1
|
Yang Q, Wang Y, Wang Z, Lv S, Hao Z, Wei A, Li W. Curation of OCA2 Variants of Uncertain Significance From Chinese Oculocutaneous Albinism Patients Based on Multiplex Assays. Pigment Cell Melanoma Res 2025; 38:e13212. [PMID: 39636647 DOI: 10.1111/pcmr.13212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/07/2024] [Accepted: 10/23/2024] [Indexed: 12/07/2024]
Abstract
Oculocutaneous albinism type 2 (OCA-2, OMIM: 203200) is associated with variants in the OCA2 gene. In this study, we aimed to re-classify variants of uncertain significance (VUS) in OCA2 by evaluating subcellular localization and channel activity through multiplex assays of variant effect (MAVEs). Following the ClinGen guidelines for PS3 evidence, we selected 13 OCA2 variants from ClinVar (6 benign/likely benign [B/LB] and 7 pathogenic/likely pathogenic [P/LP]) for OddsPath analysis. The P/LP variants exhibited abnormal functions, while the B/LB variants demonstrated normal functions, supporting the application of "PS3_moderate" evidence for VUS re-classification. In our functional evaluation of 30 VUS identified in 38 individuals with suspected OCA-2 by trio whole-exome sequencing, we observed 6 VUS with abnormal localization and 11 with abnormal channel activity. Based on PS3_moderate evidence, 8 VUS were re-classified as LP, while 22 remained VUS. Consequently, 7 out of 38 previously undiagnosed patients received a molecular diagnosis of OCA-2. These MAVEs offer a robust approach for curating OCA2 VUS, enhancing diagnostic accuracy, and informing genetic counseling. Additionally, this variant cohort is a valuable resource for public databases.
Collapse
Affiliation(s)
- Qingsong Yang
- Beijing Key Laboratory for Genetics of Birth Defects, Beijing Pediatric Research Institute, Genetics and Birth Defects Control Center, National Center for Children's Health, MOE Key Laboratory of Major Diseases in Children, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Yizhen Wang
- Beijing Key Laboratory for Genetics of Birth Defects, Beijing Pediatric Research Institute, Genetics and Birth Defects Control Center, National Center for Children's Health, MOE Key Laboratory of Major Diseases in Children, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Zengge Wang
- Beijing Key Laboratory for Genetics of Birth Defects, Beijing Pediatric Research Institute, Genetics and Birth Defects Control Center, National Center for Children's Health, MOE Key Laboratory of Major Diseases in Children, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Shushu Lv
- Department of Dermatology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Zhenhua Hao
- Beijing Key Laboratory for Genetics of Birth Defects, Beijing Pediatric Research Institute, Genetics and Birth Defects Control Center, National Center for Children's Health, MOE Key Laboratory of Major Diseases in Children, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Aihua Wei
- Department of Dermatology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Wei Li
- Beijing Key Laboratory for Genetics of Birth Defects, Beijing Pediatric Research Institute, Genetics and Birth Defects Control Center, National Center for Children's Health, MOE Key Laboratory of Major Diseases in Children, Beijing Children's Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
2
|
Cho E, Hyung KE, Choi YH, Chun H, Kim D, Jun SH, Kang NG. Modulating OCA2 Expression as a Promising Approach to Enhance Skin Brightness and Reduce Dark Spots. Biomolecules 2024; 14:1284. [PMID: 39456217 PMCID: PMC11506640 DOI: 10.3390/biom14101284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/28/2024] [Accepted: 10/07/2024] [Indexed: 10/28/2024] Open
Abstract
The oculocutaneous albinism II (OCA2) gene encodes a melanosomal transmembrane protein involved in melanogenesis. Recent genome-wide association studies have identified several single nucleotide polymorphisms within OCA2 genes that are involved in skin pigmentation. Nevertheless, there have been no attempts to modulate this gene to improve skin discoloration. Accordingly, our aim was to identify compounds that can reduce OCA2 expression and to develop a formula that can improve skin brightness and reduce hyperpigmented spots. In this study, we investigated the effects of OCA2 expression reduction on melanin levels, melanosome pH, and autophagy induction through siRNA knockdown. Additionally, we identified several bioactives that effectively reduce OCA2 expression. Ultimately, in a clinical trial, we demonstrated that topical application of those compounds significantly improved skin tone and dark spots compared to vitamin C, a typical brightening agent. These findings demonstrate that OCA2 is a promising target for the development of efficacious cosmetics and therapeutics designed to treat hyperpigmentation.
Collapse
Affiliation(s)
| | | | | | | | | | - Seung-Hyun Jun
- LG Household and Health Care, R & D Center, Seoul 07795, Republic of Korea; (E.C.); (K.E.H.); (Y.-H.C.); (H.C.); (D.K.)
| | - Nae-Gyu Kang
- LG Household and Health Care, R & D Center, Seoul 07795, Republic of Korea; (E.C.); (K.E.H.); (Y.-H.C.); (H.C.); (D.K.)
| |
Collapse
|
3
|
Goff PS, Patel S, Carter T, Marks MS, Sviderskaya EV. Enhanced MC1R-signalling and pH modulation facilitate melanogenesis within late endosomes of BLOC-1-deficient melanocytes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.08.602505. [PMID: 39026869 PMCID: PMC11257453 DOI: 10.1101/2024.07.08.602505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Photoprotective melanins in the skin are synthesised by epidermal melanocytes within specialised lysosome-related organelles called melanosomes. Melanosomes coexist with lysosomes; thus, melanocytes employ specific trafficking machineries to ensure correct cargo delivery to either the endolysosomal system or maturing melanosomes. Mutations in some of the protein complexes required for melanogenic cargo delivery, such as biogenesis of lysosome-related organelles complex 1 (BLOC-1), result in hypopigmentation due to mistrafficking of cargo to endolysosomes. We show that hypopigmented BLOC-1-deficient melanocytes retain melanogenic capacity that can be enhanced by treatment with cAMP elevating agents despite the mislocalisation of melanogenic proteins. The melanin formed in BLOC-1-deficient melanocytes is not generated in melanosomes but rather within late endosomes/lysosomes to which some cargoes mislocalise. Although these organelles generally are acidic, a cohort of late endosomes/lysosomes have a sufficiently neutral pH to facilitate melanogenesis, perhaps due to mislocalised melanosomal transporters and melanogenic enzymes. Modulation of the pH of late endosomes/lysosomes by genetic manipulation or via treatment with lysosomotropic agents significantly enhances the melanin content of BLOC-1-deficient melanocytes. Our data suggest that upregulation of mistargeted cargoes can facilitate reprogramming of a subset of endolysosomes to generate some functions of lysosome-related organelles.
Collapse
|
4
|
Fernandes B, Cavaco-Paulo A, Matamá T. A Comprehensive Review of Mammalian Pigmentation: Paving the Way for Innovative Hair Colour-Changing Cosmetics. BIOLOGY 2023; 12:biology12020290. [PMID: 36829566 PMCID: PMC9953601 DOI: 10.3390/biology12020290] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/26/2023] [Accepted: 02/09/2023] [Indexed: 02/15/2023]
Abstract
The natural colour of hair shafts is formed at the bulb of hair follicles, and it is coupled to the hair growth cycle. Three critical processes must happen for efficient pigmentation: (1) melanosome biogenesis in neural crest-derived melanocytes, (2) the biochemical synthesis of melanins (melanogenesis) inside melanosomes, and (3) the transfer of melanin granules to surrounding pre-cortical keratinocytes for their incorporation into nascent hair fibres. All these steps are under complex genetic control. The array of natural hair colour shades are ascribed to polymorphisms in several pigmentary genes. A myriad of factors acting via autocrine, paracrine, and endocrine mechanisms also contributes for hair colour diversity. Given the enormous social and cosmetic importance attributed to hair colour, hair dyeing is today a common practice. Nonetheless, the adverse effects of the long-term usage of such cosmetic procedures demand the development of new methods for colour change. In this context, case reports of hair lightening, darkening and repigmentation as a side-effect of the therapeutic usage of many drugs substantiate the possibility to tune hair colour by interfering with the biology of follicular pigmentary units. By scrutinizing mammalian pigmentation, this review pinpoints key targetable processes for the development of innovative cosmetics that can safely change the hair colour from the inside out.
Collapse
Affiliation(s)
- Bruno Fernandes
- CEB—Centre of Biological Engineering, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
| | - Artur Cavaco-Paulo
- CEB—Centre of Biological Engineering, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
- LABBELS—Associate Laboratory, 4710-057 Braga, Portugal
- Correspondence: (A.C.-P.); (T.M.); Tel.: +351-253-604-409 (A.C.-P.); +351-253-601-599 (T.M.)
| | - Teresa Matamá
- CEB—Centre of Biological Engineering, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
- LABBELS—Associate Laboratory, 4710-057 Braga, Portugal
- Correspondence: (A.C.-P.); (T.M.); Tel.: +351-253-604-409 (A.C.-P.); +351-253-601-599 (T.M.)
| |
Collapse
|
5
|
Zhu Y, Li S, Jaume A, Jani RA, Delevoye C, Raposo G, Marks MS. Type II phosphatidylinositol 4-kinases function sequentially in cargo delivery from early endosomes to melanosomes. J Biophys Biochem Cytol 2022; 221:213509. [PMID: 36169639 PMCID: PMC9524207 DOI: 10.1083/jcb.202110114] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 03/31/2022] [Accepted: 05/04/2022] [Indexed: 12/11/2022] Open
Abstract
Melanosomes are pigment cell-specific lysosome-related organelles in which melanin pigments are synthesized and stored. Melanosome maturation requires delivery of melanogenic cargoes via tubular transport carriers that emanate from early endosomes and that require BLOC-1 for their formation. Here we show that phosphatidylinositol-4-phosphate (PtdIns4P) and the type II PtdIns-4-kinases (PI4KIIα and PI4KIIβ) support BLOC-1-dependent tubule formation to regulate melanosome biogenesis. Depletion of either PI4KIIα or PI4KIIβ with shRNAs in melanocytes reduced melanin content and misrouted BLOC-1-dependent cargoes to late endosomes/lysosomes. Genetic epistasis, cell fractionation, and quantitative live-cell imaging analyses show that PI4KIIα and PI4KIIβ function sequentially and non-redundantly downstream of BLOC-1 during tubule elongation toward melanosomes by generating local pools of PtdIns4P. The data show that both type II PtdIns-4-kinases are necessary for efficient BLOC-1-dependent tubule elongation and subsequent melanosome contact and content delivery during melanosome biogenesis. The independent functions of PtdIns-4-kinases in tubule extension are downstream of likely redundant functions in BLOC-1-dependent tubule initiation.
Collapse
Affiliation(s)
- Yueyao Zhu
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia Research Institute, Philadelphia, PA.,Department of Biology, University of Pennsylvania School of Arts and Sciences, Philadelphia, PA
| | - Shuixing Li
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia Research Institute, Philadelphia, PA.,Department of Pathology and Laboratory Medicine and Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Alexa Jaume
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia Research Institute, Philadelphia, PA.,Department of Pathology and Laboratory Medicine and Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Riddhi Atul Jani
- Institut Curie, PSL Research University, CNRS, UMR 144, Structure and Membrane Compartments, Paris, France
| | - Cédric Delevoye
- Institut Curie, PSL Research University, CNRS, UMR 144, Structure and Membrane Compartments, Paris, France
| | - Graça Raposo
- Institut Curie, PSL Research University, CNRS, UMR 144, Structure and Membrane Compartments, Paris, France
| | - Michael S Marks
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia Research Institute, Philadelphia, PA.,Department of Pathology and Laboratory Medicine and Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
6
|
The retinal pigmentation pathway in human albinism: Not so black and white. Prog Retin Eye Res 2022; 91:101091. [PMID: 35729001 DOI: 10.1016/j.preteyeres.2022.101091] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 05/24/2022] [Accepted: 05/26/2022] [Indexed: 12/16/2022]
Abstract
Albinism is a pigment disorder affecting eye, skin and/or hair. Patients usually have decreased melanin in affected tissues and suffer from severe visual abnormalities, including foveal hypoplasia and chiasmal misrouting. Combining our data with those of the literature, we propose a single functional genetic retinal signalling pathway that includes all 22 currently known human albinism disease genes. We hypothesise that defects affecting the genesis or function of different intra-cellular organelles, including melanosomes, cause syndromic forms of albinism (Hermansky-Pudlak (HPS) and Chediak-Higashi syndrome (CHS)). We put forward that specific melanosome impairments cause different forms of oculocutaneous albinism (OCA1-8). Further, we incorporate GPR143 that has been implicated in ocular albinism (OA1), characterised by a phenotype limited to the eye. Finally, we include the SLC38A8-associated disorder FHONDA that causes an even more restricted "albinism-related" ocular phenotype with foveal hypoplasia and chiasmal misrouting but without pigmentation defects. We propose the following retinal pigmentation pathway, with increasingly specific genetic and cellular defects causing an increasingly specific ocular phenotype: (HPS1-11/CHS: syndromic forms of albinism)-(OCA1-8: OCA)-(GPR143: OA1)-(SLC38A8: FHONDA). Beyond disease genes involvement, we also evaluate a range of (candidate) regulatory and signalling mechanisms affecting the activity of the pathway in retinal development, retinal pigmentation and albinism. We further suggest that the proposed pigmentation pathway is also involved in other retinal disorders, such as age-related macular degeneration. The hypotheses put forward in this report provide a framework for further systematic studies in albinism and melanin pigmentation disorders.
Collapse
|
7
|
Bai M, Ke S, Yu H, Xu Y, Yu Y, Lu S, Wang C, Huang J, Ma Y, Dai W, Wu Y. Key molecules associated with thyroid carcinoma prognosis: A study based on transcriptome sequencing and GEO datasets. Front Immunol 2022; 13:964891. [PMID: 36059514 PMCID: PMC9428590 DOI: 10.3389/fimmu.2022.964891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 08/01/2022] [Indexed: 11/17/2022] Open
Abstract
Background Thyroid carcinoma (THCA) has a low mortality rate, but its incidence has been rising over the years. We need to pay attention to its progression and prognosis. In this study, a transcriptome sequencing analysis and bioinformatics methods were used to screen key genes associated with THCA development and analyse their clinical significance and diagnostic value. Methods We collected 10 pairs of THCA tissues and noncancerous tissues, these samples were used for transcriptome sequencing to identify disordered genes. The gene expression profiles were obtained from the Gene Expression Omnibus (GEO) database. Comprehensive analysis of thyroid clinicopathological data using The Cancer Genome Atlas (TCGA). R software was used to carry out background correction, normalization and log2 conversion. We used quantitative real-time PCR (qRT–PCR) and Western blot to determine differentially expressed genes (DEGs) expression in samples. We integrated the DEGs expression, clinical features and progression-free interval (PFI). The related functions and immune infiltration degree were established by Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), Gene Set Enrichment Analysis (GSEA), and single-sample Gene Set Enrichment Analysis (ssGSEA). The UALCAN database was used to analyse the methylation level. Results We evaluated DEGs between normal tissue and cancer. Three genes were identified: regulator of G protein signaling 8 (RGS8), diacylglycerol kinase iota (DGKI) and oculocutaneous albinism II (OCA2). The mRNA and protein expression levels of RGS8, DGKI and OCA2 in normal tissues were higher than those in THCA tissues. Better survival outcomes were associated with higher expression of RGS8 (HR=0.38, P=0.001), DGKI (HR=0.52, P=0.022), and OCA2 (HR=0.41, P=0.003). The GO analysis, KEGG analysis and GSEA proved that the coexpressed genes of RGS8, DGKI and OCA2 were related to thyroid hormone production and peripheral downstream signal transduction effects. The expression levels of RGS8, DGKI and OCA2 were linked to the infiltration of immune cells such as DC cells. The DNA methylation level of OCA2 in cancer tissues was higher than that in the normal samples. Conclusions RGS8, DGKI and OCA2 might be promising prognostic molecular markers in patients with THCA and reveal the clinical significance of RGS8, DGKI and OCA2 in THCA.
Collapse
Affiliation(s)
- Miaoyu Bai
- Department of Minimal Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shanjia Ke
- Department of Minimal Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hongjun Yu
- Department of Minimal Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yanan Xu
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Department of Hepatopancreatobiliary Surgery, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yue Yu
- Department of Thyroid Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shounan Lu
- Department of Minimal Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Chaoqun Wang
- Department of Minimal Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jingjing Huang
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yong Ma
- Department of Minimal Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- *Correspondence: Yaohua Wu, ; Wenjie Dai, ; Yong Ma,
| | - Wenjie Dai
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Department of Thyroid Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- *Correspondence: Yaohua Wu, ; Wenjie Dai, ; Yong Ma,
| | - Yaohua Wu
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Department of Thyroid Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- *Correspondence: Yaohua Wu, ; Wenjie Dai, ; Yong Ma,
| |
Collapse
|
8
|
Further insight into the global variability of the OCA2-HERC2 locus for human pigmentation from multiallelic markers. Sci Rep 2021; 11:22530. [PMID: 34795370 PMCID: PMC8602267 DOI: 10.1038/s41598-021-01940-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 11/02/2021] [Indexed: 11/20/2022] Open
Abstract
The OCA2-HERC2 locus is responsible for the greatest proportion of eye color variation in humans. Numerous studies extensively described both functional SNPs and associated patterns of variation over this region. The goal of our study is to examine how these haplotype structures and allelic associations vary when highly variable markers such as microsatellites are used. Eleven microsatellites spanning 357 Kb of OCA2-HERC2 genes are analyzed in 3029 individuals from worldwide populations. We found that several markers display large differences in allele frequency (10% to 35% difference) among Europeans, East Asians and Africans. In Europe, the alleles showing increased frequency can also discriminate individuals with (IrisPlex) predicted blue and brown eyes. Distinct haplotypes are identified around the variants C and T of the functional SNP rs12913832 (associated to blue eyes), with linkage disequilibrium r2 values significant up to 237 Kb. The haplotype carrying the allele rs12913832 C has high frequency (76%) in blue eye predicted individuals (30% in brown eye predicted individuals), while the haplotype associated to the allele rs12913832 T is restricted to brown eye predicted individuals. Finally, homozygosity values reach levels of 91% near rs12913832. Odds ratios show values of 4.2, 7.4 and 10.4 for four markers around rs12913832 and 7.1 for their core haplotype. Hence, this study provides an example on the informativeness of multiallelic markers that, despite their current limited potential contribution to forensic eye color prediction, supports the use of microsatellites for identifying causing variants showing similar genetic features and history.
Collapse
|
9
|
Le L, Sirés-Campos J, Raposo G, Delevoye C, Marks MS. Melanosome Biogenesis in the Pigmentation of Mammalian Skin. Integr Comp Biol 2021; 61:1517-1545. [PMID: 34021746 PMCID: PMC8516112 DOI: 10.1093/icb/icab078] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Melanins, the main pigments of the skin and hair in mammals, are synthesized within membrane-bound organelles of melanocytes called melanosomes. Melanosome structure and function are determined by a cohort of resident transmembrane proteins, many of which are expressed only in pigment cells and localize specifically to melanosomes. Defects in the genes that encode melanosome-specific proteins or components of the machinery required for their transport in and out of melanosomes underlie various forms of ocular or oculocutaneous albinism, characterized by hypopigmentation of the hair, skin, and eyes and by visual impairment. We review major components of melanosomes, including the enzymes that catalyze steps in melanin synthesis from tyrosine precursors, solute transporters that allow these enzymes to function, and structural proteins that underlie melanosome shape and melanin deposition. We then review the molecular mechanisms by which these components are biosynthetically delivered to newly forming melanosomes-many of which are shared by other cell types that generate cell type-specific lysosome-related organelles. We also highlight unanswered questions that need to be addressed by future investigation.
Collapse
Affiliation(s)
- Linh Le
- Department of Pathology & Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pathology & Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Cell and Molecular Biology Graduate Group, University of Pennsylvania, Philadelphia, PA, USA
| | - Julia Sirés-Campos
- Institut Curie, PSL Research University, CNRS, UMR 144, Structure and Membrane Compartments, Paris, 75005, France
| | - Graça Raposo
- Institut Curie, PSL Research University, CNRS, UMR 144, Structure and Membrane Compartments, Paris, 75005, France
| | - Cédric Delevoye
- Institut Curie, PSL Research University, CNRS, UMR 144, Structure and Membrane Compartments, Paris, 75005, France
| | - Michael S Marks
- Department of Pathology & Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pathology & Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
10
|
Zhang W, Yang X, Chen L, Liu YY, Venkatarangan V, Reist L, Hanson P, Xu H, Wang Y, Li M. A conserved ubiquitin- and ESCRT-dependent pathway internalizes human lysosomal membrane proteins for degradation. PLoS Biol 2021; 19:e3001361. [PMID: 34297722 PMCID: PMC8337054 DOI: 10.1371/journal.pbio.3001361] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 08/04/2021] [Accepted: 07/09/2021] [Indexed: 12/15/2022] Open
Abstract
The lysosome is an essential organelle to recycle cellular materials and maintain nutrient homeostasis, but the mechanism to down-regulate its membrane proteins is poorly understood. In this study, we performed a cycloheximide (CHX) chase assay to measure the half-lives of approximately 30 human lysosomal membrane proteins (LMPs) and identified RNF152 and LAPTM4A as short-lived membrane proteins. The degradation of both proteins is ubiquitin dependent. RNF152 is a transmembrane E3 ligase that ubiquitinates itself, whereas LAPTM4A uses its carboxyl-terminal PY motifs to recruit NEDD4-1 for ubiquitination. After ubiquitination, they are internalized into the lysosome lumen by the endosomal sorting complexes required for transport (ESCRT) machinery for degradation. Strikingly, when ectopically expressed in budding yeast, human RNF152 is still degraded by the vacuole (yeast lysosome) in an ESCRT-dependent manner. Thus, our study uncovered a conserved mechanism to down-regulate lysosome membrane proteins.
Collapse
Affiliation(s)
- Weichao Zhang
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Xi Yang
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Liang Chen
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Yun-Yu Liu
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Varsha Venkatarangan
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Lucas Reist
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Phyllis Hanson
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Haoxing Xu
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Yanzhuang Wang
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Ming Li
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
- * E-mail:
| |
Collapse
|
11
|
Loftus SK, Lundh L, Watkins-Chow DE, Baxter LL, Pairo-Castineira E, Nisc Comparative Sequencing Program, Jackson IJ, Oetting WS, Pavan WJ, Adams DR. A custom capture sequence approach for oculocutaneous albinism identifies structural variant alleles at the OCA2 locus. Hum Mutat 2021; 42:1239-1253. [PMID: 34246199 DOI: 10.1002/humu.24257] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 06/02/2021] [Accepted: 06/24/2021] [Indexed: 11/09/2022]
Abstract
Oculocutaneous albinism (OCA) is a heritable disorder of pigment production that manifests as hypopigmentation and altered eye development. Exon sequencing of known OCA genes is unsuccessful in producing a complete molecular diagnosis for a significant number of affected individuals. We sequenced the DNA of individuals with OCA using short-read custom capture sequencing that targeted coding, intronic, and noncoding regulatory regions of known OCA genes, and genome-wide association study-associated pigmentation loci. We identified an OCA2 complex structural variant (CxSV), defined by a 143 kb inverted segment reintroduced in intron 1, upstream of the native location. The corresponding CxSV junctions were observed in 11/390 probands screened. The 143 kb CxSV presents in one family as a copy number variant duplication for the 143 kb region. In the remaining 10/11 families, the 143 kb CxSV acquired an additional 184 kb deletion across the same region, restoring exons 3-19 of OCA2 to a copy-number neutral state. Allele-associated haplotype analysis found rare SNVs rs374519281 and rs139696407 are linked with the 143 kb CxSV in both OCA2 alleles. For individuals in which customary molecular evaluation does not reveal a biallelic OCA diagnosis, we recommend preliminary screening for these haplotype-associated rare variants, followed by junction-specific validation for the OCA2 143 kb CxSV.
Collapse
Affiliation(s)
- Stacie K Loftus
- Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Linnea Lundh
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Dawn E Watkins-Chow
- Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Laura L Baxter
- Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Erola Pairo-Castineira
- Roslin Institute, University of Edinburgh, Easter Bush, Edinburgh, UK.,MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Edinburgh, UK
| | | | - Ian J Jackson
- Roslin Institute, University of Edinburgh, Easter Bush, Edinburgh, UK.,MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Edinburgh, UK
| | - William S Oetting
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, Minnesota, USA
| | - William J Pavan
- Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - David R Adams
- Office of the Clinical Director, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
12
|
Fernández A, Hayashi M, Garrido G, Montero A, Guardia A, Suzuki T, Montoliu L. Genetics of non-syndromic and syndromic oculocutaneous albinism in human and mouse. Pigment Cell Melanoma Res 2021; 34:786-799. [PMID: 33960688 DOI: 10.1111/pcmr.12982] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/21/2021] [Accepted: 04/26/2021] [Indexed: 01/12/2023]
Abstract
Oculocutaneous albinism (OCA) is the most frequent presentation of albinism, a heterogeneous rare genetic condition generally associated with variable alterations in pigmentation and with a profound visual impairment. There are non-syndromic and syndromic types of OCA, depending on whether the gene product affected impairs essentially the function of melanosomes or, in addition, that of other lysosome-related organelles (LROs), respectively. Syndromic OCA can be more severe and associated with additional systemic consequences, beyond pigmentation and vision alterations. In addition to OCA, albinism can also be presented without obvious skin and hair pigmentation alterations, in ocular albinism (OA), and a related genetic condition known as foveal hypoplasia, optic nerve decussation defects, and anterior segment dysgenesis (FHONDA). In this review, we will focus only in the genetics of skin pigmentation in OCA, both in human and mouse, updating our current knowledge on this subject.
Collapse
Affiliation(s)
- Almudena Fernández
- Department of Molecular and Cellular Biology, National Centre for Biotechnology (CNB-CSIC), Madrid, Spain.,CIBERER-ISCIII, Madrid, Spain
| | - Masahiro Hayashi
- Department of Dermatology, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Gema Garrido
- Department of Molecular and Cellular Biology, National Centre for Biotechnology (CNB-CSIC), Madrid, Spain.,CIBERER-ISCIII, Madrid, Spain
| | - Andrea Montero
- Department of Molecular and Cellular Biology, National Centre for Biotechnology (CNB-CSIC), Madrid, Spain.,CIBERER-ISCIII, Madrid, Spain
| | - Ana Guardia
- Department of Molecular and Cellular Biology, National Centre for Biotechnology (CNB-CSIC), Madrid, Spain.,CIBERER-ISCIII, Madrid, Spain
| | - Tamio Suzuki
- Department of Dermatology, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Lluis Montoliu
- Department of Molecular and Cellular Biology, National Centre for Biotechnology (CNB-CSIC), Madrid, Spain.,CIBERER-ISCIII, Madrid, Spain
| |
Collapse
|
13
|
Scales JL, Koroma DC, Oancea E. Single organelle measurements of melanosome pH using the novel ratiometric indicator RpHiMEL. Methods Enzymol 2021; 654:315-344. [PMID: 34120720 DOI: 10.1016/bs.mie.2021.03.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Melanocytes are specialized cells that produce melanin pigments responsible for skin, hair, and eye pigmentation. The synthesis and storage of melanin occurs in unique lysosome-related organelles called melanosomes, which regulate melanin production via complex regulatory mechanisms. Maintenance of the melanosome luminal ionic environment and pH is crucial for proper function of the main melanogenic enzymes. Defects in genes encoding pH-regulating melanosomal proteins result in oculocutaneous albinism, which is characterized by hypopigmentation, impaired vision, and increased susceptibility to skin and eye cancers. We recently uncovered several ion channels and transporters that modulate melanin synthesis by acidifying or neutralizing the luminal pH of melanosomes. However, our understanding of how melanosomes and other related organelles maintain their luminal pH is far from complete. The study of melanosome pH regulation requires robust imaging and quantification tools. Despite recent advances in the development of such methods, many limitations remain, particularly for quantitative analysis of individual organelle pH. In this chapter, we will provide an overview of the available methods used for melanosome pH determination, including their advantages, limitations, and challenges. To address the critical, unmet need for reliable melanosome pH quantification tools, we engineered a novel genetically encoded, ratiometric pH sensor for melanosomes that we named RpHiMEL. Here, we describe the design and optimization of RpHiMEL, and provide a pH quantification method for individual melanosomes in live cells. We demonstrate that RpHiMEL is a highly versatile tool with the potential to advance our understanding of pH regulation in melanosomes and related organelles.
Collapse
Affiliation(s)
- Jessica L Scales
- Department of Molecular Pharmacology, Physiology, and Biotechnology, Brown University, Providence, RI, United States
| | - Donald C Koroma
- Department of Molecular Pharmacology, Physiology, and Biotechnology, Brown University, Providence, RI, United States
| | - Elena Oancea
- Department of Molecular Pharmacology, Physiology, and Biotechnology, Brown University, Providence, RI, United States.
| |
Collapse
|
14
|
Transcriptome reveals genes involving in black skin color formation of ducks. Genes Genomics 2021; 43:173-182. [PMID: 33528733 DOI: 10.1007/s13258-020-01026-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 12/10/2020] [Indexed: 10/22/2022]
Abstract
BACKGROUND Skin color is colorful for birds, which has been reported to be associated with multi-biological functions, such as crypsis, camouflage, social signaling and mate choice, but little is known about its underlying molecular mechanism. OBJECTIVE Studies on the major genes affecting the black skin color of ducks. METHODS For this purpose, Silver ammonia staining and RNA-seq analysis were carried out to identify the differences in tissue morphology and gene expressions between black and yellow skin ducks. RESULTS The silver ammonia dyes slice results showed that in the development of black duck, the content of melanin in black skin gradually increased and then decreased, and the content of melanin in yellow and black skin was significantly different. Through transcriptome, a total of 102 and 84 differentially expressed genes (DEGs) were identified in beak skin and web skin, respectively. These DEGs were enriched in melanin biosynthesis and play a critical role in melanogenesis pathway. Co-expression analysis showed that EDNRB2 was the only gene associated with black skin color in DEGs, which was also consistent with qRT-PCR. CONCLUSIONS The melanin synthesis pathway dominated by EDNRB2 up-regulated the amount of melanin synthesis, leading to the formation of black skin in ducks.
Collapse
|
15
|
Ullate-Agote A, Burgelin I, Debry A, Langrez C, Montange F, Peraldi R, Daraspe J, Kaessmann H, Milinkovitch MC, Tzika AC. Genome mapping of a LYST mutation in corn snakes indicates that vertebrate chromatophore vesicles are lysosome-related organelles. Proc Natl Acad Sci U S A 2020; 117:26307-26317. [PMID: 33020272 PMCID: PMC7584913 DOI: 10.1073/pnas.2003724117] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Reptiles exhibit a spectacular diversity of skin colors and patterns brought about by the interactions among three chromatophore types: black melanophores with melanin-packed melanosomes, red and yellow xanthophores with pteridine- and/or carotenoid-containing vesicles, and iridophores filled with light-reflecting platelets generating structural colors. Whereas the melanosome, the only color-producing endosome in mammals and birds, has been documented as a lysosome-related organelle, the maturation paths of xanthosomes and iridosomes are unknown. Here, we first use 10x Genomics linked-reads and optical mapping to assemble and annotate a nearly chromosome-quality genome of the corn snake Pantherophis guttatus The assembly is 1.71 Gb long, with an N50 of 16.8 Mb and L50 of 24. Second, we perform mapping-by-sequencing analyses and identify a 3.9-Mb genomic interval where the lavender variant resides. The lavender color morph in corn snakes is characterized by gray, rather than red, blotches on a pink, instead of orange, background. Third, our sequencing analyses reveal a single nucleotide polymorphism introducing a premature stop codon in the lysosomal trafficking regulator gene (LYST) that shortens the corresponding protein by 603 amino acids and removes evolutionary-conserved domains. Fourth, we use light and transmission electron microscopy comparative analyses of wild type versus lavender corn snakes and show that the color-producing endosomes of all chromatophores are substantially affected in the LYST mutant. Our work provides evidence characterizing xanthosomes in xanthophores and iridosomes in iridophores as lysosome-related organelles.
Collapse
Affiliation(s)
- Asier Ullate-Agote
- Laboratory of Artificial & Natural Evolution (LANE), Department of Genetics & Evolution, University of Geneva, CH-1211 Geneva, Switzerland
- SIB Swiss Institute of Bioinformatics, Switzerland
- Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, Geneva, Switzerland
| | - Ingrid Burgelin
- Laboratory of Artificial & Natural Evolution (LANE), Department of Genetics & Evolution, University of Geneva, CH-1211 Geneva, Switzerland
| | - Adrien Debry
- Laboratory of Artificial & Natural Evolution (LANE), Department of Genetics & Evolution, University of Geneva, CH-1211 Geneva, Switzerland
| | - Carine Langrez
- Laboratory of Artificial & Natural Evolution (LANE), Department of Genetics & Evolution, University of Geneva, CH-1211 Geneva, Switzerland
| | - Florent Montange
- Laboratory of Artificial & Natural Evolution (LANE), Department of Genetics & Evolution, University of Geneva, CH-1211 Geneva, Switzerland
| | - Rodrigue Peraldi
- Laboratory of Artificial & Natural Evolution (LANE), Department of Genetics & Evolution, University of Geneva, CH-1211 Geneva, Switzerland
| | - Jean Daraspe
- Faculté de Biologie et de Médecine, Electron Microscopy Facility, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Henrik Kaessmann
- DKFZ-ZMBH Alliance, Center for Molecular Biology of Heidelberg University (ZMBH), D-69120 Heidelberg, Germany
| | - Michel C Milinkovitch
- Laboratory of Artificial & Natural Evolution (LANE), Department of Genetics & Evolution, University of Geneva, CH-1211 Geneva, Switzerland
- SIB Swiss Institute of Bioinformatics, Switzerland
- Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, Geneva, Switzerland
| | - Athanasia C Tzika
- Laboratory of Artificial & Natural Evolution (LANE), Department of Genetics & Evolution, University of Geneva, CH-1211 Geneva, Switzerland;
- SIB Swiss Institute of Bioinformatics, Switzerland
- Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, Geneva, Switzerland
| |
Collapse
|
16
|
Le L, Escobar IE, Ho T, Lefkovith AJ, Latteri E, Haltaufderhyde KD, Dennis MK, Plowright L, Sviderskaya EV, Bennett DC, Oancea E, Marks MS. SLC45A2 protein stability and regulation of melanosome pH determine melanocyte pigmentation. Mol Biol Cell 2020; 31:2687-2702. [PMID: 32966160 PMCID: PMC7927184 DOI: 10.1091/mbc.e20-03-0200] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
SLC45A2 encodes a putative transporter expressed primarily in pigment cells. SLC45A2 mutations cause oculocutaneous albinism type 4 (OCA4) and polymorphisms are associated with pigmentation variation, but the localization, function, and regulation of SLC45A2 and its variants remain unknown. We show that SLC45A2 localizes to a cohort of mature melanosomes that only partially overlaps with the cohort expressing the chloride channel OCA2. SLC45A2 expressed ectopically in HeLa cells localizes to lysosomes and raises lysosomal pH, suggesting that in melanocytes SLC45A2 expression, like OCA2 expression, results in the deacidification of maturing melanosomes to support melanin synthesis. Interestingly, OCA2 overexpression compensates for loss of SLC45A2 expression in pigmentation. Analyses of SLC45A2- and OCA2-deficient mouse melanocytes show that SLC45A2 likely functions later during melanosome maturation than OCA2. Moreover, the light skin-associated SLC45A2 allelic F374 variant restores only moderate pigmentation to SLC45A2-deficient melanocytes due to rapid proteasome-dependent degradation resulting in lower protein expression levels in melanosomes than the dark skin-associated allelic L374 variant. Our data suggest that SLC45A2 maintains melanosome neutralization that is initially orchestrated by transient OCA2 activity to support melanization at late stages of melanosome maturation, and that a common allelic variant imparts reduced activity due to protein instability.
Collapse
Affiliation(s)
- Linh Le
- Department of Pathology & Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104.,Department of Pathology and Laboratory Medicine and Department of Physiology and.,Cell and Molecular Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Iliana E Escobar
- Department of Molecular Pharmacology, Physiology, and Biotechnology, Brown University, Providence, RI 02912
| | - Tina Ho
- Department of Pathology & Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104.,Department of Pathology and Laboratory Medicine and Department of Physiology and.,Cell and Molecular Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Ariel J Lefkovith
- Department of Pathology & Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104.,Department of Pathology and Laboratory Medicine and Department of Physiology and.,Cell and Molecular Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Emily Latteri
- Department of Pathology & Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104.,Department of Pathology and Laboratory Medicine and Department of Physiology and
| | - Kirk D Haltaufderhyde
- Department of Molecular Pharmacology, Physiology, and Biotechnology, Brown University, Providence, RI 02912
| | - Megan K Dennis
- Department of Pathology & Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104.,Department of Pathology and Laboratory Medicine and Department of Physiology and.,Biology Department, Marist College, Poughkeepsie, NY 12601
| | - Lynn Plowright
- Molecular & Clinical Sciences Research Institute, St George's, University of London, London SW17 0RE, UK
| | - Elena V Sviderskaya
- Molecular & Clinical Sciences Research Institute, St George's, University of London, London SW17 0RE, UK
| | - Dorothy C Bennett
- Molecular & Clinical Sciences Research Institute, St George's, University of London, London SW17 0RE, UK
| | - Elena Oancea
- Department of Molecular Pharmacology, Physiology, and Biotechnology, Brown University, Providence, RI 02912
| | - Michael S Marks
- Department of Pathology & Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104.,Department of Pathology and Laboratory Medicine and Department of Physiology and
| |
Collapse
|
17
|
Benito-Martínez S, Zhu Y, Jani RA, Harper DC, Marks MS, Delevoye C. Research Techniques Made Simple: Cell Biology Methods for the Analysis of Pigmentation. J Invest Dermatol 2020; 140:257-268.e8. [PMID: 31980058 DOI: 10.1016/j.jid.2019.12.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 11/27/2019] [Accepted: 12/05/2019] [Indexed: 12/11/2022]
Abstract
Pigmentation of the skin and hair represents the result of melanin biosynthesis within melanosomes of epidermal melanocytes, followed by the transfer of mature melanin granules to adjacent keratinocytes within the basal layer of the epidermis. Natural variation in these processes produces the diversity of skin and hair color among human populations, and defects in these processes lead to diseases such as oculocutaneous albinism. While genetic regulators of pigmentation have been well studied in human and animal models, we are still learning much about the cell biological features that regulate melanogenesis, melanosome maturation, and melanosome motility in melanocytes, and have barely scratched the surface in our understanding of melanin transfer from melanocytes to keratinocytes. Herein, we describe cultured cell model systems and common assays that have been used by investigators to dissect these features and that will hopefully lead to additional advances in the future.
Collapse
Affiliation(s)
- Silvia Benito-Martínez
- Structure and Membrane Compartments, Institut Curie, Paris Sciences & Lettres Research University, Centre National de la Recherche Scientifique, Paris, France
| | - Yueyao Zhu
- Department of Biology Graduate Program, University of Pennsylvania, Philadelphia, Pennsylvania, USA; Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania, USA; Department of Pathology and Laboratory Medicine and Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Riddhi Atul Jani
- Structure and Membrane Compartments, Institut Curie, Paris Sciences & Lettres Research University, Centre National de la Recherche Scientifique, Paris, France
| | - Dawn C Harper
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania, USA
| | - Michael S Marks
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania, USA; Department of Pathology and Laboratory Medicine and Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| | - Cédric Delevoye
- Structure and Membrane Compartments, Institut Curie, Paris Sciences & Lettres Research University, Centre National de la Recherche Scientifique, Paris, France.
| |
Collapse
|
18
|
Aardema ML, Stiassny MLJ, Alter SE. Genomic Analysis of the Only Blind Cichlid Reveals Extensive Inactivation in Eye and Pigment Formation Genes. Genome Biol Evol 2020; 12:1392-1406. [PMID: 32653909 PMCID: PMC7502198 DOI: 10.1093/gbe/evaa144] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/06/2020] [Indexed: 12/21/2022] Open
Abstract
Trait loss represents an intriguing evolutionary problem, particularly when it occurs across independent lineages. Fishes in light-poor environments often evolve “troglomorphic” traits, including reduction or loss of both pigment and eyes. Here, we investigate the genomic basis of trait loss in a blind and depigmented African cichlid, Lamprologus lethops, and explore evolutionary forces (selection and drift) that may have contributed to these losses. This species, the only known blind cichlid, is endemic to the lower Congo River. Available evidence suggests that it inhabits deep, low-light habitats. Using genome sequencing, we show that genes related to eye formation and pigmentation, as well as other traits associated with troglomorphism, accumulated inactivating mutations rapidly after speciation. A number of the genes affected in L. lethops are also implicated in troglomorphic phenotypes in Mexican cavefish (Astyanax mexicanus) and other species. Analysis of heterozygosity patterns across the genome indicates that L. lethops underwent a significant population bottleneck roughly 1 Ma, after which effective population sizes remained low. Branch-length tests on a subset of genes with inactivating mutations show little evidence of directional selection; however, low overall heterozygosity may reduce statistical power to detect such signals. Overall, genome-wide patterns suggest that accelerated genetic drift from a severe bottleneck, perhaps aided by directional selection for the loss of physiologically expensive traits, caused inactivating mutations to fix rapidly in this species.
Collapse
Affiliation(s)
- Matthew L Aardema
- Department of Biology, Montclair State University.,Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, New York
| | - Melanie L J Stiassny
- Department of Ichthyology, American Museum of Natural History, New York, New York
| | - S Elizabeth Alter
- Department of Ichthyology, American Museum of Natural History, New York, New York.,The Graduate Center, City University of New York.,Department of Biology, York College/The City University of New York
| |
Collapse
|
19
|
Kratochwil CF, Urban S, Meyer A. Genome of the Malawi golden cichlid fish (Melanochromis auratus) reveals exon loss of oca2 in an amelanistic morph. Pigment Cell Melanoma Res 2019; 32:719-723. [PMID: 31131985 DOI: 10.1111/pcmr.12799] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 04/26/2019] [Accepted: 05/17/2019] [Indexed: 11/26/2022]
Abstract
The tropical freshwater fish family Cichlidae is famous for its record-breaking rates of speciation and diversity in colors and color patterns. Here, we sequenced the genome of the Lake Malawi cichlid Melanochromis auratus to study the genetic basis of an amelanistic morph of this species that lacks the typical melanic stripes and markings. Genome sequencing of the amelanistic and wild-type morph revealed the loss of the second exon of the known pigmentation gene oculocutaneous albinism II (oca2), also known as p(ink-eyed dilution) gene or melanocyte-specific transporter gene. Additional genotyping confirms the complete association with this recessive Mendelian phenotype. The deletion results in a shorter transcript, lacking an acidic di-leucine domain that is crucial for trafficking of the Oca2 protein to melanosomes. The fact that oca2 is involved in a wide range of amelanistic morphs across vertebrates demonstrates its highly conserved function.
Collapse
Affiliation(s)
- Claudius F Kratochwil
- Department of Biology, Zoology and Evolutionary Biology, University of Konstanz, Konstanz, Germany.,Zukunftskolleg, University of Konstanz, Konstanz, Germany.,International Max Planck Research School for Organismal Biology (IMPRS), Max Planck Institute for Ornithology, Radolfzell, Germany
| | - Sabine Urban
- Department of Biology, Zoology and Evolutionary Biology, University of Konstanz, Konstanz, Germany.,International Max Planck Research School for Organismal Biology (IMPRS), Max Planck Institute for Ornithology, Radolfzell, Germany
| | - Axel Meyer
- Department of Biology, Zoology and Evolutionary Biology, University of Konstanz, Konstanz, Germany.,International Max Planck Research School for Organismal Biology (IMPRS), Max Planck Institute for Ornithology, Radolfzell, Germany
| |
Collapse
|
20
|
Yan SJ, Li Y, Li ZL, Chen Y, Zhang XH, Xiao L. A case report for severe hand-foot skin reaction caused by chemotherapy with actinomycin D in a patient with oculocutaneous albinism. Onco Targets Ther 2019; 12:1851-1855. [PMID: 30881037 PMCID: PMC6415729 DOI: 10.2147/ott.s195635] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Gestational trophoblastic neoplasms (GTN) are highly curable tumors, with an overall patient survival of 90%, due to the individualized chemotherapy. However, chemotherapy regimens vary between different treatment centers and the comparable benefits and risks of these different regimens are unclear. Here, we reported a case of GTN with oculocutaneous albinism (OCA) is resistant to fluorouracil (5-FU), extremely sensitive to actinomycin D (Act-D) with severe hand-foot skin reaction (HFSR). We hypothesized that the known, or unknown, gene mutations might be correlated with drug resistance, supersensitivity and severe drug side effects in OCA patients. Thus, we considered that OCA related genes influence some drug sensitivity and that the absence of melanin likely contributes to some drug resistance. It is important to assess the OCA related gene mutations locus of drug sensitivity, and resistance in OCA patients in future research.
Collapse
Affiliation(s)
- Shi-Jie Yan
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Anhui Medical University, Hefei 230020, Anhui, P.R. China, .,Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei 230020, Anhui, P.R. China,
| | - Yan Li
- Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan 430056, Hubei, P.R. China
| | - Ze-Lian Li
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Anhui Medical University, Hefei 230020, Anhui, P.R. China, .,Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei 230020, Anhui, P.R. China,
| | - Ying Chen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Anhui Medical University, Hefei 230020, Anhui, P.R. China, .,Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei 230020, Anhui, P.R. China,
| | - Xiao-Hui Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Anhui Medical University, Hefei 230020, Anhui, P.R. China, .,Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei 230020, Anhui, P.R. China,
| | - Lan Xiao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Anhui Medical University, Hefei 230020, Anhui, P.R. China, .,Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei 230020, Anhui, P.R. China,
| |
Collapse
|
21
|
Rogasevskaia TP, Szerencsei RT, Jalloul AH, Visser F, Winkfein RJ, Schnetkamp PPM. Cellular localization of the K
+
‐dependent Na
+
–Ca
2+
exchanger
NCKX
5 and the role of the cytoplasmic loop in its distribution in pigmented cells. Pigment Cell Melanoma Res 2018; 32:55-67. [DOI: 10.1111/pcmr.12723] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 06/13/2018] [Accepted: 07/03/2018] [Indexed: 12/25/2022]
Affiliation(s)
- Tatiana P. Rogasevskaia
- Department of BiologyMount Royal University Calgary AB Canada
- Department of Physiology & PharmacologyCumming School of MedicineUniversity of Calgary Calgary AB Canada
| | - Robert T. Szerencsei
- Department of Physiology & PharmacologyCumming School of MedicineUniversity of Calgary Calgary AB Canada
| | - Ali H. Jalloul
- Department of Physiology & PharmacologyCumming School of MedicineUniversity of Calgary Calgary AB Canada
| | - Frank Visser
- Department of Physiology & PharmacologyCumming School of MedicineUniversity of Calgary Calgary AB Canada
| | - Robert J. Winkfein
- Department of Physiology & PharmacologyCumming School of MedicineUniversity of Calgary Calgary AB Canada
| | - Paul P. M. Schnetkamp
- Department of Physiology & PharmacologyCumming School of MedicineUniversity of Calgary Calgary AB Canada
| |
Collapse
|
22
|
SNARE dynamics during melanosome maturation. Biochem Soc Trans 2018; 46:911-917. [PMID: 30026369 DOI: 10.1042/bst20180130] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 06/22/2018] [Accepted: 06/27/2018] [Indexed: 12/23/2022]
Abstract
Historically, studies on the maturation and intracellular transport of melanosomes in melanocytes have greatly contributed to elucidating the general mechanisms of intracellular transport in many different types of mammalian cells. During melanosome maturation, melanosome cargoes including melanogenic enzymes (e.g. tyrosinase) are transported from endosomes to immature melanosomes by membrane trafficking, which must require a membrane fusion process likely regulated by SNAREs [soluble NSF (N-ethylmaleimide-sensitive factor) attachment protein receptors]. In the present study, we review the literature concerning the expression and function of SNAREs (e.g. v-SNARE vesicle-associated membrane protein 7 and t-SNAREs syntaxin-3/13 and synaptosomal-associated protein-23) in melanocytes, especially in regard to the fusion process in which melanosome cargoes are finally delivered to immature melanosomes. We also describe the recent discovery of the SNARE recycling system on mature melanosomes in melanocytes. Such SNARE dynamics, especially the SNARE recycling system, on melanosomes will be useful in understanding as yet unidentified SNARE dynamics on other organelles.
Collapse
|
23
|
Li XP, Lan JY, Liu DQ, Zhou H, Qian MM, Wang WW, Yang M. OCA2 rs4778137 polymorphism predicts survival of breast cancer patients receiving neoadjuvant chemotherapy. Gene 2018; 651:161-165. [PMID: 29409738 DOI: 10.1016/j.gene.2018.01.100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 01/14/2018] [Accepted: 01/31/2018] [Indexed: 12/19/2022]
Abstract
BACKGROUND Genome-wide association study (GWAS) studies have showed that single nucleotide polymorphisms (SNPs) in OCA2 gene were associated with the survival of breast cancer patients treated with adjuvant chemotherapy. To further explain the association between OCA2 SNPs and breast cancer survival, we investigated the predictive value of rs4778137 located in OCA2 in local advanced breast cancer patients receiving neoadjuvant chemotherapy. PATIENTS AND METHODS A case-cohort with 150 breast cancer patients was performed to evaluate the effects of the OCA2 rs4778137 on breast cancer survival. The association between rs4778137 genotypes and pathological complete response (pCR, defined that the postoperative pathology indicating no residual invasive breast cancer in the breast or the axillary lymph node) were analyzed. Logistic regression analysis was performed to identify the independent predictors of pCR. Survival was assessed by Kaplan-Meier method and Cox regression analysis according to the rs4778137 genotypes. RESULTS The differences between pCR and the rs4778137 genotypes were statistically significant (p < 0.05). The patients with genotype GG harbored a better disease-free survival (HR: 2.358, p = 0.000) and overall survival (HR: 1.578, p = 0.008) than the patients with genotype CC in rs4778137. The further Univariate and Multivariate survival analysis revealed that SNP rs4778137 was an independent predictive factor of disease-free survival (p = 0.000/p = 0.001) and overall survival (p = 0.006/p = 0.045). CONCLUSION The OCA2 rs4778137 may be a predictor for the clinical response and survival in local advanced breast cancer patients who received neoadjuvant chemotherapy.
Collapse
Affiliation(s)
- Xiao-Ping Li
- Department of Laboratory Medicine, The Hospital Of Hangzhou Dianzi University, Hangzhou, Zhejiang, China
| | - Jian-Yun Lan
- Department of Pathology, The First People's Hospital of Yancheng City, Yancheng, Jiangsu, China
| | - Dong-Qin Liu
- Department of Pathology, Yancheng Maternity and Child Health Care Hospital, Affiliated of Yangzhou University Medical College, Yancheng, China
| | - Hang Zhou
- Department of General Surgery, The Hospital Of Hangzhou Dianzi University, Hangzhou, Zhejiang, China
| | - Miao-Miao Qian
- Department of Laboratory Medicine, The Hospital Of Hangzhou Dianzi University, Hangzhou, Zhejiang, China
| | - Wei-Wei Wang
- Department of Pathology, The First People's Hospital of Yancheng City, Yancheng, Jiangsu, China; Department of Pathology, The People's Hospital of Tinghu District, Yancheng, China.
| | - Man Yang
- Department of Laboratory Medicine, Yancheng TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Yancheng, Jiangsu, China.
| |
Collapse
|
24
|
Deng L, Xu S. Adaptation of human skin color in various populations. Hereditas 2017; 155:1. [PMID: 28701907 PMCID: PMC5502412 DOI: 10.1186/s41065-017-0036-2] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 06/02/2017] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Skin color is a well-recognized adaptive trait and has been studied extensively in humans. Understanding the genetic basis of adaptation of skin color in various populations has many implications in human evolution and medicine. DISCUSSION Impressive progress has been made recently to identify genes associated with skin color variation in a wide range of geographical and temporal populations. In this review, we discuss what is currently known about the genetics of skin color variation. We enumerated several cases of skin color adaptation in global modern humans and archaic hominins, and illustrated why, when, and how skin color adaptation occurred in different populations. Finally, we provided a summary of the candidate loci associated with pigmentation, which could be a valuable reference for further evolutionary and medical studies. CONCLUSION Previous studies generally indicated a complex genetic mechanism underlying the skin color variation, expanding our understanding of the role of population demographic history and natural selection in shaping genetic and phenotypic diversity in humans. Future work is needed to dissect the genetic architecture of skin color adaptation in numerous ethnic minority groups around the world, which remains relatively obscure compared with that of major continental groups, and to unravel the exact genetic basis of skin color adaptation.
Collapse
Affiliation(s)
- Lian Deng
- Chinese Academy of Sciences (CAS) Key Laboratory of Computational Biology, Max Planck Independent Research Group on Population Genomics, CAS-MPG Partner Institute for Computational Biology (PICB), Shanghai Institutes for Biological Sciences, CAS, Shanghai, 200031 China.,University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Shuhua Xu
- Chinese Academy of Sciences (CAS) Key Laboratory of Computational Biology, Max Planck Independent Research Group on Population Genomics, CAS-MPG Partner Institute for Computational Biology (PICB), Shanghai Institutes for Biological Sciences, CAS, Shanghai, 200031 China.,University of Chinese Academy of Sciences, Beijing, 100049 China.,School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210 China.,Collaborative Innovation Center of Genetics and Development, Shanghai, 200438 China
| |
Collapse
|
25
|
Abstract
Platelet dense granules (DGs) are membrane bound compartments that store polyphosphate and small molecules such as ADP, ATP, Ca2+, and serotonin. The release of DG contents plays a central role in platelet aggregation to form a hemostatic plug. Accordingly, congenital deficiencies in the biogenesis of platelet DGs underlie human genetic disorders that cause storage pool disease and manifest with prolonged bleeding. DGs belong to a family of lysosome-related organelles, which also includes melanosomes, the compartments where the melanin pigments are synthesized. These organelles share several characteristics including an acidic lumen and, at least in part, the molecular machinery involved in their biogenesis. As a result, many genes affect both DG and melanosome biogenesis and the corresponding patients present not only with bleeding but also with oculocutaneous albinism. The identification and characterization of such genes has been instrumental in dissecting the pathways responsible for organelle biogenesis. Because the study of melanosome biogenesis has advanced more rapidly, this knowledge has been extrapolated to explain how DGs are produced. However, some progress has recently been made in studying platelet DG biogenesis directly in megakaryocytes and megakaryocytoid cells. DGs originate from an endosomal intermediate compartment, the multivesicular body. Maturation and differentiation into a DG begins when newly synthesized DG-specific proteins are delivered from early/recycling endosomal compartments. The machinery that orchestrates this vesicular trafficking is composed of a combination of both ubiquitous and cell type-specific proteins. Here, we review the current knowledge on DG biogenesis. In particular, we focus on the individual human and murine genes encoding the molecular machinery involved in this process and how their deficiencies result in disease.
Collapse
Affiliation(s)
- Andrea L Ambrosio
- a Department of Biochemistry and Molecular Biology , Colorado State University , Fort Collins , Colorado , USA
| | - Santiago M Di Pietro
- a Department of Biochemistry and Molecular Biology , Colorado State University , Fort Collins , Colorado , USA
| |
Collapse
|
26
|
Bellono NW, Escobar IE, Oancea E. A melanosomal two-pore sodium channel regulates pigmentation. Sci Rep 2016; 6:26570. [PMID: 27231233 PMCID: PMC4882593 DOI: 10.1038/srep26570] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 05/04/2016] [Indexed: 12/25/2022] Open
Abstract
Intracellular organelles mediate complex cellular functions that often require ion transport across their membranes. Melanosomes are organelles responsible for the synthesis of the major mammalian pigment melanin. Defects in melanin synthesis result in pigmentation defects, visual deficits, and increased susceptibility to skin and eye cancers. Although genes encoding putative melanosomal ion transporters have been identified as key regulators of melanin synthesis, melanosome ion transport and its contribution to pigmentation remain poorly understood. Here we identify two-pore channel 2 (TPC2) as the first reported melanosomal cation conductance by directly patch-clamping skin and eye melanosomes. TPC2 has been implicated in human pigmentation and melanoma, but the molecular mechanism mediating this function was entirely unknown. We demonstrate that the vesicular signaling lipid phosphatidylinositol bisphosphate PI(3,5)P2 modulates TPC2 activity to control melanosomal membrane potential, pH, and regulate pigmentation.
Collapse
Affiliation(s)
- Nicholas W Bellono
- Department of Molecular Pharmacology, Physiology, and Biotechnology, Brown University, Providence, RI 02912, USA
| | - Iliana E Escobar
- Department of Molecular Pharmacology, Physiology, and Biotechnology, Brown University, Providence, RI 02912, USA
| | - Elena Oancea
- Department of Molecular Pharmacology, Physiology, and Biotechnology, Brown University, Providence, RI 02912, USA
| |
Collapse
|
27
|
Abstract
Melanin is responsible for pigmentation of skin and hair and is synthesized in a specialized organelle, the melanosome, in melanocytes. A genome-wide association study revealed that the two pore segment channel 2 (TPCN2) gene is strongly linked to pigmentation variations. TPCN2 encodes the two-pore channel 2 (TPC2) protein, a cation channel. Nevertheless, how TPC2 regulates pigmentation remains unknown. Here, we show that TPC2 is expressed in melanocytes and localizes to the melanosome-limiting membrane and, to a lesser extent, to endolysosomal compartments by confocal fluorescence and immunogold electron microscopy. Immunomagnetic isolation of TPC2-containing organelles confirmed its coresidence with melanosomal markers. TPCN2 knockout by means of clustered regularly interspaced short palindromic repeat/CRISPR-associated 9 gene editing elicited a dramatic increase in pigment content in MNT-1 melanocytic cells. This effect was rescued by transient expression of TPC2-GFP. Consistently, siRNA-mediated knockdown of TPC2 also caused a substantial increase in melanin content in both MNT-1 cells and primary human melanocytes. Using a newly developed genetically encoded pH sensor targeted to melanosomes, we determined that the melanosome lumen in TPC2-KO MNT-1 cells and primary melanocytes subjected to TPC2 knockdown is less acidic than in control cells. Fluorescence and electron microscopy analysis revealed that TPC2-KO MNT-1 cells have significantly larger melanosomes than control cells, but the number of organelles is unchanged. TPC2 likely regulates melanosomes pH and size by mediating Ca(2+) release from the organelle, which is decreased in TPC2-KO MNT-1 cells, as determined with the Ca(2+) sensor tyrosinase-GCaMP6. Thus, our data show that TPC2 regulates pigmentation through two fundamental determinants of melanosome function: pH and size.
Collapse
|
28
|
Amelanism in the corn snake is associated with the insertion of an LTR-retrotransposon in the OCA2 gene. Sci Rep 2015; 5:17118. [PMID: 26597053 PMCID: PMC4657000 DOI: 10.1038/srep17118] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 10/26/2015] [Indexed: 12/21/2022] Open
Abstract
The corn snake (Pantherophis guttatus) is a new model species particularly appropriate for investigating the processes generating colours in reptiles because numerous colour and pattern mutants have been isolated in the last five decades. Using our captive-bred colony of corn snakes, transcriptomic and genomic next-generation sequencing, exome assembly, and genotyping of SNPs in multiple families, we delimit the genomic interval bearing the causal mutation of amelanism, the oldest colour variant observed in that species. Proceeding with sequencing the candidate gene OCA2 in the uncovered genomic interval, we identify that the insertion of an LTR-retrotransposon in its 11th intron results in a considerable truncation of the p protein and likely constitutes the causal mutation of amelanism in corn snakes. As amelanistic snakes exhibit white, instead of black, borders around an otherwise normal pattern of dorsal orange saddles and lateral blotches, our results indicate that melanocytes lacking melanin are able to participate to the normal patterning of other colours in the skin. In combination with research in the zebrafish, this work opens the perspective of using corn snake colour and pattern variants to investigate the generative processes of skin colour patterning shared among major vertebrate lineages.
Collapse
|
29
|
l-tyrosine induces melanocyte differentiation in novel pink-eyed dilution castaneus mouse mutant showing age-related pigmentation. J Dermatol Sci 2015; 80:203-11. [PMID: 26475433 DOI: 10.1016/j.jdermsci.2015.10.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 08/05/2015] [Accepted: 10/01/2015] [Indexed: 11/23/2022]
Abstract
BACKGROUND The mouse pink-eyed dilution (oculocutaneous albinism II; p/Oca2(p)) locus is known to control tyrosinase activity, melanin content, and melanosome development in melanocytes. Pink-eyed dilution castaneus (p(cas)/Oca2(p-cas)) is a novel mutant allele on mouse chromosome 7 that arose spontaneously in Indonesian wild mice, Mus musculus castaneus. Mice homozygous for Oca2(p-cas) usually exhibit pink eyes and beige-colored coat on nonagouti C57BL/6 (B6) background. Recently, a novel spontaneous mutation occurred in the progeny between this mutant and B6 mice. The eyes of this novel mutant progressively become black from pink and the coat becomes dark gray from beige with aging. OBJECTIVE The aim of this study is to clarify whatever differences exist in melanocyte proliferation and differentiation between the ordinary (pink-eyed) and novel (black-eyed) mutant using serum-free primary culture system. METHODS The characteristics of melanocyte proliferation and differentiation were investigated by serum-free primary culture system using melanocyte-proliferation medium (MDMD). RESULTS The proliferation of melanoblasts in MDMD did not differ between the two mice. However, when the epidermal cell suspensions were cultured with MDMD supplemented with l-tyrosine (Tyr), the differentiation of black-eyed melanocytes was greatly induced in a concentration-dependent manner compared with pink-eyed melanocytes. Immunocytochemistry demonstrated that the expression of tyrosinase and tyrosinase-related protein-1 (Tyrp1) was greatly induced or stimulated both in pink-eyed and black-eyed melanocytes, whereas the expression of microphthalmia-associated transcription factor (Mitf) was stimulated only in black-eyed melanocytes. CONCLUSION These results suggest that the age-related coat darkening in black-eyed mutant may be caused by the increased ability of melanocyte differentiation dependent on l-Tyr through the upregulation of tyrosinase, Tyrp1, and Mitf. This mutant mouse may be useful for animal model to clarify the mechanisms of age-related pigmentation in human skin, such as melasma and solar lentigines.
Collapse
|
30
|
Dennis MK, Mantegazza AR, Snir OL, Tenza D, Acosta-Ruiz A, Delevoye C, Zorger R, Sitaram A, de Jesus-Rojas W, Ravichandran K, Rux J, Sviderskaya EV, Bennett DC, Raposo G, Marks MS, Setty SRG. BLOC-2 targets recycling endosomal tubules to melanosomes for cargo delivery. ACTA ACUST UNITED AC 2015; 209:563-77. [PMID: 26008744 PMCID: PMC4442807 DOI: 10.1083/jcb.201410026] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Quantitative analyses of melanosome cargo localization and trafficking and of endosomal membrane dynamics in immortalized melanocytes from mouse Hermansky–Pudlak syndrome models show that BLOC-2 functions to specify the delivery of recycling endosomal cargo transport intermediates to maturing melanosomes. Hermansky–Pudlak syndrome (HPS) is a group of disorders characterized by the malformation of lysosome-related organelles, such as pigment cell melanosomes. Three of nine characterized HPS subtypes result from mutations in subunits of BLOC-2, a protein complex with no known molecular function. In this paper, we exploit melanocytes from mouse HPS models to place BLOC-2 within a cargo transport pathway from recycling endosomal domains to maturing melanosomes. In BLOC-2–deficient melanocytes, the melanosomal protein TYRP1 was largely depleted from pigment granules and underwent accelerated recycling from endosomes to the plasma membrane and to the Golgi. By live-cell imaging, recycling endosomal tubules of wild-type melanocytes made frequent and prolonged contacts with maturing melanosomes; in contrast, tubules from BLOC-2–deficient cells were shorter in length and made fewer, more transient contacts with melanosomes. These results support a model in which BLOC-2 functions to direct recycling endosomal tubular transport intermediates to maturing melanosomes and thereby promote cargo delivery and optimal pigmentation.
Collapse
Affiliation(s)
- Megan K Dennis
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104 Department of Pathology and Laboratory Medicine, Department of Physiology, and Penn Vision Research Center, University of Pennsylvania, Philadelphia, PA 19104 Department of Pathology and Laboratory Medicine, Department of Physiology, and Penn Vision Research Center, University of Pennsylvania, Philadelphia, PA 19104
| | - Adriana R Mantegazza
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104 Department of Pathology and Laboratory Medicine, Department of Physiology, and Penn Vision Research Center, University of Pennsylvania, Philadelphia, PA 19104 Department of Pathology and Laboratory Medicine, Department of Physiology, and Penn Vision Research Center, University of Pennsylvania, Philadelphia, PA 19104
| | - Olivia L Snir
- Department of Pathology and Laboratory Medicine, Department of Physiology, and Penn Vision Research Center, University of Pennsylvania, Philadelphia, PA 19104 Department of Pathology and Laboratory Medicine, Department of Physiology, and Penn Vision Research Center, University of Pennsylvania, Philadelphia, PA 19104
| | - Danièle Tenza
- Institut Curie, Centre de Recherche; Structure and Membrane Compartments, Centre National de la Recherche Scientifique, Unité Mixte de Recherche (UMR) 144; and Cell and Tissue Imaging Facility, Centre National de la Recherche Scientifique UMR144, Paris F-75248, France Institut Curie, Centre de Recherche; Structure and Membrane Compartments, Centre National de la Recherche Scientifique, Unité Mixte de Recherche (UMR) 144; and Cell and Tissue Imaging Facility, Centre National de la Recherche Scientifique UMR144, Paris F-75248, France
| | - Amanda Acosta-Ruiz
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104 Department of Pathology and Laboratory Medicine, Department of Physiology, and Penn Vision Research Center, University of Pennsylvania, Philadelphia, PA 19104 Department of Pathology and Laboratory Medicine, Department of Physiology, and Penn Vision Research Center, University of Pennsylvania, Philadelphia, PA 19104
| | - Cédric Delevoye
- Institut Curie, Centre de Recherche; Structure and Membrane Compartments, Centre National de la Recherche Scientifique, Unité Mixte de Recherche (UMR) 144; and Cell and Tissue Imaging Facility, Centre National de la Recherche Scientifique UMR144, Paris F-75248, France Institut Curie, Centre de Recherche; Structure and Membrane Compartments, Centre National de la Recherche Scientifique, Unité Mixte de Recherche (UMR) 144; and Cell and Tissue Imaging Facility, Centre National de la Recherche Scientifique UMR144, Paris F-75248, France
| | - Richard Zorger
- Department of Pathology and Laboratory Medicine, Department of Physiology, and Penn Vision Research Center, University of Pennsylvania, Philadelphia, PA 19104
| | - Anand Sitaram
- Department of Pathology and Laboratory Medicine, Department of Physiology, and Penn Vision Research Center, University of Pennsylvania, Philadelphia, PA 19104 Department of Pathology and Laboratory Medicine, Department of Physiology, and Penn Vision Research Center, University of Pennsylvania, Philadelphia, PA 19104
| | - Wilfredo de Jesus-Rojas
- Department of Pathology and Laboratory Medicine, Department of Physiology, and Penn Vision Research Center, University of Pennsylvania, Philadelphia, PA 19104 Department of Pathology and Laboratory Medicine, Department of Physiology, and Penn Vision Research Center, University of Pennsylvania, Philadelphia, PA 19104
| | - Keerthana Ravichandran
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India 560 012
| | - John Rux
- Department of Pathology and Laboratory Medicine, Department of Physiology, and Penn Vision Research Center, University of Pennsylvania, Philadelphia, PA 19104 In Silico Molecular, LLC, Blue Bell, PA 19422
| | - Elena V Sviderskaya
- Molecular Cell Sciences Research Centre, St. George's, University of London, London SW17 0RE, England, UK
| | - Dorothy C Bennett
- Molecular Cell Sciences Research Centre, St. George's, University of London, London SW17 0RE, England, UK
| | - Graça Raposo
- Institut Curie, Centre de Recherche; Structure and Membrane Compartments, Centre National de la Recherche Scientifique, Unité Mixte de Recherche (UMR) 144; and Cell and Tissue Imaging Facility, Centre National de la Recherche Scientifique UMR144, Paris F-75248, France Institut Curie, Centre de Recherche; Structure and Membrane Compartments, Centre National de la Recherche Scientifique, Unité Mixte de Recherche (UMR) 144; and Cell and Tissue Imaging Facility, Centre National de la Recherche Scientifique UMR144, Paris F-75248, France Institut Curie, Centre de Recherche; Structure and Membrane Compartments, Centre National de la Recherche Scientifique, Unité Mixte de Recherche (UMR) 144; and Cell and Tissue Imaging Facility, Centre National de la Recherche Scientifique UMR144, Paris F-75248, France
| | - Michael S Marks
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104 Department of Pathology and Laboratory Medicine, Department of Physiology, and Penn Vision Research Center, University of Pennsylvania, Philadelphia, PA 19104 Department of Pathology and Laboratory Medicine, Department of Physiology, and Penn Vision Research Center, University of Pennsylvania, Philadelphia, PA 19104
| | - Subba Rao Gangi Setty
- Department of Pathology and Laboratory Medicine, Department of Physiology, and Penn Vision Research Center, University of Pennsylvania, Philadelphia, PA 19104 Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India 560 012
| |
Collapse
|
31
|
Shoji H, Kiniwa Y, Okuyama R, Yang M, Higuchi K, Mori M. A nonsense nucleotide substitution in the oculocutaneous albinism II gene underlies the original pink-eyed dilution allele (Oca2(p)) in mice. Exp Anim 2015; 64:171-9. [PMID: 25736709 PMCID: PMC4427732 DOI: 10.1538/expanim.14-0075] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The original pink-eyed dilution (p) on chromosome 7 is a very old
spontaneous mutation in mice. The oculocutaneous albinism II (Oca2) gene
has previously been identified as the p gene. Oca2
transcripts have been shown to be absent in the skin of SJL/J mice with the original
p mutant allele (Oca2p); however, the
molecular genetic lesion underlying the original Oca2p allele
has never been reported. The NCT mouse (commonly known as Nakano cataract mouse) has a
pink-eyed dilution phenotype, which prompted us to undertake a molecular genetic analysis
of the Oca2 gene of this strain. Our genetic linkage analysis suggests
that the locus for the pink-eyed dilution phenotype of NCT is tightly linked to the
Oca2 locus. PCR cloning and nucleotide sequence analysis indicates that
the NCT mouse has a nonsense nucleotide substitution at exon 7 of the
Oca2 gene. Examination of three mouse strains (NZW/NSlc, SJL/J, and
129X1/SvJJmsSlc) with the original Oca2p allele revealed the
presence of a nonsense nucleotide substitution identical to that in the NCT strain. RT-PCR
analysis revealed that the Oca2 transcripts were absent in the skin of
NCT mice, suggesting intervention of the nonsense-mediated mRNA decay pathway.
Collectively, the data in this study indicate that the nonsense nucleotide substitution in
the Oca2 gene underlies the Oca2p allele. Our
data also indicate that the NCT mouse can be used not only as a cataract model, but also
as a model for human type II oculocutaneous albinism.
Collapse
Affiliation(s)
- Haruka Shoji
- Department of Aging Biology, Institute of Pathogenesis and Disease Prevention, Shinshu University Graduate School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan
| | | | | | | | | | | |
Collapse
|
32
|
Kondo T, Namiki T, Coelho SG, Valencia JC, Hearing VJ. Oculocutaneous albinism: Developing novel antibodies targeting the proteins associated with OCA2 and OCA4. J Dermatol Sci 2015; 77:21-7. [DOI: 10.1016/j.jdermsci.2014.11.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 10/05/2014] [Accepted: 11/10/2014] [Indexed: 12/31/2022]
|
33
|
Bellono NW, Escobar IE, Lefkovith AJ, Marks MS, Oancea E. An intracellular anion channel critical for pigmentation. eLife 2014; 3:e04543. [PMID: 25513726 PMCID: PMC4270065 DOI: 10.7554/elife.04543] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 11/07/2014] [Indexed: 12/28/2022] Open
Abstract
Intracellular ion channels are essential regulators of organellar and cellular function, yet the molecular identity and physiological role of many of these channels remains elusive. In particular, no ion channel has been characterized in melanosomes, organelles that produce and store the major mammalian pigment melanin. Defects in melanosome function cause albinism, characterized by vision and pigmentation deficits, impaired retinal development, and increased susceptibility to skin and eye cancers. The most common form of albinism is caused by mutations in oculocutaneous albinism II (OCA2), a melanosome-specific transmembrane protein with unknown function. Here we used direct patch-clamp of skin and eye melanosomes to identify a novel chloride-selective anion conductance mediated by OCA2 and required for melanin production. Expression of OCA2 increases organelle pH, suggesting that the chloride channel might regulate melanin synthesis by modulating melanosome pH. Thus, a melanosomal anion channel that requires OCA2 is essential for skin and eye pigmentation.
Collapse
Affiliation(s)
- Nicholas W Bellono
- Department of Molecular Pharmacology, Physiology and Biotechnology, Brown University, Providence, United States
| | - Iliana E Escobar
- Department of Molecular Pharmacology, Physiology and Biotechnology, Brown University, Providence, United States
| | - Ariel J Lefkovith
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, United States
| | - Michael S Marks
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, United States
| | - Elena Oancea
- Department of Molecular Pharmacology, Physiology and Biotechnology, Brown University, Providence, United States
| |
Collapse
|
34
|
Visser M, Kayser M, Grosveld F, Palstra RJ. Genetic variation in regulatory DNA elements: the case of OCA2 transcriptional regulation. Pigment Cell Melanoma Res 2014; 27:169-77. [PMID: 24387780 DOI: 10.1111/pcmr.12210] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Accepted: 12/20/2013] [Indexed: 12/16/2022]
Abstract
Mutations within the OCA2 gene or the complete absence of the OCA2 protein leads to oculocutaneous albinism type 2. The OCA2 protein plays a central role in melanosome biogenesis, and it is a strong determinant of the eumelanin content in melanocytes. Transcript levels of the OCA2 gene are strongly correlated with pigmentation intensities. Recent studies demonstrated that the transcriptional level of OCA2 is to a large extent determined by the noncoding SNP rs12913832 located 21.5 kb upstream of the OCA2 gene promoter. In this review, we discuss current hypotheses and the available data on the mechanism of OCA2 transcriptional regulation and how this is influenced by genetic variation. Finally, we will explore how future epigenetic studies can be used to advance our insight into the functional biology that connects genetic variation to human pigmentation.
Collapse
Affiliation(s)
- Mijke Visser
- Department of Forensic Molecular Biology, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | | | | | | |
Collapse
|
35
|
Binstock M, Hafeez F, Metchnikoff C, Arron S. Single‐nucleotide polymorphisms in pigment genes and nonmelanoma skin cancer predisposition: a systematic review. Br J Dermatol 2014; 171:713-21. [DOI: 10.1111/bjd.13283] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/20/2014] [Indexed: 12/20/2022]
Affiliation(s)
- M. Binstock
- Department of Dermatology University of California San Francisco San Francisco CA 94115 U.S.A
| | - F. Hafeez
- Department of Dermatology University of California San Francisco San Francisco CA 94115 U.S.A
| | - C. Metchnikoff
- Department of Dermatology University of California San Francisco San Francisco CA 94115 U.S.A
| | - S.T. Arron
- Department of Dermatology University of California San Francisco San Francisco CA 94115 U.S.A
| |
Collapse
|
36
|
Beirl AJ, Linbo TH, Cobb MJ, Cooper CD. oca2regulation of chromatophore differentiation and number is cell type specific in zebrafish. Pigment Cell Melanoma Res 2014; 27:178-89. [DOI: 10.1111/pcmr.12205] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Accepted: 11/28/2013] [Indexed: 11/29/2022]
Affiliation(s)
- Alisha J. Beirl
- School of Molecular Biosciences; Washington State University Vancouver; Vancouver WA USA
| | - Tor H. Linbo
- Department of Biological Structure; University of Washington; Seattle WA USA
| | - Marea J. Cobb
- School of Molecular Biosciences; Washington State University Vancouver; Vancouver WA USA
| | - Cynthia D. Cooper
- School of Molecular Biosciences; Washington State University Vancouver; Vancouver WA USA
| |
Collapse
|
37
|
Marks MS, Heijnen HFG, Raposo G. Lysosome-related organelles: unusual compartments become mainstream. Curr Opin Cell Biol 2013; 25:495-505. [PMID: 23726022 DOI: 10.1016/j.ceb.2013.04.008] [Citation(s) in RCA: 201] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Accepted: 04/24/2013] [Indexed: 11/16/2022]
Abstract
Lysosome-related organelles (LROs) comprise a group of cell type-specific subcellular compartments with unique composition, morphology and structure that share some features with endosomes and lysosomes and that function in varied processes such as pigmentation, hemostasis, lung plasticity and immunity. In recent years, studies of genetic diseases in which LRO functions are compromised have provided new insights into the mechanisms of LRO biogenesis and the regulated secretion of LRO contents. These insights have revealed previously unappreciated specialized endosomal sorting processes in all cell types, and are expanding our views of the plasticity of the endosomal and secretory systems in adapting to cell type-specific needs.
Collapse
Affiliation(s)
- Michael S Marks
- Department of Pathology & Laboratory Medicine and Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | | | | |
Collapse
|
38
|
Theos AC, Watt B, Harper DC, Janczura KJ, Theos SC, Herman KE, Marks MS. The PKD domain distinguishes the trafficking and amyloidogenic properties of the pigment cell protein PMEL and its homologue GPNMB. Pigment Cell Melanoma Res 2013; 26:470-86. [PMID: 23452376 DOI: 10.1111/pcmr.12084] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2012] [Accepted: 02/26/2013] [Indexed: 11/29/2022]
Abstract
Proteolytic fragments of the pigment cell-specific glycoprotein, PMEL, form the amyloid fibrillar matrix underlying melanins in melanosomes. The fibrils form within multivesicular endosomes to which PMEL is selectively sorted and that serve as melanosome precursors. GPNMB is a tissue-restricted glycoprotein with substantial sequence homology to PMEL, but no known function, and was proposed to localize to non-fibrillar domains of distinct melanosome subcompartments in melanocytes. Here we confirm that GPNMB localizes to compartments distinct from the PMEL-containing multivesicular premelanosomes or late endosomes in melanocytes and HeLa cells, respectively, and is largely absent from fibrils. Using domain swapping, the unique PMEL localization is ascribed to its polycystic kidney disease (PKD) domain, whereas the homologous PKD domain of GPNMB lacks apparent sorting function. The difference likely reflects extensive modification of the GPNMB PKD domain by N-glycosylation, nullifying its sorting function. These results reveal the molecular basis for the distinct trafficking and morphogenetic properties of PMEL and GPNMB and support a deterministic function of the PMEL PKD domain in both protein sorting and amyloidogenesis.
Collapse
Affiliation(s)
- Alexander C Theos
- Department of Pathology & Laboratory Medicine and Physiology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
Watt B, van Niel G, Raposo G, Marks MS. PMEL: a pigment cell-specific model for functional amyloid formation. Pigment Cell Melanoma Res 2013; 26:300-15. [PMID: 23350640 DOI: 10.1111/pcmr.12067] [Citation(s) in RCA: 128] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2012] [Accepted: 01/15/2013] [Indexed: 12/15/2022]
Abstract
PMEL is a pigment cell-specific protein responsible for the formation of fibrillar sheets within the pigment organelle, the melanosome. The fibrillar sheets serve as a template upon which melanins polymerize as they are synthesized. The PMEL fibrils are required for optimal pigment cell function, as animals that either lack PMEL expression or express mutant PMEL variants show varying degrees of hypopigmentation and pigment cell inviability. The PMEL fibrils have biophysical properties of amyloid, a protein fold that is frequently associated with neurodegenerative and other diseases. However, PMEL is one of a growing number of non-pathogenic amyloid proteins that contribute to the function of the cell and/or organism that produces them. Understanding how PMEL generates amyloid in a non-pathogenic manner might provide insights into how to avoid toxicity due to pathological amyloid formation. In this review, we summarize and reconcile data concerning the fate of PMEL from its site of synthesis in the endoplasmic reticulum to newly formed melanosomes and the role of distinct PMEL subdomains in trafficking and amyloid fibril formation. We then discuss how its progression through the secretory pathway into the endosomal system might allow for the regulated and non-toxic conversion of PMEL into an ordered amyloid polymer.
Collapse
Affiliation(s)
- Brenda Watt
- Department of Pathology and Laboratory Medicine, Department of Physiology, and Cell and Molecular Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | | | | |
Collapse
|
40
|
Siebert AP, Ma Z, Grevet JD, Demuro A, Parker I, Foskett JK. Structural and functional similarities of calcium homeostasis modulator 1 (CALHM1) ion channel with connexins, pannexins, and innexins. J Biol Chem 2013; 288:6140-53. [PMID: 23300080 DOI: 10.1074/jbc.m112.409789] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
CALHM1 (calcium homeostasis modulator 1) forms a plasma membrane ion channel that mediates neuronal excitability in response to changes in extracellular Ca(2+) concentration. Six human CALHM homologs exist with no homology to other proteins, although CALHM1 is conserved across >20 species. Here we demonstrate that CALHM1 shares functional and quaternary and secondary structural similarities with connexins and evolutionarily distinct innexins and their vertebrate pannexin homologs. A CALHM1 channel is a hexamer, comprised of six monomers, each of which possesses four transmembrane domains, cytoplasmic amino and carboxyl termini, an amino-terminal helix, and conserved extracellular cysteines. The estimated pore diameter of the CALHM1 channel is ∼14 Å, enabling permeation of large charged molecules. Thus, CALHMs, connexins, and pannexins and innexins are structurally related protein families with shared and distinct functional properties.
Collapse
Affiliation(s)
- Adam P Siebert
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6085, USA
| | | | | | | | | | | |
Collapse
|
41
|
Wei AH, Li W. Hermansky-Pudlak syndrome: pigmentary and non-pigmentary defects and their pathogenesis. Pigment Cell Melanoma Res 2012; 26:176-92. [DOI: 10.1111/pcmr.12051] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Accepted: 11/16/2012] [Indexed: 10/27/2022]
Affiliation(s)
| | - Wei Li
- State Key Laboratory of Molecular Developmental Biology; Institute of Genetics & Developmental Biology; Chinese Academy of Sciences; Beijing; China
| |
Collapse
|
42
|
Abstract
Genome-wide association studies and comparative genomics have established major loci and specific polymorphisms affecting human skin, hair and eye color. Environmental changes have had an impact on selected pigmentation genes as populations have expanded into different regions of the globe.
Collapse
Affiliation(s)
- Richard A Sturm
- Institute for Molecular Bioscience, Melanogenix Group, The University of Queensland, Brisbane, Qld 4072, Australia.
| | | |
Collapse
|
43
|
Sitaram A, Marks MS. Mechanisms of protein delivery to melanosomes in pigment cells. Physiology (Bethesda) 2012; 27:85-99. [PMID: 22505665 DOI: 10.1152/physiol.00043.2011] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Vertebrate pigment cells in the eye and skin are useful models for cell types that use specialized endosomal trafficking pathways to partition cargo proteins to unique lysosome-related organelles such as melanosomes. This review describes current models of protein trafficking required for melanosome biogenesis in mammalian melanocytes.
Collapse
Affiliation(s)
- Anand Sitaram
- Cell and Molecular Biology Graduate Group, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | |
Collapse
|
44
|
Sitaram A, Dennis MK, Chaudhuri R, De Jesus-Rojas W, Tenza D, Setty SRG, Wood CS, Sviderskaya EV, Bennett DC, Raposo G, Bonifacino JS, Marks MS. Differential recognition of a dileucine-based sorting signal by AP-1 and AP-3 reveals a requirement for both BLOC-1 and AP-3 in delivery of OCA2 to melanosomes. Mol Biol Cell 2012; 23:3178-92. [PMID: 22718909 PMCID: PMC3418312 DOI: 10.1091/mbc.e11-06-0509] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
OCA2 is used as a model melanosome cargo protein to define primary sequence elements required for acidic dileucine–motif binding to adaptors AP-1 and AP-3. OCA2 must bind to AP-3 for melanosome localization. BLOC-1 is also required and thus can cooperate with either adaptor for cargo delivery to lysosome-related organelles. Cell types that generate unique lysosome-related organelles (LROs), such as melanosomes in melanocytes, populate nascent LROs with cargoes that are diverted from endosomes. Cargo sorting toward melanosomes correlates with binding via cytoplasmically exposed sorting signals to either heterotetrameric adaptor AP-1 or AP-3. Some cargoes bind both adaptors, but the relative contribution of each adaptor to cargo recognition and their functional interactions with other effectors during transport to melanosomes are not clear. Here we exploit targeted mutagenesis of the acidic dileucine–based sorting signal in the pigment cell–specific protein OCA2 to dissect the relative roles of AP-1 and AP-3 in transport to melanosomes. We show that binding to AP-1 or AP-3 depends on the primary sequence of the signal and not its position within the cytoplasmic domain. Mutants that preferentially bound either AP-1 or AP-3 each trafficked toward melanosomes and functionally complemented OCA2 deficiency, but AP-3 binding was necessary for steady-state melanosome localization. Unlike tyrosinase, which also engages AP-3 for optimal melanosomal delivery, both AP-1– and AP-3–favoring OCA2 variants required BLOC-1 for melanosomal transport. These data provide evidence for distinct roles of AP-1 and AP-3 in OCA2 transport to melanosomes and indicate that BLOC-1 can cooperate with either adaptor during cargo sorting to LROs.
Collapse
Affiliation(s)
- Anand Sitaram
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Abstract
Understanding platelet biology has been aided by studies of mice with mutations in key megakaryocytic transcription factors. We have shown that point mutations in the GATA1 cofactor FOG1 that disrupt binding to the nucleosome remodeling and deacetylase (NuRD) complex have erythroid and megakaryocyte lineages defects. Mice that are homozygous for a FOG1 point mutation (ki/ki), which ablates FOG1-NuRD interactions, have platelets that display a gray platelet syndrome (GPS)-like macrothrombocytopenia. These platelets have few α-granules and an increased number of lysosomal-like vacuoles on electron microscopy, reminiscent of the platelet in patients with GATA1-related X-linked GPS. Here we further characterized the platelet defect in ki/ki mice. We found markedly deficient levels of P-selectin protein limited to megakaryocytes and platelets. Other α-granule proteins were expressed at normal levels and were appropriately localized to α-granule-like structures. Treatment of ki/ki platelets with thrombin failed to stimulate Akt phosphorylation, resulting in poor granule secretion and platelet aggregation. These studies show that disruption of the GATA1/FOG1/NuRD transcriptional system results in a complex, pleiotropic platelet defect beyond GPS-like macrothrombocytopenia and suggest that this transcriptional complex regulates not only megakaryopoiesis but also α-granule generation and signaling pathways required for granule secretion.
Collapse
|
46
|
Abstract
Coat colors are determined by melanin (eumelanin and pheomelanin). Melanin is synthesized in melanocytes and accumulates in special organelles, melanosomes, which upon maturation are transferred to keratinocytes. Melanocytes differentiate from undifferentiated precursors, called melanoblasts, which are derived from neural crest cells. Melanoblast/melanocyte proliferation and differentiation are regulated by the tissue environment, especially by keratinocytes, which synthesize endothelins, steel factor, hepatocyte growth factor, leukemia inhibitory factor and granulocyte-macrophage colony-stimulating factor. Melanocyte differentiation is also stimulated by alpha-melanocyte stimulating hormone; in the mouse, however, this hormone is likely carried through the bloodstream and not produced locally in the skin. Melanoblast migration, proliferation and differentiation are also regulated by many coat color genes otherwise known for their ability to regulate melanosome formation and maturation, pigment type switching and melanosome distribution and transfer. Thus, melanocyte proliferation and differentiation are not only regulated by genes encoding typical growth factors and their receptors but also by genes classically known for their role in pigment formation.
Collapse
Affiliation(s)
- Tomohisa Hirobe
- Radiation Effect Mechanisms Research Group, National Institute of Radiological Sciences, Anagawa, Inage-ku, Chiba, Japan Graduate School of Science, Chiba University, Yayoi-cho, Inage-ku, Chiba, Japan.
| |
Collapse
|
47
|
Kondo T, Hearing VJ. Update on the regulation of mammalian melanocyte function and skin pigmentation. EXPERT REVIEW OF DERMATOLOGY 2011; 6:97-108. [PMID: 21572549 PMCID: PMC3093193 DOI: 10.1586/edm.10.70] [Citation(s) in RCA: 139] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Melanogenesis is the unique process of producing pigmented biopolymers that are sequestered within melanosomes, which provides color to the skin, hair and eyes of animals and, in the case of human skin, also protects the underlying tissues from UV damage. We review the current understanding of melanogenesis, focusing on factors important to the biochemistry of pigment synthesis, the biogenesis of melanosomes, signaling pathways and factors that regulate melanogenesis, intramelanosomal pH, transport and transfer of melanosomes, and pigmentary disorders related to the dysfunction of melanosome-related proteins. Although it has been known for some time that many of the factors that affect melanogenesis are derived from keratinocytes, fibroblasts, endothelial cells, hormones, inflammatory cells and nerves, a number of new factors that are involved in that regulation have recently been reported, such as factors that regulate melanosome pH and ion transport.
Collapse
Affiliation(s)
- Taisuke Kondo
- Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Vincent J Hearing
- Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
48
|
Hoyle DJ, Rodriguez-Fernandez IA, Dell'angelica EC. Functional interactions between OCA2 and the protein complexes BLOC-1, BLOC-2, and AP-3 inferred from epistatic analyses of mouse coat pigmentation. Pigment Cell Melanoma Res 2010; 24:275-81. [PMID: 21392365 DOI: 10.1111/j.1755-148x.2010.00815.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The biogenesis of melanosomes is a multistage process that requires the function of cell-type-specific and ubiquitously expressed proteins. OCA2, the product of the gene defective in oculocutaneous albinism type 2, is a melanosomal membrane protein with restricted expression pattern and a potential role in the trafficking of other proteins to melanosomes. The ubiquitous protein complexes AP-3, BLOC-1, and BLOC-2, which contain as subunits the products of genes defective in various types of Hermansky-Pudlak syndrome, have been likewise implicated in trafficking to melanosomes. We have tested for genetic interactions between mutant alleles causing deficiency in OCA2 (pink-eyed dilution unstable), AP-3 (pearl), BLOC-1 (pallid), and BLOC-2 (cocoa) in C57BL/6J mice. The pallid allele was epistatic to pink-eyed dilution, and the latter behaved as a semi-dominant phenotypic enhancer of cocoa and, to a lesser extent, of pearl. These observations suggest functional links between OCA2 and these three protein complexes involved in melanosome biogenesis.
Collapse
Affiliation(s)
- Diego J Hoyle
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | | | | |
Collapse
|
49
|
Prediction of eye and skin color in diverse populations using seven SNPs. Forensic Sci Int Genet 2010; 5:472-8. [PMID: 21050833 DOI: 10.1016/j.fsigen.2010.10.005] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Revised: 09/14/2010] [Accepted: 10/05/2010] [Indexed: 11/21/2022]
Abstract
An essential component in identifying human remains is the documentation of the decedent's visible characteristics, such as eye, hair and skin color. However, if a decedent is decomposed or only skeletal remains are found, this critical, visibly identifying information is lost. It would be beneficial to use genetic information to reveal these visible characteristics. In this study, seven single nucleotide polymorphisms (SNPs), located in and nearby genes known for their important role in pigmentation, were validated on 554 samples, donated from non-related individuals of various populations. Six SNPs were used in predicting the eye color of an individual, and all seven were used to describe the skin coloration. The outcome revealed that these markers can be applied to all populations with very low error rates. However, the call-rate to determine the skin coloration varied between populations, demonstrating its complexity. Overall, these results prove the importance of these seven SNPs for potential forensic tests.
Collapse
|
50
|
Slc15a4, AP-3, and Hermansky-Pudlak syndrome proteins are required for Toll-like receptor signaling in plasmacytoid dendritic cells. Proc Natl Acad Sci U S A 2010; 107:19973-8. [PMID: 21045126 DOI: 10.1073/pnas.1014051107] [Citation(s) in RCA: 159] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Despite their low frequency, plasmacytoid dendritic cells (pDCs) produce most of the type I IFN that is detectable in the blood following viral infection. The endosomal Toll-like receptors (TLRs) TLR7 and TLR9 are required for pDCs, as well as other cell types, to sense viral nucleic acids, but the mechanism by which signaling through these shared receptors results in the prodigious production of type I IFN by pDCs is not understood. We designed a genetic screen to identify proteins required for the development and specialized function of pDCs. One phenovariant, which we named feeble, showed abrogation of both TLR-induced type I IFN and proinflammatory cytokine production by pDCs, while leaving TLR responses intact in other cells. The feeble phenotype was mapped to a mutation in Slc15a4, which encodes the peptide/histidine transporter 1 (PHT1) and has not previously been implicated in pDC function. The identification of the feeble mutation led to our subsequent observations that AP-3, as well as the BLOC-1 and BLOC-2 Hermansky-Pudlak syndrome proteins are essential for pDC signaling through TLR7 and TLR9. These proteins are not necessary for TLR7 or TLR9 signaling in conventional DCs and thus comprise a membrane trafficking pathway uniquely required for endosomal TLR signaling in pDCs.
Collapse
|