1
|
Yeh YT, Sona C, Yan X, Li Y, Pathak A, McDermott MI, Xie Z, Liu L, Arunagiri A, Wang Y, Cazenave-Gassiot A, Ghosh A, von Meyenn F, Kumarasamy S, Najjar SM, Jia S, Wenk MR, Traynor-Kaplan A, Arvan P, Barg S, Bankaitis VA, Poy MN. Restoration of PITPNA in Type 2 diabetic human islets reverses pancreatic beta-cell dysfunction. Nat Commun 2023; 14:4250. [PMID: 37460527 PMCID: PMC10352338 DOI: 10.1038/s41467-023-39978-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 07/06/2023] [Indexed: 07/20/2023] Open
Abstract
Defects in insulin processing and granule maturation are linked to pancreatic beta-cell failure during type 2 diabetes (T2D). Phosphatidylinositol transfer protein alpha (PITPNA) stimulates activity of phosphatidylinositol (PtdIns) 4-OH kinase to produce sufficient PtdIns-4-phosphate (PtdIns-4-P) in the trans-Golgi network to promote insulin granule maturation. PITPNA in beta-cells of T2D human subjects is markedly reduced suggesting its depletion accompanies beta-cell dysfunction. Conditional deletion of Pitpna in the beta-cells of Ins-Cre, Pitpnaflox/flox mice leads to hyperglycemia resulting from decreasing glucose-stimulated insulin secretion (GSIS) and reducing pancreatic beta-cell mass. Furthermore, PITPNA silencing in human islets confirms its role in PtdIns-4-P synthesis and leads to impaired insulin granule maturation and docking, GSIS, and proinsulin processing with evidence of ER stress. Restoration of PITPNA in islets of T2D human subjects reverses these beta-cell defects and identify PITPNA as a critical target linked to beta-cell failure in T2D.
Collapse
Affiliation(s)
- Yu-Te Yeh
- Johns Hopkins University, All Children's Hospital, St. Petersburg, FL, 33701, USA
- Johns Hopkins University, Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Baltimore, MD, 21287, USA
| | - Chandan Sona
- Johns Hopkins University, All Children's Hospital, St. Petersburg, FL, 33701, USA
- Johns Hopkins University, Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Baltimore, MD, 21287, USA
| | - Xin Yan
- Translational Neurodegeneration Section "Albrecht-Kossel", Department of Neurology, University Medical Center Rostock, Rostock, 18147, Germany
- Max Delbrück Center for Molecular Medicine, Robert Rössle Strasse 10, Berlin, 13125, Germany
| | - Yunxiao Li
- Translational Neurodegeneration Section "Albrecht-Kossel", Department of Neurology, University Medical Center Rostock, Rostock, 18147, Germany
| | - Adrija Pathak
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX, 77843, USA
| | - Mark I McDermott
- Department of Cell Biology & Genetics, Texas A&M Health Science Center, College Station, TX, 77843, USA
| | - Zhigang Xie
- Department of Cell Biology & Genetics, Texas A&M Health Science Center, College Station, TX, 77843, USA
| | - Liangwen Liu
- Medical Cell Biology, Uppsala University, 75123, Uppsala, Sweden
| | - Anoop Arunagiri
- Division of Metabolism, Endocrinology & Diabetes, University of Michigan Medical School, Ann Arbor, MI, 48105, USA
| | - Yuting Wang
- Max Delbrück Center for Molecular Medicine, Robert Rössle Strasse 10, Berlin, 13125, Germany
| | - Amaury Cazenave-Gassiot
- Singapore Lipidomics Incubator, Life Sciences Institute, National University of Singapore, 117456, Singapore, Singapore
- Department of Biochemistry and Precision Medicine TRP, Yong Loo Lin School of Medicine, National University of Singapore, 117597, Singapore, Singapore
| | - Adhideb Ghosh
- Laboratory of Nutrition and Metabolic Epigenetics, Department of Health Sciences and Technology, ETH Zurich, Schwerzenbach, 8603, Switzerland
| | - Ferdinand von Meyenn
- Laboratory of Nutrition and Metabolic Epigenetics, Department of Health Sciences and Technology, ETH Zurich, Schwerzenbach, 8603, Switzerland
| | - Sivarajan Kumarasamy
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, 45701, USA
- Diabetes Institute, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, 45701, USA
| | - Sonia M Najjar
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, 45701, USA
- Diabetes Institute, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, 45701, USA
| | - Shiqi Jia
- The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Markus R Wenk
- Singapore Lipidomics Incubator, Life Sciences Institute, National University of Singapore, 117456, Singapore, Singapore
- Department of Biochemistry and Precision Medicine TRP, Yong Loo Lin School of Medicine, National University of Singapore, 117597, Singapore, Singapore
| | - Alexis Traynor-Kaplan
- Department of Medicine, University of Washington School of Medicine, Seattle, WA, 98195, USA
- ATK Analytics, Innovation and Discovery, LLC, North Bend, WA, 98045, USA
| | - Peter Arvan
- Division of Metabolism, Endocrinology & Diabetes, University of Michigan Medical School, Ann Arbor, MI, 48105, USA
| | - Sebastian Barg
- Medical Cell Biology, Uppsala University, 75123, Uppsala, Sweden
| | - Vytas A Bankaitis
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX, 77843, USA
- Department of Cell Biology & Genetics, Texas A&M Health Science Center, College Station, TX, 77843, USA
- Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| | - Matthew N Poy
- Johns Hopkins University, All Children's Hospital, St. Petersburg, FL, 33701, USA.
- Johns Hopkins University, Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Baltimore, MD, 21287, USA.
- Max Delbrück Center for Molecular Medicine, Robert Rössle Strasse 10, Berlin, 13125, Germany.
| |
Collapse
|
2
|
Limar S, Körner C, Martínez-Montañés F, Stancheva VG, Wolf VN, Walter S, Miller EA, Ejsing CS, Galassi VV, Fröhlich F. Yeast Svf1 binds ceramides and contributes to sphingolipid metabolism at the ER cis-Golgi interface. J Cell Biol 2023; 222:e202109162. [PMID: 36897280 PMCID: PMC10038888 DOI: 10.1083/jcb.202109162] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/21/2022] [Accepted: 02/03/2023] [Indexed: 03/11/2023] Open
Abstract
Ceramides are essential precursors of complex sphingolipids and act as potent signaling molecules. Ceramides are synthesized in the endoplasmic reticulum (ER) and receive their head-groups in the Golgi apparatus, yielding complex sphingolipids (SPs). Transport of ceramides between the ER and the Golgi is executed by the essential ceramide transport protein (CERT) in mammalian cells. However, yeast cells lack a CERT homolog, and the mechanism of ER to Golgi ceramide transport remains largely elusive. Here, we identified a role for yeast Svf1 in ceramide transport between the ER and the Golgi. Svf1 is dynamically targeted to membranes via an N-terminal amphipathic helix (AH). Svf1 binds ceramide via a hydrophobic binding pocket that is located in between two lipocalin domains. We showed that Svf1 membrane-targeting is important to maintain flux of ceramides into complex SPs. Together, our results show that Svf1 is a ceramide binding protein that contributes to sphingolipid metabolism at Golgi compartments.
Collapse
Affiliation(s)
- Sergej Limar
- Department of Biology/Chemistry Bioanalytical Chemistry Section, Osnabrück University, Osnabrück, Germany
| | - Carolin Körner
- Department of Biology/Chemistry Bioanalytical Chemistry Section, Osnabrück University, Osnabrück, Germany
| | - Fernando Martínez-Montañés
- Department of Biochemistry and Molecular Biology Villum Center for Bioanalytical Sciences, University of Southern Denmark, Odense, Denmark
| | | | - Verena N. Wolf
- Department of Biology/Chemistry Bioanalytical Chemistry Section, Osnabrück University, Osnabrück, Germany
| | - Stefan Walter
- Osnabrück University Center of Cellular Nanoanalytic Osnabrück (CellNanOs), Osnabrück, Germany
| | | | - Christer S. Ejsing
- Department of Biochemistry and Molecular Biology Villum Center for Bioanalytical Sciences, University of Southern Denmark, Odense, Denmark
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Vanesa Viviana Galassi
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Mendoza, Argentina
- Instituto Interdisciplinario de Ciencias Básicas (ICB), Universidad Nacional de Cuyo, CONICET, Mendoza, Argentina
| | - Florian Fröhlich
- Department of Biology/Chemistry Bioanalytical Chemistry Section, Osnabrück University, Osnabrück, Germany
- Osnabrück University Center of Cellular Nanoanalytic Osnabrück (CellNanOs), Osnabrück, Germany
| |
Collapse
|
3
|
Bieniawski MA, Stevens KLP, Witham CM, Steuart RFL, Bankaitis VA, Mousley CJ. Diverse Sphingolipid Species Harbor Different Effects on Ire1 Clustering. Int J Mol Sci 2022; 23:ijms232012130. [PMID: 36293008 PMCID: PMC9602660 DOI: 10.3390/ijms232012130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 09/28/2022] [Accepted: 09/30/2022] [Indexed: 11/16/2022] Open
Abstract
Endoplasmic reticulum (ER) function is dedicated to multiple essential processes in eukaryotes, including the processing of secretory proteins and the biogenesis of most membrane lipids. These roles implicate a heavy burden to the organelle, and it is thus prone to fluctuations in the homeostasis of molecules which govern these processes. The unfolded protein response (UPR) is a general ER stress response tasked with maintaining the ER for optimal function, mediated by the master activator Ire1. Ire1 is an ER transmembrane protein that initiates the UPR, forming characteristic oligomers in response to irregularities in luminal protein folding and in the membrane lipid environment. The role of lipids in regulating the UPR remains relatively obscure; however, recent research has revealed a potent role for sphingolipids in its activity. Here, we identify a major role for the oxysterol-binding protein Kes1, whose activity is of consequence to the sphingolipid profile in cells resulting in an inhibition of UPR activity. Using an mCherry-tagged derivative of Ire1, we observe that this occurs due to inhibition of Ire1 to form oligomers. Furthermore, we identify that a sphingolipid presence is required for Ire1 activity, and that specific sphingolipid profiles are of major consequence to Ire1 function. In addition, we highlight cases where Ire1 oligomerization is absent despite an active UPR, revealing a potential mechanism for UPR induction where Ire1 oligomerization is not necessary. This work provides a basis for the role of sphingolipids in controlling the UPR, where their metabolism harbors a crucial role in regulating its onset.
Collapse
Affiliation(s)
- Mark A. Bieniawski
- Curtin Medical School, Faculty of Health Sciences, Curtin University, Bentley, WA 6102, Australia
- Curtin Health Innovation Research Institute, Faculty of Health Sciences, Curtin University, Bentley, WA 6102, Australia
| | - Kofi L. P. Stevens
- Curtin Medical School, Faculty of Health Sciences, Curtin University, Bentley, WA 6102, Australia
- Curtin Health Innovation Research Institute, Faculty of Health Sciences, Curtin University, Bentley, WA 6102, Australia
| | - Christopher M. Witham
- Curtin Medical School, Faculty of Health Sciences, Curtin University, Bentley, WA 6102, Australia
- Curtin Health Innovation Research Institute, Faculty of Health Sciences, Curtin University, Bentley, WA 6102, Australia
| | - Robert F. L. Steuart
- Curtin Health Innovation Research Institute, Faculty of Health Sciences, Curtin University, Bentley, WA 6102, Australia
| | - Vytas A. Bankaitis
- Department of Molecular and Cellular Medicine, Texas A&M Health Sciences Center, Texas A&M University, College Station, TX 77843-1114, USA
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843-1114, USA
- Department of Chemistry, Texas A&M University, College Station, TX 77843-1114, USA
| | - Carl J. Mousley
- Curtin Medical School, Faculty of Health Sciences, Curtin University, Bentley, WA 6102, Australia
- Curtin Health Innovation Research Institute, Faculty of Health Sciences, Curtin University, Bentley, WA 6102, Australia
- Correspondence:
| |
Collapse
|
4
|
Holič R, Šťastný D, Griač P. Sec14 family of lipid transfer proteins in yeasts. Biochim Biophys Acta Mol Cell Biol Lipids 2021; 1866:158990. [PMID: 34118432 DOI: 10.1016/j.bbalip.2021.158990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/31/2021] [Accepted: 06/02/2021] [Indexed: 11/25/2022]
Abstract
The hydrophobicity of lipids prevents their free movement across the cytoplasm. To achieve highly heterogeneous and precisely regulated lipid distribution in different cellular membranes, lipids are transported by lipid transfer proteins (LTPs) in addition to their transport by vesicles. Sec14 family is one of the most extensively studied groups of LTPs. Here we provide an overview of Sec14 family of LTPs in the most studied yeast Saccharomyces cerevisiae as well as in other selected non-Saccharomyces yeasts-Schizosaccharomyces pombe, Kluyveromyces lactis, Candida albicans, Candida glabrata, Cryptococcus neoformans, and Yarrowia lipolytica. Discussed are specificities of Sec14-domain LTPs in various yeasts, their mode of action, subcellular localization, and physiological function. In addition, quite few Sec14 family LTPs are target of antifungal drugs, serve as modifiers of drug resistance or influence virulence of pathologic yeasts. Thus, they represent an important object of study from the perspective of human health.
Collapse
Affiliation(s)
- Roman Holič
- Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Dominik Šťastný
- Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Peter Griač
- Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Bratislava, Slovakia.
| |
Collapse
|
5
|
Ho N, Yap WS, Xu J, Wu H, Koh JH, Goh WWB, George B, Chong SC, Taubert S, Thibault G. Stress sensor Ire1 deploys a divergent transcriptional program in response to lipid bilayer stress. J Cell Biol 2020; 219:e201909165. [PMID: 32349127 PMCID: PMC7337508 DOI: 10.1083/jcb.201909165] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 02/26/2020] [Accepted: 04/07/2020] [Indexed: 12/11/2022] Open
Abstract
Membrane integrity at the endoplasmic reticulum (ER) is tightly regulated, and its disturbance is implicated in metabolic diseases. Using an engineered sensor that activates the unfolded protein response (UPR) exclusively when normal ER membrane lipid composition is compromised, we identified pathways beyond lipid metabolism that are necessary to maintain ER integrity in yeast and in C. elegans. To systematically validate yeast mutants that disrupt ER membrane homeostasis, we identified a lipid bilayer stress (LBS) sensor in the UPR transducer protein Ire1, located at the interface of the amphipathic and transmembrane helices. Furthermore, transcriptome and chromatin immunoprecipitation analyses pinpoint the UPR as a broad-spectrum compensatory response wherein LBS and proteotoxic stress deploy divergent transcriptional UPR programs. Together, these findings reveal the UPR program as the sum of two independent stress responses, an insight that could be exploited for future therapeutic intervention.
Collapse
Affiliation(s)
- Nurulain Ho
- Lipid Regulation and Cell Stress Group, School of Biological Sciences, Nanyang Technological University, Singapore
| | - Wei Sheng Yap
- Lipid Regulation and Cell Stress Group, School of Biological Sciences, Nanyang Technological University, Singapore
| | - Jiaming Xu
- Centre for Molecular Medicine and Therapeutics, British Columbia Children’s Hospital Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, Canada
| | - Haoxi Wu
- Lipid Regulation and Cell Stress Group, School of Biological Sciences, Nanyang Technological University, Singapore
| | - Jhee Hong Koh
- Lipid Regulation and Cell Stress Group, School of Biological Sciences, Nanyang Technological University, Singapore
| | - Wilson Wen Bin Goh
- Bio-Data Science and Education Research Group, School of Biological Sciences, Nanyang Technological University, Singapore
| | - Bhawana George
- Lipid Regulation and Cell Stress Group, School of Biological Sciences, Nanyang Technological University, Singapore
| | - Shu Chen Chong
- Lipid Regulation and Cell Stress Group, School of Biological Sciences, Nanyang Technological University, Singapore
| | - Stefan Taubert
- Centre for Molecular Medicine and Therapeutics, British Columbia Children’s Hospital Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, Canada
| | - Guillaume Thibault
- Lipid Regulation and Cell Stress Group, School of Biological Sciences, Nanyang Technological University, Singapore
- Institute of Molecular and Cell Biology, A*STAR, Singapore
| |
Collapse
|
6
|
Hurst LR, Fratti RA. Lipid Rafts, Sphingolipids, and Ergosterol in Yeast Vacuole Fusion and Maturation. Front Cell Dev Biol 2020; 8:539. [PMID: 32719794 PMCID: PMC7349313 DOI: 10.3389/fcell.2020.00539] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 06/09/2020] [Indexed: 01/15/2023] Open
Abstract
The Saccharomyces cerevisiae lysosome-like vacuole is a useful model for studying membrane fusion events and organelle maturation processes utilized by all eukaryotes. The vacuolar membrane is capable of forming micrometer and nanometer scale domains that can be visualized using microscopic techniques and segregate into regions with surprisingly distinct lipid and protein compositions. These lipid raft domains are liquid-ordered (L o ) like regions that are rich in sphingolipids, phospholipids with saturated acyl chains, and ergosterol. Recent studies have shown that these lipid rafts contain an enrichment of many different proteins that function in essential activities such as nutrient transport, organelle contact, membrane trafficking, and homotypic fusion, suggesting that they are biologically relevant regions within the vacuole membrane. Here, we discuss recent developments and the current understanding of sphingolipid and ergosterol function at the vacuole, the composition and function of lipid rafts at this organelle and how the distinct lipid and protein composition of these regions facilitates the biological processes outlined above.
Collapse
Affiliation(s)
- Logan R Hurst
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Rutilio A Fratti
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, United States.,Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| |
Collapse
|
7
|
Effects of Dietary Supplementation of Lauric Acid on Lactation Function, Mammary Gland Development, and Serum Lipid Metabolites in Lactating Mice. Animals (Basel) 2020; 10:ani10030529. [PMID: 32235692 PMCID: PMC7143820 DOI: 10.3390/ani10030529] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 03/17/2020] [Accepted: 03/19/2020] [Indexed: 12/17/2022] Open
Abstract
Simple Summary Milk secreted from mammary glands is an important nutrition source for offspring after parturition. Mammary gland development and lactation ability have important effects on the growth and health of the offspring. Many studies have demonstrated that external factors, including the environment and nutrition influence the development of mammary glands. Lauric acid is a fatty acid that has many nutritional and physiological properties. In this study, we investigated the effects of dietary supplementation of lauric acid on lactation function and mammary gland development in lactating mice. We found that dietary supplementation of lauric acid during lactation might enhance the mammary development to promote the lactation function of mice. Through the study of mice, we hoped that the results could be applied to animal feed development and animal breeding production. Abstract Our previous studies demonstrated that lauric acid (LA) stimulated mammary gland development during puberty. However, the roles of LA on lactation in mice remain indeterminate. Thus, the aim of this study was to investigate the effects of dietary LA supplementation on lactation functioning and to study the potential mechanisms during lactation. in vivo, there was no effect of 1% LA dietary supplementation during lactation on the feed intake or body weight of breast-feeding mice. However, maternal LA supplementation significantly expanded the number of mammary gland alveoli of mice during lactation and the average body weight of the offspring, suggesting that LA supplementation enhanced the development and lactation function of the mammary glands. in vitro, 100 μM of LA significantly increased the content of triglycerides (TG) in the cell supernatant of induced HC11 cells, however, with no effect on the expression of the genes associated with fatty acid synthesis. LA also activated the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) signaling pathway. LA dietary supplementation significantly expanded the serum levels of lipid metabolites, including sphingomyelin and other metabolites with the sn-2 position of C12 and sn-1 position of C18 in the TG of the lactating mice. Taken together, dietary supplementation of LA during lactation could promote the lactation function of mice, which might be related to increasing the development of the mammary glands and alternation of serum lipid metabolites. These findings provided more theoretical and experimental basis for the application of lauric acid in the development of mammary glands and lactation function of lactating animals.
Collapse
|
8
|
James B, Milstien S, Spiegel S. ORMDL3 and allergic asthma: From physiology to pathology. J Allergy Clin Immunol 2019; 144:634-640. [PMID: 31376405 DOI: 10.1016/j.jaci.2019.07.023] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 07/18/2019] [Accepted: 07/26/2019] [Indexed: 01/10/2023]
Abstract
There is a strong genetic component to asthma, and numerous genome-wide association studies have identified ORM1 (yeast)-like protein 3 (ORMDL3) as a gene associated with asthma susceptibility. However, how ORMDL3 contributes to asthma pathogenesis and its physiologic functions is not well understood and a matter of great debate. This rostrum describes recent advances and new insights in understanding of the multifaceted functions of ORMDL3 in patients with allergic asthma. We also suggest a potential unifying paradigm and discuss molecular mechanisms for the pathologic functions of ORMDL3 in asthma related to its evolutionarily conserved role in regulation of sphingolipid homeostasis. Finally, we briefly survey the utility of sphingolipid metabolites as potential biomarkers for allergic asthma.
Collapse
Affiliation(s)
- Briana James
- Department of Biochemistry and Molecular Biology and the Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, Va
| | - Sheldon Milstien
- Department of Biochemistry and Molecular Biology and the Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, Va
| | - Sarah Spiegel
- Department of Biochemistry and Molecular Biology and the Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, Va.
| |
Collapse
|
9
|
Ariño J, Velázquez D, Casamayor A. Ser/Thr protein phosphatases in fungi: structure, regulation and function. MICROBIAL CELL 2019; 6:217-256. [PMID: 31114794 PMCID: PMC6506691 DOI: 10.15698/mic2019.05.677] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Reversible phospho-dephosphorylation of proteins is a major mechanism for the control of cellular functions. By large, Ser and Thr are the most frequently residues phosphorylated in eukar-yotes. Removal of phosphate from these amino acids is catalyzed by a large family of well-conserved enzymes, collectively called Ser/Thr protein phosphatases. The activity of these enzymes has an enormous impact on cellular functioning. In this work we pre-sent the members of this family in S. cerevisiae and other fungal species, and review the most recent findings concerning their regu-lation and the roles they play in the most diverse aspects of cell biology.
Collapse
Affiliation(s)
- Joaquín Ariño
- Departament de Bioquímica i Biologia Molecular and Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
| | - Diego Velázquez
- Departament de Bioquímica i Biologia Molecular and Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
| | - Antonio Casamayor
- Departament de Bioquímica i Biologia Molecular and Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
| |
Collapse
|
10
|
Grabon A, Bankaitis VA, McDermott MI. The interface between phosphatidylinositol transfer protein function and phosphoinositide signaling in higher eukaryotes. J Lipid Res 2018; 60:242-268. [PMID: 30504233 DOI: 10.1194/jlr.r089730] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 11/12/2018] [Indexed: 12/22/2022] Open
Abstract
Phosphoinositides are key regulators of a large number of diverse cellular processes that include membrane trafficking, plasma membrane receptor signaling, cell proliferation, and transcription. How a small number of chemically distinct phosphoinositide signals are functionally amplified to exert specific control over such a diverse set of biological outcomes remains incompletely understood. To this end, a novel mechanism is now taking shape, and it involves phosphatidylinositol (PtdIns) transfer proteins (PITPs). The concept that PITPs exert instructive regulation of PtdIns 4-OH kinase activities and thereby channel phosphoinositide production to specific biological outcomes, identifies PITPs as central factors in the diversification of phosphoinositide signaling. There are two evolutionarily distinct families of PITPs: the Sec14-like and the StAR-related lipid transfer domain (START)-like families. Of these two families, the START-like PITPs are the least understood. Herein, we review recent insights into the biochemical, cellular, and physiological function of both PITP families with greater emphasis on the START-like PITPs, and we discuss the underlying mechanisms through which these proteins regulate phosphoinositide signaling and how these actions translate to human health and disease.
Collapse
Affiliation(s)
- Aby Grabon
- E. L. Wehner-Welch Laboratory, Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, TX 77843-1114
| | - Vytas A Bankaitis
- E. L. Wehner-Welch Laboratory, Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, TX 77843-1114
| | - Mark I McDermott
- E. L. Wehner-Welch Laboratory, Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, TX 77843-1114
| |
Collapse
|
11
|
A Lipid Transfer Protein Signaling Axis Exerts Dual Control of Cell-Cycle and Membrane Trafficking Systems. Dev Cell 2018; 44:378-391.e5. [PMID: 29396115 DOI: 10.1016/j.devcel.2017.12.026] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 09/24/2017] [Accepted: 12/28/2017] [Indexed: 11/21/2022]
Abstract
Kes1/Osh4 is a member of the conserved, but functionally enigmatic, oxysterol binding protein-related protein (ORP) superfamily that inhibits phosphatidylinositol transfer protein (Sec14)-dependent membrane trafficking through the trans-Golgi (TGN)/endosomal network. We now report that Kes1, and select other ORPs, execute cell-cycle control activities as functionally non-redundant inhibitors of the G1/S transition when cells confront nutrient-poor environments and promote replicative aging. Kes1-dependent cell-cycle regulation requires the Greatwall/MASTL kinase ortholog Rim15, and is opposed by Sec14 activity in a mechanism independent of Kes1/Sec14 bulk membrane-trafficking functions. Moreover, the data identify Kes1 as a non-histone target for NuA4 through which this lysine acetyltransferase co-modulates membrane-trafficking and cell-cycle activities. We propose the Sec14/Kes1 lipid-exchange protein pair constitutes part of the mechanism for integrating TGN/endosomal lipid signaling with cell-cycle progression and hypothesize that ORPs define a family of stage-specific cell-cycle control factors that execute tumor-suppressor-like functions.
Collapse
|
12
|
Target Identification and Mechanism of Action of Picolinamide and Benzamide Chemotypes with Antifungal Properties. Cell Chem Biol 2018; 25:279-290.e7. [PMID: 29307839 DOI: 10.1016/j.chembiol.2017.12.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 10/18/2017] [Accepted: 12/06/2017] [Indexed: 11/20/2022]
Abstract
Invasive fungal infections are accompanied by high mortality rates that range up to 90%. At present, only three different compound classes are available for use in the clinic, and these often suffer from low bioavailability, toxicity, and drug resistance. These issues emphasize an urgent need for novel antifungal agents. Herein, we report the identification of chemically versatile benzamide and picolinamide scaffolds with antifungal properties. Chemogenomic profiling and biochemical assays with purified protein identified Sec14p, the major phosphatidylinositol/phosphatidylcholine transfer protein in Saccharomyces cerevisiae, as the sole essential target for these compounds. A functional variomics screen identified resistance-conferring residues that localized to the lipid-binding pocket of Sec14p. Determination of the X-ray co-crystal structure of a Sec14p-compound complex confirmed binding in this cavity and rationalized both the resistance-conferring residues and the observed structure-activity relationships. Taken together, these findings open new avenues for rational compound optimization and development of novel antifungal agents.
Collapse
|
13
|
Lipid transfer proteins and the tuning of compartmental identity in the Golgi apparatus. Chem Phys Lipids 2016; 200:42-61. [DOI: 10.1016/j.chemphyslip.2016.06.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Revised: 06/21/2016] [Accepted: 06/22/2016] [Indexed: 11/23/2022]
|
14
|
McClatchey ST, Wang Z, Linden LM, Hastie EL, Wang L, Shen W, Chen A, Chi Q, Sherwood DR. Boundary cells restrict dystroglycan trafficking to control basement membrane sliding during tissue remodeling. eLife 2016; 5. [PMID: 27661254 PMCID: PMC5061546 DOI: 10.7554/elife.17218] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 09/22/2016] [Indexed: 02/06/2023] Open
Abstract
Epithelial cells and their underlying basement membranes (BMs) slide along each other to renew epithelia, shape organs, and enlarge BM openings. How BM sliding is controlled, however, is poorly understood. Using genetic and live cell imaging approaches during uterine-vulval attachment in C. elegans, we have discovered that the invasive uterine anchor cell activates Notch signaling in neighboring uterine cells at the boundary of the BM gap through which it invades to promote BM sliding. Through an RNAi screen, we found that Notch activation upregulates expression of ctg-1, which encodes a Sec14-GOLD protein, a member of the Sec14 phosphatidylinositol-transfer protein superfamily that is implicated in vesicle trafficking. Through photobleaching, targeted knockdown, and cell-specific rescue, our results suggest that CTG-1 restricts BM adhesion receptor DGN-1 (dystroglycan) trafficking to the cell-BM interface, which promotes BM sliding. Together, these studies reveal a new morphogenetic signaling pathway that controls BM sliding to remodel tissues.
Collapse
Affiliation(s)
| | - Zheng Wang
- Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Wuhan, China.,Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Gastrointestinal Surgery, Union Hospital, Wuhan, China.,Development and Molecular Oncology Laboratory, Union Hospital, Wuhan, China
| | - Lara M Linden
- Department of Biology, Duke University, Durham, United States
| | - Eric L Hastie
- Department of Biology, Duke University, Durham, United States
| | - Lin Wang
- Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Wuhan, China.,Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wanqing Shen
- Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Wuhan, China.,Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Alan Chen
- Department of Biology, Duke University, Durham, United States
| | - Qiuyi Chi
- Department of Biology, Duke University, Durham, United States
| | | |
Collapse
|
15
|
Jadhav S, Russo S, Cottier S, Schneiter R, Cowart A, Greenberg ML. Valproate Induces the Unfolded Protein Response by Increasing Ceramide Levels. J Biol Chem 2016; 291:22253-22261. [PMID: 27590340 DOI: 10.1074/jbc.m116.752634] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Indexed: 11/06/2022] Open
Abstract
Bipolar disorder (BD), which is characterized by depression and mania, affects 1-2% of the world population. Current treatments are effective in only 40-60% of cases and cause severe side effects. Valproate (VPA) is one of the most widely used drugs for the treatment of BD, but the therapeutic mechanism of action of this drug is not understood. This knowledge gap has hampered the development of effective treatments. To identify candidate pathways affected by VPA, we performed a genome-wide expression analysis in yeast cells grown in the presence or absence of the drug. VPA caused up-regulation of FEN1 and SUR4, encoding fatty acid elongases that catalyze the synthesis of very long chain fatty acids (C24 to C26) required for ceramide synthesis. Interestingly, fen1Δ and sur4Δ mutants exhibited VPA sensitivity. In agreement with increased fatty acid elongase gene expression, VPA increased levels of phytoceramide, especially those containing C24-C26 fatty acids. Consistent with an increase in ceramide, VPA decreased the expression of amino acid transporters, increased the expression of ER chaperones, and activated the unfolded protein response element (UPRE), suggesting that VPA induces the UPR pathway. These effects were rescued by supplementation of inositol and similarly observed in inositol-starved ino1Δ cells. Starvation of ino1Δ cells increased expression of FEN1 and SUR4, increased ceramide levels, decreased expression of nutrient transporters, and induced the UPR. These findings suggest that VPA-mediated inositol depletion induces the UPR by increasing the de novo synthesis of ceramide.
Collapse
Affiliation(s)
- Shyamalagauri Jadhav
- From the Department of Biological Sciences, Wayne State University, Detroit, Michigan 48202
| | - Sarah Russo
- the Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina 29425, the Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina 29401, and
| | - Stéphanie Cottier
- the Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland
| | - Roger Schneiter
- the Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland
| | - Ashley Cowart
- the Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina 29425, the Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina 29401, and
| | - Miriam L Greenberg
- From the Department of Biological Sciences, Wayne State University, Detroit, Michigan 48202,
| |
Collapse
|
16
|
Vevea JD, Garcia EJ, Chan RB, Zhou B, Schultz M, Di Paolo G, McCaffery JM, Pon LA. Role for Lipid Droplet Biogenesis and Microlipophagy in Adaptation to Lipid Imbalance in Yeast. Dev Cell 2016; 35:584-599. [PMID: 26651293 DOI: 10.1016/j.devcel.2015.11.010] [Citation(s) in RCA: 143] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 08/14/2015] [Accepted: 11/09/2015] [Indexed: 12/22/2022]
Abstract
The immediate responses to inhibition of phosphatidylcholine (PC) biosynthesis in yeast are altered phospholipid levels, slow growth, and defects in the morphology and localization of ER and mitochondria. With chronic lipid imbalance, yeast adapt. Lipid droplet (LD) biogenesis and conversion of phospholipids to triacylglycerol are required for restoring some phospholipids to near-wild-type levels. We confirmed that the unfolded protein response is activated by this lipid stress and find that Hsp104p is recruited to ER aggregates. We also find that LDs form at ER aggregates, contain polyubiquitinated proteins and an ER chaperone, and are degraded in the vacuole by a process resembling microautophagy. This process, microlipophagy, is required for restoration of organelle morphology and cell growth during adaptation to lipid stress. Microlipophagy does not require ATG7 but does requires ESCRT components and a newly identified class E VPS protein that localizes to ER and is upregulated by lipid imbalance.
Collapse
Affiliation(s)
- Jason D Vevea
- Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, 630 West 168(th) Street, New York, NY 10032, USA
| | - Enrique J Garcia
- Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, 630 West 168(th) Street, New York, NY 10032, USA
| | - Robin B Chan
- Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, 630 West 168(th) Street, New York, NY 10032, USA
| | - Bowen Zhou
- Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, 630 West 168(th) Street, New York, NY 10032, USA
| | - Mei Schultz
- Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, 630 West 168(th) Street, New York, NY 10032, USA
| | - Gilbert Di Paolo
- Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, 630 West 168(th) Street, New York, NY 10032, USA
| | - J Michael McCaffery
- Integrated Imaging Center, Department of Biology, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA
| | - Liza A Pon
- Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, 630 West 168(th) Street, New York, NY 10032, USA.
| |
Collapse
|
17
|
Teixeira V, Medeiros TC, Vilaça R, Ferreira J, Moradas-Ferreira P, Costa V. Ceramide signaling targets the PP2A-like protein phosphatase Sit4p to impair vacuolar function, vesicular trafficking and autophagy in Isc1p deficient cells. Biochim Biophys Acta Mol Cell Biol Lipids 2015; 1861:21-33. [PMID: 26477382 DOI: 10.1016/j.bbalip.2015.10.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 09/09/2015] [Accepted: 10/14/2015] [Indexed: 02/02/2023]
Abstract
The vacuoles play important roles in cellular homeostasis and their functions include the digestion of cytoplasmic material and organelles derived from autophagy. Conserved nutrient signaling pathways regulate vacuolar function and autophagy, ensuring normal cell and organismal development and aging. Recent evidence implicates sphingolipids in the modulation of these processes, but the impact of ceramide signaling on vacuolar dynamics and autophagy remains largely unknown. Here, we show that yeast cells lacking Isc1p, an orthologue of mammalian neutral sphingomyelinase type 2, exhibit vacuolar fragmentation and dysfunctions, namely decreased Pep4p-mediated proteolysis and V-ATPase activity, which impairs vacuolar acidification. Moreover, these phenotypes are suppressed by downregulation of the ceramide-activated protein phosphatase Sit4p. The isc1Δ cells also exhibit defective Cvt and vesicular trafficking in a Sit4p-dependent manner, ultimately contributing to a reduced autophagic flux. Importantly, these phenotypes are also suppressed by downregulation of the nutrient signaling kinase TORC1, which is known to inhibit Sit4p and autophagy, or Sch9p. These results support a model in which Sit4p functions downstream of Isc1p in a TORC1-independent, ceramide-dependent signaling branch that impairs vacuolar function and vesicular trafficking, leading to autophagic defects in yeast.
Collapse
Affiliation(s)
- Vitor Teixeira
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen s/n, 4200-135 Porto, Portugal; IBMC, Instituto de Biologia Molecular e Celular, Rua do Campo Alegre, 823, 4150-180 Porto, Portugal; ICBAS, Instituto de Ciências Biomédicas Abel Salazar, Departamento de Biologia Molecular, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Tânia C Medeiros
- IBMC, Instituto de Biologia Molecular e Celular, Rua do Campo Alegre, 823, 4150-180 Porto, Portugal
| | - Rita Vilaça
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen s/n, 4200-135 Porto, Portugal; IBMC, Instituto de Biologia Molecular e Celular, Rua do Campo Alegre, 823, 4150-180 Porto, Portugal
| | - João Ferreira
- IBMC, Instituto de Biologia Molecular e Celular, Rua do Campo Alegre, 823, 4150-180 Porto, Portugal
| | - Pedro Moradas-Ferreira
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen s/n, 4200-135 Porto, Portugal; IBMC, Instituto de Biologia Molecular e Celular, Rua do Campo Alegre, 823, 4150-180 Porto, Portugal; ICBAS, Instituto de Ciências Biomédicas Abel Salazar, Departamento de Biologia Molecular, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Vítor Costa
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen s/n, 4200-135 Porto, Portugal; IBMC, Instituto de Biologia Molecular e Celular, Rua do Campo Alegre, 823, 4150-180 Porto, Portugal; ICBAS, Instituto de Ciências Biomédicas Abel Salazar, Departamento de Biologia Molecular, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| |
Collapse
|
18
|
Grabon A, Khan D, Bankaitis VA. Phosphatidylinositol transfer proteins and instructive regulation of lipid kinase biology. BIOCHIMICA ET BIOPHYSICA ACTA 2015; 1851:724-35. [PMID: 25592381 PMCID: PMC5221696 DOI: 10.1016/j.bbalip.2014.12.011] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 11/21/2014] [Accepted: 12/16/2014] [Indexed: 11/25/2022]
Abstract
Phosphatidylinositol is a metabolic precursor of phosphoinositides and soluble inositol phosphates. Both sets of molecules represent versatile intracellular chemical signals in eukaryotes. While much effort has been invested in understanding the enzymes that produce and consume these molecules, central aspects for how phosphoinositide production is controlled and functionally partitioned remain unresolved and largely unappreciated. It is in this regard that phosphatidylinositol (PtdIns) transfer proteins (PITPs) are emerging as central regulators of the functional channeling of phosphoinositide pools produced on demand for specific signaling purposes. The physiological significance of these proteins is amply demonstrated by the consequences that accompany deficits in individual PITPs. Although the biological problem is fascinating, and of direct relevance to disease, PITPs remain largely uncharacterized. Herein, we discuss our perspectives regarding what is known about how PITPs work as molecules, and highlight progress in our understanding of how PITPs are integrated into cellular physiology. This article is part of a Special Issue entitled Phosphoinositides.
Collapse
Affiliation(s)
- Aby Grabon
- Department of Molecular & Cellular Medicine, Texas A&M Health Science Center, College Station, TX 77843-1114, USA
| | - Danish Khan
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX 77843-2128, USA
| | - Vytas A Bankaitis
- Department of Molecular & Cellular Medicine, Texas A&M Health Science Center, College Station, TX 77843-1114, USA; Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX 77843-2128, USA.
| |
Collapse
|
19
|
Johansen J, Ramanathan V, Beh CT. Vesicle trafficking from a lipid perspective: Lipid regulation of exocytosis in Saccharomyces cerevisiae. CELLULAR LOGISTICS 2014. [PMID: 23181198 PMCID: PMC3498074 DOI: 10.4161/cl.20490] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The protein cargo transported by specific types of vesicles largely defines the different secretory trafficking pathways operating within cells. However, mole per mole the most abundant cargo contained within transport vesicles is not protein, but lipid. Taking a "lipid-centric" point-of-view, we examine the importance of lipid signaling, membrane lipid organization and lipid metabolism for vesicle transport during exocytosis in budding yeast. In fact, the essential requirement for some exocytosis regulatory proteins can be bypassed by making simple manipulations of the lipids involved. During polarized exocytosis the sequential steps required to generate post-Golgi vesicles and target them to the plasma membrane (PM) involves the interplay of several types of lipids that are coordinately linked through PI4P metabolism and signaling. In turn, PI4P levels are regulated by PI4P kinases, the Sac1p PI4P phosphatase and the yeast Osh proteins, which are homologs of mammalian oxysterol-binding protein (OSBP). Together these regulators integrate the transitional steps required for vesicle maturation directly through changes in lipid composition and organization.
Collapse
Affiliation(s)
- Jesper Johansen
- Department of Molecular Biology and Biochemistry; Simon Fraser University; Burnaby, BC Canada
| | | | | |
Collapse
|
20
|
Nile AH, Tripathi A, Yuan P, Mousley CJ, Suresh S, Wallace IM, Shah SD, Pohlhaus DT, Temple B, Nislow C, Giaever G, Tropsha A, Davis RW, St Onge RP, Bankaitis VA. PITPs as targets for selectively interfering with phosphoinositide signaling in cells. Nat Chem Biol 2014; 10:76-84. [PMID: 24292071 PMCID: PMC4059020 DOI: 10.1038/nchembio.1389] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Accepted: 10/02/2013] [Indexed: 01/26/2023]
Abstract
Sec14-like phosphatidylinositol transfer proteins (PITPs) integrate diverse territories of intracellular lipid metabolism with stimulated phosphatidylinositol-4-phosphate production and are discriminating portals for interrogating phosphoinositide signaling. Yet, neither Sec14-like PITPs nor PITPs in general have been exploited as targets for chemical inhibition for such purposes. Herein, we validate what is to our knowledge the first small-molecule inhibitors (SMIs) of the yeast PITP Sec14. These SMIs are nitrophenyl(4-(2-methoxyphenyl)piperazin-1-yl)methanones (NPPMs) and are effective inhibitors in vitro and in vivo. We further establish that Sec14 is the sole essential NPPM target in yeast and that NPPMs exhibit exquisite targeting specificities for Sec14 (relative to related Sec14-like PITPs), propose a mechanism for how NPPMs exert their inhibitory effects and demonstrate that NPPMs exhibit exquisite pathway selectivity in inhibiting phosphoinositide signaling in cells. These data deliver proof of concept that PITP-directed SMIs offer new and generally applicable avenues for intervening with phosphoinositide signaling pathways with selectivities superior to those afforded by contemporary lipid kinase-directed strategies.
Collapse
Affiliation(s)
- Aaron H. Nile
- Department of Molecular & Cellular Medicine, Department of Biochemistry & Biophysics, Department of Chemistry, Texas A&M University, College Station, Texas 77843-1114 USA
- Department of Cell & Developmental Biology, Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599-7090 USA
| | - Ashutosh Tripathi
- Department of Molecular & Cellular Medicine, Department of Biochemistry & Biophysics, Department of Chemistry, Texas A&M University, College Station, Texas 77843-1114 USA
- Laboratory for Molecular Modeling, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7355 USA
| | - Peihua Yuan
- Department of Molecular & Cellular Medicine, Department of Biochemistry & Biophysics, Department of Chemistry, Texas A&M University, College Station, Texas 77843-1114 USA
| | - Carl J. Mousley
- Department of Molecular & Cellular Medicine, Department of Biochemistry & Biophysics, Department of Chemistry, Texas A&M University, College Station, Texas 77843-1114 USA
| | - Sundari Suresh
- Department of Biochemistry, Stanford Genome Technology Center, Stanford University, Palo Alto, CA 94304
| | - Iain Michael Wallace
- Department of Biochemistry, Stanford Genome Technology Center, Stanford University, Palo Alto, CA 94304
| | - Sweety D. Shah
- Department of Cell & Developmental Biology, Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599-7090 USA
| | - Denise Teotico Pohlhaus
- Laboratory for Molecular Modeling, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7355 USA
| | - Brenda Temple
- R. L. Juliano Structural Bioinformatics Core, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7260 USA
| | - Corey Nislow
- Faculty of Pharmaceutical Sciences,, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Guri Giaever
- Faculty of Pharmaceutical Sciences,, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Alexander Tropsha
- Laboratory for Molecular Modeling, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7355 USA
| | - Ronald W. Davis
- Department of Biochemistry, Stanford Genome Technology Center, Stanford University, Palo Alto, CA 94304
| | - Robert P. St Onge
- Department of Biochemistry, Stanford Genome Technology Center, Stanford University, Palo Alto, CA 94304
| | - Vytas A. Bankaitis
- Department of Molecular & Cellular Medicine, Department of Biochemistry & Biophysics, Department of Chemistry, Texas A&M University, College Station, Texas 77843-1114 USA
- Department of Cell & Developmental Biology, Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599-7090 USA
| |
Collapse
|
21
|
Jazwinski SM. The retrograde response: a conserved compensatory reaction to damage from within and from without. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2014; 127:133-54. [PMID: 25149216 DOI: 10.1016/b978-0-12-394625-6.00005-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The retrograde response was discovered in Saccharomyces cerevisiae as a signaling pathway from the mitochondrion to the nucleus that triggers an array of gene regulatory changes in the latter. The activation of the retrograde response compensates for the deficits associated with aging, and thus it extends yeast replicative life span. The retrograde response is activated by the progressive decline in mitochondrial membrane potential during aging that is the result of increasing mitochondrial dysfunction. The ensuing metabolic adaptations and stress resistance can only delay the inevitable demise of the yeast cell. The retrograde response is embedded in a network of signal transduction pathways that impinge upon virtually every aspect of cell physiology. Thus, its manifestations are complicated. Many of these pathways have been implicated in life span regulation quite independently of the retrograde response. Together, they operate in a delicate balance in promoting longevity. The retrograde response is closely aligned with cell quality control, often performing when quality control is not sufficient to assure longevity. Among the key pathways related to this aspect of retrograde signaling are target of rapamycin and ceramide signaling. The retrograde response can also be found in other organisms, including Caenorhabditis elegans, Drosophila melanogaster, mouse, and human, where it exhibits an ever-increasing complexity that may be corralled by the transcription factor NFκB. The retrograde response may have evolved as a cytoprotective mechanism that senses and defends the organism from pathogens and environmental toxins.
Collapse
Affiliation(s)
- S Michal Jazwinski
- Tulane Center for Aging and Department of Medicine, Tulane University Health Sciences Center, New Orleans, Louisiana, USA
| |
Collapse
|
22
|
Lee SW, Kim E, Kim JS, Oh MK. Artificial transcription regulator as a tool for improvement of cellular property in Saccharomyces cerevisiae. Chem Eng Sci 2013. [DOI: 10.1016/j.ces.2012.09.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
23
|
Montefusco DJ, Chen L, Matmati N, Lu S, Newcomb B, Cooper GF, Hannun YA, Lu X. Distinct signaling roles of ceramide species in yeast revealed through systematic perturbation and systems biology analyses. Sci Signal 2013; 6:rs14. [PMID: 24170935 PMCID: PMC3974757 DOI: 10.1126/scisignal.2004515] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Ceramide, the central molecule of sphingolipid metabolism, is an important bioactive molecule that participates in various cellular regulatory events and that has been implicated in disease. Deciphering ceramide signaling is challenging because multiple ceramide species exist, and many of them may have distinct functions. We applied systems biology and molecular approaches to perturb ceramide metabolism in the yeast Saccharomyces cerevisiae and inferred causal relationships between ceramide species and their potential targets by combining lipidomic, genomic, and transcriptomic analyses. We found that during heat stress, distinct metabolic mechanisms controlled the abundance of different groups of ceramide species and provided experimental support for the importance of the dihydroceramidase Ydc1 in mediating the decrease in dihydroceramides during heat stress. Additionally, distinct groups of ceramide species, with different N-acyl chains and hydroxylations, regulated different sets of functionally related genes, indicating that the structural complexity of these lipids produces functional diversity. The transcriptional modules that we identified provide a resource to begin to dissect the specific functions of ceramides.
Collapse
Affiliation(s)
- David J. Montefusco
- Dept. Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina
| | - Lujia Chen
- Dept. Biomedical Informatics, University of Pittsburgh, Pittsburgh, PA 15232
| | - Nabil Matmati
- Dept. Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina
- Department of Medicine and the Stony Brook Cancer Center at Stony Brook University, Stony Brook, NY, 11794
| | - Songjian Lu
- Dept. Biomedical Informatics, University of Pittsburgh, Pittsburgh, PA 15232
| | - Benjamin Newcomb
- Dept. Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina
- Department of Medicine and the Stony Brook Cancer Center at Stony Brook University, Stony Brook, NY, 11794
| | - Gregory F. Cooper
- Dept. Biomedical Informatics, University of Pittsburgh, Pittsburgh, PA 15232
| | - Yusuf A. Hannun
- Dept. Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina
- Department of Medicine and the Stony Brook Cancer Center at Stony Brook University, Stony Brook, NY, 11794
| | - Xinghua Lu
- Dept. Biomedical Informatics, University of Pittsburgh, Pittsburgh, PA 15232
| |
Collapse
|
24
|
Curwin AJ, LeBlanc MA, Fairn GD, McMaster CR. Localization of lipid raft proteins to the plasma membrane is a major function of the phospholipid transfer protein Sec14. PLoS One 2013; 8:e55388. [PMID: 23383173 PMCID: PMC3559501 DOI: 10.1371/journal.pone.0055388] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Accepted: 12/28/2012] [Indexed: 11/30/2022] Open
Abstract
The Sec14 protein domain is a conserved tertiary structure that binds hydrophobic ligands. The Sec14 protein from Saccharomyces cerevisiae is essential with studies of S. cerevisiae Sec14 cellular function facilitated by a sole temperature sensitive allele, sec14ts. The sec14ts allele encodes a protein with a point mutation resulting in a single amino acid change, Sec14G266D. In this study results from a genome-wide genetic screen, and pharmacological data, provide evidence that the Sec14G266D protein is present at a reduced level compared to wild type Sec14 due to its being targeted to the proteosome. Increased expression of the sec14ts allele ameliorated growth arrest, but did not restore the defects in membrane accumulation or vesicular transport known to be defective in sec14ts cells. We determined that trafficking and localization of two well characterized lipid raft resident proteins, Pma1 and Fus-Mid-GFP, were aberrant in sec14ts cells. Localization of both lipid raft proteins was restored upon increased expression of the sec14ts allele. We suggest that a major function provided by Sec14 is trafficking and localization of lipid raft proteins.
Collapse
Affiliation(s)
- Amy J. Curwin
- Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Marissa A. LeBlanc
- Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Gregory D. Fairn
- Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada
| | | |
Collapse
|
25
|
Borklu Yucel E, Ulgen KO. Assessment of crosstalks between the Snf1 kinase complex and sphingolipid metabolism in S. cerevisiae via systems biology approaches. MOLECULAR BIOSYSTEMS 2013; 9:2914-31. [DOI: 10.1039/c3mb70248k] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
26
|
Abstract
The striking morphology of the Golgi complex has fascinated cell biologists since its discovery over 100 years ago. Yet, despite intense efforts to understand how membrane flow relates to Golgi form and function, this organelle continues to baffle cell biologists and biochemists alike. Fundamental questions regarding Golgi function, while hotly debated, remain unresolved. Historically, Golgi function has been described from a protein-centric point of view, but we now appreciate that conceptual frameworks for how lipid metabolism is integrated with Golgi biogenesis and function are essential for a mechanistic understanding of this fascinating organelle. It is from a lipid-centric perspective that we discuss the larger question of Golgi dynamics and membrane trafficking. We review the growing body of evidence for how lipid metabolism is integrally written into the engineering of the Golgi system and highlight questions for future study.
Collapse
Affiliation(s)
- Vytas A Bankaitis
- Department of Cell and Developmental Biology, University of North Carolina School of Medicine, Chapel Hill, NC 27599-7090, USA.
| | | | | |
Collapse
|
27
|
Tracing putative trafficking of the glycolytic enzyme enolase via SNARE-driven unconventional secretion. EUKARYOTIC CELL 2012; 11:1075-82. [PMID: 22753847 DOI: 10.1128/ec.00075-12] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Glycolytic enzymes are cytosolic proteins, but they also play important extracellular roles in cell-cell communication and infection. We used Saccharomyces cerevisiae to analyze the secretory pathway of some of these enzymes, including enolase, phosphoglucose isomerase, triose phosphate isomerase, and fructose 1,6-bisphosphate aldolase. Enolase, phosphoglucose isomerase, and an N-terminal 28-amino-acid-long fragment of enolase were secreted in a sec23-independent manner. The enhanced green fluorescent protein (EGFP)-conjugated enolase fragment formed cellular foci, some of which were found at the cell periphery. Therefore, we speculated that an overview of the secretory pathway could be gained by investigating the colocalization of the enolase fragment with intracellular proteins. The DsRed-conjugated enolase fragment colocalized with membrane proteins at the cis-Golgi complex, nucleus, endosome, and plasma membrane, but not the mitochondria. In addition, the secretion of full-length enolase was inhibited in a knockout mutant of the intracellular SNARE protein-coding gene TLG2. Our results suggest that enolase is secreted via a SNARE-dependent secretory pathway in S. cerevisiae.
Collapse
|
28
|
Mousley CJ, Yuan P, Gaur NA, Trettin KD, Nile AH, Deminoff SJ, Dewar BJ, Wolpert M, Macdonald JM, Herman PK, Hinnebusch AG, Bankaitis VA. A sterol-binding protein integrates endosomal lipid metabolism with TOR signaling and nitrogen sensing. Cell 2012; 148:702-15. [PMID: 22341443 DOI: 10.1016/j.cell.2011.12.026] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Revised: 10/13/2011] [Accepted: 12/05/2011] [Indexed: 11/18/2022]
Abstract
Kes1, and other oxysterol-binding protein superfamily members, are involved in membrane and lipid trafficking through trans-Golgi network (TGN) and endosomal systems. We demonstrate that Kes1 represents a sterol-regulated antagonist of TGN/endosomal phosphatidylinositol-4-phosphate signaling. This regulation modulates TOR activation by amino acids and dampens gene expression driven by Gcn4, the primary transcriptional activator of the general amino acid control regulon. Kes1-mediated repression of Gcn4 transcription factor activity is characterized by nonproductive Gcn4 binding to its target sequences, involves TGN/endosome-derived sphingolipid signaling, and requires activity of the cyclin-dependent kinase 8 (CDK8) module of the enigmatic "large Mediator" complex. These data describe a pathway by which Kes1 integrates lipid metabolism with TORC1 signaling and nitrogen sensing.
Collapse
Affiliation(s)
- Carl J Mousley
- Department of Cell and Developmental Biology, Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC 27599-7090, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Bankaitis VA, Ile KE, Nile AH, Ren J, Ghosh R, Schaaf G. Thoughts on Sec14-like nanoreactors and phosphoinositide signaling. Adv Biol Regul 2012; 52:115-21. [PMID: 22776890 DOI: 10.1016/j.jbior.2011.11.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Accepted: 11/11/2011] [Indexed: 10/28/2022]
Affiliation(s)
- Vytas A Bankaitis
- Department of Cell & Developmental Biology, Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC 27599-7090, USA.
| | | | | | | | | | | |
Collapse
|
30
|
Mousley CJ, Davison JM, Bankaitis VA. Sec14 like PITPs couple lipid metabolism with phosphoinositide synthesis to regulate Golgi functionality. Subcell Biochem 2012; 59:271-87. [PMID: 22374094 DOI: 10.1007/978-94-007-3015-1_9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
An interface coordinating lipid metabolism with proteins that regulate membrane trafficking is necessary to regulate Golgi morphology and dynamics. Such an interface facilitates the membrane deformations required for vesicularization, forms platforms for protein recruitment and assembly on appropriate sites on a membrane surface and provides lipid co-factors for optimal protein activity in the proper spatio-temporally regulated manner. Importantly, Sec14 and Sec14-like proteins are a unique superfamily of proteins that sense specific aspects of lipid metabolism, employing this information to potentiate phosphoinositide production. Therefore, Sec14 and Sec14 like proteins form central conduits to integrate multiple aspects of lipid metabolism with productive phosphoinositide signaling.
Collapse
Affiliation(s)
- Carl J Mousley
- Department of Cell & Developmental Biology, Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, 27599-7090, Chapel Hill, NC, USA,
| | | | | |
Collapse
|
31
|
Epstein S, Kirkpatrick CL, Castillon GA, Muñiz M, Riezman I, David FPA, Wollheim CB, Riezman H. Activation of the unfolded protein response pathway causes ceramide accumulation in yeast and INS-1E insulinoma cells. J Lipid Res 2011; 53:412-420. [PMID: 22210926 DOI: 10.1194/jlr.m022186] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Sphingolipids are not only important components of membranes but also have functions in protein trafficking and intracellular signaling. The LCB1 gene encodes a subunit of the serine palmitoyltransferase, which is responsible for the first step of sphingolipid synthesis. Here, we show that activation of the unfolded protein response (UPR) can restore normal ceramide levels and viability in yeast cells with a conditional defect in LCB1. Dependence on UPR was demonstrated by showing the HAC1-dependence of the suppression. A similar induction of ceramides by UPR seems to take place in mammalian cells. In rat pancreatic INS-1E cells, UPR activation induces the transcription of the CerS6 gene, which encodes a ceramide synthase. This correlates with the specific accumulation of ceramide with a C16 fatty acyl chain upon UPR activation. Therefore, our study reveals a novel connection between UPR induction and ceramide synthesis that seems to be conserved between yeast and mammalian cells.
Collapse
Affiliation(s)
- Sharon Epstein
- Department of Biochemistry, University of Geneva, Geneva, Switzerland
| | - Clare L Kirkpatrick
- Department of Cell Physiology and Metabolism, Centre Médical Universitaire, University of Geneva, Geneva, Switzerland
| | | | - Manuel Muñiz
- Department of Cell Biology, University of Sevilla, Seville, Spain Lausanne, Switzerland
| | - Isabelle Riezman
- Department of Biochemistry, University of Geneva, Geneva, Switzerland
| | | | - Claes B Wollheim
- Department of Cell Physiology and Metabolism, Centre Médical Universitaire, University of Geneva, Geneva, Switzerland
| | - Howard Riezman
- Department of Biochemistry, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
32
|
Zakrzewska A, van Eikenhorst G, Burggraaff JEC, Vis DJ, Hoefsloot H, Delneri D, Oliver SG, Brul S, Smits GJ. Genome-wide analysis of yeast stress survival and tolerance acquisition to analyze the central trade-off between growth rate and cellular robustness. Mol Biol Cell 2011; 22:4435-46. [PMID: 21965291 PMCID: PMC3216668 DOI: 10.1091/mbc.e10-08-0721] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
A genome-wide analysis of the acquisition of stress cross-tolerance shows that reduction of growth rate is an important determinant of severe stress survival. Cellular functions important for the coupling of growth rate to stress resistance are identified, as are those required for cross-tolerance acquisition independent of growth rate reduction. All organisms have evolved to cope with changes in environmental conditions, ensuring the optimal combination of proliferation and survival. In yeast, exposure to a mild stress leads to an increased tolerance for other stresses. This suggests that yeast uses information from the environment to prepare for future threats. We used the yeast knockout collection to systematically investigate the genes and functions involved in severe stress survival and in the acquisition of stress (cross-) tolerance. Besides genes and functions relevant for survival of heat, acid, and oxidative stress, we found an inverse correlation between mutant growth rate and stress survival. Using chemostat cultures, we confirmed that growth rate governs stress tolerance, with higher growth efficiency at low growth rates liberating the energy for these investments. Cellular functions required for stress tolerance acquisition, independent of the reduction in growth rate, were involved in vesicular transport, the Rpd3 histone deacetylase complex, and the mitotic cell cycle. Stress resistance and acquired stress tolerance in Saccharomyces cerevisiae are governed by a combination of stress-specific and general processes. The reduction of growth rate, irrespective of the cause of this reduction, leads to redistribution of resources toward stress tolerance functions, thus preparing the cells for impending change.
Collapse
Affiliation(s)
- Anna Zakrzewska
- Molecular Biology and Microbial Food Safety, University of Amsterdam, 1098 XH Amsterdam, Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Finding undetected protein associations in cell signaling by belief propagation. Proc Natl Acad Sci U S A 2010; 108:882-7. [PMID: 21187432 DOI: 10.1073/pnas.1004751108] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
External information propagates in the cell mainly through signaling cascades and transcriptional activation, allowing it to react to a wide spectrum of environmental changes. High-throughput experiments identify numerous molecular components of such cascades that may, however, interact through unknown partners. Some of them may be detected using data coming from the integration of a protein-protein interaction network and mRNA expression profiles. This inference problem can be mapped onto the problem of finding appropriate optimal connected subgraphs of a network defined by these datasets. The optimization procedure turns out to be computationally intractable in general. Here we present a new distributed algorithm for this task, inspired from statistical physics, and apply this scheme to alpha factor and drug perturbations data in yeast. We identify the role of the COS8 protein, a member of a gene family of previously unknown function, and validate the results by genetic experiments. The algorithm we present is specially suited for very large datasets, can run in parallel, and can be adapted to other problems in systems biology. On renowned benchmarks it outperforms other algorithms in the field.
Collapse
|
34
|
Webster MT, McCaffery JM, Cohen-Fix O. Vesicle trafficking maintains nuclear shape in Saccharomyces cerevisiae during membrane proliferation. ACTA ACUST UNITED AC 2010; 191:1079-88. [PMID: 21135138 PMCID: PMC3002040 DOI: 10.1083/jcb.201006083] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The parameters that control nuclear size and shape are poorly understood. In yeast, unregulated membrane proliferation, caused by deletion of the phospholipid biosynthesis inhibitor SPO7, leads to a single nuclear envelope "flare" that protrudes into the cytoplasm. This flare is always associated with the asymmetrically localized nucleolus, which suggests that the site of membrane expansion is spatially confined by an unknown mechanism. Here we show that in spo7Δ cells, mutations in vesicle-trafficking genes lead to multiple flares around the entire nucleus. These mutations also alter the distribution of small nucleolar RNA-associated nucleolar proteins independently of their effect on nuclear shape. Both single- and multi-flared nuclei have increased nuclear envelope surface area, yet they maintain the same nuclear/cell volume ratio as wild-type cells. These data suggest that, upon membrane expansion, the spatial confinement of the single nuclear flare is dependent on vesicle trafficking. Moreover, flares may facilitate maintenance of a constant nuclear/cell volume ratio in the face of altered membrane proliferation.
Collapse
Affiliation(s)
- Micah T Webster
- The Laboratory of Molecular and Cellular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
35
|
Nile AH, Bankaitis VA, Grabon A. Mammalian diseases of phosphatidylinositol transfer proteins and their homologs. CLINICAL LIPIDOLOGY 2010; 5:867-897. [PMID: 21603057 PMCID: PMC3097519 DOI: 10.2217/clp.10.67] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Inositol and phosphoinositide signaling pathways represent major regulatory systems in eukaryotes. The physiological importance of these pathways is amply demonstrated by the variety of diseases that involve derangements in individual steps in inositide and phosphoinositide production and degradation. These diseases include numerous cancers, lipodystrophies and neurological syndromes. Phosphatidylinositol transfer proteins (PITPs) are emerging as fascinating regulators of phosphoinositide metabolism. Recent advances identify PITPs (and PITP-like proteins) to be coincidence detectors, which spatially and temporally coordinate the activities of diverse aspects of the cellular lipid metabolome with phosphoinositide signaling. These insights are providing new ideas regarding mechanisms of inherited mammalian diseases associated with derangements in the activities of PITPs and PITP-like proteins.
Collapse
Affiliation(s)
- Aaron H Nile
- Department of Cell & Developmental Biology, Lineberger Comprehensive Cancer Center School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-27090, USA
| | - Vytas A Bankaitis
- Department of Cell & Developmental Biology, Lineberger Comprehensive Cancer Center School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-27090, USA
| | - Aby Grabon
- Department of Cell & Developmental Biology, Lineberger Comprehensive Cancer Center School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-27090, USA
| |
Collapse
|
36
|
Soper JH, Kehm V, Burd CG, Bankaitis VA, Lee VMY. Aggregation of α-synuclein in S. cerevisiae is associated with defects in endosomal trafficking and phospholipid biosynthesis. J Mol Neurosci 2010; 43:391-405. [PMID: 20890676 DOI: 10.1007/s12031-010-9455-5] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2010] [Accepted: 09/17/2010] [Indexed: 01/08/2023]
Abstract
Parkinson's disease is the most common neurodegenerative movement disorder. α-Synuclein is a small synaptic protein that has been linked to familial Parkinson's disease (PD) and is also the primary component of Lewy bodies, the hallmark neuropathology found in the brain of sporadic and familial PD patients. The function of α-synuclein is currently unknown, although it has been implicated in the regulation of synaptic vesicle localization or fusion. Recently, overexpression of α-synuclein was shown to cause cytoplasmic vesicle accumulation in a yeast model of α-synuclein toxicity, but the exact role α-synuclein played in mediating this vesicle aggregation is unclear. Here, we show that α-synuclein induces aggregation of many yeast Rab GTPase proteins, that α-synuclein aggregation is enhanced in yeast mutants that produce high levels of acidic phospholipids, and that α-synuclein colocalizes with yeast membranes that are enriched for phosphatidic acid. Significantly, we demonstrate that α-synuclein expression induces vulnerability to perturbations of Ypt6 and other proteins involved in retrograde endosome-Golgi transport, linking a specific trafficking defect to α-synuclein phospholipid binding. These data suggest new pathogenic mechanisms for α-synuclein neurotoxicity.
Collapse
Affiliation(s)
- James H Soper
- Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | | | | | | | | |
Collapse
|
37
|
Zakrzewska A, Boorsma A, Beek AT, Hageman JA, Westerhuis JA, Hellingwerf KJ, Brul S, Klis FM, Smits GJ. Comparative analysis of transcriptome and fitness profiles reveals general and condition-specific cellular functions involved in adaptation to environmental change in Saccharomyces cerevisiae. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2010; 14:603-14. [PMID: 20695823 DOI: 10.1089/omi.2010.0049] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The transcriptional responses of yeast cells to a wide variety of stress conditions have been studied extensively. In addition, deletion mutant collections have been widely used to measure the combined effect of gene loss and stress on growth (fitness). Here we present a comparative analysis of 1,095 publicly available transcription and genome-wide fitness profiles in yeast, from different laboratories and experimental platforms. We analyzed these data, using T-profiler, to describe the correlation in behavior of a priori defined functional groups. Two-mode clustering analysis of the fitness T-profiles revealed that functional groups involved in regulating ribosome biogenesis and translation offer general stress resistance. These groups are closely related to growth rate and nutrient availability. General stress sensitivity was found in deletion mutant groups functioning in intracellular vesicular transport, actin cytoskeleton organization, and cell polarity, indicating that they play an key role in maintaining yeast adaptability. Analysis of the phenotypic and transcriptional variability of our a priori defined functional groups showed that the quantitative effect on fitness of both resistant and sensitive groups is highly condition-dependent. Finally, we discuss the implications of our results for combinatorial drug design.
Collapse
Affiliation(s)
- Anna Zakrzewska
- Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, Netherlands Institute for Systems Biology, University of Amsterdam, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Siskind LJ, Mullen TD, Romero Rosales K, Clarke CJ, Hernandez-Corbacho MJ, Edinger AL, Obeid LM. The BCL-2 protein BAK is required for long-chain ceramide generation during apoptosis. J Biol Chem 2010; 285:11818-26. [PMID: 20172858 DOI: 10.1074/jbc.m109.078121] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The BCL-2 family members BAK and BAX are required for apoptosis and trigger mitochondrial outer membrane permeabilization (MOMP). Here we identify a MOMP-independent function of BAK as a required factor for long-chain ceramide production in response to pro-apoptotic stress. UV-C irradiation of wild-type (WT) cells increased long-chain ceramides; blocking ceramide generation prevented caspase activation and cell death, demonstrating that long-chain ceramides play a key role in UV-C-induced apoptosis. In contrast, UV-C irradiation did not increase long-chain ceramides in BAK and BAX double knock-out cells. Notably, this was not specific to the cell type (baby mouse kidney cells, hematopoietic) nor the apoptotic stimulus employed (UV-C, cisplatin, and growth factor withdrawal). Importantly, long-chain ceramide generation was dependent on the presence of BAK, but not BAX. However, ceramide generation was independent of the known downstream actions of BAK in apoptosis (MOMP or caspase activation), suggesting a novel role for BAK in apoptosis. Finally, enzymatic assays identified ceramide synthase as the mechanism by which BAK regulates ceramide metabolism. There was no change in CerS expression at the message or protein level, indicating regulation at the post-translational level. Moreover, CerS activity in BAK KO microsomes can be reactivated upon addition of BAK-containing microsomes. The data presented indicate that ceramide-induced apoptosis is dependent upon BAK and identify a novel role for BAK during apoptosis. By establishing a unique role for BAK in long-chain ceramide metabolism, these studies further demonstrate that the seemingly redundant proteins BAK and BAX have distinct mechanisms of action during apoptosis induction.
Collapse
Affiliation(s)
- Leah J Siskind
- Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina 29401, USA.
| | | | | | | | | | | | | |
Collapse
|
39
|
Sphingolipid metabolism in trans-golgi/endosomal membranes and the regulation of intracellular homeostatic processes in eukaryotic cells. ACTA ACUST UNITED AC 2010; 50:339-48. [DOI: 10.1016/j.advenzreg.2009.12.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
40
|
Disruption of ceramide synthesis by CerS2 down-regulation leads to autophagy and the unfolded protein response. Biochem J 2009; 424:273-83. [PMID: 19728861 DOI: 10.1042/bj20090699] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Ceramide metabolism has come under recent scrutiny because of its role in cellular stress responses. CerS2 (ceramide synthase 2) is one of the six mammalian isoforms of ceramide synthase and is responsible for the synthesis of VLC (very-long-chain) ceramides, e.g. C24, C24:1. To study the role of CerS2 in ceramide metabolism and cellular homoeostasis, we down-regulated CerS2 using siRNA (small interfering RNA) and examined several aspects of sphingolipid metabolism and cell stress responses. CerS2 down-regulation had a broad effect on ceramide homoeostasis, not just on VLC ceramides. Surprisingly, CerS2 down-regulation resulted in significantly increased LC (long-chain) ceramides, e.g. C14, C16, and our results suggested that the increase was due to a ceramide synthase-independent mechanism. CerS2-down-regulation-induced LC ceramide accumulation resulted in growth arrest which was not accompanied by apoptotic cell death. Instead, cells remained viable, showing induction of autophagy and activation of PERK [PKR (double-stranded-RNA-dependent protein kinase)-like endoplasmic reticulum kinase] and IRE1 (inositol-requiring 1) pathways [the latter indicating activation of the UPR (unfolded protein response)].
Collapse
|
41
|
A chemical genetic screen for modulators of exocytic transport identifies inhibitors of a transport mechanism linked to GTR2 function. EUKARYOTIC CELL 2009; 9:116-26. [PMID: 19897736 DOI: 10.1128/ec.00184-09] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Membrane and protein traffic to the cell surface is mediated by partially redundant pathways that are difficult to perturb in ways that yield a strong phenotype. Such robustness is expected in a fine-tuned process, regulated by environmental cues, that is required for controlled cell surface growth and cell proliferation. Synthetic genetic interaction screens are especially valuable for investigating complex processes involving partially redundant pathways or mechanisms. In a previous study, we used a triple-synthetic-lethal yeast mutant screen to identify a novel component of the late exocytic transport machinery, Avl9. In a chemical-genetic version of the successful mutant screen, we have now identified small molecules that cause a rapid (within 15 min) accumulation of secretory cargo and abnormal Golgi compartment-like membranes at low concentration (<2 muM), indicating that the compounds likely target the exocytic transport machinery at the Golgi. We screened for genes that, when overexpressed, suppress the drug effects, and found that the Ras-like small GTPase, Gtr2, but not its homolog and binding partner, Gtr1, efficiently suppresses the toxic effects of the compounds. Furthermore, assays for suppression of the secretory defect caused by the compounds suggest that Gtr proteins can regulate a pathway that is perturbed by the compounds. Because avl9Delta and gtr mutants share some phenotypes, our results indicate that the small molecules identified by our chemical-genetic strategy are promising tools for understanding Avl9 function and the mechanisms that control late exocytic transport.
Collapse
|
42
|
Senkal CE, Ponnusamy S, Bielawski J, Hannun YA, Ogretmen B. Antiapoptotic roles of ceramide-synthase-6-generated C16-ceramide via selective regulation of the ATF6/CHOP arm of ER-stress-response pathways. FASEB J 2009; 24:296-308. [PMID: 19723703 DOI: 10.1096/fj.09-135087] [Citation(s) in RCA: 207] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Emerging results suggest that ceramides with different fatty acid chain lengths might play distinct functions in the regulation of tumor growth and therapy. Here we report that de novo-generated C(18)- and C(16)-ceramides by ceramide synthases 1 and 6 (CerS1 and CerS6) play opposing proapoptotic and prosurvival roles, respectively, in human head and neck squamous cell carcinomas (HNSCCs). Unexpectedly, knockdown of CerS6/C(16)-ceramide using small interfering RNA induced endoplasmic reticulum (ER)-stress-mediated apoptosis. Reconstitution of C(16)-ceramide generation by induced expression of wild-type CerS6, but not its catalytically inactive mutant, protected cells from cell death induced by knockdown of CerS6. Moreover, using molecular tools coupled with analysis of sphingolipid metabolism showed that generation of C(16)-ceramide, and not dihydro-C(16)-ceramide, by induced expression of CerS6 rescued cells from ER stress and apoptosis. Mechanistically, regulation of ER-stress-induced apoptosis by CerS6/C(16)-ceramide was linked to the activation of a specific arm, ATF6/CHOP, of the unfolded protein response pathway. Notably, while expression of CerS1/C(18)-ceramide inhibited HNSCC xenograft growth, CerS6/C(16)-ceramide significantly protected ER stress, leading to enhanced tumor development and growth in vivo, consistent with their pro- and antiapoptotic roles, respectively. Thus, these data reveal an unexpected and novel prosurvival role of CerS6/C(16)-ceramide involved in the protection against ER-stress-induced apoptosis and induction of HNSCC tumor growth.
Collapse
Affiliation(s)
- Can E Senkal
- Hollings Cancer Center, 86 Jonathan Lucas Street, Charleston, SC 29425, USA
| | | | | | | | | |
Collapse
|
43
|
Current awareness on yeast. Yeast 1990. [DOI: 10.1002/yea.1620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|