1
|
Morita Y, Takegawa K, Collins BM, Higuchi Y. Polarity-dependent expression and localization of secretory glucoamylase mRNA in filamentous fungal cells. Microbiol Res 2024; 282:127653. [PMID: 38422859 DOI: 10.1016/j.micres.2024.127653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 02/06/2024] [Accepted: 02/17/2024] [Indexed: 03/02/2024]
Abstract
In multinuclear and multicellular filamentous fungi little is known about how mRNAs encoding secreted enzymes are transcribed and localized spatiotemporally. To better understand this process we analyzed mRNA encoding GlaA, a glucoamylase secreted in large amounts by the industrial filamentous fungus Aspergillus oryzae, by the MS2 system, in which mRNA can be visualized in living cells. We found that glaA mRNA was significantly transcribed and localized near the hyphal tip and septum, which are the sites of protein secretion, in polarity-dependent expression and localization manners. We also revealed that glaA mRNA exhibits long-range dynamics in the vicinity of the endoplasmic reticulum (ER) in a manner that is dependent on the microtubule motor proteins kinesin-1 and kinesin-3, but independent of early endosomes. Moreover, we elucidated that although glaA mRNA localized to stress granules (SGs) and processing bodies (PBs) under high temperature, glaA mRNA was not seen under ER stress, suggesting that there are different regulatory mechanisms of glaA mRNA by SG and PB under high temperature and ER stress. Collectively, this study uncovers a dynamic regulatory mechanism of mRNA encoding a secretory enzyme in filamentous fungi.
Collapse
Affiliation(s)
- Yuki Morita
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan
| | - Kaoru Takegawa
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan
| | - Brett M Collins
- Centre for Cell Biology of Chronic Disease, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Yujiro Higuchi
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan.
| |
Collapse
|
2
|
Zhang J, Qiu R, Bieger BD, Oakley CE, Oakley BR, Egan MJ, Xiang X. Aspergillus SUMOylation mutants exhibit chromosome segregation defects including chromatin bridges. Genetics 2023; 225:iyad169. [PMID: 37724751 PMCID: PMC10697819 DOI: 10.1093/genetics/iyad169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/29/2023] [Accepted: 09/07/2023] [Indexed: 09/21/2023] Open
Abstract
Functions of protein SUMOylation remain incompletely understood in different cell types. Via forward genetics, here we identified ubaBQ247*, a loss-of-function mutation in a SUMO activation enzyme UbaB in the filamentous fungus Aspergillus nidulans. The ubaBQ247*, ΔubaB, and ΔsumO mutants all produce abnormal chromatin bridges, indicating the importance of SUMOylation in the completion of chromosome segregation. The bridges are enclosed by nuclear membrane containing peripheral nuclear pore complex proteins that normally get dispersed during mitosis, and the bridges are also surrounded by cytoplasmic microtubules typical of interphase cells. Time-lapse sequences further indicate that most bridges persist through interphase prior to the next mitosis, and anaphase chromosome segregation can produce new bridges that persist into the next interphase. When the first mitosis happens at a higher temperature of 42°C, SUMOylation deficiency produces not only chromatin bridges but also many abnormally shaped single nuclei that fail to divide. UbaB-GFP localizes to interphase nuclei just like the previously studied SumO-GFP, but the nuclear signals disappear during mitosis when the nuclear pores are partially open, and the signals reappear after mitosis. The nuclear localization is consistent with many SUMO targets being nuclear proteins. Finally, although the budding yeast SUMOylation machinery interacts with LIS1, a protein critical for dynein activation, loss of SUMOylation does not cause any obvious defect in dynein-mediated transport of nuclei and early endosomes, indicating that SUMOylation is unnecessary for dynein activation in A. nidulans.
Collapse
Affiliation(s)
- Jun Zhang
- Department of Biochemistry and Molecular Biology, The Uniformed Services University of the Health Sciences-F. Edward Hébert School of Medicine, Bethesda, MD 20814, USA
| | - Rongde Qiu
- Department of Biochemistry and Molecular Biology, The Uniformed Services University of the Health Sciences-F. Edward Hébert School of Medicine, Bethesda, MD 20814, USA
| | - Baronger D Bieger
- Department of Entomology and Plant Pathology, University of Arkansas Systems Division of Agriculture, Fayetteville, AR 72701, USA
| | - C Elizabeth Oakley
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045, USA
| | - Berl R Oakley
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045, USA
| | - Martin J Egan
- Department of Entomology and Plant Pathology, University of Arkansas Systems Division of Agriculture, Fayetteville, AR 72701, USA
| | - Xin Xiang
- Department of Biochemistry and Molecular Biology, The Uniformed Services University of the Health Sciences-F. Edward Hébert School of Medicine, Bethesda, MD 20814, USA
| |
Collapse
|
3
|
Hernandez-Perez I, Rubio J, Baumann A, Girao H, Ferrando M, Rebollo E, Aragay AM, Geli MI. Kazrin promotes dynein/dynactin-dependent traffic from early to recycling endosomes. eLife 2023; 12:e83793. [PMID: 37096882 PMCID: PMC10181827 DOI: 10.7554/elife.83793] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 04/24/2023] [Indexed: 04/26/2023] Open
Abstract
Kazrin is a protein widely expressed in vertebrates whose depletion causes a myriad of developmental defects, in part derived from altered cell adhesion and migration, as well as failure to undergo epidermal to mesenchymal transition. However, the primary molecular role of kazrin, which might contribute to all these functions, has not been elucidated yet. We previously identified one of its isoforms, kazrin C, as a protein that potently inhibits clathrin-mediated endocytosis when overexpressed. We now generated kazrin knock-out mouse embryonic fibroblasts to investigate its endocytic function. We found that kazrin depletion delays juxtanuclear enrichment of internalized material, indicating a role in endocytic traffic from early to recycling endosomes. Consistently, we found that the C-terminal domain of kazrin C, predicted to be an intrinsically disordered region, directly interacts with several early endosome (EE) components, and that kazrin depletion impairs retrograde motility of these organelles. Further, we noticed that the N-terminus of kazrin C shares homology with dynein/dynactin adaptors and that it directly interacts with the dynactin complex and the dynein light intermediate chain 1. Altogether, the data indicate that one of the primary kazrin functions is to facilitate endocytic recycling by promoting dynein/dynactin-dependent transport of EEs or EE-derived transport intermediates to the recycling endosomes.
Collapse
Affiliation(s)
- Ines Hernandez-Perez
- Institute for Molecular Biology of Barcelona (IBMB, CSIC), Baldiri Reixac 15BarcelonaSpain
| | - Javier Rubio
- Institute for Molecular Biology of Barcelona (IBMB, CSIC), Baldiri Reixac 15BarcelonaSpain
| | - Adrian Baumann
- Institute for Molecular Biology of Barcelona (IBMB, CSIC), Baldiri Reixac 15BarcelonaSpain
| | - Henrique Girao
- Institute for Molecular Biology of Barcelona (IBMB, CSIC), Baldiri Reixac 15BarcelonaSpain
| | - Miriam Ferrando
- Institute for Molecular Biology of Barcelona (IBMB, CSIC), Baldiri Reixac 15BarcelonaSpain
| | - Elena Rebollo
- Institute for Molecular Biology of Barcelona (IBMB, CSIC), Baldiri Reixac 15BarcelonaSpain
| | - Anna M Aragay
- Institute for Molecular Biology of Barcelona (IBMB, CSIC), Baldiri Reixac 15BarcelonaSpain
| | - María Isabel Geli
- Institute for Molecular Biology of Barcelona (IBMB, CSIC), Baldiri Reixac 15BarcelonaSpain
| |
Collapse
|
4
|
Zhang J, Qiu R, Bieger BD, Oakley CE, Oakley BR, Egan MJ, Xiang X. Aspergillus SUMOylation mutants have normal dynein function but exhibit chromatin bridges. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.16.537086. [PMID: 37131833 PMCID: PMC10153134 DOI: 10.1101/2023.04.16.537086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Functions of protein SUMOylation remain incompletely understood in different cell types. The budding yeast SUMOylation machinery interacts with LIS1, a protein critical for dynein activation, but dynein-pathway components were not identified as SUMO-targets in the filamentous fungus Aspergillus nidulans. Via A. nidulans forward genetics, here we identified ubaBQ247*, a loss-of-function mutation in a SUMO-activation enzyme UbaB. Colonies of the ubaBQ247*, ΔubaB and ΔsumO mutants looked similar and less healthy than the wild-type colony. In these mutants, about 10% of nuclei are connected by abnormal chromatin bridges, indicating the importance of SUMOylation in the completion of chromosome segregation. Nuclei connected by chromatin bridges are mostly in interphase, suggesting that these bridges do not prevent cell-cycle progression. UbaB-GFP localizes to interphase nuclei just like the previously studied SumO-GFP, but the nuclear signals disappear during mitosis when the nuclear pores are partially open, and the signals reappear after mitosis. The nuclear localization is consistent with many SUMO-targets being nuclear proteins, for example, topoisomerase II whose SUMOylation defect gives rise to chromatin bridges in mammalian cells. Unlike in mammalian cells, however, loss of SUMOylation in A. nidulans does not apparently affect the metaphase-to-anaphase transition, further highlighting differences in the requirements of SUMOylation in different cell types. Finally, loss of UbaB or SumO does not affect dynein- and LIS1-mediated early-endosome transport, indicating that SUMOylation is unnecessary for dynein or LIS1 function in A. nidulans.
Collapse
Affiliation(s)
- Jun Zhang
- Department of Biochemistry and Molecular Biology, The Uniformed Services University of the Health Sciences- F. Edward Hébert School of Medicine, Bethesda, Maryland 20814, USA
| | - Rongde Qiu
- Department of Biochemistry and Molecular Biology, The Uniformed Services University of the Health Sciences- F. Edward Hébert School of Medicine, Bethesda, Maryland 20814, USA
| | - Baronger D. Bieger
- Department of Entomology and Plant Pathology, University of Arkansas Systems Division of Agriculture, Fayetteville, AR, USA
| | - C. Elizabeth Oakley
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS, USA
| | - Berl R. Oakley
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS, USA
| | - Martin J. Egan
- Department of Entomology and Plant Pathology, University of Arkansas Systems Division of Agriculture, Fayetteville, AR, USA
| | - Xin Xiang
- Department of Biochemistry and Molecular Biology, The Uniformed Services University of the Health Sciences- F. Edward Hébert School of Medicine, Bethesda, Maryland 20814, USA
| |
Collapse
|
5
|
Qiu R, Zhang J, Xiang X. Kinesin-1 autoinhibition facilitates the initiation of dynein cargo transport. J Cell Biol 2023; 222:e202205136. [PMID: 36524956 PMCID: PMC9802684 DOI: 10.1083/jcb.202205136] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 11/04/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
The functional significance of Kinesin-1 autoinhibition has been unclear. Kinesin-1 transports multiple cargoes including cytoplasmic dynein to microtubule plus ends. From a genetic screen for Aspergillus mutants defective in dynein-mediated early endosome transport, we identified a kinesin-1 mutation kinAK895* at the C-terminal IAK motif involved in autoinhibition. The kinA∆IAK and kinAK895E mutants exhibited a similar defect in dynein-mediated early endosome transport, verifying the importance of kinesin-1 autoinhibition in dynein-mediated transport. Kinesin-1 autoinhibition is not critical for dynein accumulation at microtubule plus ends or for the secretory vesicle cargoes of kinesin-1 to reach the hyphal tip. However, it facilitates dynein to initiate early endosome transport. This is unrelated to a direct competition between dynein and kinesin-1 on early endosomes because kinesin-3 rather than kinesin-1 drives the plus-end-directed early endosome movement. This effect of kinesin-1 autoinhibition on dynein-mediated early endosome transport is related to cargo adapter-mediated dynein activation but at a step beyond the switching of dynein from its autoinhibited conformation.
Collapse
Affiliation(s)
- Rongde Qiu
- Department of Biochemistry and Molecular Biology, The Uniformed Services University of the Health Sciences, F. Edward Hébert School of Medicine, Bethesda, MA, USA
| | - Jun Zhang
- Department of Biochemistry and Molecular Biology, The Uniformed Services University of the Health Sciences, F. Edward Hébert School of Medicine, Bethesda, MA, USA
| | - Xin Xiang
- Department of Biochemistry and Molecular Biology, The Uniformed Services University of the Health Sciences, F. Edward Hébert School of Medicine, Bethesda, MA, USA
| |
Collapse
|
6
|
Itani A, Masuo S, Yamamoto R, Serizawa T, Fukasawa Y, Takaya N, Toyota M, Betsuyaku S, Takeshita N. Local calcium signal transmission in mycelial network exhibits decentralized stress responses. PNAS NEXUS 2023; 2:pgad012. [PMID: 36896124 PMCID: PMC9991499 DOI: 10.1093/pnasnexus/pgad012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 01/03/2023] [Accepted: 01/18/2023] [Indexed: 03/09/2023]
Abstract
Many fungi live as mycelia, which are networks of hyphae. Mycelial networks are suited for the widespread distribution of nutrients and water. The logistical capabilities are critical for the extension of fungal survival areas, nutrient cycling in ecosystems, mycorrhizal symbioses, and virulence. In addition, signal transduction in mycelial networks is predicted to be vital for mycelial function and robustness. A lot of cell biological studies have elucidated protein and membrane trafficking and signal transduction in fungal hyphae; however, there are no reports visualizing signal transduction in mycelia. This paper, by using the fluorescent Ca2+ biosensor, visualized for the first time how calcium signaling is conducted inside the mycelial network in response to localized stimuli in the model fungus Aspergillus nidulans. The wavy propagation of the calcium signal inside the mycelium or the signal blinking in the hyphae varies depending on the type of stress and proximity to the stress. The signals, however, only extended around 1,500 μm, suggesting that the mycelium has a localized response. The mycelium showed growth delay only in the stressed areas. Local stress caused arrest and resumption of mycelial growth through reorganization of the actin cytoskeleton and membrane trafficking. To elucidate the downstream of calcium signaling, calmodulin, and calmodulin-dependent protein kinases, the principal intracellular Ca2+ receptors were immunoprecipitated and their downstream targets were identified by mass spectrometry analyses. Our data provide evidence that the mycelial network, which lacks a brain or nervous system, exhibits decentralized response through locally activated calcium signaling in response to local stress.
Collapse
Affiliation(s)
- Ayaka Itani
- Microbiology Research Center for Sustainability (MiCS), Faculty of Life and Environmental Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba, 305-8572, Japan
| | - Shunsuke Masuo
- Microbiology Research Center for Sustainability (MiCS), Faculty of Life and Environmental Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba, 305-8572, Japan
| | - Riho Yamamoto
- Microbiology Research Center for Sustainability (MiCS), Faculty of Life and Environmental Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba, 305-8572, Japan
| | - Tomoko Serizawa
- Microbiology Research Center for Sustainability (MiCS), Faculty of Life and Environmental Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba, 305-8572, Japan
| | - Yu Fukasawa
- Graduate School of Agricultural Science, Tohoku University, 232-3 Yomogida, Naruko, Osaki, Miyagi, 989-6711, Japan
| | - Naoki Takaya
- Microbiology Research Center for Sustainability (MiCS), Faculty of Life and Environmental Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba, 305-8572, Japan
| | - Masatsugu Toyota
- Department of Biochemistry and Molecular Biology, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama, 338-8570, Japan
- Suntory Rising Stars Encouragement Program in Life Sciences (SunRiSE), Kyoto, Japan
- Department of Botany, University of Wisconsin-Madison, 430 Lincoln Drive, Madison, WI 53706, USA
| | - Shigeyuki Betsuyaku
- Department of Plant Life Science, Faculty of Agriculture, Ryukoku University, 1-5 Yokotani, Seta Oe-cho, Otsu, Shiga, 520-2194Japan
| | - Norio Takeshita
- Microbiology Research Center for Sustainability (MiCS), Faculty of Life and Environmental Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba, 305-8572, Japan
| |
Collapse
|
7
|
Qiu R, Zhang J, McDaniel D, Peñalva MA, Xiang X. Live-Cell Imaging of Dynein-Mediated Cargo Transport in Aspergillus nidulans. Methods Mol Biol 2023; 2623:3-23. [PMID: 36602676 DOI: 10.1007/978-1-0716-2958-1_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Filamentous fungi have been used for studying long-distance transport of cargoes driven by cytoplasmic dynein. Aspergillus nidulans is a well-established genetic model organism used for studying dynein function and regulation in vivo. Here, we describe how we grow A. nidulans strains for live-cell imaging and how we observe the dynein-mediated distribution of early endosomes and secretory vesicles. Using an on-stage incubator and culture chambers for inverted microscopes, we can image fungal hyphae that naturally attach to the bottom of the chambers, using wide-field epifluorescence microscopes or the new Zeiss LSM 980 (with Airyscan 2) microscope. In addition to methods for preparing cells for imaging, a procedure for A. nidulans transformation is also described.
Collapse
Affiliation(s)
- Rongde Qiu
- Department of Biochemistry and Molecular Biology, The Uniformed Services University of the Health Sciences- F. Edward Hébert School of Medicine, Bethesda, MD, USA
| | - Jun Zhang
- Department of Biochemistry and Molecular Biology, The Uniformed Services University of the Health Sciences- F. Edward Hébert School of Medicine, Bethesda, MD, USA
| | - Dennis McDaniel
- Department of Microbiology and Immunology, The Uniformed Services University of the Health Sciences- F. Edward Hébert School of Medicine, Bethesda, MD, USA
| | - Miguel A Peñalva
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas Margarita Salas, CSIC, Madrid, Spain.
| | - Xin Xiang
- Department of Biochemistry and Molecular Biology, The Uniformed Services University of the Health Sciences- F. Edward Hébert School of Medicine, Bethesda, MD, USA.
| |
Collapse
|
8
|
Figueroa AC, Díaz MS, Alasino RV, Yang P, Soria NW, Beltramo DM. Expression and localization of tubulin isotypes and its mRNAs during Thecaphora frezii developments. FEMS Microbiol Ecol 2022; 98:6753202. [PMID: 36208160 DOI: 10.1093/femsec/fiac121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 07/13/2022] [Accepted: 10/05/2022] [Indexed: 01/21/2023] Open
Abstract
Thecaphora frezii is a phytopathogenic fungus that infects Arachys hypogaea L. and produces peanut smut. It has three ontological stages teliospores, basidiospores, and hyphae. Microtubules are cellular structures that participate in various important cellular processes. In this work, we analyzed the presence and location of α-tubulin isotypes and enzymes that participate in tyrosination-detyrosination in the three stages of T. frezii. Although both tyrosinated and detyrosinated tubulin seem to be associated with a membrane fraction component that gives it a similar behavior to integral proteins, in the soluble cytosolic fraction, only detyrosinated tubulin was detected, not tyrosinated tubulin. The presence of α-tubulin was not detected using the monoclonal antibody DM1A as neither acetylated tubulin. The RNA-Seq analysis showed the presence of α, β, and γ-tubulins and the genes that codes for tyrosine-tubulin ligase and cytosolic carboxypeptidase 1, enzymes that are involved in post-translational modification processes. These sequences showed a high percentage of identity and homology with Ustilago maydis, Thecaphora thlaspeos, and Anthracocystis flocculosa. This is the first report for tubulins subpopulations and the cellular distribution in T. frezii, which together with the data obtained by RNA-Seq contribute to the knowledge of the pathogen, which will allow the development of control strategies.
Collapse
Affiliation(s)
- Ana Cristina Figueroa
- Centro de Excelencia en Productos y Procesos de Córdoba - CEPROCOR- Complejo Hospitalario Santa María de Punilla X6154, Córdoba, Argentina
| | - María Soledad Díaz
- Centro de Excelencia en Productos y Procesos de Córdoba - CEPROCOR- Complejo Hospitalario Santa María de Punilla X6154, Córdoba, Argentina
| | - Roxana Valeria Alasino
- Centro de Excelencia en Productos y Procesos de Córdoba - CEPROCOR- Complejo Hospitalario Santa María de Punilla X6154, Córdoba, Argentina.,Consejo Nacional de Ciencia y Tecnología de Argentina, - CONICET, Argentina
| | - Pablo Yang
- Cátedra de Biotecnología, Facultad de Ciencias Químicas, Unidad Asociada al CONICET: Área de Cs. Agrarias, Ingeniería, Cs. Biológicas, Universidad Católica de Córdoba, Avenida Armada Argentina 3555, X5016DHK, Córdoba, Argentina
| | - Néstor Walter Soria
- Cátedra de Biotecnología, Facultad de Ciencias Químicas, Unidad Asociada al CONICET: Área de Cs. Agrarias, Ingeniería, Cs. Biológicas, Universidad Católica de Córdoba, Avenida Armada Argentina 3555, X5016DHK, Córdoba, Argentina
| | - Dante Miguel Beltramo
- Centro de Excelencia en Productos y Procesos de Córdoba - CEPROCOR- Complejo Hospitalario Santa María de Punilla X6154, Córdoba, Argentina.,Consejo Nacional de Ciencia y Tecnología de Argentina, - CONICET, Argentina.,Cátedra de Biotecnología, Facultad de Ciencias Químicas, Unidad Asociada al CONICET: Área de Cs. Agrarias, Ingeniería, Cs. Biológicas, Universidad Católica de Córdoba, Avenida Armada Argentina 3555, X5016DHK, Córdoba, Argentina
| |
Collapse
|
9
|
Raudaskoski M. Kinesin Motors in the Filamentous Basidiomycetes in Light of the Schizophyllum commune Genome. J Fungi (Basel) 2022; 8:jof8030294. [PMID: 35330296 PMCID: PMC8950801 DOI: 10.3390/jof8030294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/03/2022] [Accepted: 03/08/2022] [Indexed: 12/10/2022] Open
Abstract
Kinesins are essential motor molecules of the microtubule cytoskeleton. All eukaryotic organisms have several genes encoding kinesin proteins, which are necessary for various cell biological functions. During the vegetative growth of filamentous basidiomycetes, the apical cells of long leading hyphae have microtubules extending toward the tip. The reciprocal exchange and migration of nuclei between haploid hyphae at mating is also dependent on cytoskeletal structures, including the microtubules and their motor molecules. In dikaryotic hyphae, resulting from a compatible mating, the nuclear location, synchronous nuclear division, and extensive nuclear separation at telophase are microtubule-dependent processes that involve unidentified molecular motors. The genome of Schizophyllum commune is analyzed as an example of a species belonging to the Basidiomycota subclass, Agaricomycetes. In this subclass, the investigation of cell biology is restricted to a few species. Instead, the whole genome sequences of several species are now available. The analyses of the mating type genes and the genes necessary for fruiting body formation or wood degrading enzymes in several genomes of Agaricomycetes have shown that they are controlled by comparable systems. This supports the idea that the genes regulating the cell biological process in a model fungus, such as the genes encoding kinesin motor molecules, are also functional in other filamentous Agaricomycetes.
Collapse
Affiliation(s)
- Marjatta Raudaskoski
- Molecular Plant Biology, Department of Life Technologies, University of Turku, 20014 Turku, Finland
| |
Collapse
|
10
|
Kijpornyongpan T, Aime MC. Comparative transcriptomics reveal different mechanisms for hyphal growth across four plant-associated dimorphic fungi. Fungal Genet Biol 2021; 152:103565. [PMID: 33991665 DOI: 10.1016/j.fgb.2021.103565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 03/07/2021] [Accepted: 05/03/2021] [Indexed: 11/27/2022]
Abstract
Fungal dimorphism is a phenomenon by which a fungus can grow both as a yeast form and a hyphal form. It is frequently related to pathogenicity as different growth forms are more suitable for different functions during a life cycle. Among dimorphic plant pathogens, the corn smut fungus Ustilago maydis serves as a model organism to understand fungal dimorphism and its effect on pathogenicity. However, there is a lack of data on whether mechanisms elucidated from model species are broadly applicable to other fungi. In this study, two non-model plant-associated species in the smut fungus subphylum (Ustilaginomycotina), Tilletiopsis washingtonensis and Meira miltonrushii, were selected to compare dimorphic mechanisms in these to those in U. maydis. We sequenced transcriptomic profiles during both yeast and hyphal growth in these two species using Tween40, a lipid mimic, as a trigger for hyphal growth. We then compared our data with previously published data from U. maydis and a fourth but unrelated dimorphic phytopathogen, Ophiostoma novo-ulmi. Comparative transcriptomics was performed to identify common genes upregulated during hyphal growth in all four dimorphic species. Intriguingly, T. washingtonensis shares the least similarities of transcriptomic alteration (hyphal growth versus yeast growth) with the others, although it is closely related to M. miltonrushii and U. maydis. This suggests that phylogenetic relatedness is not correlated with transcriptomic similarity under the same biological phenomenon. Among commonly expressed genes in the four species, genes in cell energy production and conversion, amino acid transport and metabolism and cytoskeleton are significantly enriched. Considering dimorphism genes characterized in U. maydis, as well as hyphal tip-associated genes from the literature, we found only genes encoding the cell end marker Tea4/TeaC and the kinesin motor protein Kin3 concordantly expressed in all four species. This suggests a divergence in species-specific mechanisms for dimorphic transition and hyphal growth.
Collapse
Affiliation(s)
- Teeratas Kijpornyongpan
- Department of Botany and Plant Pathology, Purdue University, 915 W State St, West Lafayette, IN 47907-2054, USA
| | - M Catherine Aime
- Department of Botany and Plant Pathology, Purdue University, 915 W State St, West Lafayette, IN 47907-2054, USA.
| |
Collapse
|
11
|
Demirci E, Arentshorst M, Yilmaz B, Swinkels A, Reid ID, Visser J, Tsang A, Ram AFJ. Genetic Characterization of Mutations Related to Conidiophore Stalk Length Development in Aspergillus niger Laboratory Strain N402. Front Genet 2021; 12:666684. [PMID: 33959152 PMCID: PMC8093798 DOI: 10.3389/fgene.2021.666684] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 03/29/2021] [Indexed: 11/29/2022] Open
Abstract
Aspergillus niger is an important filamentous fungus in industrial biotechnology for the production of citric acid and enzymes. In the late 1980s, the A. niger N400/NRRL3 strain was selected for both fundamental and applied studies in relation to several processes including gluconic acid and protein production. To facilitate handling of A. niger, the N400 wild-type strain was UV mutagenized in two consecutive rounds to generate N401 and N402. N402 was used as a reference laboratory strain and exhibits the phenotypes with reduced conidiophore stalk length and reduced radial growth. The conidiophore stalk length and radial growth of A. niger strain N400 were determined and compared to N401 and N402. The length of N400 conidiophore stalks (2.52 ± 0.40 mm) was reduced in N401 and N402 to 0.66 ± 0.14 mm and 0.34 ± 0.06 mm, respectively. Whereas N400 reached a colony diameter of 6.7 ± 0.2 cm after 7 days, N401 and N402 displayed reduced radial growth phenotype (4.3 ± 0.1 and 4.1 ± 0.1, respectively). To identify the mutations (dubbed cspA and cspB) responsible for the phenotypes of N401 and N402, the genomes were sequenced and compared to the N400 genome sequence. A parasexual cross was performed between N400 and N402 derivatives to isolate segregants which allowed cosegregation analysis of single nucleotide polymorphisms and insertions and deletions among the segregants. The shorter conidiophore stalk and reduced radial growth in N401 (cspA) was found to be caused by a 9-kb deletion on chromosome III and was further narrowed down to a truncation of NRRL3_03857 which encodes a kinesin-like protein homologous to the A. nidulans UncA protein. The mutation responsible for the further shortening of conidiophore stalks in N402 (cspB) was found to be caused by a missense mutation on chromosome V in a hitherto unstudied C2H2 transcription factor encoded by the gene NRRL3_06646. The importance of these two genes in relation to conidiophore stalk length and radial growth was confirmed by single and double gene deletion studies. The mutations in the laboratory strain N402 should be taken into consideration when studying phenotypes in the N402 background.
Collapse
Affiliation(s)
- Ebru Demirci
- Institute of Biology Leiden, Microbial Sciences, Leiden University, Leiden, Netherlands
| | - Mark Arentshorst
- Institute of Biology Leiden, Microbial Sciences, Leiden University, Leiden, Netherlands
| | - Baran Yilmaz
- Institute of Biology Leiden, Microbial Sciences, Leiden University, Leiden, Netherlands
| | - Aram Swinkels
- Institute of Biology Leiden, Microbial Sciences, Leiden University, Leiden, Netherlands
| | - Ian D Reid
- Centre for Structural and Functional Genomics, Concordia University, Montreal, QC, Canada
| | - Jaap Visser
- Institute of Biology Leiden, Microbial Sciences, Leiden University, Leiden, Netherlands.,Fungal Genetics and Technology Consultancy, Wageningen, Netherlands
| | - Adrian Tsang
- Centre for Structural and Functional Genomics, Concordia University, Montreal, QC, Canada
| | - Arthur F J Ram
- Institute of Biology Leiden, Microbial Sciences, Leiden University, Leiden, Netherlands
| |
Collapse
|
12
|
Pinar M, Peñalva MA. The fungal RABOME: RAB GTPases acting in the endocytic and exocytic pathways of Aspergillus nidulans (with excursions to other filamentous fungi). Mol Microbiol 2021; 116:53-70. [PMID: 33724562 DOI: 10.1111/mmi.14716] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/04/2021] [Accepted: 03/11/2021] [Indexed: 10/21/2022]
Abstract
RAB GTPases are major determinants of membrane identity that have been exploited as highly specific reporters to study intracellular traffic in vivo. A score of fungal papers have considered individual RABs, but systematic, integrated studies on the localization and physiological role of these regulators and their effectors have been performed only with Aspergillus nidulans. These studies have influenced the intracellular trafficking field beyond fungal specialists, leading to findings such as the maturation of trans-Golgi (TGN) cisternae into post-Golgi RAB11 secretory vesicles, the concept that these RAB11 secretory carriers are loaded with three molecular nanomotors, the understanding of the role of endocytic recycling mediated by RAB6 and RAB11 in determining the hyphal mode of life, the discovery that early endosome maturation and the ESCRT pathway are essential, the identification of specific adaptors of dynein-dynactin to RAB5 endosomes, the exquisite dependence that autophagy displays on RAB1 activity, the role of TRAPPII as a GEF for RAB11, or the conclusion that the RAB1-to-RAB11 transition is not mediated by TRAPP maturation. A remarkable finding was that the A. nidulans Spitzenkörper contains four RABs: RAB11, Sec4, RAB6, and RAB1. How these RABs cooperate during exocytosis represents an as yet outstanding question.
Collapse
Affiliation(s)
- Mario Pinar
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas Margarita Salas, CSIC, Madrid, Spain
| | - Miguel A Peñalva
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas Margarita Salas, CSIC, Madrid, Spain
| |
Collapse
|
13
|
Salogiannis J, Christensen JR, Songster LD, Aguilar-Maldonado A, Shukla N, Reck-Peterson SL. PxdA interacts with the DipA phosphatase to regulate peroxisome hitchhiking on early endosomes. Mol Biol Cell 2021; 32:492-503. [PMID: 33476181 PMCID: PMC8101442 DOI: 10.1091/mbc.e20-08-0559] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
In canonical microtubule-based transport, adaptor proteins link cargoes to dynein and kinesin motors. Recently, an alternative mode of transport known as “hitchhiking” was discovered, where cargoes achieve motility by hitching a ride on already-motile cargoes, rather than attaching to a motor protein. Hitchhiking has been best studied in two filamentous fungi, Aspergillus nidulans and Ustilago maydis. In U. maydis, ribonucleoprotein complexes, peroxisomes, lipid droplets (LDs), and endoplasmic reticulum hitchhike on early endosomes (EEs). In A. nidulans, peroxisomes hitchhike using a putative molecular linker, peroxisome distribution mutant A (PxdA), which associates with EEs. However, whether other organelles use PxdA to hitchhike on EEs is unclear, as are the molecular mechanisms that regulate hitchhiking. Here we find that the proper distribution of LDs, mitochondria, and preautophagosomes do not require PxdA, suggesting that PxdA is a peroxisome-specific molecular linker. We identify two new pxdA alleles, including a point mutation (R2044P) that disrupts PxdA’s ability to associate with EEs and reduces peroxisome movement. We also identify a novel regulator of peroxisome hitchhiking, the phosphatase DipA. DipA colocalizes with EEs and its association with EEs relies on PxdA. Together, our data suggest that PxdA and the DipA phosphatase are specific regulators of peroxisome hitchhiking on EEs.
Collapse
Affiliation(s)
- John Salogiannis
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093.,Howard Hughes Medical Institute, Chevy Chase, MD 20815
| | - Jenna R Christensen
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093
| | - Livia D Songster
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093.,Division of Biological Sciences, Cell and Developmental Biology Section, University of California, San Diego, La Jolla, CA 92093
| | - Adriana Aguilar-Maldonado
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093
| | - Nandini Shukla
- The Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 043210.,Department of Molecular Genetics, The Ohio State University, Columbus, OH 043210
| | - Samara L Reck-Peterson
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093.,Division of Biological Sciences, Cell and Developmental Biology Section, University of California, San Diego, La Jolla, CA 92093.,Howard Hughes Medical Institute, Chevy Chase, MD 20815
| |
Collapse
|
14
|
Xiang X, Qiu R. Cargo-Mediated Activation of Cytoplasmic Dynein in vivo. Front Cell Dev Biol 2020; 8:598952. [PMID: 33195284 PMCID: PMC7649786 DOI: 10.3389/fcell.2020.598952] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 10/07/2020] [Indexed: 12/12/2022] Open
Abstract
Cytoplasmic dynein-1 is a minus-end-directed microtubule motor that transports a variety of cargoes including early endosomes, late endosomes and other organelles. In many cell types, dynein accumulates at the microtubule plus end, where it interacts with its cargo to be moved toward the minus end. Dynein binds to its various cargoes via the dynactin complex and specific cargo adapters. Dynactin and some of the coiled-coil-domain-containing cargo adapters not only link dynein to cargo but also activate dynein motility, which implies that dynein is activated by its cellular cargo. Structural studies indicate that a dynein dimer switches between the autoinhibited phi state and an open state; and the binding of dynactin and a cargo adapter to the dynein tails causes the dynein motor domains to have a parallel configuration, allowing dynein to walk processively along a microtubule. Recently, the dynein regulator LIS1 has been shown to be required for dynein activation in vivo, and its mechanism of action involves preventing dynein from switching back to the autoinhibited state. In this review, we will discuss our current understanding of dynein activation and point out the gaps of knowledge on the spatial regulation of dynein in live cells. In addition, we will emphasize the importance of studying a complete set of dynein regulators for a better understanding of dynein regulation in vivo.
Collapse
Affiliation(s)
- Xin Xiang
- Department of Biochemistry and Molecular Biology, The Uniformed Services University of the Health Sciences - F. Edward Hébert School of Medicine, Bethesda, MD, United States
| | | |
Collapse
|
15
|
Spitzenkörper assembly mechanisms reveal conserved features of fungal and metazoan polarity scaffolds. Nat Commun 2020; 11:2830. [PMID: 32503980 PMCID: PMC7275032 DOI: 10.1038/s41467-020-16712-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 05/14/2020] [Indexed: 02/08/2023] Open
Abstract
The Spitzenkörper (SPK) constitutes a collection of secretory vesicles and polarity-related proteins intimately associated with polarized growth of fungal hyphae. Many SPK-localized proteins are known, but their assembly and dynamics remain poorly understood. Here, we identify protein-protein interaction cascades leading to assembly of two SPK scaffolds and recruitment of diverse effectors in Neurospora crassa. Both scaffolds are transported to the SPK by the myosin V motor (MYO-5), with the coiled-coil protein SPZ-1 acting as cargo adaptor. Neither scaffold appears to be required for accumulation of SPK secretory vesicles. One scaffold consists of Leashin-2 (LAH-2), which is required for SPK localization of the signalling kinase COT-1 and the glycolysis enzyme GPI-1. The other scaffold comprises a complex of Janus-1 (JNS-1) and the polarisome protein SPA-2. Via its Spa homology domain (SHD), SPA-2 recruits a calponin domain-containing F-actin effector (CCP-1). The SHD NMR structure reveals a conserved surface groove required for effector binding. Similarities between SPA-2/JNS-1 and the metazoan GIT/PIX complex identify foundational features of the cell polarity apparatus that predate the fungal-metazoan divergence. The Spitzenkörper (SPK) is a polarized accumulation of proteins and secretory vesicles associated with tip growth of fungal hyphae. Here, Zheng et al. study SPK assembly and dynamics, identify SPK protein scaffolds and associated proteins, and reveal similarities with other scaffolds from metazoans.
Collapse
|
16
|
Qiu R, Zhang J, Xiang X. The splicing-factor Prp40 affects dynein-dynactin function in Aspergillus nidulans. Mol Biol Cell 2020; 31:1289-1301. [PMID: 32267207 PMCID: PMC7353152 DOI: 10.1091/mbc.e20-03-0166] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The multi-component cytoplasmic dynein transports cellular cargoes with the help of another multi-component complex dynactin, but we do not know enough about factors that may affect the assembly and functions of these proteins. From a genetic screen for mutations affecting early-endosome distribution in Aspergillus nidulans, we identified the prp40AL438* mutation in Prp40A, a homologue of Prp40, an essential RNA-splicing factor in the budding yeast. Prp40A is not essential for splicing, although it associates with the nuclear splicing machinery. The prp40AL438* mutant is much healthier than the ∆prp40A mutant, but both mutants exhibit similar defects in dynein-mediated early-endosome transport and nuclear distribution. In the prp40AL438* mutant, the frequency but not the speed of dynein-mediated early-endosome transport is decreased, which correlates with a decrease in the microtubule plus-end accumulations of dynein and dynactin. Within the dynactin complex, the actin-related protein Arp1 forms a mini-filament. In a pull-down assay, the amount of Arp1 pulled down with its pointed-end protein Arp11 is lowered in the prp40AL438* mutant. In addition, we found from published interactome data that a mammalian Prp40 homologue PRPF40A interacts with Arp1. Thus, Prp40 homologues may regulate the assembly or function of dynein–dynactin and their mechanisms deserve to be further studied.
Collapse
Affiliation(s)
- Rongde Qiu
- Department of Biochemistry and Molecular Biology, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814
| | - Jun Zhang
- Department of Biochemistry and Molecular Biology, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814
| | - Xin Xiang
- Department of Biochemistry and Molecular Biology, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814
| |
Collapse
|
17
|
Molecular Approaches for Analyzing Environmental Chaetomium Diversity and Exploitation of Chaetomium thermophilum for Biochemical Analyses. Fungal Biol 2020. [DOI: 10.1007/978-3-030-31612-9_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
18
|
Qiu R, Zhang J, Xiang X. LIS1 regulates cargo-adapter-mediated activation of dynein by overcoming its autoinhibition in vivo. J Cell Biol 2019; 218:3630-3646. [PMID: 31562232 PMCID: PMC6829669 DOI: 10.1083/jcb.201905178] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 08/08/2019] [Accepted: 08/29/2019] [Indexed: 02/08/2023] Open
Abstract
Deficiency of the LIS1 protein causes lissencephaly, a brain developmental disorder. Although LIS1 binds the microtubule motor cytoplasmic dynein and has been linked to dynein function in many experimental systems, its mechanism of action remains unclear. Here, we revealed its function in cargo-adapter-mediated dynein activation in the model organism Aspergillus nidulans Specifically, we found that overexpressed cargo adapter HookA (Hook in A. nidulans) missing its cargo-binding domain (ΔC-HookA) causes dynein and its regulator dynactin to relocate from the microtubule plus ends to the minus ends, and this relocation requires LIS1 and its binding protein, NudE. Astonishingly, the requirement for LIS1 or NudE can be bypassed to a significant extent by mutations that prohibit dynein from forming an autoinhibited conformation in which the motor domains of the dynein dimer are held close together. Our results suggest a novel mechanism of LIS1 action that promotes the switch of dynein from the autoinhibited state to an open state to facilitate dynein activation.
Collapse
Affiliation(s)
- Rongde Qiu
- Department of Biochemistry and Molecular Biology, the Uniformed Services University F. Edward Hébert School of Medicine, Bethesda, MD
| | - Jun Zhang
- Department of Biochemistry and Molecular Biology, the Uniformed Services University F. Edward Hébert School of Medicine, Bethesda, MD
| | - Xin Xiang
- Department of Biochemistry and Molecular Biology, the Uniformed Services University F. Edward Hébert School of Medicine, Bethesda, MD
| |
Collapse
|
19
|
The actin capping protein in Aspergillus nidulans enhances dynein function without significantly affecting Arp1 filament assembly. Sci Rep 2018; 8:11419. [PMID: 30061726 PMCID: PMC6065395 DOI: 10.1038/s41598-018-29818-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 07/18/2018] [Indexed: 11/08/2022] Open
Abstract
The minus-end-directed microtubule motor cytoplasmic dynein requires the dynactin complex for in vivo functions. The backbone of the vertebrate dynactin complex is the Arp1 (actin-related protein 1) mini-filament whose barbed end binds to the heterodimeric actin capping protein. However, it is unclear whether the capping protein is a dynactin component in lower eukaryotic organisms, especially because it does not appear to be a component of the budding yeast dynactin complex. Here our biochemical data show that the capping protein is a component of the dynactin complex in the filamentous fungus Aspergillus nidulans. Moreover, deletion of the gene encoding capping protein alpha (capA) results in a defect in both nuclear distribution and early-endosome transport, two dynein-mediated processes. However, the defect in either process is less severe than that exhibited by a dynein heavy chain mutant or the ∆p25 mutant of dynactin. In addition, loss of capping protein does not significantly affect the assembly of the dynactin Arp1 filament or the formation of the dynein-dynactin-∆C-HookA (Hook in A. nidulans) complex. These results suggest that fungal capping protein is not important for Arp1 filament assembly but its presence is required for enhancing dynein function in vivo.
Collapse
|
20
|
Secretory Vesicle Polar Sorting, Endosome Recycling and Cytoskeleton Organization Require the AP-1 Complex in Aspergillus nidulans. Genetics 2018; 209:1121-1138. [PMID: 29925567 DOI: 10.1534/genetics.118.301240] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 06/19/2018] [Indexed: 11/18/2022] Open
Abstract
The AP-1 complex is essential for membrane protein traffic via its role in the pinching-off and sorting of secretory vesicles (SVs) from the trans-Golgi and/or endosomes. While its essentiality is undisputed in metazoa, its role in simpler eukaryotes seems less clear. Here, we dissect the role of AP-1 in the filamentous fungus Aspergillus nidulans and show that it is absolutely essential for growth due to its role in clathrin-dependent maintenance of polar traffic of specific membrane cargoes toward the apex of growing hyphae. We provide evidence that AP-1 is involved in both anterograde sorting of RabERab11-labeled SVs and RabA/BRab5-dependent endosome recycling. Additionally, AP-1 is shown to be critical for microtubule and septin organization, further rationalizing its essentiality in cells that face the challenge of cytoskeleton-dependent polarized cargo traffic. This work also opens a novel issue on how nonpolar cargoes, such as transporters, are sorted to the eukaryotic plasma membrane.
Collapse
|
21
|
Riquelme M, Aguirre J, Bartnicki-García S, Braus GH, Feldbrügge M, Fleig U, Hansberg W, Herrera-Estrella A, Kämper J, Kück U, Mouriño-Pérez RR, Takeshita N, Fischer R. Fungal Morphogenesis, from the Polarized Growth of Hyphae to Complex Reproduction and Infection Structures. Microbiol Mol Biol Rev 2018; 82:e00068-17. [PMID: 29643171 PMCID: PMC5968459 DOI: 10.1128/mmbr.00068-17] [Citation(s) in RCA: 201] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Filamentous fungi constitute a large group of eukaryotic microorganisms that grow by forming simple tube-like hyphae that are capable of differentiating into more-complex morphological structures and distinct cell types. Hyphae form filamentous networks by extending at their tips while branching in subapical regions. Rapid tip elongation requires massive membrane insertion and extension of the rigid chitin-containing cell wall. This process is sustained by a continuous flow of secretory vesicles that depends on the coordinated action of the microtubule and actin cytoskeletons and the corresponding motors and associated proteins. Vesicles transport cell wall-synthesizing enzymes and accumulate in a special structure, the Spitzenkörper, before traveling further and fusing with the tip membrane. The place of vesicle fusion and growth direction are enabled and defined by the position of the Spitzenkörper, the so-called cell end markers, and other proteins involved in the exocytic process. Also important for tip extension is membrane recycling by endocytosis via early endosomes, which function as multipurpose transport vehicles for mRNA, septins, ribosomes, and peroxisomes. Cell integrity, hyphal branching, and morphogenesis are all processes that are largely dependent on vesicle and cytoskeleton dynamics. When hyphae differentiate structures for asexual or sexual reproduction or to mediate interspecies interactions, the hyphal basic cellular machinery may be reprogrammed through the synthesis of new proteins and/or the modification of protein activity. Although some transcriptional networks involved in such reprogramming of hyphae are well studied in several model filamentous fungi, clear connections between these networks and known determinants of hyphal morphogenesis are yet to be established.
Collapse
Affiliation(s)
- Meritxell Riquelme
- Department of Microbiology, Centro de Investigación Científica y de Educación Superior de Ensenada, Ensenada, Baja California, Mexico
| | - Jesús Aguirre
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de Mexico, Mexico City, Mexico
| | - Salomon Bartnicki-García
- Department of Microbiology, Centro de Investigación Científica y de Educación Superior de Ensenada, Ensenada, Baja California, Mexico
| | - Gerhard H Braus
- Department of Molecular Microbiology and Genetics and Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Goettingen, Germany
| | - Michael Feldbrügge
- Institute for Microbiology, Heinrich Heine University Düsseldorf, Cluster of Excellence on Plant Sciences, Düsseldorf, Germany
| | - Ursula Fleig
- Institute for Functional Genomics of Microorganisms, Heinrich Heine University Düsseldorf, Cluster of Excellence on Plant Sciences, Düsseldorf, Germany
| | - Wilhelm Hansberg
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de Mexico, Mexico City, Mexico
| | - Alfredo Herrera-Estrella
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del IPN, Irapuato, Mexico
| | - Jörg Kämper
- Karlsruhe Institute of Technology-South Campus, Institute for Applied Biosciences, Karlsruhe, Germany
| | - Ulrich Kück
- Ruhr University Bochum, Lehrstuhl für Allgemeine und Molekulare Botanik, Bochum, Germany
| | - Rosa R Mouriño-Pérez
- Department of Microbiology, Centro de Investigación Científica y de Educación Superior de Ensenada, Ensenada, Baja California, Mexico
| | - Norio Takeshita
- University of Tsukuba, Faculty of Life and Environmental Sciences, Tsukuba, Japan
| | - Reinhard Fischer
- Karlsruhe Institute of Technology-South Campus, Institute for Applied Biosciences, Karlsruhe, Germany
| |
Collapse
|
22
|
Zhou L, Evangelinos M, Wernet V, Eckert AF, Ishitsuka Y, Fischer R, Nienhaus GU, Takeshita N. Superresolution and pulse-chase imaging reveal the role of vesicle transport in polar growth of fungal cells. SCIENCE ADVANCES 2018; 4:e1701798. [PMID: 29387789 PMCID: PMC5787382 DOI: 10.1126/sciadv.1701798] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 12/27/2017] [Indexed: 06/07/2023]
Abstract
Polarized growth of filamentous fungi requires continuous transport of biomolecules to the hyphal tip. To this end, construction materials are packaged in vesicles and transported by motor proteins along microtubules and actin filaments. We have studied these processes with quantitative superresolution localization microscopy of live Aspergillus nidulans cells expressing the photoconvertible protein mEosFPthermo fused to the chitin synthase ChsB. ChsB is mainly located at the Spitzenkörper near the hyphal tip and produces chitin, a key component of the cell wall. We have visualized the pulsatory dynamics of the Spitzenkörper, reflecting vesicle accumulation before exocytosis and their subsequent fusion with the apical plasma membrane. Furthermore, high-speed pulse-chase imaging after photoconversion of mEosFPthermo in a tightly focused spot revealed that ChsB is transported with two different speeds from the cell body to the hyphal tip and vice versa. Comparative analysis using motor protein deletion mutants allowed us to assign the fast movements (7 to 10 μm s-1) to transport of secretory vesicles by kinesin-1, and the slower ones (2 to 7 μm s-1) to transport by kinesin-3 on early endosomes. Our results show how motor proteins ensure the supply of vesicles to the hyphal tip, where temporally regulated exocytosis results in stepwise tip extension.
Collapse
Affiliation(s)
- Lu Zhou
- Institute of Applied Physics, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
- Institute of Nanotechnology, KIT, Karlsruhe, Germany
| | - Minoas Evangelinos
- Department of Microbiology, Institute for Applied Biosciences, KIT, Karlsruhe, Germany
- Faculty of Biology, University of Athens, Athens, Greece
- Institut de Biologie et de Médecine Moléculaires, Université Libre de Bruxelles, Gosselies, Belgium
| | - Valentin Wernet
- Department of Microbiology, Institute for Applied Biosciences, KIT, Karlsruhe, Germany
| | - Antonia F. Eckert
- Institute of Applied Physics, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Yuji Ishitsuka
- Institute of Applied Physics, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Reinhard Fischer
- Department of Microbiology, Institute for Applied Biosciences, KIT, Karlsruhe, Germany
| | - G. Ulrich Nienhaus
- Institute of Applied Physics, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
- Institute of Nanotechnology, KIT, Karlsruhe, Germany
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Institute of Toxicology and Genetics, KIT, Eggenstein-Leopoldshafen, Germany
| | - Norio Takeshita
- Department of Microbiology, Institute for Applied Biosciences, KIT, Karlsruhe, Germany
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
23
|
Etxebeste O, Espeso EA. Neurons show the path: tip-to-nucleus communication in filamentous fungal development and pathogenesis. FEMS Microbiol Rev 2017; 40:610-24. [PMID: 27587717 DOI: 10.1093/femsre/fuw021] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/17/2016] [Indexed: 01/11/2023] Open
Abstract
Multiple fungal species penetrate substrates and accomplish host invasion through the fast, permanent and unidirectional extension of filamentous cells known as hyphae. Polar growth of hyphae results, however, in a significant increase in the distance between the polarity site, which also receives the earliest information about ambient conditions, and nuclei, where adaptive responses are executed. Recent studies demonstrate that these long distances are overcome by signal transduction pathways which convey sensory information from the polarity site to nuclei, controlling development and pathogenesis. The present review compares the striking connections of the mechanisms for long-distance communication in hyphae with those from neurons, and discusses the importance of their study in order to understand invasion and dissemination processes of filamentous fungi, and design strategies for developmental control in the future.
Collapse
Affiliation(s)
- Oier Etxebeste
- Biochemistry II laboratory, Department of Applied Chemistry, Faculty of Chemistry, University of the Basque Country (UPV/EHU), 20018 San Sebastian, Spain
| | - Eduardo A Espeso
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
| |
Collapse
|
24
|
Siddiqui N, Straube A. Intracellular Cargo Transport by Kinesin-3 Motors. BIOCHEMISTRY (MOSCOW) 2017; 82:803-815. [PMID: 28918744 DOI: 10.1134/s0006297917070057] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Intracellular transport along microtubules enables cellular cargoes to efficiently reach the extremities of large, eukaryotic cells. While it would take more than 200 years for a small vesicle to diffuse from the cell body to the growing tip of a one-meter long axon, transport by a kinesin allows delivery in one week. It is clear from this example that the evolution of intracellular transport was tightly linked to the development of complex and macroscopic life forms. The human genome encodes 45 kinesins, 8 of those belonging to the family of kinesin-3 organelle transporters that are known to transport a variety of cargoes towards the plus end of microtubules. However, their mode of action, their tertiary structure, and regulation are controversial. In this review, we summarize the latest developments in our understanding of these fascinating molecular motors.
Collapse
Affiliation(s)
- N Siddiqui
- Centre for Mechanochemical Cell Biology, University of Warwick, Coventry, CV4 7AL, UK.
| | | |
Collapse
|
25
|
Zhang Y, Gao X, Manck R, Schmid M, Osmani AH, Osmani SA, Takeshita N, Fischer R. Microtubule-organizing centers of Aspergillus nidulans
are anchored at septa by a disordered protein. Mol Microbiol 2017; 106:285-303. [DOI: 10.1111/mmi.13763] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/03/2017] [Indexed: 01/21/2023]
Affiliation(s)
- Ying Zhang
- Department of Microbiology, Institute for Applied Biosciences; Karlsruhe Institute of Technology (KIT) - South Campus, Fritz-Haber-Weg 4; Karlsruhe D-76131 Germany
| | - Xiaolei Gao
- Department of Microbiology, Institute for Applied Biosciences; Karlsruhe Institute of Technology (KIT) - South Campus, Fritz-Haber-Weg 4; Karlsruhe D-76131 Germany
| | - Raphael Manck
- Department of Microbiology, Institute for Applied Biosciences; Karlsruhe Institute of Technology (KIT) - South Campus, Fritz-Haber-Weg 4; Karlsruhe D-76131 Germany
| | - Marjorie Schmid
- Department of Microbiology, Institute for Applied Biosciences; Karlsruhe Institute of Technology (KIT) - South Campus, Fritz-Haber-Weg 4; Karlsruhe D-76131 Germany
| | - Aysha H. Osmani
- Department of Molecular Genetics; Ohio State University, 105 Biological Sciences Building, 484 W 12th Ave; Columbus OH 43210 USA
| | - Stephen A. Osmani
- Department of Molecular Genetics; Ohio State University, 105 Biological Sciences Building, 484 W 12th Ave; Columbus OH 43210 USA
| | - Norio Takeshita
- Department of Microbiology, Institute for Applied Biosciences; Karlsruhe Institute of Technology (KIT) - South Campus, Fritz-Haber-Weg 4; Karlsruhe D-76131 Germany
- School of Life and Environmental Sciences; University of Tsukuba; Ten-Nou-Dai Tsukuba 305-8572 Japan
| | - Reinhard Fischer
- Department of Microbiology, Institute for Applied Biosciences; Karlsruhe Institute of Technology (KIT) - South Campus, Fritz-Haber-Weg 4; Karlsruhe D-76131 Germany
| |
Collapse
|
26
|
Steinberg G, Peñalva MA, Riquelme M, Wösten HA, Harris SD. Cell Biology of Hyphal Growth. Microbiol Spectr 2017; 5:10.1128/microbiolspec.funk-0034-2016. [PMID: 28429675 PMCID: PMC11687463 DOI: 10.1128/microbiolspec.funk-0034-2016] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Indexed: 12/30/2022] Open
Abstract
Filamentous fungi are a large and ancient clade of microorganisms that occupy a broad range of ecological niches. The success of filamentous fungi is largely due to their elongate hypha, a chain of cells, separated from each other by septa. Hyphae grow by polarized exocytosis at the apex, which allows the fungus to overcome long distances and invade many substrates, including soils and host tissues. Hyphal tip growth is initiated by establishment of a growth site and the subsequent maintenance of the growth axis, with transport of growth supplies, including membranes and proteins, delivered by motors along the cytoskeleton to the hyphal apex. Among the enzymes delivered are cell wall synthases that are exocytosed for local synthesis of the extracellular cell wall. Exocytosis is opposed by endocytic uptake of soluble and membrane-bound material into the cell. The first intracellular compartment in the endocytic pathway is the early endosomes, which emerge to perform essential additional functions as spatial organizers of the hyphal cell. Individual compartments within septated hyphae can communicate with each other via septal pores, which allow passage of cytoplasm or organelles to help differentiation within the mycelium. This article introduces the reader to more detailed aspects of hyphal growth in fungi.
Collapse
Affiliation(s)
- Gero Steinberg
- Department of Biosciences, College of Live and Environmental Sciences, University of Exeter, EX1 1TE Exeter, United Kingdom
- Department of Biology, University of Utrecht, 3584 CH, Utrecht, The Netherlands
| | - Miguel A Peñalva
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas CSIC, Madrid, 28040, Spain
| | - Meritxell Riquelme
- Department of Microbiology, Center for Scientific Research and Higher Education of Ensenada, CICESE, Ensenada, Baja California C.P. 22860, Mexico
| | - Han A Wösten
- Department of Biology, University of Utrecht, 3584 CH, Utrecht, The Netherlands
| | - Steven D Harris
- Center for Plant Science Innovation and Department of Plant Pathology, University of Nebraska, Lincoln, NE 68588-0660
| |
Collapse
|
27
|
Peñalva MA, Zhang J, Xiang X, Pantazopoulou A. Transport of fungal RAB11 secretory vesicles involves myosin-5, dynein/dynactin/p25, and kinesin-1 and is independent of kinesin-3. Mol Biol Cell 2017; 28:947-961. [PMID: 28209731 PMCID: PMC5385943 DOI: 10.1091/mbc.e16-08-0566] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 01/31/2017] [Accepted: 02/07/2017] [Indexed: 12/02/2022] Open
Abstract
In Aspergillus nidulans, the distribution of exocytic carriers involves interplay between kinesin-1, myosin-5, and dynein. Engagement of the dynein complex to these carriers requires dynactin p25, but, unlike that of early endosomes, it does not require the Hook complex. Hyphal tip cells of the fungus Aspergillus nidulans are useful for studying long-range intracellular traffic. Post-Golgi secretory vesicles (SVs) containing the RAB11 orthologue RabE engage myosin-5 as well as plus end– and minus end–directed microtubule motors, providing an experimental system with which to investigate the interplay between microtubule and actin motors acting on the same cargo. By exploiting the fact that depolymerization of F-actin unleashes SVs focused at the apex by myosin-5 to microtubule-dependent motors, we establish that the minus end–directed transport of SVs requires the dynein/dynactin supercomplex. This minus end–directed transport is largely unaffected by genetic ablation of the Hook complex adapting early endosomes (EEs) to dynein but absolutely requires p25 in dynactin. Thus dynein recruitment to two different membranous cargoes, namely EEs and SVs, requires p25, highlighting the importance of the dynactin pointed-end complex to scaffold cargoes. Finally, by studying the behavior of SVs and EEs in null and rigor mutants of kinesin-3 and kinesin-1 (UncA and KinA, respectively), we demonstrate that KinA is the major kinesin mediating the anterograde transport of SVs. Therefore SVs arrive at the apex of A. nidulans by anterograde transport involving cooperation of kinesin-1 with myosin-5 and can move away from the apex powered by dynein.
Collapse
Affiliation(s)
- Miguel A Peñalva
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Madrid 28040, Spain
| | - Jun Zhang
- Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814-4799
| | - Xin Xiang
- Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814-4799
| | - Areti Pantazopoulou
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Madrid 28040, Spain
| |
Collapse
|
28
|
Abstract
Filamentous fungi have proven to be a better-suited model system than unicellular yeasts in analyses of cellular processes such as polarized growth, exocytosis, endocytosis, and cytoskeleton-based organelle traffic. For example, the filamentous fungus
Neurospora crassa develops a variety of cellular forms. Studying the molecular basis of these forms has led to a better, yet incipient, understanding of polarized growth. Polarity factors as well as Rho GTPases, septins, and a localized delivery of vesicles are the central elements described so far that participate in the shift from isotropic to polarized growth. The growth of the cell wall by apical biosynthesis and remodeling of polysaccharide components is a key process in hyphal morphogenesis. The coordinated action of motor proteins and Rab GTPases mediates the vesicular journey along the hyphae toward the apex, where the exocyst mediates vesicle fusion with the plasma membrane. Cytoplasmic microtubules and actin microfilaments serve as tracks for the transport of vesicular carriers as well as organelles in the tubular cell, contributing to polarization. In addition to exocytosis, endocytosis is required to set and maintain the apical polarity of the cell. Here, we summarize some of the most recent breakthroughs in hyphal morphogenesis and apical growth in
N. crassa and the emerging questions that we believe should be addressed.
Collapse
Affiliation(s)
- Meritxell Riquelme
- Department of Microbiology, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Ensenada, Baja California, 22860, Mexico
| | - Leonora Martínez-Núñez
- Department of Microbiology, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Ensenada, Baja California, 22860, Mexico
| |
Collapse
|
29
|
Abstract
Filamentous fungi are extremely polarized organisms, exhibiting continuous growth at their hyphal tips. The hyphal form is related to their pathogenicity in animals and plants, and their high secretion ability for biotechnology. Polarized growth requires a sequential supply of proteins and lipids to the hyphal tip. This transport is managed by vesicle trafficking via the actin and microtubule cytoskeleton. Therefore, the arrangement of the cytoskeleton is a crucial step to establish and maintain the cell polarity. This review summarizes recent findings unraveling the mechanism of polarized growth with special emphasis on the role of actin and microtubule cytoskeleton and polarity marker proteins. Rapid insertions of membranes via highly active exocytosis at hyphal tips could quickly dilute the accumulated polarity marker proteins. Recent findings by a super-resolution microscopy indicate that filamentous fungal cells maintain their polarity at the tips by repeating transient assembly and disassembly of polarity sites.
Collapse
Affiliation(s)
- Norio Takeshita
- a Department of Microbiology , Institute for Applied Bioscience, Karlsruhe Institute of Technology (KIT) , Karlsruhe , Germany.,b Faculty of Life and Environmental Sciences , University of Tsukuba , Tsukuba , Japan
| |
Collapse
|
30
|
Mouriño-Pérez RR, Riquelme M, Callejas-Negrete OA, Galván-Mendoza JI. Microtubules and associated molecular motors in Neurospora crassa. Mycologia 2016; 108:515-27. [PMID: 26951369 DOI: 10.3852/15-323] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 03/02/2016] [Indexed: 11/10/2022]
Abstract
The cytoskeleton provides structure, shape and movement to various cells. Microtubules (MTs) are tubular structures made of α and β-tubulin heterodimers organized in 13 protofilaments, forming a hollow cylinder. A vast group of MT-associated proteins determines the function, behavior and interaction of the MTs with other cellular components. Among these proteins, molecular motors such as the dynein-dynactin complex and kinesin superfamily play roles in MT organization and organelle transport. This article focuses on the MT cytoskeleton and associated molecular motors in the filamentous fungus Neurospora crassa In addition to reviewing current available information for this fungus and contrasting it with knowledge of other fungal species, we present new experimental results that support the role of dynein, dynactin and conventional kinesin in MT organization, dynamics and transport of subcellular structures (nuclei and secretory vesicles). In wild type hyphae of N. crassa, cytoplasmic MTs are arranged longitudinally along hyphae and display a helical curvature. They interlace with one another to form a network throughout the cytoplasm. N. crassa dynein and dynactin mutants have a scant and disorganized MT cytoskeleton, an erratic and reduced Spitzenkörper (Spk) and distorted hyphal morphology. In contrast, hyphae of mutants with defective conventional kinesin exhibit only minor disruptions in MT and Spk organization. Although nuclear positioning is affected in all mutants, the MT-associated motor proteins are not major contributors to nuclear movement during hyphal growth. Cytoplasmic bulk flow is the vehicle for nuclear displacement in growing hyphal regions of N. crassa Motors are involved in nuclei saltatory movements in both retrograde or anterograde direction. In the dynein and kinesin mutants, micro and macrovesicles can reach the Spk, although growth is slightly impaired and the Spk displays an erratic path. Hyphal growth requires MTs, and their associated motors are required for their organization and dynamics and Spk integrity.
Collapse
Affiliation(s)
- Rosa Reyna Mouriño-Pérez
- Departamento de Microbiología. Centro de Investigación Científica y de Educación Superior de Ensenada, CICESE, Ensenada B.C. 22860 Mexico
| | - Meritxell Riquelme
- Departamento de Microbiología. Centro de Investigación Científica y de Educación Superior de Ensenada, CICESE, Ensenada B.C. 22860 Mexico
| | - Olga Alicia Callejas-Negrete
- Departamento de Microbiología. Centro de Investigación Científica y de Educación Superior de Ensenada, CICESE, Ensenada B.C. 22860 Mexico
| | - José Iván Galván-Mendoza
- Unidad de Microscopia Confocal y Multifotónica, CINVESTAV-Zacatenco. San Pedro Zacatenco, 07360 Ciudad de México DF, Mexico
| |
Collapse
|
31
|
Kilaru S, Schuster M, Latz M, Guo M, Steinberg G. Fluorescent markers of the endocytic pathway in Zymoseptoria tritici. Fungal Genet Biol 2016; 79:150-7. [PMID: 26092801 PMCID: PMC4502447 DOI: 10.1016/j.fgb.2015.03.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 03/12/2015] [Accepted: 03/17/2015] [Indexed: 12/28/2022]
Abstract
We establish Z. tritici fimbrin (ZtFim1) and small GTPases (ZtRab5, ZtRab7) as endocytic markers. All markers localize correctly, proven by live cell imaging and co-staining and pharmaceutical studies. We provide 3 carboxin-resistance conveying vectors for integration of all markers into the sdi1 locus. We provide 3 hygromycin B-resistance conveying vectors for random integration of all markers.
Hyphal growth in filamentous fungi is supported by the uptake (endocytosis) and recycling of membranes and associated proteins at the growing tip. An increasing body of published evidence in various fungi demonstrates that this process is of essential importance for fungal growth and pathogenicity. Here, we introduce fluorescent markers to visualize the endocytic pathway in the wheat pathogen Zymoseptoria tritici. We fused enhanced green-fluorescent protein (eGFP) to the actin-binding protein fimbrin (ZtFim1), which is located in actin patches that are formed at the plasma membrane and are participating in endocytic uptake at the cell surface. In addition, we tagged early endosomes by eGFP-labelling a Rab5-homologue (ZtRab5) and late endosomes and vacuoles by expressing eGFP-Rab7 homologue (ZtRab7). Using fluorescent dyes and live cell imaging we confirmed the dynamic behavior and localization of these markers. This set of molecular tools enables an in-depth phenotypic analysis of Z. tritici mutant strains thereby supporting new strategies towards the goal of controlling wheat against Z. tritici.
Collapse
Affiliation(s)
- S Kilaru
- Biosciences, University of Exeter, Exeter EX4 4QD, UK
| | - M Schuster
- Biosciences, University of Exeter, Exeter EX4 4QD, UK
| | - M Latz
- Biosciences, University of Exeter, Exeter EX4 4QD, UK
| | - M Guo
- Biosciences, University of Exeter, Exeter EX4 4QD, UK
| | - G Steinberg
- Biosciences, University of Exeter, Exeter EX4 4QD, UK.
| |
Collapse
|
32
|
Kellner N, Schwarz J, Sturm M, Fernandez-Martinez J, Griesel S, Zhang W, Chait BT, Rout MP, Kück U, Hurt E. Developing genetic tools to exploit Chaetomium thermophilum for biochemical analyses of eukaryotic macromolecular assemblies. Sci Rep 2016; 6:20937. [PMID: 26864114 PMCID: PMC4750058 DOI: 10.1038/srep20937] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 01/14/2016] [Indexed: 11/09/2022] Open
Abstract
We describe a method to genetically manipulate Chaetomium thermophilum, a eukaryotic thermophile, along with various biochemical applications. The transformation method depends on a thermostable endogenous selection marker operating at high temperatures combined with chromosomal integration of target genes. Our technique allows exploiting eukaryotic thermophiles as source for purifying thermostable native macromolecular complexes with an emphasis on the nuclear pore complex, holding great potential for applications in basic science and biotechnology.
Collapse
Affiliation(s)
- Nikola Kellner
- Biochemistry Center, University of Heidelberg, Heidelberg, Germany
| | - Johannes Schwarz
- Biochemistry Center, University of Heidelberg, Heidelberg, Germany
| | - Miriam Sturm
- Biochemistry Center, University of Heidelberg, Heidelberg, Germany
| | - Javier Fernandez-Martinez
- Laboratory of Cellular and Structural Biology and Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, New York, USA
| | - Sabine Griesel
- Biochemistry Center, University of Heidelberg, Heidelberg, Germany
| | - Wenzhu Zhang
- Laboratory of Cellular and Structural Biology and Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, New York, USA
| | - Brian T Chait
- Laboratory of Cellular and Structural Biology and Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, New York, USA
| | - Michael P Rout
- Laboratory of Cellular and Structural Biology and Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, New York, USA
| | - Ulrich Kück
- Department for General and Molecular Botany, Ruhr-University Bochum, Bochum, Germany
| | - Ed Hurt
- Biochemistry Center, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
33
|
López-Berges MS, Pinar M, Abenza JF, Arst HN, Peñalva MA. TheAspergillus nidulanssyntaxin PepAPep12is regulated by two Sec1/Munc-18 proteins to mediate fusion events at early endosomes, late endosomes and vacuoles. Mol Microbiol 2015; 99:199-216. [DOI: 10.1111/mmi.13226] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/21/2015] [Indexed: 01/21/2023]
Affiliation(s)
- Manuel S. López-Berges
- Departamento de Biología Celular y Molecular; Centro de Investigaciones Biológicas CSIC; Ramiro de Maeztu 9 Madrid 28040 Spain
| | - Mario Pinar
- Departamento de Biología Celular y Molecular; Centro de Investigaciones Biológicas CSIC; Ramiro de Maeztu 9 Madrid 28040 Spain
| | - Juan F. Abenza
- Departamento de Biología Celular y Molecular; Centro de Investigaciones Biológicas CSIC; Ramiro de Maeztu 9 Madrid 28040 Spain
| | - Herbert N. Arst
- Departamento de Biología Celular y Molecular; Centro de Investigaciones Biológicas CSIC; Ramiro de Maeztu 9 Madrid 28040 Spain
- Section of Microbiology; Flowers Building; Imperial College; London SW7 2AZ UK
| | - Miguel A. Peñalva
- Departamento de Biología Celular y Molecular; Centro de Investigaciones Biológicas CSIC; Ramiro de Maeztu 9 Madrid 28040 Spain
| |
Collapse
|
34
|
Yao X, Arst HN, Wang X, Xiang X. Discovery of a vezatin-like protein for dynein-mediated early endosome transport. Mol Biol Cell 2015; 26:3816-27. [PMID: 26378255 PMCID: PMC4626066 DOI: 10.1091/mbc.e15-08-0602] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 09/06/2015] [Indexed: 11/11/2022] Open
Abstract
In filamentous fungi, dynein moves early endosomes away from the hyphal tip. Aspergillus genetics is used to identify a vezatin-like protein, VezA, which is critical for dynein-mediated transport of early endosomes. VezA localizes to the hyphal tip in an actin-dependent manner and regulates the interaction between dynein and early endosomes. Early endosomes are transported bidirectionally by cytoplasmic dynein and kinesin-3, but how the movements are regulated in vivo remains unclear. Here our forward genetic study led to the discovery of VezA, a vezatin-like protein in Aspergillus nidulans, as a factor critical for early endosome distribution. Loss of vezA causes an abnormal accumulation of early endosomes at the hyphal tip, where microtubule plus ends are located. This abnormal accumulation depends on kinesin-3 and is due to a decrease in the frequency but not the speed of dynein-mediated early endosome movement. VezA-GFP signals are enriched at the hypha tip in an actin-dependent manner but are not obviously associated with early endosomes, thus differing from the early endosome association of the cargo adapter HookA (Hook in A. nidulans). On loss of VezA, HookA associates normally with early endosomes, but the interaction between dynein-dynactin and the early-endosome-bound HookA is significantly decreased. However, VezA is not required for linking dynein-dynactin to the cytosolic ∆C-HookA, lacking the cargo-binding C-terminus. These results identify VezA as a novel regulator required for the interaction between dynein and the Hook-bound early endosomes in vivo.
Collapse
Affiliation(s)
- Xuanli Yao
- Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences-F. Edward Hébert School of Medicine, Bethesda, MD 20814
| | - Herbert N Arst
- Microbiology Section, Department of Medicine, Imperial College London, London SW7 2AZ, United Kingdom
| | - Xiangfeng Wang
- School of Plant Sciences, University of Arizona, Tucson, AZ 85721
| | - Xin Xiang
- Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences-F. Edward Hébert School of Medicine, Bethesda, MD 20814
| |
Collapse
|
35
|
Abstract
Intracellular logistics are essential for delivery of newly synthesized material during polar growth of fungal hyphae. Proteins and lipids are actively transported throughout the cell by motor-dependent movement of small vesicles or larger units such as endosomes and the endoplasmic reticulum. A remarkably tight link is emerging between active membrane trafficking and mRNA transport, a process that determines the precise subcellular localization of translation products within the cell. Here, we report on recent insights into the mechanism and biological role of these intricate cotransport processes in fungal models such as Saccharomyces cerevisiae, Candida albicans, and Ustilago maydis. In the latter, we focus on the new finding of endosomal mRNA transport and its implications for protein targeting, complex assembly, and septin biology.
Collapse
Affiliation(s)
- Carl Haag
- Cluster of Excellence on Plant Sciences, Institute for Microbiology, Heinrich Heine University Düsseldorf, 40204 Düsseldorf, Germany; , ,
| | - Benedikt Steuten
- Cluster of Excellence on Plant Sciences, Institute for Microbiology, Heinrich Heine University Düsseldorf, 40204 Düsseldorf, Germany; , ,
| | - Michael Feldbrügge
- Cluster of Excellence on Plant Sciences, Institute for Microbiology, Heinrich Heine University Düsseldorf, 40204 Düsseldorf, Germany; , ,
| |
Collapse
|
36
|
Manck R, Ishitsuka Y, Herrero S, Takeshita N, Nienhaus GU, Fischer R. Genetic evidence for a microtubule-capture mechanism during polarised growth of Aspergillus nidulans. J Cell Sci 2015; 128:3569-82. [PMID: 26272919 DOI: 10.1242/jcs.169094] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 08/10/2015] [Indexed: 12/13/2022] Open
Abstract
The cellular switch from symmetry to polarity in eukaryotes depends on the microtubule (MT) and actin cytoskeletons. In fungi such as Schizosaccharomyces pombe or Aspergillus nidulans, the MT cytoskeleton determines the sites of actin polymerization through cortical cell-end marker proteins. Here we describe A. nidulans MT guidance protein A (MigA) as the first ortholog of the karyogamy protein Kar9 from Saccharomyces cerevisiae in filamentous fungi. A. nidulans MigA interacts with the cortical ApsA protein and is involved in spindle positioning during mitosis. MigA is also associated with septal and nuclear MT organizing centers (MTOCs). Super-resolution photoactivated localization microscopy (PALM) analyses revealed that MigA is recruited to assembling and retracting MT plus ends in an EbA-dependent manner. MigA is required for MT convergence in hyphal tips and plays a role in correct localization of the cell-end markers TeaA and TeaR. In addition, MigA interacts with a class-V myosin, suggesting that an active mechanism exists to capture MTs and to pull the ends along actin filaments. Hence, the organization of MTs and actin depend on each other, and positive feedback loops ensure robust polar growth.
Collapse
Affiliation(s)
- Raphael Manck
- Karlsruhe Institute of Technology (KIT) - South Campus, Institute for Applied Biosciences, Department of Microbiology, Hertzstrasse 16, Karlsruhe D-76187, Germany
| | - Yuji Ishitsuka
- Karlsruhe Institute of Technology (KIT) - South Campus, Institute for Applied Physics and Center for Functional Nanostructures, Karlsruhe 76131, Germany
| | - Saturnino Herrero
- Karlsruhe Institute of Technology (KIT) - South Campus, Institute for Applied Biosciences, Department of Microbiology, Hertzstrasse 16, Karlsruhe D-76187, Germany
| | - Norio Takeshita
- Karlsruhe Institute of Technology (KIT) - South Campus, Institute for Applied Biosciences, Department of Microbiology, Hertzstrasse 16, Karlsruhe D-76187, Germany University of Tsukuba, Faculty of Life and Environmental Sciences, Tsukuba, Ibaraki 305-8572, Japan
| | - G Ulrich Nienhaus
- Karlsruhe Institute of Technology (KIT) - South Campus, Institute for Applied Physics and Center for Functional Nanostructures, Karlsruhe 76131, Germany
| | - Reinhard Fischer
- Karlsruhe Institute of Technology (KIT) - South Campus, Institute for Applied Biosciences, Department of Microbiology, Hertzstrasse 16, Karlsruhe D-76187, Germany
| |
Collapse
|
37
|
Xiang X, Qiu R, Yao X, Arst HN, Peñalva MA, Zhang J. Cytoplasmic dynein and early endosome transport. Cell Mol Life Sci 2015; 72:3267-80. [PMID: 26001903 DOI: 10.1007/s00018-015-1926-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 05/04/2015] [Accepted: 05/05/2015] [Indexed: 11/25/2022]
Abstract
Microtubule-based distribution of organelles/vesicles is crucial for the function of many types of eukaryotic cells and the molecular motor cytoplasmic dynein is required for transporting a variety of cellular cargos toward the microtubule minus ends. Early endosomes represent a major cargo of dynein in filamentous fungi, and dynein regulators such as LIS1 and the dynactin complex are both required for early endosome movement. In fungal hyphae, kinesin-3 and dynein drive bi-directional movements of early endosomes. Dynein accumulates at microtubule plus ends; this accumulation depends on kinesin-1 and dynactin, and it is important for early endosome movements towards the microtubule minus ends. The physical interaction between dynein and early endosome requires the dynactin complex, and in particular, its p25 component. The FTS-Hook-FHIP (FHF) complex links dynein-dynactin to early endosomes, and within the FHF complex, Hook interacts with dynein-dynactin, and Hook-early endosome interaction depends on FHIP and FTS.
Collapse
Affiliation(s)
- Xin Xiang
- Department of Biochemistry and Molecular Biology, F. Edward Hébert School of Medicine, The Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA,
| | | | | | | | | | | |
Collapse
|
38
|
Takeshita N, Wernet V, Tsuizaki M, Grün N, Hoshi HO, Ohta A, Fischer R, Horiuchi H. Transportation of Aspergillus nidulans Class III and V Chitin Synthases to the Hyphal Tips Depends on Conventional Kinesin. PLoS One 2015; 10:e0125937. [PMID: 25955346 PMCID: PMC4425547 DOI: 10.1371/journal.pone.0125937] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 03/21/2015] [Indexed: 12/02/2022] Open
Abstract
Cell wall formation and maintenance are crucial for hyphal morphogenesis. In many filamentous fungi, chitin is one of the main structural components of the cell wall. Aspergillus nidulans ChsB, a chitin synthase, and CsmA, a chitin synthase with a myosin motor-like domain (MMD) at its N-terminus, both localize predominantly at the hyphal tip regions and at forming septa. ChsB and CsmA play crucial roles in polarized hyphal growth in A. nidulans. In this study, we investigated the mechanism by which CsmA and ChsB accumulate at the hyphal tip in living hyphae. Deletion of kinA, a gene encoding conventional kinesin (kinesin-1), impaired the localization of GFP-CsmA and GFP-ChsB at the hyphal tips. The transport frequency of GFP-CsmA and GFP-ChsB in both anterograde and retrograde direction appeared lower in the kinA-deletion strain compared to wild type, although the velocities of the movements were comparable. Co-localization of GFP-ChsB and GFP-CsmA with mRFP1-KinArigor, a KinA mutant that binds to microtubules but does not move along them, was observed in the posterior of the hyphal tip regions. KinA co-immunoprecipitated with ChsB and CsmA. Co-localization and association of CsmA with KinA did not depend on the MMD. These findings indicate that ChsB and CsmA are transported along microtubules to the subapical region by KinA.
Collapse
Affiliation(s)
- Norio Takeshita
- Department of Microbiology, Institute for Applied Biosciences, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Valentin Wernet
- Department of Microbiology, Institute for Applied Biosciences, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Makusu Tsuizaki
- Department of Biotechnology, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Nathalie Grün
- Department of Microbiology, Institute for Applied Biosciences, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Hiro-omi Hoshi
- Department of Biotechnology, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Akinori Ohta
- Department of Biotechnology, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Reinhard Fischer
- Department of Microbiology, Institute for Applied Biosciences, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Hiroyuki Horiuchi
- Department of Biotechnology, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
39
|
Schneider N, Ludwig H, Nick P. Suppression of tubulin detyrosination by parthenolide recruits the plant-specific kinesin KCH to cortical microtubules. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:2001-11. [PMID: 25779700 PMCID: PMC4378638 DOI: 10.1093/jxb/erv012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 12/16/2014] [Accepted: 12/17/2014] [Indexed: 06/04/2023]
Abstract
Detyrosination of α-tubulin seems to be conserved in all eukaryotes. However, its biological function in plants has remained obscure. A conserved C-terminal tyrosine is removed by a still unidentified tubulin-tyrosine carboxypeptidase (TTC) and can be religated by a tubulin-tyrosine ligase (TTL). To obtain insight into the still elusive biological function of this detyrosination-tyrosination cycle, the effects of the TTC inhibitor parthenolide were analysed in BY-2 tobacco cells. Parthenolide caused a depletion of detyrosinated α-tubulin, whereas the level of tyrosinated tubulin was elevated. This biochemical effect was accompanied by growth inhibition in cycling BY-2 cells and alteration of microtubule-dependent events that define division and expansion geometry such as cell plate alignment or axial expansion. Furthermore, parthenolide triggered an apoplastic alkalinization indicative of activation of defence-related calcium influx channels. At the same time, parthenolide promoted the association of the plant-specific kinesin KCH with cortical microtubules. These observations are integrated into a working model, where detyrosination acts as signal to modulate the binding of kinesin motors involved in structural and sensory functions of the microtubular cytoskeleton.
Collapse
Affiliation(s)
- Natalie Schneider
- Botanical Institute, Molecular Cell Biology, Karlsruhe Institute of Technology, Kaiserstraße 2, D-76131 Karlsruhe, Germany
| | - Holger Ludwig
- Botanical Institute, Molecular Cell Biology, Karlsruhe Institute of Technology, Kaiserstraße 2, D-76131 Karlsruhe, Germany
| | - Peter Nick
- Botanical Institute, Molecular Cell Biology, Karlsruhe Institute of Technology, Kaiserstraße 2, D-76131 Karlsruhe, Germany
| |
Collapse
|
40
|
Miki T, Nishina M, Goshima G. RNAi screening identifies the armadillo repeat-containing kinesins responsible for microtubule-dependent nuclear positioning in Physcomitrella patens. PLANT & CELL PHYSIOLOGY 2015; 56:737-49. [PMID: 25588389 DOI: 10.1093/pcp/pcv002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 01/05/2015] [Indexed: 05/22/2023]
Abstract
Proper positioning of the nucleus is critical for the functioning of various cells. Actin and myosin have been shown to be crucial for the localization of the nucleus in plant cells, whereas microtubule (MT)-based mechanisms are commonly utilized in animal and fungal cells. In this study, we combined live cell microscopy with RNA interference (RNAi) screening or drug treatment and showed that MTs and a plant-specific motor protein, armadillo repeat-containing kinesin (kinesin-ARK), are required for nuclear positioning in the moss Physcomitrella patens. In tip-growing protonemal apical cells, the nucleus was translocated to the center of the cell after cell division in an MT-dependent manner. When kinesin-ARKs were knocked down using RNAi, the initial movement of the nucleus towards the center took place normally; however, before reaching the center, the nucleus was moved back to the basal edge of the cell. In intact (control) cells, MT bundles that are associated with kinesin-ARKs were frequently observed around the moving nucleus. In contrast, such MT bundles were not identified after kinesin-ARK down-regulation. An in vitro MT gliding assay showed that kinesin-ARK is a plus-end-directed motor protein. These results indicate that MTs and the MT-based motor drive nuclear migration in the moss cells, thus showing a conservation of the mechanism underlying nuclear localization among plant, animal and fungal cells.
Collapse
Affiliation(s)
- Tomohiro Miki
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8602 Japan Marine Biological Laboratory, Woods Hole, MA 02543, USA
| | - Momoko Nishina
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8602 Japan
| | - Gohta Goshima
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8602 Japan Marine Biological Laboratory, Woods Hole, MA 02543, USA
| |
Collapse
|
41
|
Abstract
Endosomes are multipurpose membranous carriers important for endocytosis and secretion. During membrane trafficking, endosomes transport lipids, proteins, and even RNAs. In highly polarized cells such as fungal hyphae, they shuttle bidirectionally along microtubules mediated by molecular motors like kinesins and dynein. For in vivo studies of these highly dynamic protein/membrane complexes, advanced fluorescence microscopy is instrumental. In this chapter, we describe live cell imaging of endosomes in two distantly related fungal model systems, the basidiomycete Ustilago maydis and the ascomycete Aspergillus nidulans. We provide insights into live cell imaging of dynamic endosomal proteins and RNA, dual-color detection for colocalization studies, as well as fluorescence recovery after photobleaching (FRAP) for quantification and photo-activated localization microscopy (PALM) for super-resolution. These methods described in two well-studied fungal model systems are applicable to a broad range of other organisms.
Collapse
|
42
|
|
43
|
Steinberg G. Kinesin-3 in the basidiomycete Ustilago maydis transports organelles along the entire microtubule array. Fungal Genet Biol 2015; 74:59-61. [DOI: 10.1016/j.fgb.2014.10.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Revised: 10/08/2014] [Accepted: 10/11/2014] [Indexed: 11/16/2022]
|
44
|
Fluorescence-Based Methods for the Study of Protein Localization, Interaction, and Dynamics in Filamentous Fungi. Fungal Biol 2015. [DOI: 10.1007/978-3-319-22437-4_2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
45
|
F-box protein RcyA controls turnover of the kinesin-7 motor KipA in Aspergillus nidulans. EUKARYOTIC CELL 2014; 13:1085-94. [PMID: 24951440 DOI: 10.1128/ec.00042-14] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Fungal filamentous growth depends on continuous membrane insertion at the tip, the delivery of membrane-bound positional markers, and the secretion of enzymes for cell wall biosynthesis. This is achieved through exocytosis. At the same time, polarized growth requires membrane and protein recycling through endocytosis. Endocytic vesicles are thought to enter the protein degradation pathway or recycle their content to the cell surface. In Saccharomyces cerevisiae, the Rcy1 F-box protein is involved in the recycling process of a v-SNARE protein. We identified a Rcy1 orthologue, RcyA, in the filamentous fungus Aspergillus nidulans as a protein interacting with the KipA kinesin-7 motor protein in a yeast two-hybrid screen. The interaction was confirmed through bimolecular fluorescence complementation. RcyA possesses an F-box domain at the N terminus and a prenylation (CaaX) motif at the C terminus. RcyA shows also similarity to Sec10, a component of the exocyst complex. The RcyA protein localized to the hyphal tip and forming septa, likely through transportation on secretory vesicles and partially on early endosomes, but independently of KipA. Deletion of rcyA did not cause severe morphological changes but caused partial defects in the recycling of the SynA v-SNARE protein and the positioning of the cell end markers TeaA and TeaR. In addition, deletion of rcyA led to increased concentrations of the KipA protein, whereas the transcript concentration was unaffected. These results suggest that RcyA probably labels KipA for degradation and thereby controls the protein amount of KipA.
Collapse
|
46
|
Gou J, Edelstein-Keshet L, Allard J. Mathematical model with spatially uniform regulation explains long-range bidirectional transport of early endosomes in fungal hyphae. Mol Biol Cell 2014; 25:2408-15. [PMID: 24943842 PMCID: PMC4142613 DOI: 10.1091/mbc.e14-03-0826] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cellular cargo transported bidirectionally along microtubules by dynein and kinesin can be organized by spatially nonuniform upstream regulation or can self-organize. A mathematical model of early endosome transport in fungal hyphae demonstrates that spatiotemporally uniform regulation results in cargo dynamics consistent with experiment. In many cellular contexts, cargo is transported bidirectionally along microtubule bundles by dynein and kinesin-family motors. Upstream factors influence how individual cargoes are locally regulated, as well as how long-range transport is regulated at the whole-cell scale. Although the details of local, single-cargo bidirectional switching have been extensively studied, it remains to be elucidated how this results in cell-scale spatial organization. Here we develop a mathematical model of early endosome transport in Ustilago maydis. We demonstrate that spatiotemporally uniform regulation, with constant transition rates, results in cargo dynamics that is consistent with experimental data, including data from motor mutants. We find that microtubule arrays can be symmetric in plus-end distribution but asymmetric in binding-site distribution in a manner that affects cargo dynamics and that cargo can travel past microtubule ends in microtubule bundles. Our model makes several testable predictions, including secondary features of dynein and cargo distributions.
Collapse
Affiliation(s)
- Jia Gou
- Department of Mathematics, University of British Columbia, Vancouver, BC V6T1Z2, Canada
| | - Leah Edelstein-Keshet
- Department of Mathematics, University of British Columbia, Vancouver, BC V6T1Z2, Canada
| | - Jun Allard
- Department of Mathematics, Department of Physics and Astronomy, and Center for Complex Biological Systems, University of California, Irvine, Irvine, CA 92617
| |
Collapse
|
47
|
Yao X, Wang X, Xiang X. FHIP and FTS proteins are critical for dynein-mediated transport of early endosomes in Aspergillus. Mol Biol Cell 2014; 25:2181-9. [PMID: 24870033 PMCID: PMC4091831 DOI: 10.1091/mbc.e14-04-0873] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The minus end-directed microtubule motor cytoplasmic dynein transports various cellular cargoes, including early endosomes, but how dynein binds to its cargo remains unclear. Recently fungal Hook homologues were found to link dynein to early endosomes for their transport. Here we identified FhipA in Aspergillus nidulans as a key player for HookA (A. nidulans Hook) function via a genome-wide screen for mutants defective in early-endosome distribution. The human homologue of FhipA, FHIP, is a protein in the previously discovered FTS/Hook/FHIP (FHF) complex, which contains, besides FHIP and Hook proteins, Fused Toes (FTS). Although this complex was not previously shown to be involved in dynein-mediated transport, we show here that loss of either FhipA or FtsA (A. nidulans FTS homologue) disrupts HookA-early endosome association and inhibits early endosome movement. Both FhipA and FtsA associate with early endosomes, and interestingly, while FtsA-early endosome association requires FhipA and HookA, FhipA-early endosome association is independent of HookA and FtsA. Thus FhipA is more directly linked to early endosomes than HookA and FtsA. However, in the absence of HookA or FtsA, FhipA protein level is significantly reduced. Our results indicate that all three proteins in the FtsA/HookA/FhipA complex are important for dynein-mediated early endosome movement.
Collapse
Affiliation(s)
- Xuanli Yao
- Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences-F. Edward Hébert School of Medicine, Bethesda, MD 20814
| | - Xiangfeng Wang
- School of Plant Sciences, University of Arizona, Tucson, AZ 85721
| | - Xin Xiang
- Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences-F. Edward Hébert School of Medicine, Bethesda, MD 20814
| |
Collapse
|
48
|
Zhang J, Qiu R, Arst HN, Peñalva MA, Xiang X. HookA is a novel dynein-early endosome linker critical for cargo movement in vivo. ACTA ACUST UNITED AC 2014; 204:1009-26. [PMID: 24637327 PMCID: PMC3998793 DOI: 10.1083/jcb.201308009] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
HookA is a novel linker protein that binds to endosomes and to dynein–dynactin and promotes dynein–early endosome interaction in Aspergillus. Cytoplasmic dynein transports membranous cargoes along microtubules, but the mechanism of dynein–cargo interaction is unclear. From a genetic screen, we identified a homologue of human Hook proteins, HookA, as a factor required for dynein-mediated early endosome movement in the filamentous fungus Aspergillus nidulans. HookA contains a putative N-terminal microtubule-binding domain followed by coiled-coil domains and a C-terminal cargo-binding domain, an organization reminiscent of cytoplasmic linker proteins. HookA–early endosome interaction occurs independently of dynein–early endosome interaction and requires the C-terminal domain. Importantly, HookA interacts with dynein and dynactin independently of HookA–early endosome interaction but dependent on the N-terminal part of HookA. Both dynein and the p25 subunit of dynactin are required for the interaction between HookA and dynein–dynactin, and loss of HookA significantly weakens dynein–early endosome interaction, causing a virtually complete absence of early endosome movement. Thus, HookA is a novel linker important for dynein–early endosome interaction in vivo.
Collapse
Affiliation(s)
- Jun Zhang
- Department of Biochemistry and Molecular Biology, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814
| | | | | | | | | |
Collapse
|
49
|
Takeshita N, Manck R, Grün N, de Vega SH, Fischer R. Interdependence of the actin and the microtubule cytoskeleton during fungal growth. Curr Opin Microbiol 2014; 20:34-41. [PMID: 24879477 DOI: 10.1016/j.mib.2014.04.005] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 04/28/2014] [Accepted: 04/29/2014] [Indexed: 02/04/2023]
Abstract
Cell polarization is a theme in biology conserved from bacteria to man. One of the most extremely polarized cells in nature is the hyphae of filamentous fungi. A continuous flow of secretion vesicles from the hyphal cell body to the tip is essential for cell wall and membrane extension. Microtubules (MTs) and actin, along with their corresponding motor proteins, are involved in the secretion process. Therefore, the arrangement of the cytoskeleton is a crucial step to establish and maintain polarity. Here we review recent findings unraveling the mechanism of polarized growth with special emphasis on the role of the actin and MT cytoskeletons and cell end markers linking the two cytoskeletons. We will mainly focus on Neurospora crassa and Aspergillus nidulans as model organisms.
Collapse
Affiliation(s)
- Norio Takeshita
- Karlsruhe Institute of Technology (KIT) - South Campus, Institute for Applied Biosciences, Department of Microbiology, Hertzstrasse 16, D-76187 Karlsruhe, Germany; University of Tsukuba, Faculty of Life and Environmental Sciences, Tsukuba, Ibaraki 305-8572, Japan.
| | - Raphael Manck
- Karlsruhe Institute of Technology (KIT) - South Campus, Institute for Applied Biosciences, Department of Microbiology, Hertzstrasse 16, D-76187 Karlsruhe, Germany
| | - Nathalie Grün
- Karlsruhe Institute of Technology (KIT) - South Campus, Institute for Applied Biosciences, Department of Microbiology, Hertzstrasse 16, D-76187 Karlsruhe, Germany
| | - Satur Herrero de Vega
- Karlsruhe Institute of Technology (KIT) - South Campus, Institute for Applied Biosciences, Department of Microbiology, Hertzstrasse 16, D-76187 Karlsruhe, Germany
| | - Reinhard Fischer
- Karlsruhe Institute of Technology (KIT) - South Campus, Institute for Applied Biosciences, Department of Microbiology, Hertzstrasse 16, D-76187 Karlsruhe, Germany.
| |
Collapse
|
50
|
Steinberg G. Endocytosis and early endosome motility in filamentous fungi. Curr Opin Microbiol 2014; 20:10-8. [PMID: 24835422 PMCID: PMC4148197 DOI: 10.1016/j.mib.2014.04.001] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2014] [Accepted: 04/21/2014] [Indexed: 10/25/2022]
Abstract
Hyphal growth of filamentous fungi requires microtubule-based long-distance motility of early endosomes. Since the discovery of this process in Ustilago maydis, our understanding of its molecular basis and biological function has greatly advanced. Studies in U. maydis and Aspergillus nidulans reveal a complex interplay of the motor proteins kinesin-3 and dynein, which co-operate to support bi-directional motion of early endosomes. Genetic screening has shed light on the molecular mechanisms underpinning motor regulation, revealing Hook protein as general motor adapters on early endosomes. Recently, fascinating insight into unexpected roles for endosome motility has emerged. This includes septin filament formation and cellular distribution of the machinery for protein translation.
Collapse
Affiliation(s)
- Gero Steinberg
- Biosciences, University of Exeter, Stocker Road, Exeter EX4 4QD, UK.
| |
Collapse
|