeostasis may due to the reduced mutant PS1 level in the ER. Although this mutation did not alter the cell survival under stress, both increased Aβ42 ratio and disturbed ER calcium regulation could be the mechanisms underlying the pathogenesis of the familial AD-linked PS1 G206D mutation.
Collapse
Affiliation(s)
- Wei-Ting Chen
- Taiwan International Graduate Program in Molecular Medicine, National Yang-Ming University and Academia Sinica, Taipei, Taiwan.,Institute of Brain Science, National Yang-Ming University, Taipei, Taiwan.,Institute of Biochemistry and Molecular Biology, School of Life Science, National Yang-Ming University, Taipei, Taiwan
| | - Yi-Fang Hsieh
- Institute of Brain Science, National Yang-Ming University, Taipei, Taiwan
| | - Yan-Jing Huang
- Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Che-Ching Lin
- Institute of Brain Science, National Yang-Ming University, Taipei, Taiwan
| | - Yen-Tung Lin
- Institute of Brain Science, National Yang-Ming University, Taipei, Taiwan
| | - Yu-Chao Liu
- Institute of Neuroscience, National Yang-Ming University, Taipei, Taiwan
| | - Cheng-Chang Lien
- Institute of Neuroscience, National Yang-Ming University, Taipei, Taiwan.,Brain Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Irene Han-Juo Cheng
- Institute of Brain Science, National Yang-Ming University, Taipei, Taiwan. .,Brain Research Center, National Yang-Ming University, Taipei, Taiwan. .,Infection and Immunity Research Center, National Yang-Ming University, Taipei, Taiwan. .,Immunology Center, Taipei Veterans General Hospital, Taipei, Taiwan. .,Institute of Brain Science, School of Medicine, National Yang-Ming University, No. 155, Sec. 2, Linong Street, Taipei, 112, Taiwan.
| |
Collapse
|
33
|
Kapoor A, Wang BJ, Hsu WM, Chang MY, Liang SM, Liao YF. Retinoic acid-elicited RARα/RXRα signaling attenuates Aβ production by directly inhibiting γ-secretase-mediated cleavage of amyloid precursor protein. ACS Chem Neurosci 2013; 4:1093-100. [PMID: 23530929 DOI: 10.1021/cn400039s] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Retinoic acid (RA)-elicited signaling has been shown to play critical roles in development, organogenesis, and the immune response. RA regulates expression of Alzheimer's disease (AD)-related genes and attenuates amyloid pathology in a transgenic mouse model. In this study, we investigated whether RA can suppress the production of amyloid-β (Aβ) through direct inhibition of γ-secretase activity. We report that RA treatment of cells results in significant inhibition of γ-secretase-mediated processing of the amyloid precursor protein C-terminal fragment APP-C99, compared with DMSO-treated controls. RA-elicited signaling was found to significantly increase accumulation of APP-C99 and decrease production of secreted Aβ40. In addition, RA-induced inhibition of γ-secretase activity was found to be mediated through significant activation of extracellular signal-regulated kinases (ERK1/2). Treatment of cells with the specific ERK inhibitor PD98059 completely abolished RA-mediated inhibition of γ-secretase. Consistent with these findings, RA was observed to inhibit secretase-mediated proteolysis of full-length APP. Finally, we have established that RA inhibits γ-secretase through nuclear retinoic acid receptor-α (RARα) and retinoid X receptor-α (RXRα). Our findings provide a new mechanistic explanation for the neuroprotective role of RA in AD pathology and add to the previous data showing the importance of RA signaling as a target for AD therapy.
Collapse
Affiliation(s)
- Arun Kapoor
- Molecular and Biological Agricultural Sciences Program,
Taiwan International Graduate Program, National Chung-Hsing University and Academia Sinica, Taipei 11529, Taiwan
- Graduate Institute of Biotechnology
and Department of Life Sciences, National Chung-Hsing University, Taichung 402, Taiwan
| | - Bo-Jeng Wang
- Institute of Zoology, National Taiwan University, Taipei 106, Taiwan
| | - Wen-Ming Hsu
- Department of Surgery, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei 100, Taiwan
| | | | | | - Yung-Feng Liao
- Graduate Institute of Biotechnology
and Department of Life Sciences, National Chung-Hsing University, Taichung 402, Taiwan
| |
Collapse
|
34
|
Mo JS, Yoon JH, Hong JA, Kim MY, Ann EJ, Ahn JS, Kim SM, Baek HJ, Lang F, Choi EJ, Park HS. Phosphorylation of nicastrin by SGK1 leads to its degradation through lysosomal and proteasomal pathways. PLoS One 2012; 7:e37111. [PMID: 22590650 PMCID: PMC3349648 DOI: 10.1371/journal.pone.0037111] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Accepted: 04/13/2012] [Indexed: 12/18/2022] Open
Abstract
The gamma-secretase complex is involved in the intramembranous proteolysis of a variety of substrates, including the amyloid precursor protein and the Notch receptor. Nicastrin (NCT) is an essential component of the gamma-secretase complex and functions as a receptor for gamma-secretase substrates. In this study, we determined that serum- and glucocorticoid-induced protein kinase 1 (SGK1) markedly reduced the protein stability of NCT. The SGK1 kinase activity was decisive for NCT degradation and endogenous SGK1 inhibited gamma-secretase activity. SGK1 downregulates NCT protein levels via proteasomal and lysosomal pathways. Furthermore, SGK1 directly bound to and phosphorylated NCT on Ser437, thereby promoting protein degradation. Collectively, our findings indicate that SGK1 is a gamma-secretase regulator presumably effective through phosphorylation and degradation of NCT.
Collapse
Affiliation(s)
- Jung-Soon Mo
- School of Biological Sciences and Technology, Hormone Research Center, Chonnam National University, Gwangju, Republic of Korea
| | - Ji-Hye Yoon
- School of Biological Sciences and Technology, Hormone Research Center, Chonnam National University, Gwangju, Republic of Korea
| | - Ji-Ae Hong
- School of Biological Sciences and Technology, Hormone Research Center, Chonnam National University, Gwangju, Republic of Korea
| | - Mi-Yeon Kim
- School of Biological Sciences and Technology, Hormone Research Center, Chonnam National University, Gwangju, Republic of Korea
| | - Eun-Jung Ann
- School of Biological Sciences and Technology, Hormone Research Center, Chonnam National University, Gwangju, Republic of Korea
| | - Ji-Seon Ahn
- School of Biological Sciences and Technology, Hormone Research Center, Chonnam National University, Gwangju, Republic of Korea
| | - Su-Man Kim
- School of Biological Sciences and Technology, Hormone Research Center, Chonnam National University, Gwangju, Republic of Korea
| | - Hyeong-Jin Baek
- School of Biological Sciences and Technology, Hormone Research Center, Chonnam National University, Gwangju, Republic of Korea
| | - Florian Lang
- Department of Physiology, University of Tübingen, Tübingen, Germany
| | - Eui-Ju Choi
- School of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Hee-Sae Park
- School of Biological Sciences and Technology, Hormone Research Center, Chonnam National University, Gwangju, Republic of Korea
- * E-mail:
| |
Collapse
|
35
|
Nasoohi S, Hemmati AA, Moradi F, Ahmadiani A. The γ-secretase blocker DAPT impairs recovery from lipopolysaccharide-induced inflammation in rat brain. Neuroscience 2012; 210:99-109. [PMID: 22445932 DOI: 10.1016/j.neuroscience.2012.02.051] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Revised: 02/28/2012] [Accepted: 02/29/2012] [Indexed: 11/15/2022]
Abstract
γ-Secretase is an important contributing enzyme in Alzheimer's disease and is therefore an important therapeutic target. However, the impact of γ-secretase inhibition is not well studied in acute neuroinflammation induced by systemic infection. In this study the influence of γ-secretase on the expression of some proinflammatory markers was assessed in the acute phase as well as the subsiding phase of neuroinflammation. Cerebral γ-secretase cleavage activity was measured by a fluorometric assay after lipopolysaccharide (LPS) intraperitoneal administration. Time profiles of TNF-α and COX-II expression were then determined to detect the time points relevant to the maximal inflammatory responses and the subsequent recovery phase. γ-Secretase activity coincident with TNF-α protein expression returned to its basal level till 8-12 h after systemic challenge with low dose LPS while COX-II over expression lasted for 48-72 h later. Pharmacological inhibition of γ-secretase with local or systemic administration of DAPT (N-[N-(3,5-difluorophenacetyl)-l-alanyl]-S-phenylglycine t-butyl ester) was performed to indicate the results on the developmental and sinking phases of inflammatory responses in 6 and 72 h post LPS respectively. Our results demonstrate that both local and systemic modulation of γ-secretase hyper-activity with DAPT increase the duration of TNF-α, COX-II, and NFκB induction. We consistently found mild augmented apoptosis in animals treated with DAPT as determined by measuring cleaved caspase-3 expression and by TUNEL assay 72 h following LPS injection. These results suggest that γ-secretase modulation interferes with certain immune regulatory pathways which may restrict some inflammatory transcription factors such as NFκB.
Collapse
Affiliation(s)
- S Nasoohi
- Department of Pharmacology and Toxicology, School of Pharmacy and Physiology Research Center, Ahvaz Jundishapur University of Medical Sciences, Golestan, PO Box 6287, Ahvaz, Iran
| | | | | | | |
Collapse
|
36
|
Montgomery SL, Bowers WJ. Tumor necrosis factor-alpha and the roles it plays in homeostatic and degenerative processes within the central nervous system. J Neuroimmune Pharmacol 2011; 7:42-59. [PMID: 21728035 DOI: 10.1007/s11481-011-9287-2] [Citation(s) in RCA: 242] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Accepted: 06/20/2011] [Indexed: 12/12/2022]
Abstract
Tumor Necrosis Factor-alpha (TNF-α) is a prototypic pro-inflammatory cytokine involved in the innate immune response. TNF-α ligation and downstream signaling with one of its cognate receptors, TNF-RI or TNF-RII, modulates fundamental processes in the brain including synapse formation and regulation, neurogenesis, regeneration, and general maintenance of the central nervous system (CNS). During states of chronic neuroinflammation, extensive experimental evidence implicates TNF-α as a key mediator in disease progression, gliosis, demyelination, inflammation, blood-brain-barrier deterioration, and cell death. This review explores the complex roles of TNF-α in the CNS under normal physiologic conditions and during neurodegeneration. We focus our discussion on Multiple Sclerosis, Parkinson's disease, and Alzheimer's disease, relaying the outcomes of preclinical and clinical testing of TNF-α directed therapeutic strategies, and arguing that despite the wealth of functions attributed to this central cytokine, surprisingly little is known about the cell type- and stage-specific roles of TNF-α in these debilitating disorders.
Collapse
Affiliation(s)
- Sara L Montgomery
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| | | |
Collapse
|
37
|
Oka T, Tagawa K, Ito H, Okazawa H. Dynamic changes of the phosphoproteome in postmortem mouse brains. PLoS One 2011; 6:e21405. [PMID: 21731734 PMCID: PMC3120861 DOI: 10.1371/journal.pone.0021405] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Accepted: 05/27/2011] [Indexed: 12/13/2022] Open
Abstract
Protein phosphorylation is deeply involved in the pathological mechanism of various neurodegenerative disorders. However, in human pathological samples, phosphorylation can be modified during preservation by postmortem factors such as time and temperature. Postmortem changes may also differ among proteins. Unfortunately, there is no comprehensive database that could support the analysis of protein phosphorylation in human brain samples from the standpoint of postmortem changes. As a first step toward addressing the issue, we performed phosphoproteome analysis with brain tissue dissected from mouse bodies preserved under different conditions. Quantitative whole proteome mass analysis showed surprisingly diverse postmortem changes in phosphoproteins that were dependent on temperature, time and protein species. Twelve hrs postmortem was a critical time point for preservation at room temperature. At 4°C, after the body was cooled down, most phosphoproteins were stable for 72 hrs. At either temperature, increase greater than 2-fold was exceptional during this interval. We found several standard proteins by which we can calculate the postmortem time at room temperature. The information obtained in this study will be indispensable for evaluating experimental data with human as well as mouse brain samples.
Collapse
Affiliation(s)
- Tsutomu Oka
- Department of Neuropathology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kazuhiko Tagawa
- Department of Neuropathology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hikaru Ito
- Department of Neuropathology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hitoshi Okazawa
- Department of Neuropathology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
- * E-mail:
| |
Collapse
|
38
|
Zhu D, Shi J, Zhang Y, Wang B, Liu W, Chen Z, Tong Q. Central angiotensin II stimulation promotes β amyloid production in Sprague Dawley rats. PLoS One 2011; 6:e16037. [PMID: 21297982 PMCID: PMC3030571 DOI: 10.1371/journal.pone.0016037] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2010] [Accepted: 12/05/2010] [Indexed: 11/29/2022] Open
Abstract
Background Stress and various stress hormones, including catecholamines and glucocorticoids, have recently been implicated in the pathogenesis of Alzheimer's disease (AD), which represents the greatest unresolved medical challenge in neurology. Angiotensin receptor blockers have shown benefits in AD and prone-to-AD animals. However, the mechanisms responsible for their efficacy remain unknown, and no studies have directly addressed the role of central angiotensin II (Ang II), a fundamental stress hormone, in the pathogenesis of AD. The present study focused on the role of central Ang II in amyloidogenesis, the critical process in AD neuropathology, and aimed to provide direct evidence for the role of this stress hormone in the pathogenesis of AD. Methodology/Principal Findings Increased central Ang II levels during stress response were modeled by intracerebroventricular (ICV) administration of graded doses of Ang II (6 ng/hr low dose, 60 ng/hr medium dose, and 600 ng/hr high dose, all delivered at a rate of 0.25 µl/hr) to male Sprague Dawley rats (280–310 g) via osmotic pumps. After 1 week of continuous Ang II infusion, the stimulation of Ang II type 1 receptors was accompanied by the modulation of amyloid precursor protein, α-, β-and γ-secretase, and increased β amyloid production. These effects could be completely abolished by concomitant ICV infusion of losartan, indicating that central Ang II played a causative role in these alterations. Conclusions/Significance Central Ang II is essential to the stress response, and the results of this study suggest that increased central Ang II levels play an important role in amyloidogenesis during stress, and that central Ang II-directed stress prevention and treatment might represent a novel anti-AD strategy.
Collapse
Affiliation(s)
- Donglin Zhu
- Department of Neurology, Nanjing Brain Hospital, Nanjing Medical University, Nanjing, People's Republic of China
| | - Jingping Shi
- Department of Neurology, Nanjing Brain Hospital, Nanjing Medical University, Nanjing, People's Republic of China
- * E-mail:
| | - Yingdong Zhang
- Department of Neurology, Nanjing Brain Hospital, Nanjing Medical University, Nanjing, People's Republic of China
| | - Bianrong Wang
- Department of Neurology, School of Medicine, Nanjing University, Nanjing, People's Republic of China
| | - Wei Liu
- Department of Neurology, Nanjing Brain Hospital, Nanjing Medical University, Nanjing, People's Republic of China
| | - Zhicong Chen
- Department of Neurology, Nanjing Brain Hospital, Nanjing Medical University, Nanjing, People's Republic of China
| | - Qiang Tong
- Department of Neurology, Nanjing Brain Hospital, Nanjing Medical University, Nanjing, People's Republic of China
| |
Collapse
|
39
|
Thathiah A, De Strooper B. The role of G protein-coupled receptors in the pathology of Alzheimer's disease. Nat Rev Neurosci 2011; 12:73-87. [DOI: 10.1038/nrn2977] [Citation(s) in RCA: 212] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
40
|
Lane RF, Gatson JW, Small SA, Ehrlich ME, Gandy S. Protein kinase C and rho activated coiled coil protein kinase 2 (ROCK2) modulate Alzheimer's APP metabolism and phosphorylation of the Vps10-domain protein, SorL1. Mol Neurodegener 2010; 5:62. [PMID: 21192821 PMCID: PMC3036620 DOI: 10.1186/1750-1326-5-62] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2010] [Accepted: 12/30/2010] [Indexed: 11/10/2022] Open
Abstract
Background Generation of the amyloid β (Aβ) peptide of Alzheimer's disease (AD) is differentially regulated through the intracellular trafficking of the amyloid β precursor protein (APP) within the secretory and endocytic pathways. Protein kinase C (PKC) and rho-activated coiled-coil kinases (ROCKs) are two "third messenger" signaling molecules that control the relative utilization of these two pathways. Several members of the Vps family of receptors (Vps35, SorL1, SorCS1) play important roles in post-trans-Golgi network (TGN) sorting and generation of APP derivatives, including Aβ at the TGN, endosome and the plasma membrane. We now report that Vps10-domain proteins are candidate substrates for PKC and/or ROCK2 and act as phospho-state-sensitive physiological effectors for post-TGN sorting of APP and its derivatives. Results Analysis of the SorL1 cytoplasmic tail revealed multiple consensus sites for phosphorylation by protein kinases. SorL1 was subsequently identified as a phosphoprotein, based on sensitivity of its electrophoretic migration pattern to calf intestine alkaline phosphatase and on its reaction with anti-phospho-serine antibodies. Activation of PKC resulted in increased shedding of the ectodomains of both APP and SorL1, and this was paralleled by an apparent increase in the level of the phosphorylated form of SorL1. ROCK2, the neuronal isoform of another protein kinase, was found to form complexes with SorL1, and both ROCK2 inhibition and ROCK2 knockdown enhanced generation of both soluble APP and Aβ. Conclusion These results highlight the potential importance of SorL1 in elucidating phospho-state sensitive mechanisms in the regulation of metabolism of APP and Aβ by PKC and ROCK2.
Collapse
Affiliation(s)
- Rachel F Lane
- Department of Neurology, Mount Sinai School of Medicine, New York NY 10029, USA.
| | | | | | | | | |
Collapse
|
41
|
Shi JQ, Shen W, Chen J, Wang BR, Zhong LL, Zhu YW, Zhu HQ, Zhang QQ, Zhang YD, Xu J. Anti-TNF-α reduces amyloid plaques and tau phosphorylation and induces CD11c-positive dendritic-like cell in the APP/PS1 transgenic mouse brains. Brain Res 2010; 1368:239-47. [PMID: 20971085 DOI: 10.1016/j.brainres.2010.10.053] [Citation(s) in RCA: 160] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2010] [Revised: 10/08/2010] [Accepted: 10/14/2010] [Indexed: 01/08/2023]
Abstract
Inflammation plays an important role in the pathogenesis of Alzheimer's disease (AD). Overexpression of tumor necrosis factor-α (TNF-α) occurs in the AD brain. Recent clinical studies have shown that the anti-TNF-α therapy improves cognition function of AD patients rapidly. However, the underlying mechanism remains elusive. The present study investigates the effects of intracerebroventricular injection of the monoclonal TNF-α antibody, Infliximab, on the pathological features of AD in the APP/PS1 double transgenic mice. We found that Infliximab administration reduced the levels of TNF-α, amyloid plaques, and tau phosphorylation as early as three days after daily injection of 150 μg Infliximab for three days. The number of CD11c-positive dendritic-like cells and the expression of CD11c were found to be increased concurrently after Infliximab injection. These data suggested that the CD11c-positive dendritic-like cells might contribute to the Infliximab-induced reduction of AD-like pathology. Furthermore, our results support the use of anti-TNF-α for the treatment of AD.
Collapse
Affiliation(s)
- Jian-Quan Shi
- Department of Neurology, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, 210029, PR China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Chae SS, Yoo CB, Jo C, Yun SM, Jo SA, Koh YH. Caspases-2 and -8 are involved in the presenilin1/gamma-secretase-dependent cleavage of amyloid precursor protein after the induction of apoptosis. J Neurosci Res 2010; 88:1926-33. [PMID: 20143425 DOI: 10.1002/jnr.22356] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The presenilin/gamma-secretase protease cleaves many type-I membrane proteins, including the amyloid beta-protein (Abeta) precursor (APP). Previous studies have shown that apoptosis induces alterations in Abeta production in a caspase-dependent manner. Here, we report that staurosporine (STS)-induced apoptosis induces caspase-8 and/or-2-dependent gamma-secretase activation. Blocking of caspase activity with caspase-8 inhibitor z-IETD-fmk, and caspase-2 inhibitor z-VDVAD-fmk reduced Abeta production by STS in H4 cells expressing the Swedish mutant of APP (HSW) or APP-C99 (H4-C99). There was no inhibitory effect of other caspases (-1, -3, -5, -6, -9) on Abeta production by STS. This finding was further supported by evidence that siRNA transfection, depleting caspase-2 or -8 levels, lowered Abeta production in HSW and H4-C99 cells without affecting expression of APP or gamma-secretase complex. In addition, Abeta production by STS was decreased by JNK inhibitors, SP600125. These results suggest that caspase-2 and/or -8 is involved in presenilin/gamma-secretase activation and Abeta production in apoptosis.
Collapse
Affiliation(s)
- San Sook Chae
- Division of Brain Diseases, Center for Biomedical Sciences, National Institute of Health, Seoul, Korea
| | | | | | | | | | | |
Collapse
|
43
|
Siddiqui MA, Reddy PA. Small molecule JNK (c-Jun N-terminal kinase) inhibitors. J Med Chem 2010; 53:3005-12. [PMID: 20146479 DOI: 10.1021/jm9003279] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- M Arshad Siddiqui
- Merck Research Laboratories, 320 Bent Street, Cambridge, Massachusetts 02141, USA.
| | | |
Collapse
|
44
|
Abstract
Kinases and proteases are responsible for two fundamental regulatory mechanisms--phosphorylation and proteolysis--that orchestrate the rhythms of life and death in all organisms. Recent studies have highlighted the elaborate interplay between both post-translational regulatory systems. Many intracellular or pericellular proteases are regulated by phosphorylation, whereas multiple kinases are activated or inactivated by proteolytic cleavage. The functional consequences of this regulatory crosstalk are especially relevant in the different stages of cancer progression. What are the clinical implications derived from the fertile dialogue between kinases and proteases in cancer?
Collapse
Affiliation(s)
- Carlos López-Otín
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Instituto Universitario de Oncología, Universidad de Oviedo, 33006 Oviedo, Spain.
| | | |
Collapse
|
45
|
Bakshi P, Jin C, Broutin P, Berhane B, Reed J, Mullan M. Structural optimization of a CXCR2-directed antagonist that indirectly inhibits γ-secretase and reduces Aβ. Bioorg Med Chem 2009; 17:8102-12. [DOI: 10.1016/j.bmc.2009.09.051] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2009] [Revised: 09/17/2009] [Accepted: 09/30/2009] [Indexed: 01/13/2023]
|
46
|
Chavant F, Deguil J, Pain S, Ingrand I, Milin S, Fauconneau B, Pérault-Pochat MC, Lafay-Chebassier C. Imipramine, in Part through Tumor Necrosis Factor α Inhibition, Prevents Cognitive Decline and β-Amyloid Accumulation in a Mouse Model of Alzheimer's Disease. J Pharmacol Exp Ther 2009; 332:505-14. [DOI: 10.1124/jpet.109.162164] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
47
|
Lee JW, Lee YK, Ban JO, Ha TY, Yun YP, Han SB, Oh KW, Hong JT. Green tea (-)-epigallocatechin-3-gallate inhibits beta-amyloid-induced cognitive dysfunction through modification of secretase activity via inhibition of ERK and NF-kappaB pathways in mice. J Nutr 2009; 139:1987-93. [PMID: 19656855 DOI: 10.3945/jn.109.109785] [Citation(s) in RCA: 176] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Alzheimer's disease (AD) is characterized by the extracellular deposition of beta-amyloid peptide (Abeta) in cerebral plaques. Abeta is derived from the beta-amyloid precursor protein (APP) by the enzymes alpha-, beta- and gamma-secretase. Compounds that enhance alpha-secretase, but inhibit beta- or gamma-secretase activity, have therapeutic potential in the treatment of AD. Green tea, or its major polyphenolic compound, has been shown to have neuroprotective effects. In this study, we investigated the possible effects of (-)-epigallocatechin-3-gallate (EGCG) on memory dysfunction caused by Abeta through the change of Abeta-induced secretase activities. Mice were pretreated with EGCG (1.5 or 3 mg/kg body weight in drinking water) for 3 wk before intracerebroventricular administration of 0.5 microg Abeta(1-42). EGCG dose-dependently reduced the Abeta(1-42)-induced memory dysfunction, which was evaluated using passive avoidance and water maze tests. Abeta(1-42) induced a decrease in brain alpha-secretase and increases in both brain beta- and gamma-secretase activities, which were reduced by EGCG. In the cortex and the hippocampus, expression of the metabolic products of the beta- and gamma-secretases from APP, C99, and Abeta also were dose-dependently suppressed by EGCG. Paralleled with the suppression of beta- and gamma-secretases by EGCG, we found that EGCG inhibited the activation of extracellular signal-regulated kinase and nuclear transcription factor-kappaB in the Abeta(1-42)-injected mouse brains. In addition, EGCG inhibited Abeta(1-42)-induced apoptotic neuronal cell death in the brain. To further test the ability of EGCG to affect memory, EGCG (3 mg/kg body weight) was administered in drinking water for 1 wk to genetically developed preseniline 2 (PS2) mutant AD mice. Compared with untreated mutant PS2 AD mice, treatment with EGCG enhanced memory function and brain alpha-secretase activity but reduced brain beta- and gamma-secretase activities as well as Abeta levels. Moreover, EGCG inhibited the fibrillization of Abeta in vitro with a half maximal inhibitory concentration of 7.5 mg/L. These studies suggest that EGCG may be a beneficial agent in the prevention of development or progression of AD.
Collapse
Affiliation(s)
- Jae Woong Lee
- College of Pharmacy, Chungbuk National University 12, Gaesin-dong, Heungduk-gu, Cheongju, Chungbuk 361-763, Korea
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Abstract
The modification of proteins by reversible phosphorylation is a key mechanism in the regulation of various physiological functions. Abnormal protein kinase or phosphatase activity can cause disease by altering the phosphorylation of critical proteins in normal cellular and disease processes. Alzheimer's disease (AD), typically occurring in the elderly, is an irreversible, progressive brain disorder characterized by memory loss and cognitive decline. Accumulating evidence suggests that protein kinase and phosphatase activity are altered in the brain tissue of AD patients. Tau is a highly recognized phosphoprotein that undergoes hyperphosphorylation to form neurofibrillary tangles, a neuropathlogical hallmark with amyloid plaques in AD brains. This study is a brief overview of the altered protein phosphorylation pathways found in AD. Understanding the molecular mechanisms by which the activities of protein kinases and phosphatases are altered as well as the phosphorylation events in AD can potentially reveal novel insights into the role aberrant phosphorylation plays in the pathogenesis of AD, providing support for protein phosphorylation as a potential treatment strategy for AD.
Collapse
Affiliation(s)
- Sul-Hee Chung
- Graduate Program in Neuroscience, Institute for Brain Science and Technology, Inje University, Busan 614-735, Korea.
| |
Collapse
|
49
|
Abstract
Alzheimer's disease (AD) is a progressive chronic disorder that leads to cognitive decline. Several studies have associated up-regulation of some of the chemokines and/or their receptors with altered APP processing leading to increased production of beta-amyloid protein (Abeta) and AD pathological changes. However, there is no direct evidence to date to determine whether the altered processing of APP results in up-regulation of these receptors or whether the up-regulation of the chemokine receptors causes modulated processing of APP. In the current study, we demonstrate that treatment of the chemokine receptor CXCR2 with agonists leads to enhancement of Abeta production and treatment with antagonists or immunodepletion of CXCR2's endogenous agonists leads to Abeta inhibition. Further, we found that the inhibitory effect of the antagonist of CXCR2 on Abeta40 and Abeta42 is mediated via gamma-secretase, specifically through reduction in expression of presenilin (PS), one of the gamma-secretase components. Also, in vivo chronic treatment with a CXCR2 antagonist blocked Abeta40 and Abeta42 production. Using small interfering RNAs for CXCR2, we further showed that knockdown of CXCR2 in vitro accumulates gamma-secretase substrates C99 and C83 with reduced production of both Abeta40 and Abeta42. Taken together, these findings strongly suggest for the first time that up-regulation of the CXCR2 receptor can be the driving force in increased production of Abeta. Our findings unravel new mechanisms involving the CXCR2 receptor in the pathogenesis of AD and pose it as a potential target for developing novel therapeutics for intervention in this disease. Also, we propose here a new chemical series of interest that can serve as a prototype for drug development.
Collapse
|