1
|
Mand M, Hahn O, Meyer J, Peters K, Seitz H. Investigation of the Effect of High Shear Stress on Mesenchymal Stem Cells Using a Rotational Rheometer in a Small-Angle Cone-Plate Configuration. Bioengineering (Basel) 2024; 11:1011. [PMID: 39451387 PMCID: PMC11504001 DOI: 10.3390/bioengineering11101011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/30/2024] [Accepted: 10/08/2024] [Indexed: 10/26/2024] Open
Abstract
Within the healthy human body, cells reside within the physiological environment of a tissue compound. Here, they are subject to constant low levels of mechanical stress that can influence the growth and differentiation of the cells. The liposuction of adipose tissue and the subsequent isolation of mesenchymal stem/stromal cells (MSCs), for example, are procedures that induce a high level of mechanical shear stress. As MSCs play a central role in tissue regeneration by migrating into regenerating areas and driving regeneration through proliferation and tissue-specific differentiation, they are increasingly used in therapeutic applications. Consequently, there is a strong interest in investigating the effects of shear stress on MSCs. In this study, we present a set-up for applying high shear rates to cells based on a rotational rheometer with a small-angle cone-plate configuration. This set-up was used to investigate the effect of various shear stresses on human adipose-derived MSCs in suspension. The results of the study show that the viability of the cells remained unaffected up to 18.38 Pa for an exposure time of 5 min. However, it was observed that intense shear stress damaged the cells, with longer treatment durations increasing the percentage of cell debris.
Collapse
Affiliation(s)
- Mario Mand
- Chair of Microfluidics, Faculty of Mechanical Engineering and Marine Technology, University of Rostock, 18059 Rostock, Germany
| | - Olga Hahn
- Institute of Cell Biology, Rostock University Medical Center, 18057 Rostock, Germany; (O.H.); (K.P.)
| | | | - Kirsten Peters
- Institute of Cell Biology, Rostock University Medical Center, 18057 Rostock, Germany; (O.H.); (K.P.)
- Department of Life, Light and Matter, University of Rostock, 18059 Rostock, Germany
| | - Hermann Seitz
- Chair of Microfluidics, Faculty of Mechanical Engineering and Marine Technology, University of Rostock, 18059 Rostock, Germany
- Department of Life, Light and Matter, University of Rostock, 18059 Rostock, Germany
| |
Collapse
|
2
|
Hahn O, Peters K, Hartmann A, Dannenberger D, Kalbe C. Potential of animal-welfare compliant and sustainably sourced serum from pig slaughter blood. Cell Tissue Res 2024; 397:205-214. [PMID: 38990342 PMCID: PMC11371839 DOI: 10.1007/s00441-024-03904-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 07/04/2024] [Indexed: 07/12/2024]
Abstract
The animal product most used as a stimulatory additive for cell cultivation is still fetal bovine serum (FBS). Besides the ethical concerns regarding serum collection, the main problems of FBS are batch-to-batch variability and the resulting risk of lower reproducibility, the differences between species, the presence of undefined/unknown components, and the risk of contamination. In contrast, pig blood, which is a by-product of slaughter, is a sufficiently available and sustainable resource with a high degree of standardization in terms of donor age, weight, and genetics. The variations in preparations from pig slaughter blood seem to be comparatively low, and consequently, batch effects might be much smaller, suggesting that the reproducibility of the research data obtained may be increased. Our pilot study aimed to investigate, as a proof of concept, whether adult human and porcine stem cells of different tissue origins proliferate and differentiate adequately when FBS is completely or partially replaced by porcine serum (PS). We could show that the human and porcine stem cells were vital and proliferated under partial and full PS supplementation. Furthermore, using PS, the two cell types studied showed tissue-specific differentiation (i.e., lipid vacuoles as a sign of adipogenic or myotubes as a sign of myogenic differentiation). In conclusion, the pig slaughter blood-derived serum has promising potential to be a replacement for FBS in adult stem cell cultures. Therefore, it could serve as a basis for the development of new cell culture supplements.
Collapse
Affiliation(s)
- Olga Hahn
- Institute for Cell Biology, University Medical Center Rostock, Rostock, Germany
| | - Kirsten Peters
- Institute for Cell Biology, University Medical Center Rostock, Rostock, Germany
| | - Alexander Hartmann
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Rostock, Rostock, Germany
| | - Dirk Dannenberger
- Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, D-18196, Dummerstorf, Germany
| | - Claudia Kalbe
- Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, D-18196, Dummerstorf, Germany.
| |
Collapse
|
3
|
Funke S, Wiggenhauser PS, Grundmeier A, Taha S, Fuchs B, Birt A, Koban K, Giunta RE, Kuhlmann C. Aspirin Stimulates the Osteogenic Differentiation of Human Adipose Tissue-Derived Stem Cells In Vitro. Int J Mol Sci 2024; 25:7690. [PMID: 39062933 PMCID: PMC11277042 DOI: 10.3390/ijms25147690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/07/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
This study investigates the impact of acetylsalicylic acid (ASA), also known as aspirin, on adipose tissue-derived stem cells (ASCs), aiming to elucidate its dose-dependent effects on morphology, viability, proliferation, and osteogenic differentiation. Isolated and characterized human ASCs were exposed to 0 µM, 100 µM, 200 µM, 400 µM, 800 µM, 1000 µM, 10,000 µM, and 16,000 µM of ASA in vitro. Cell morphology, viability, and proliferation were evaluated with fluorescent live/dead staining, alamarBlue viability reagent, and CyQUANT® cell proliferation assay, respectively. Osteogenic differentiation under stimulation with 400 µM or 1000 µM of ASA was assessed with alizarin red staining and qPCR of selected osteogenic differentiation markers (RUNX2, SPP1, ALPL, BGLAP) over a 3- and 21-day-period. ASA doses ≤ 1000 µM showed no significant impact on cell viability and proliferation. Live/dead staining revealed a visible reduction in viable cell confluency for ASA concentrations ≥ 1000 µM. Doses of 10,000 µM and 16,000 µM of ASA exhibited a strong cytotoxic and anti-proliferative effect in ASCs. Alizarin red staining revealed enhanced calcium accretion under the influence of ASA, which was macro- and microscopically visible and significant for 1000 µM of ASA (p = 0.0092) in quantification if compared to osteogenic differentiation without ASA addition over a 21-day-period. This enhancement correlated with a more pronounced upregulation of osteogenic markers under ASA exposure (ns). Our results indicate a stimulatory effect of 1000 µM of ASA on the osteogenic differentiation of ASCs. Further research is needed to elucidate the precise molecular mechanisms underlying this effect; however, this discovery suggests promising opportunities for enhancing bone tissue engineering with ASCs as cell source.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Constanze Kuhlmann
- Division of Hand Surgery, Plastic Surgery and Aesthetic Surgery, University Hospital, LMU Munich, Ziemssenstraße 5, 80336 Munich, Germany; (S.F.); (P.S.W.); (A.G.); (S.T.); (B.F.); (A.B.); (K.K.); (R.E.G.)
| |
Collapse
|
4
|
Bader AS, Haramati LB. Letter to the Editor: "Silent myocardial infarction fatty scars detected by coronary calcium score CT scan in diabetic patients without a history of coronary heart disease". Eur Radiol 2024:10.1007/s00330-024-10912-3. [PMID: 38995379 DOI: 10.1007/s00330-024-10912-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 03/07/2024] [Accepted: 04/29/2024] [Indexed: 07/13/2024]
Affiliation(s)
- Anna S Bader
- Department of Radiology & Biomedical Imaging, Yale University School of Medicine, 333 Cedar St., PO Box 208042, New Haven, CT, 06520, USA.
| | - Linda B Haramati
- Department of Radiology & Biomedical Imaging, Yale University School of Medicine, 333 Cedar St., PO Box 208042, New Haven, CT, 06520, USA
| |
Collapse
|
5
|
Trentani P, Meredi E, Zarantonello P, Gennai A. Role of Autologous Micro-Fragmented Adipose Tissue in Osteoarthritis Treatment. J Pers Med 2024; 14:604. [PMID: 38929825 PMCID: PMC11205203 DOI: 10.3390/jpm14060604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/08/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024] Open
Abstract
Osteoarthritis (OA) is the most common complex musculoskeletal disorder, resulting from the degeneration of the articular cartilage and characterized by joint pain and dysfunction that culminate in progressive articular cartilage loss. We present our experience in the management of hip and knee OA by means of the intra-articular injection of fat micrograft, describing our approach, which was developed from the belief in the powerful reparative effect of autologous fat graft on damaged tissue, as well as its natural lubricating effect on the joints. Inclusion criteria were as follows: men and women, aged 20 to 80 years, that referred articular pain of the hips and/or knees, showing initial-stage degenerative OA. From October 2018 to July 2023, a total of 250 patients underwent treatment with the Sefficare® device (SEFFILINE srl, Bologna, Italy). The Superficial Enhanced Fluid Fat Injection device was used to perform autologous regenerative treatments in a safe, standardized, easy, and effective way on 160 women, 64%, and 90 men, 36%. A total of 190 procedures (76%) involved the knees, with 20 patients who were bilaterally treated, while 60 procedures, all unilateral, involved the hips (24%). The mean age at treatment was 52.4 years. Before treatment, each patient had undergone X-rays and Magnetic Resonance Imaging (MRI) of the painful hip/knee to evaluate and grade the articular OA. Postoperatively, each patient was assessed after one, three, six, and twelve months. The donor site postoperative course was uneventful other than minimal discomfort. Clinically, the ROM (range of motion) of the treated knee/hip increased an average of 10 degrees 3 months after treatment, but the stiffness was reduced, as reported by the patients. The VAS (Visual Analog Scale) was submitted at 3, 6, and 12 months, demonstrating a progressive reduction of pain, with the best score obtained at six months postoperatively. In total, 85% of patients were satisfied one year after treatment, with a considerable improvement in pain and quality of life. The satisfactory outcome of this minimally invasive procedure indicates that the intra-articular injection of fat micrograft can replace or considerably delay the need for the classical major joint replacement surgery, thanks to its impact on the quality of life of patients and financial cost.
Collapse
Affiliation(s)
| | - Elena Meredi
- Inail Insurance Medicine Center, 40100 Bologna, Italy;
| | - Paola Zarantonello
- IRCCS Rizzoli Ortopaedic Institute Bologna-Argenta, 40100 Bologna, Italy
| | | |
Collapse
|
6
|
Park GH, Kwon HH, Seok J, Yang SH, Lee J, Park BC, Shin E, Park KY. Efficacy of combined treatment with human adipose tissue stem cell-derived exosome-containing solution and microneedling for facial skin aging: A 12-week prospective, randomized, split-face study. J Cosmet Dermatol 2023; 22:3418-3426. [PMID: 37377400 DOI: 10.1111/jocd.15872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 05/24/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023]
Abstract
BACKGROUND Studies have reported promising results of mesenchymal stem cell therapies for skin aging. However, in the use of mesenchymal stem cells, some drawbacks including rarely possible tumorigenicity and low engraftment rates have limited their widespread clinical use. Adipose tissue stem cell-derived exosomes (ASCEs) are emerging as effective cell-free therapeutic agents. AIMS It was evaluated the clinical efficacy of combining the application of human ASCE-containing solution (HACS) with microneedling to treat facial skin aging. METHODS A 12-week, prospective, randomized, split-face, comparative study was conducted. Twenty-eight individuals underwent three treatment sessions separated by 3-week intervals and were followed up for 6 weeks after the last session. At each treatment session, HACS and microneedling were administered to one side of the face, and normal saline solution and microneedling were administered to the other side as a control. RESULTS The Global Aesthetic Improvement Scale score was significantly higher on the HACS-treated side than on the control side at the final follow-up visit (p = 0.005). Objective measurements obtained by different devices including PRIMOS Premium, Cutometer MPA 580, Corneometer CM 825, and Mark-Vu confirmed greater clinical improvements in skin wrinkles, elasticity, hydration, and pigmentation on the HACS-treated side than on the control side. The results of the histopathological evaluation were consistent with the clinical findings. No serious adverse events were observed. CONCLUSIONS These findings demonstrate that combined treatment using HACS and microneedling is effective and safe for treating facial skin aging.
Collapse
Affiliation(s)
- Gyeong-Hun Park
- Department of Dermatology, Dongtan Sacred Heart Hospital, Hallym University College of Medicine, Hwaseong, Republic of Korea
| | - Hyuck Hoon Kwon
- Gangdong Oaro Dermatology Institute, Seoul, Republic of Korea
| | - Joon Seok
- Department of Dermatology, Chung-Ang University, College of Medicine, Seoul, Republic of Korea
| | | | - Joon Lee
- Yongsan Oaro Dermatology Institute, Seoul, Republic of Korea
| | - Byung Chul Park
- Department of Dermatology, Dankook University, College of Medicine, Cheonan, Republic of Korea
| | - Eun Shin
- Department of Pathology, Dongtan Sacred Heart Hospital, Hallym University College of Medicine, Hwaseong, Republic of Korea
| | - Kui Young Park
- Department of Dermatology, Chung-Ang University, College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
7
|
Qu Y, Zhang S, Mu D, Luan J. Effects of Age on the Biological Properties of Cryopreserved Adipose-Derived Stem Cells and ASC-Enriched Fat Grafts. Aesthetic Plast Surg 2023; 47:2734-2744. [PMID: 37563434 DOI: 10.1007/s00266-023-03521-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 07/14/2023] [Indexed: 08/12/2023]
Abstract
BACKGROUND Donor age is an important factor affecting the biological characteristics of human adipose-derived stem cells. The aim of this study was to compare the effects of age on the biological properties of cryopreserved adipose-derived stem cells and fat survival of cell-assisted lipotransfer. METHODS Human lipoaspirates were obtained from 60 healthy female patients (aged 18-65 years) who underwent abdominal liposuction. Samples were divided into three groups according to donor age: group A, 18-29 years; group B, 30-49 years; and group C, 50-65 years. Adipose-derived stem cells were obtained by in vitro culture at the second passage and cryopreserved for 4 weeks. The cryopreserved ASCs were examined for biological characteristics, including cell proliferation, wound healing and adipogenic differentiation. Then, the fat survival of cryopreserved ASC-assisted fat transplantation was compared at different ages. RESULTS SVF viability decreased with increasing age. Moreover, there was a decline in cell proliferation and migration of ASCs with increasing age. A significant difference was found in the adipogenic differentiation of ASCs in the three groups. There were significant differences in graft retention in different age groups. ASC-assisted fat grafting was more effective in young people than in elderly people. CONCLUSIONS Honor age affects the proliferation and migration of adipose-derived stem cells but not the adipogenic differentiation potential of ASCs. Cryopreserved ASCs from younger people more effectively improved the fat survival of grafts. LEVEL OF EVIDENCE V This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .
Collapse
Affiliation(s)
- Yaping Qu
- Breast Plastic and Reconstructive Surgery Center, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 33 Badachu Road, Shijingshan District, Beijing, 100144, China
| | - Sihang Zhang
- School of Public Health, Peking University, Beijing, China
| | - Dali Mu
- Breast Plastic and Reconstructive Surgery Center, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 33 Badachu Road, Shijingshan District, Beijing, 100144, China
| | - Jie Luan
- Breast Plastic and Reconstructive Surgery Center, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 33 Badachu Road, Shijingshan District, Beijing, 100144, China.
| |
Collapse
|
8
|
Koung Ngeun S, Shimizu M, Kaneda M. Characterization of Rabbit Mesenchymal Stem/Stromal Cells after Cryopreservation. BIOLOGY 2023; 12:1312. [PMID: 37887022 PMCID: PMC10603895 DOI: 10.3390/biology12101312] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 09/29/2023] [Accepted: 10/05/2023] [Indexed: 10/28/2023]
Abstract
Adipose tissues (ADPs) are an alternative source for mesenchymal stem/stromal cells (MSCs), given that conventional bone marrow (BM) collection is painful and yields limited cell numbers. As the need for easily accessible MSCs grows, cryopreservation's role in regenerative medicine is becoming increasingly vital. However, limited research exists on the characteristics and functional properties of rabbit-derived MSCs from various anatomical sources before and after cryopreservation. We examined the effects of cryopreservation using Bambanker. We found that cryopreservation did not adversely affect the morphology, viability, and adipogenic or chondrogenic differentiation abilities of ADP MSCs or BM MSCs. However, there was a notable drop in the proliferation rate and osteogenic differentiation capability of BM MSCs post-cryopreservation. Additionally, after cryopreservation, the surface marker gene expression of CD90 was not evident in ADP MSCs. As for markers, ADIPOQ can serve as an adipogenic marker for ADP MSCs. ACAN and CNMD can act as chondrogenic markers, but these two markers are not as effective post-cryopreservation on ADP MSCs, and osteogenic markers could not be validated. The study highlights that compared to BM MSCs, ADP MSCs retained a higher viability, proliferation rate, and differentiation potential after cryopreservation. As such, in clinical MSC use, we must consider changes in post-cryopreservation cell functions.
Collapse
Affiliation(s)
- Sai Koung Ngeun
- Laboratory of Veterinary Diagnostic Imaging, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan;
| | - Miki Shimizu
- Laboratory of Veterinary Diagnostic Imaging, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan;
| | - Masahiro Kaneda
- Laboratory of Veterinary Anatomy, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan;
| |
Collapse
|
9
|
Cakiroglu Y, Tiras B, Franasiak J, Seli E. Treatment options for endometrial hypoproliferation. Curr Opin Obstet Gynecol 2023; 35:254-262. [PMID: 36912320 DOI: 10.1097/gco.0000000000000863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
PURPOSE OF REVIEW Endometrial hypoproliferation refers to the failure of the endometrium to reach optimal thickness during fresh or frozen embryo transfer cycles in women undergoing infertility treatment with in-vitro fertilization (IVF). This review discusses the treatment options for endometrial hypoproliferation. RECENT FINDINGS Apart from factors related to the embryo quality, ultrasonographic findings associated with the endometrium, such as endometrial thickness, endometrial pattern and subendometrial blood flow, are considered key factors associated with the outcome of assisted reproductive treatment. To date, a consensus has not been reached regarding the definition of thin endometrium, while thresholds of 6, 7 or 8 mm have been used in the literature. Strategies to increase endometrial thickness can be reviewed in three groups: endocrine approaches, vitamins & supplements, and new experimental therapeutic interventions. Some of the recently introduced experimental therapeutic interventions such as platelet-rich plasma injection, stem cell treatment and tissue bioengineering are exciting potential therapies that need to be further studied. SUMMARY Despite a large number of publications on the topic, diagnosing and treating endometrial hypoproliferation remains a challenge. Well designed studies are needed to establish a widely accepted endometrial thickness cut-off value below which endometrial hypoproliferation is diagnosed and to generate meaningful data that would allow an evidence-based discussion of available therapeutic options with patients.
Collapse
Affiliation(s)
- Yigit Cakiroglu
- Acibadem Mehmet Ali Aydinlar University
- Acibadem Maslak Hospital Assisted Reproductive Techniques Unit, Istanbul, Turkey
| | - Bulent Tiras
- Acibadem Mehmet Ali Aydinlar University
- Acibadem Maslak Hospital Assisted Reproductive Techniques Unit, Istanbul, Turkey
| | | | - Emre Seli
- IVI RMA New Jersey, Basking Ridge, New Jersey
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
10
|
Saadoun R, Solari MG, Rubin JP. The Role of Autologous Fat Grafting in Rhinoplasty. Facial Plast Surg 2023; 39:185-189. [PMID: 36100254 DOI: 10.1055/a-1942-2225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
Abstract
Rhinoplasty is one of the most popular aesthetic surgeries worldwide and often includes grafting techniques to achieve optimal results. One of these grafting techniques is autologous fat transfer, which has been used to increase volume, camouflage irregularities, and/or improve the quality of the nasal skin-soft tissue envelope. Moreover, minimally invasive approaches for altering the nasal appearance have recently increased and become known as "liquid" or "nonsurgical rhinoplasty." These nonsurgical approaches include altering the nasal appearance with filler injection to induce volumetric changes in lieu of extensive surgery. The use of fat grafting as a filler is favorable to achieve well-balanced aesthetic results without compromising the nasal skin-soft tissue envelope. This capability is partly because of the regenerative potential of fat grafts, serving to improve the quality of surrounding soft tissues. In contrast, commercial injectable fillers are inert. This article highlights the role of fat grafting in surgical and nonsurgical rhinoplasty to provide surgeons with an overview of the potential of these vastly abundant, biocompatible, and cost-effective grafts.
Collapse
Affiliation(s)
- Rakan Saadoun
- Department of Plastic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
- Medical Faculty Mannheim, Ruprecht Karl University of Heidelberg, Mannheim, Germany
- Department of Otorhinolaryngology, Head and Neck Surgery, University Medical Centre Mannheim, Mannheim, Germany
| | - Mario G Solari
- Department of Plastic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - J Peter Rubin
- Department of Plastic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
11
|
Kuca-Warnawin E, Kurowska W, Plebańczyk M, Wajda A, Kornatka A, Burakowski T, Janicka I, Syrówka P, Skalska U. Basic Properties of Adipose-Derived Mesenchymal Stem Cells of Rheumatoid Arthritis and Osteoarthritis Patients. Pharmaceutics 2023; 15:pharmaceutics15031003. [PMID: 36986863 PMCID: PMC10051260 DOI: 10.3390/pharmaceutics15031003] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/10/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
Rheumatoid arthritis (RA) and osteoarthritis (OA) are destructive joint diseases, the development of which are associated with the expansion of pathogenic T lymphocytes. Mesenchymal stem cells may be an attractive therapeutic option for patients with RA or OA due to the regenerative and immunomodulatory abilities of these cells. The infrapatellar fat pad (IFP) is a rich and easily available source of mesenchymal stem cells (adipose-derived stem cells, ASCs). However, the phenotypic, potential and immunomodulatory properties of ASCs have not been fully characterised. We aimed to evaluate the phenotype, regenerative potential and effects of IFP-derived ASCs from RA and OA patients on CD4+ T cell proliferation. The MSC phenotype was assessed using flow cytometry. The multipotency of MSCs was evaluated on the basis of their ability to differentiate into adipocytes, chondrocytes and osteoblasts. The immunomodulatory activities of MSCs were examined in co-cultures with sorted CD4+ T cells or peripheral blood mononuclear cells. The concentrations of soluble factors involved in ASC-dependent immunomodulatory activities were assessed in co-culture supernatants using ELISA. We found that ASCs with PPIs from RA and OA patients maintain the ability to differentiate into adipocytes, chondrocytes and osteoblasts. ASCs from RA and OA patients also showed a similar phenotype and comparable abilities to inhibit CD4+ T cell proliferation, which was dependent on the induction of soluble factors The results of our study constitute the basis for further research on the therapeutic potential of ASCs in the treatment of patients with RA and OA.
Collapse
Affiliation(s)
- Ewa Kuca-Warnawin
- Department of Pathophysiology and Immunology, National Institute of Geriatrics, Rheumatology and Rehabilitation, 02-637 Warsaw, Poland
| | - Weronika Kurowska
- Department of Pathophysiology and Immunology, National Institute of Geriatrics, Rheumatology and Rehabilitation, 02-637 Warsaw, Poland
| | - Magdalena Plebańczyk
- Department of Pathophysiology and Immunology, National Institute of Geriatrics, Rheumatology and Rehabilitation, 02-637 Warsaw, Poland
| | - Anna Wajda
- Department of Molecular Biology, National Institute of Geriatrics, Rheumatology and Rehabilitation, 02-637 Warsaw, Poland
| | - Anna Kornatka
- Department of Pathophysiology and Immunology, National Institute of Geriatrics, Rheumatology and Rehabilitation, 02-637 Warsaw, Poland
| | - Tomasz Burakowski
- Department of Pathophysiology and Immunology, National Institute of Geriatrics, Rheumatology and Rehabilitation, 02-637 Warsaw, Poland
| | - Iwona Janicka
- Department of Pathophysiology and Immunology, National Institute of Geriatrics, Rheumatology and Rehabilitation, 02-637 Warsaw, Poland
| | - Piotr Syrówka
- Rheumaorthopedics Clinic and Polyclinic, National Institute of Geriatrics, Rheumatology and Rehabilitation, 02-637 Warsaw, Poland
| | - Urszula Skalska
- Department of Pathophysiology and Immunology, National Institute of Geriatrics, Rheumatology and Rehabilitation, 02-637 Warsaw, Poland
| |
Collapse
|
12
|
Wang Z, Liu J, Huang Y, Liu Q, Chen M, Ji C, Feng J, Ma Y. Pituitary Adenylate Cyclase-activating Polypeptide (PACAP) -derived Peptide MPAPO Stimulates Adipogenic Differentiation by Regulating the Early Stage of Adipogenesis and ERK Signaling Pathway. Stem Cell Rev Rep 2023; 19:516-530. [PMID: 36112309 DOI: 10.1007/s12015-022-10415-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/15/2022] [Indexed: 02/07/2023]
Abstract
Regenerative medicine and tissue engineering have delivered new healing possibilities to the treatment of soft tissue defects, but the selection of seed cells is critical for treatment. Adipose-derived stem cells have perpetually been a preferred candidate for seed cells due to their wealthy sources, simple access, high plasticity, and powerful value-added capabilities. How to improve the efficiency of adipogenic differentiation is the key to the treatment. Pituitary adenylate cyclase-activating peptide, as a biologically active peptide secreted by the pituitary, is widely involved in regulating the body's sugar metabolism and lipid metabolism. However, the effects of MPAPO in ADSCs adipogenic differentiation remain unknown. Our results reveal that MPAPO treatment improves the adipogenic differentiation efficiency of ADSCs, including promoting the accumulation of lipid droplets and triglycerides, and the expression of adipocyte protein biomarkers PPARγ and C/EBPa. Additionally, the mechanism studies showed that the effective window of MPAPO-induced adipogenesis was the first 3 days during ADSCs differentiation. MPAPO selectively binds to the PAC1 receptor and promotes adipogenic differentiation of ADSCs by activating the ERK signaling pathway and elevating cell proliferation during postconfluent mitosis stage. Altogether, we demonstrate that MPAPO plays a crucial role in ADSCs adipogenesis, providing experimental basis and data for exploring therapeutic options in tissue defect repair.
Collapse
Affiliation(s)
- Zixian Wang
- Department of Cellular Biology, Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, China
| | - Jianmin Liu
- Department of Cellular Biology, Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, China
| | - Yongmei Huang
- Department of Cellular Biology, Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, China
| | - Qian Liu
- Department of Cellular Biology, Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, China
| | - Meng Chen
- Department of Cellular Biology, Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, China
| | - Chunyan Ji
- Department of Cellular Biology, Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, China
| | - Jia Feng
- Department of Cellular Biology, Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, China
| | - Yi Ma
- Department of Cellular Biology, Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, China.
- Department of Cellular Biology, Institute of Biomedicine, Jinan University, 601 Huangpu Avenue West, 510632, Guangzhou, China.
| |
Collapse
|
13
|
Everts PA, Panero AJ. Basic Science of Autologous Orthobiologics. Phys Med Rehabil Clin N Am 2023; 34:25-47. [DOI: 10.1016/j.pmr.2022.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
14
|
Yang P, Zhang S, Yan T, Li F, Zhang S. The Therapeutic Application of Stem Cells and Their Derived Exosomes in the Treatment of Radiation-Induced Skin Injury. Radiat Res 2023; 199:182-201. [PMID: 36630584 DOI: 10.1667/rade-22-00023.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 12/05/2022] [Indexed: 01/13/2023]
Abstract
Radiation-induced skin injury (RISI) is a serious concern for nuclear accidents and cancer radiotherapy, which seriously affects the quality of life of patients. This injury differs from traditional wounds due to impaired healing and the propensity to recurrence and is divided into acute and chronic phases on the basis of the injury time. Unfortunately, there are few effective therapies for preventing or mitigating this injury. Over the last few decades, various studies have focused on the effects of stem cell-based therapies to address the tissue repair and regeneration of irradiated skin. These stem cells modulate inflammation and instigate tissue repair by differentiating into specific kinds of cells or releasing paracrine factors. Stem cell-based therapies, including bone marrow-derived stem cells (BMSCs), adipose-derived stem cells (ADSCs) and stromal vascular fraction (SVF), have been reported to facilitate wound healing after radiation exposure. Moreover, stem cell-derived exosomes have recently been suggested as an effective and cell-free approach to support skin regeneration, circumventing the concerns respecting direct application of stem cells. Based on the literature on stem cell-based therapies for radiation-induced skin injury, we summarize the characteristics of different stem cells and describe their latest animal and clinical applications, as well as potential mechanisms. The promise of stem-cell based therapies against radiation-induced skin injury contribute to our response to nuclear events and smooth progress of cancer radiotherapy.
Collapse
Affiliation(s)
- Ping Yang
- Laboratory of Radiation Medicine, West China Second University Hospital, Sichuan University, Chengdu 610041, China.,Laboratory of Radiation Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Shuaijun Zhang
- Laboratory of Radiation Medicine, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Tao Yan
- Laboratory of Radiation Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China.,Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu 610051, China
| | - Fengsheng Li
- PLA Rocket Rorce Characteristic Medical Center, Beijing 100088, China
| | - Shuyu Zhang
- Laboratory of Radiation Medicine, West China Second University Hospital, Sichuan University, Chengdu 610041, China.,Laboratory of Radiation Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China.,Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu 610051, China.,NHC Key Laboratory of Nuclear Technology Medical Transformation, Mianyang Central Hospital, Mianyang 621099, China
| |
Collapse
|
15
|
Öner Ç, Irmak F, Eken G, Öner BB, Karsıdağ SH. The effect of stromal vascular fraction in an experimental frostbite injury model. Burns 2023; 49:149-161. [PMID: 35241296 DOI: 10.1016/j.burns.2022.02.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 01/29/2022] [Accepted: 02/14/2022] [Indexed: 01/07/2023]
Abstract
BACKGROUND Despite current treatment modalities, frostbite remains an injury with a poor prognosis which may cause functional morbidities. Several experimental and clinical studies have demonstrated that stromal vascular fraction is an autologous mixture, which can improve wound healing and vasculogenesis. The aim of this study was to show the beneficial effects of stromal vascular fraction on experimental frostbite healing. MATERIAL AND METHODS Stromal vascular fraction (SVF) was harvested from 5 rats after excision of the inguinal fat pads. Another 20 rats were separated into 2 groups of 10 as the SVF group and the control group. A frostbite injury was created on each rat using a cryoprobe frozen with liquid nitrogen (-196 °C). SVF was applied to the SVF group and phosphate-buffered saline to the control group. All injections were performed subcutaneously within the frostbite injury area. Biopsies were performed on days 5 and 14 for histopathological and immunochemical evaluations. The tissue perfusion rates of both groups were assessed on day 14 using indocyanine green angiography (SPY system). RESULTS The increase in mean tissue perfusion was 373.3% ( ± 32.1) in the SVF group and 123.8% ( ± 16.3) in the control group (p < 0.001). The macroscopic wound reduction rates of the SVF and control groups were 25.5% ( ± 19.1) and 18.0% ( ± 5.9), respectively on day 5%, and 78.2% ( ± 9.2) and 57.3% ( ± 16.7) on day 14 (p = 0.007; p = 0.003). Acute inflammation and the fibrosis gradient were significantly decreased in the SVF group compared to the control group (p = 0.004, p = 0.054 respectively on day 14). Granulation tissue amount, re-epithelialization score and neovascularization were significantly increased in the SVF group (p = 0.006, p = 0.010 and p = 0.021, respectively on day 14). CONCLUSIONS The study results demonstrated that SVF increases frostbite wound healing by increasing tissue perfusion rate, neovascularization and re-epithelialization, and modulating acute inflammation and fibrosis.
Collapse
Affiliation(s)
- Çağatay Öner
- Department of Plastic, Reconstructive and Aesthetic Surgery, University of Health Sciences, Sisli Hamidiye Etfal Training and Research Hospital, Istanbul, Turkey; Department of Plastic, Reconstructive and Aesthetic Surgery, Sirnak State Hospital, Sirnak, Turkey.
| | - Fatih Irmak
- Department of Plastic, Reconstructive and Aesthetic Surgery, University of Health Sciences, Sisli Hamidiye Etfal Training and Research Hospital, Istanbul, Turkey.
| | - Gülçin Eken
- Department of Clinical Pathology, University of Health Sciences, Sisli Hamidiye Etfal Training and Research Hospital, Istanbul, Turkey.
| | - Burcu Bitir Öner
- Department of Anesthesiology and Reanimation, Istanbul Medical Faculty, Istanbul University, Istanbul, Turkey.
| | - Semra Hacıkerim Karsıdağ
- Department of Plastic, Reconstructive and Aesthetic Surgery, University of Health Sciences, Sisli Hamidiye Etfal Training and Research Hospital, Istanbul, Turkey.
| |
Collapse
|
16
|
Aydin SM. Blood Products. Regen Med 2023. [DOI: 10.1007/978-3-030-75517-1_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
17
|
Autologous adipose-derived stromal vascular fraction and platelet concentrates for the treatment of complex perianal fistulas. Tech Coloproctol 2023; 27:135-143. [PMID: 36063257 PMCID: PMC9839808 DOI: 10.1007/s10151-022-02675-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 07/27/2022] [Indexed: 01/18/2023]
Abstract
BACKGROUND Complex perianal fistulas are a major challenge for modern surgery since 10-35% of patients have functional problems after treatment. Sphincter-saving techniques have a wide range of efficacy (10-80%). We hypothesised that autologous adipose-derived stromal vascular fraction in combination with platelet rich plasma is a new therapeutic strategy with enhanced cure and function preservation rates. METHODS Adult patients with complex cryptoglandular perianal fistulas were treated with injection of autologous adipose-derived stromal vascular fraction in combination with platelet rich plasma around and inside the fistulous tract between May 2018 and April 2019 at the General and Emergency Surgery Operative Unit of the University Hospital "P. Giaccone" of Palermo. Fistulas were confirmed by magnetic resonance imaging. Patients completed the Short Form-36 score on quality of life and the Wexner and Vaizey scores on faecal incontinence, and they were functionally studied using a three-dimensional anorectal manometry. The clinical and functional follow-up was performed at 1 year and 2 years after surgery. RESULTS Nine patients (4 males, 5 females; median age 42 years [19-63 years]) with high trans-sphincteric or horseshoe fistulas were treated. The average number of previous surgeries per patient was 4.8. At 1 year follow-up, 77.7% of patients were cured, while at 2 years there was 1case of relapse. The variation in Short Form-36 score in cured patients was not significant (p = 0.0936). No statistically significant differences were found in continence scores. CONCLUSIONS The proposed treatment is a treatment option that preserves sphincter integrity and function, potentially avoiding postoperative incontinence and the need of repeated treatments.
Collapse
|
18
|
Wang J, Hao R, Jiang T, Guo X, Zhou F, Cao L, Gao F, Wang G, Wang J, Ning K, Zhong C, Chen X, Huang Y, Xu J, Gao S. Rebuilding hippocampus neural circuit with hADSC-derived neuron cells for treating ischemic stroke. Cell Biosci 2022; 12:40. [PMID: 35379347 PMCID: PMC8981707 DOI: 10.1186/s13578-022-00774-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 03/14/2022] [Indexed: 12/17/2022] Open
Abstract
Background Human adipose-derived stem cells (hADSCs) have been demonstrated to be a promising autologous stem cell source for treating various neuronal diseases. Our study indicated that hADSCs could be induced into neuron-like cells in a stepwise manner that are characterized by the positive expression of MAP2, SYNAPSIN 1/2, NF-200, and vGLUT and electrophysiological activity. We first primed hADSCs into neuron-like cells (hADSC-NCs) and then intracerebrally transplanted them into MCAO reperfusion mice to further explore their in vivo survival, migration, integration, fate commitment and involvement in neural circuit rebuilding. Results The hADSC-NCs survived well and transformed into MAP2-positive, Iba1- or GFAP-negative cells in vivo while maintaining some proliferative ability, indicated by positive Ki67 staining after 4 weeks. hADSC-NCs could migrate to multiple brain regions, including the cortex, hippocampus, striatum, and hypothalamus, and further differentiate into mature neurons, as confirmed by action potential elicitation and postsynaptic currents. With the aid of a cell suicide system, hADSC-NCs were proven to have functionally integrated into the hippocampal memory circuit, where they contributed to spatial learning and memory rescue, as indicated by LTP improvement and subsequent GCV-induced relapse. In addition to infarction size shrinkage and movement improvement, MCAO-reperfused mice showed bidirectional immune modulation, including inhibition of the local proinflammatory factors IL-1α, IL-1β, IL-2, MIP-1β and promotion proinflammatory IP-10, MCP-1, and enhancement of the anti-inflammatory factors IL-15. Conclusion Overall, hADSC-NCs used as an intermediate autologous cell source for treating stroke can rebuild hippocampus neuronal circuits through cell replacement. Supplementary Information The online version contains supplementary material available at 10.1186/s13578-022-00774-x.
Collapse
Affiliation(s)
- Jian Wang
- Department of Neurosurgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Rui Hao
- Center of Translational Medicine, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200092, China.,Department of Anesthesia, Zhongshan Hospital, Fudan University, Shanghai,, 200032,, China
| | - Tianfang Jiang
- Department of Neurology, Shanghai Eighth People's Hospital Affiliated to Jiangsu University, Shanghai, 200233, China
| | - Xuanxuan Guo
- Department of Neurosurgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Fei Zhou
- Department of Neurology, Third Affiliated Hospital of Navy Military Medical University, Shanghai, 200438, China
| | - Limei Cao
- Department of Neurology, Shanghai Eighth People's Hospital Affiliated to Jiangsu University, Shanghai, 200233, China
| | - Fengjuan Gao
- Zhoupu Hospital, Affiliated to Shanghai University of Medicine & Health Sciences, Shanghai, 201318, China
| | - Guangming Wang
- Department of Neurosurgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Juan Wang
- Department of Biotechnology and Molecular, Binzhou Medical College, Yantai, 264003, Shandong, People's Republic of China
| | - Ke Ning
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, 385A Glossop Road, Sheffield, S10 2HQ, UK
| | - Chunlong Zhong
- Department of Neurosurgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China.
| | - Xu Chen
- Department of Neurology, Shanghai Eighth People's Hospital Affiliated to Jiangsu University, Shanghai, 200233, China.
| | - Ying Huang
- Center of Translational Medicine, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200092, China.
| | - Jun Xu
- Department of Neurosurgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China.
| | - Shane Gao
- Department of Neurosurgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China.
| |
Collapse
|
19
|
Jiang R, Wang Y, Liu J, Wu Z, Wang D, Deng Q, Yang C, Zhou Q. Gut microbiota is involved in the antidepressant effects of adipose-derived mesenchymal stem cells in chronic social defeat stress mouse model. Psychopharmacology (Berl) 2022; 239:533-549. [PMID: 34981181 DOI: 10.1007/s00213-021-06037-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 11/23/2021] [Indexed: 10/19/2022]
Abstract
RATIONALE Growing evidence supports the role of microbiota in regulating gut-brain interactions and, thus, contributing to the pathogenesis of depression and the antidepressant actions. Adipose-derived mesenchymal stem cells (ADSCs), as important members of the stem cell family, were demonstrated to alleviate depression behaviors. However, the role of gut microbiota in ADSCs alleviating depression in chronic social defeat stress (CSDS) model is unknown. OBJECTIVES To examine the effects of ADSCs on depression symptoms and detect the changes in the composition of gut microbiota. RESULTS We found that ADSCs administration significantly ameliorated CSDS-induced depression behaviors, which was accompanied by alteration in the gut microbiota. The principal co-ordinates analysis (PCoA) results showed that there was a significant difference between the gut microbiota among the groups. Remarkably, receiver operating characteristic (ROC) curves revealed that order Micrococcales, order Rhizobiales and species Bacteroides acidifaciens are potentially important biomarkers for the antidepressant effects of ADSCs in CSDS model. CONCLUSIONS ADSCs are effective in treating depression behaviors in CSDS model, which might be partly due to the regulation of abnormal composition of gut microbiota. Thus, ADSCs offer a promising therapeutic strategy for treating depression in patients.
Collapse
Affiliation(s)
- Riyue Jiang
- Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Yuanyuan Wang
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Junbi Liu
- Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Zifeng Wu
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Di Wang
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Qing Deng
- Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Chun Yang
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Qing Zhou
- Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China.
| |
Collapse
|
20
|
Venter M, Kelly A. The use of adipose tissue and its derivates to stimulate and support wound healing processes - An updated review. INTERDISCIPLINARY NEUROSURGERY 2021. [DOI: 10.1016/j.inat.2021.101304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
21
|
Jiang Y, Li F, Li Y, Duan J, Di C, Zhu Y, Zhao J, Jia X, Qu J. CD69 mediates the protective role of adipose tissue-derived mesenchymal stem cells against Pseudomonas aeruginosa pulmonary infection. Clin Transl Med 2021; 11:e563. [PMID: 34841721 PMCID: PMC8567058 DOI: 10.1002/ctm2.563] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 08/15/2021] [Accepted: 08/19/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Our previous study shows that Adipose tissue-derived mesenchymal stem cells (ASCs) are a promising strategy for cell-based therapy against pulmonary infection with Pseudomonas aeruginosa (P. aeruginosa), but the underlying mechanisms remain unclear. METHODS cDNA microarray assay was performed to explore the transcriptome of ASCs primed by P. aeruginosa. Small interfering RNA (siRNA) was constructed to select the receptor candidates for P. aeruginosa recognition and granulocyte-macrophage colony-stimulating factor (GM-CSF) production in ASCs. The soluble protein chimeras containing the extracellular domain of human CD69 fused to the Fc region of human immunoglobulin IgG1 were used as a probe to validate the recognition of P. aeruginosa. The association between CD69 and extracellular regulated protein kinases 1/2 (ERK1/2) was explored via co-immunoprecipitation, siRNA, and inhibitor. The murine models of P. aeruginosa pneumonia treated with WT-ASCs, GM-CSF-/- -ASCs Cd69-/- -ASCs or Erk1-/- -ASCs were used to determine the role of GM-CSF, CD69, and ERK1 in ASCs against P. aeruginosa infection. RESULTS We showed that C-type lectin receptor CD69 mediated the protective effects of ASCs partly through GM-CSF. CD69 could specifically recognize P. aeruginosa and regulate GM-CSF secretion of ASCs. CD69 regulated the production of GM-CSF via ERK1 in ASCs after P. aeruginosa infection. Moreover, the Administration of ASCs with deficiency of CD69 or ERK1 completely blocked its protective effects in a murine model of P. aeruginosa pneumonia. CONCLUSIONS CD69 recognizes P. aeruginosa and further facilitates ERK1 activation, which plays a crucial role in ASCs-based therapy against P. aeruginosa pneumonia. CD69 may be a novel target molecule to improve ASCs-based therapy against P. aeruginosa infection.
Collapse
Affiliation(s)
- Yanshan Jiang
- Department of Respiratory and Critical Care MedicineRuijin Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai200025China
- Institute of Respiratory DiseasesSchool of MedicineShanghai Jiao Tong UniversityShanghai200025China
- Shanghai Key Laboratory of Emergency PreventionDiagnosis and Treatment of Respiratory Infectious DiseasesShanghai200025China
- Clinical Medicine Scientific and Technical Innovation CenterShanghai Tenth People's HospitalTongji University School of MedicineShanghaiChina
| | - Fan Li
- Clinical Medicine Scientific and Technical Innovation CenterShanghai Tenth People's HospitalTongji University School of MedicineShanghaiChina
| | - Yanan Li
- Department of Respiratory and Critical Care MedicineRuijin Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai200025China
- Institute of Respiratory DiseasesSchool of MedicineShanghai Jiao Tong UniversityShanghai200025China
- Shanghai Key Laboratory of Emergency PreventionDiagnosis and Treatment of Respiratory Infectious DiseasesShanghai200025China
- Clinical Medicine Scientific and Technical Innovation CenterShanghai Tenth People's HospitalTongji University School of MedicineShanghaiChina
| | - Jielin Duan
- Clinical Medicine Scientific and Technical Innovation CenterShanghai Tenth People's HospitalTongji University School of MedicineShanghaiChina
| | - Caixia Di
- Department of Respiratory and Critical Care MedicineRuijin Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai200025China
- Institute of Respiratory DiseasesSchool of MedicineShanghai Jiao Tong UniversityShanghai200025China
- Shanghai Key Laboratory of Emergency PreventionDiagnosis and Treatment of Respiratory Infectious DiseasesShanghai200025China
| | - Yinggang Zhu
- Department of Pulmonary and Critical Care MedicineHuadong HospitalFudan UniversityShanghaiChina
| | - Jingya Zhao
- Department of Respiratory and Critical Care MedicineRuijin Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai200025China
- Institute of Respiratory DiseasesSchool of MedicineShanghai Jiao Tong UniversityShanghai200025China
- Shanghai Key Laboratory of Emergency PreventionDiagnosis and Treatment of Respiratory Infectious DiseasesShanghai200025China
| | - Xinming Jia
- Clinical Medicine Scientific and Technical Innovation CenterShanghai Tenth People's HospitalTongji University School of MedicineShanghaiChina
| | - Jieming Qu
- Department of Respiratory and Critical Care MedicineRuijin Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai200025China
- Institute of Respiratory DiseasesSchool of MedicineShanghai Jiao Tong UniversityShanghai200025China
- Shanghai Key Laboratory of Emergency PreventionDiagnosis and Treatment of Respiratory Infectious DiseasesShanghai200025China
| |
Collapse
|
22
|
Kuhlmann C, Schenck TL, Aszodi A, Giunta RE, Wiggenhauser PS. Zone-Dependent Architecture and Biochemical Composition of Decellularized Porcine Nasal Cartilage Modulate the Activity of Adipose Tissue-Derived Stem Cells in Cartilage Regeneration. Int J Mol Sci 2021; 22:ijms22189917. [PMID: 34576079 PMCID: PMC8470846 DOI: 10.3390/ijms22189917] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/27/2021] [Accepted: 09/03/2021] [Indexed: 01/22/2023] Open
Abstract
Previous anatomical studies have shown different functional zones in human nasal septal cartilage (NC). These zones differ in respect to histological architecture and biochemical composition. The aim of this study was to investigate the influence of these zones on the fate of stem cells from a regenerative perspective. Therefore, decellularized porcine septal cartilage was prepared and subjected to histological assessment to demonstrate its equivalence to human cartilage. Decellularized porcine NC (DPNC) exposed distinct surfaces depending on two different histological zones: the outer surface (OS), which is equivalent to the superficial zone, and the inner surface (IS), which is equivalent to the central zone. Human adipose tissue-derived stem cells (ASCs) were isolated from the abdominal fat tissue of five female patients and were seeded on the IS and OS of DPNC, respectively. Cell seeding efficiency (CSE), vitality, proliferation, migration, the production of sulfated glycosaminoglycans (sGAG) and chondrogenic differentiation capacity were evaluated by histological staining (DAPI, Phalloidin, Live-Dead), biochemical assays (alamarBlue®, PicoGreen®, DMMB) and the quantification of gene expression (qPCR). Results show that cell vitality and CSE were not influenced by DPNC zones. ASCs, however, showed a significantly higher proliferation and elevated expression of early chondrogenic differentiation, as well as fibrocartilage markers, on the OS. On the contrary, there was a significantly higher upregulation of hypertrophy marker MMP13 (p < 0.0001) and GAG production (p = 0.0105) on the IS, whereas cell invasion into the three-dimensional DPNC was higher in comparison to the OS. We conclude that the zonal-dependent distinct architecture and composition of NC modulates activities of ASCs seeded on DPNC. These findings might be used for engineering of cartilage substitutes needed in facial reconstructive surgery that yield an equivalent histological and functional structure, such as native NC.
Collapse
Affiliation(s)
- Constanze Kuhlmann
- Department of Hand, Plastic and Aesthetic Surgery, LMU Klinikum, University Hospital, LMU Munich, Ziemsenstrasse 5, 80336 Munich, Germany; (C.K.); (T.L.S.); (R.E.G.)
- Laboratory of Cartilage Development, Diseases and Regeneration, Department for Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), University Hospital, LMU Munich, Fraunhoferstrasse 20, 82152 Planegg, Germany;
| | - Thilo L. Schenck
- Department of Hand, Plastic and Aesthetic Surgery, LMU Klinikum, University Hospital, LMU Munich, Ziemsenstrasse 5, 80336 Munich, Germany; (C.K.); (T.L.S.); (R.E.G.)
| | - Attila Aszodi
- Laboratory of Cartilage Development, Diseases and Regeneration, Department for Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), University Hospital, LMU Munich, Fraunhoferstrasse 20, 82152 Planegg, Germany;
| | - Riccardo E. Giunta
- Department of Hand, Plastic and Aesthetic Surgery, LMU Klinikum, University Hospital, LMU Munich, Ziemsenstrasse 5, 80336 Munich, Germany; (C.K.); (T.L.S.); (R.E.G.)
| | - Paul Severin Wiggenhauser
- Department of Hand, Plastic and Aesthetic Surgery, LMU Klinikum, University Hospital, LMU Munich, Ziemsenstrasse 5, 80336 Munich, Germany; (C.K.); (T.L.S.); (R.E.G.)
- Correspondence:
| |
Collapse
|
23
|
Crowley JS, Liu A, Dobke M. Regenerative and stem cell-based techniques for facial rejuvenation. Exp Biol Med (Maywood) 2021; 246:1829-1837. [PMID: 34102897 PMCID: PMC8381699 DOI: 10.1177/15353702211020701] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
This review discusses the most novel ideas and modalities being incorporated into facial rejuvenation. Recent innovative techniques include the use of regenerative stem cell techniques and regeneration supportive modalities such as nano-technology or gene therapies. This review aims to investigate approaches that are less well known and lacking established evidence in order to proactively study these techniques prior to them becoming popularized. These applications and relevant research were reviewed in the context of both surgical and non-surgical modalities in clinical practice. Future directions include the concept of "precision cosmetic medicine" utilizing gene editing and cellular therapies to tailor rejuvenation techniques based on each individual's genetic make-up and therefore needs.
Collapse
Affiliation(s)
- J Sarah Crowley
- Department of Surgery, Division of Plastic Surgery,
UC San Diego School of Medicine, San Diego, CA 92103-8890
| | - Amy Liu
- Department of Surgery, Division of Plastic Surgery,
UC San Diego School of Medicine, San Diego, CA 92103-8890
| | - Marek Dobke
- Department of Surgery, Division of Plastic Surgery,
UC San Diego School of Medicine, San Diego, CA 92103-8890
| |
Collapse
|
24
|
Weiliang Z, Lili G. Research Advances in the Application of Adipose-Derived Stem Cells Derived Exosomes in Cutaneous Wound Healing. Ann Dermatol 2021; 33:309-317. [PMID: 34341631 PMCID: PMC8273313 DOI: 10.5021/ad.2021.33.4.309] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/21/2020] [Accepted: 01/11/2021] [Indexed: 12/15/2022] Open
Abstract
Cutaneous wound healing has always been an intractable medical problem for both clinicians and researchers, with an urgent need for more efficacious methods to achieve optimal outcomes morphologically and functionally. Stem cells, the body's rapid response 'road repair crew,' being on standby to combat tissue injuries, are an essential part of regenerative medicine. Currently, the use of adipose-derived stem cells (ADSCs), a kind of mesenchymal stem cells with multipotent differentiation and self-renewal capacity, is surging in the field of cutaneous wound healing. ADSCs may exert influences either by releasing paracrine signalling factors or differentiating into mature adipose cells to provide the 'building blocks' for engineered tissue. As an important paracrine substance released from ADSCs, exosomes are a kind of extracellular vesicles and carrying various bioactive molecules mediating adjacent or distant intercellular communication. Previous studies have indicated that ADSCs derived exosomes (ADSCs-Exos) promoted skin wound healing by affecting all stages of wound healing, including regulating inflammatory response, promoting proliferation and migration of fibroblasts or keratinocytes, facilitating angiogenesis, and regulating remodeling of extracellular matrix, which have provided new opportunities for understanding how ADSCs-Exos mediate intercellular communication in pathological processes of the skin and therapeutic strategies for cutaneous wound repair. In this review, we focus on elucidating the role of ADSCs-Exos at various stages of cutaneous wound healing, detailing the latest developments, and presenting some challenges necessary to be addressed in this field, with the expectation of providing a new perspective on how to best utilize this powerful cell-free therapy in the future.
Collapse
Affiliation(s)
- Zeng Weiliang
- Department of Cosmetic and Plastic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Guo Lili
- Department of Cosmetic and Plastic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
25
|
Induction of the CD24 Surface Antigen in Primary Undifferentiated Human Adipose Progenitor Cells by the Hedgehog Signaling Pathway. Biologics 2021. [DOI: 10.3390/biologics1020008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In the murine model system of adipogenesis, the CD24 cell surface protein represents a valuable marker to label undifferentiated adipose progenitor cells. Indeed, when injected into the residual fat pads of lipodystrophic mice, these CD24 positive cells reconstitute a normal white adipose tissue (WAT) depot. Unluckily, similar studies in humans are rare and incomplete. This is because it is impossible to obtain large numbers of primary CD24 positive human adipose stem cells (hASCs). This study shows that primary hASCs start to express the glycosylphosphatidylinositol (GPI)-anchored CD24 protein when cultured with a chemically defined medium supplemented with molecules that activate the Hedgehog (Hh) signaling pathway. Therefore, this in vitro system may help understand the biology and role in adipogenesis of the CD24-positive hASCs. The induced cells’ phenotype was studied by flow cytometry, Real-Time Quantitative Polymerase Chain Reaction (RT-qPCR) techniques, and their secretion profile. The results show that CD24 positive cells are early undifferentiated progenitors expressing molecules related to the angiogenic pathway.
Collapse
|
26
|
Surgical Angiogenesis of Decellularized Nerve Allografts Improves Early Functional Recovery in a Rat Sciatic Nerve Defect Model. Plast Reconstr Surg 2021; 148:561-570. [PMID: 34292916 DOI: 10.1097/prs.0000000000008291] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Surgical angiogenesis applied to nerve grafts has been suggested to enhance nerve regeneration after nerve injury. The authors hypothesized that surgical angiogenesis to decellularized nerve allografts would improve functional recovery in a rat sciatic nerve defect model. METHODS Sixty Lewis rats were divided in three groups of 20 animals each. Unilateral sciatic nerve defects were repaired with (1) autografts, (2) decellularized allografts, and (3) decellularized allografts wrapped with a superficial inferior epigastric artery fascial flap to add surgical angiogenesis. Twelve and 16 weeks after surgery, nerve regeneration was assessed using functional, electrophysiologic, histologic, and immunofluorescence analyses. Ultrasonography was used during the survival period to noninvasively evaluate muscle atrophy and reinnervation by measuring cross-sectional muscle area. RESULTS Surgical angiogenesis of allografts demonstrated significantly improved isometric tetanic force recovery at 12 weeks, compared to allograft alone, which normalized between groups at 16 weeks. Cross-sectional muscle areas showed no differences between groups. Electrophysiology showed superiority of autografts at both time points. No differences were found in histologic analysis, besides a significantly inferior N ratio in allografts at 12 weeks. Immunofluorescent expression of CD34, indicating vascularity, was significantly enhanced in the superficial inferior epigastric artery fascial group compared to allografts at 12 weeks, with highest expression at 16 weeks compared to all groups. CONCLUSION Surgical angiogenesis with an adipofascial flap to the nerve allograft increases vascularity in the nerve graft, with subsequent improvement of early muscle force recovery, comparable to autografts.
Collapse
|
27
|
Luo Y, Ji H, Cao Y, Ding X, Li M, Song H, Li S, WaTableng C, Wu H, Meng J, Du H. miR-26b-5p/TCF-4 Controls the Adipogenic Differentiation of Human Adipose-derived Mesenchymal Stem Cells. Cell Transplant 2021; 29:963689720934418. [PMID: 32579400 PMCID: PMC7563810 DOI: 10.1177/0963689720934418] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
In this study, we assessed the ability of miR-26b-5p to regulate T cell factor 4 (TCF-4) expression and thereby control human adipose-derived mesenchymal stem cell (hADMSC) adipogenic differentiation. Adipogenic medium was used to induce hADMSC differentiation over a 6-d period. The ability of miR-26b-5p to interact with the TCF-4 mRNA was confirmed through both predictive bioinformatics analyses and luciferase reporter assays. Immunofluorescent staining was used to visualize the impact of miR-26b-5p inhibition or overexpression on TCF-4 and β-catenin levels in hADMSCs. Further functional analyses were conducted by transfecting these cells with siRNAs specific for TCF-4 and β-catenin. Adipogenic marker and Wnt/β-catenin pathway gene expression levels were assessed via real-time polymerase chain reaction and western blotting. β-catenin localization was assessed via immunofluorescent staining. As expected, our adipogenic media induced the adipocytic differentiation of hADMSCs. In addition, we confirmed that TCF-4 is an miR-26b-5p target gene in these cells, and that protein levels of both TCF-4 and β-catenin were reduced when these cells were transfected with miR-26b-5p mimics. Overexpression of this microRNA also enhanced hADMSC adipogenesis, whereas TCF-4 and β-catenin overexpression inhibited this process. The enhanced hADMSC adipogenic differentiation that was observed following TCF-4 or β-catenin knockdown was partially reversed when miR-26b-5p expression was inhibited. We found that miR-26b-5p serves as a direct negative regulator of TCF-4 expression within hADMSCs, leading to inactivation of the Wnt/β-catenin pathway and thereby promoting the adipogenic differentiation of these cells in vitro.
Collapse
Affiliation(s)
- Yadong Luo
- Department of Stomatology, Central Hospital of Xuzhou, the Xuzhou Clinical College of Xuzhou Medical University, Xuzhou, Jiangsu Province, PR China.,These authors contributed equally to this article
| | - Huan Ji
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, PR China.,Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, Nanjing, Jiangsu Province, PR China.,These authors contributed equally to this article
| | - Yan Cao
- Nanjing Maternity and Child Health Care Institute, Women's Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, PR China.,These authors contributed equally to this article
| | - Xu Ding
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, PR China.,Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, Nanjing, Jiangsu Province, PR China
| | - Meng Li
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, PR China.,Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, Nanjing, Jiangsu Province, PR China
| | - Haiyang Song
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, PR China.,Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, Nanjing, Jiangsu Province, PR China
| | - Sheng Li
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, PR China.,Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, Nanjing, Jiangsu Province, PR China
| | - Chenxing WaTableng
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, PR China.,Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, Nanjing, Jiangsu Province, PR China
| | - Heming Wu
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, PR China.,Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, Nanjing, Jiangsu Province, PR China
| | - Jian Meng
- Department of Stomatology, Central Hospital of Xuzhou, the Xuzhou Clinical College of Xuzhou Medical University, Xuzhou, Jiangsu Province, PR China.,Both authors are co-corresponding authors
| | - Hongming Du
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, PR China.,Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, Nanjing, Jiangsu Province, PR China.,Both authors are co-corresponding authors
| |
Collapse
|
28
|
Ong WK, Chakraborty S, Sugii S. Adipose Tissue: Understanding the Heterogeneity of Stem Cells for Regenerative Medicine. Biomolecules 2021; 11:biom11070918. [PMID: 34206204 PMCID: PMC8301750 DOI: 10.3390/biom11070918] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 06/17/2021] [Accepted: 06/17/2021] [Indexed: 12/13/2022] Open
Abstract
Adipose-derived stem cells (ASCs) have been increasingly used as a versatile source of mesenchymal stem cells (MSCs) for diverse clinical investigations. However, their applications often become complicated due to heterogeneity arising from various factors. Cellular heterogeneity can occur due to: (i) nomenclature and criteria for definition; (ii) adipose tissue depots (e.g., subcutaneous fat, visceral fat) from which ASCs are isolated; (iii) donor and inter-subject variation (age, body mass index, gender, and disease state); (iv) species difference; and (v) study design (in vivo versus in vitro) and tools used (e.g., antibody isolation and culture conditions). There are also actual differences in resident cell types that exhibit ASC/MSC characteristics. Multilineage-differentiating stress-enduring (Muse) cells and dedifferentiated fat (DFAT) cells have been reported as an alternative or derivative source of ASCs for application in regenerative medicine. In this review, we discuss these factors that contribute to the heterogeneity of human ASCs in detail, and what should be taken into consideration for overcoming challenges associated with such heterogeneity in the clinical use of ASCs. Attempts to understand, define, and standardize cellular heterogeneity are important in supporting therapeutic strategies and regulatory considerations for the use of ASCs.
Collapse
Affiliation(s)
- Wee Kiat Ong
- School of Pharmacy, Monash University Malaysia, Subang Jaya 47500, Selangor, Malaysia
- Correspondence: (W.K.O.); (S.S.)
| | - Smarajit Chakraborty
- Institute of Bioengineering and Bioimaging (IBB), A*STAR, 31 Biopolis Way, Singapore 138669, Singapore;
| | - Shigeki Sugii
- Institute of Bioengineering and Bioimaging (IBB), A*STAR, 31 Biopolis Way, Singapore 138669, Singapore;
- Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
- Correspondence: (W.K.O.); (S.S.)
| |
Collapse
|
29
|
Gupta AK, Renaud HJ, Rapaport JA. Platelet-rich Plasma and Cell Therapy: The New Horizon in Hair Loss Treatment. Dermatol Clin 2021; 39:429-445. [PMID: 34053596 DOI: 10.1016/j.det.2021.04.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Current medicinal therapies for treating hair loss have shortcomes due to variability and ineffectiveness, noncompliance, and adverse effects. The prevalence of hair loss and its associated negative psychological impact have driven research into regenerative medicine approaches, such as platelet-rich plasma (PRP) and cell-based therapies, in an attempt to find alternative, safe, effective, and reproducible treatments. Current research shows promising results from these therapies; however, more robust trials are needed to confirm the reported efficacies of PRP and cell-based therapies. Moreover, standardization of treatment preparation as well as dose and regimen are needed.
Collapse
Affiliation(s)
- Aditya K Gupta
- Division of Dermatology, Department of Medicine, University of Toronto School of Medicine, Toronto, Ontario, Canada; Mediprobe Research Inc., 645 Windermere Road, London, Ontario N5X 2P1, Canada.
| | - Helen J Renaud
- Mediprobe Research Inc., 645 Windermere Road, London, Ontario N5X 2P1, Canada
| | - Jeffrey A Rapaport
- Cosmetic Skin and Surgery Center, 333 Sylvan Avenue, Suite 207, Englewood Cliffs, NJ 07632, USA
| |
Collapse
|
30
|
Abstract
Tissue engineering is one of the most promising scientific breakthroughs of the late 20th century. Its objective is to produce in vitro tissues or organs to repair and replace damaged ones using various techniques, biomaterials, and cells. Tissue engineering emerged to substitute the use of native autologous tissues, whose quantities are sometimes insufficient to correct the most severe pathologies. Indeed, the patient’s health status, regulations, or fibrotic scars at the site of the initial biopsy limit their availability, especially to treat recurrence. This new technology relies on the use of biomaterials to create scaffolds on which the patient’s cells can be seeded. This review focuses on the reconstruction, by tissue engineering, of two types of tissue with tubular structures: vascular and urological grafts. The emphasis is on self-assembly methods which allow the production of tissue/organ substitute without the use of exogenous material, with the patient’s cells producing their own scaffold. These continuously improved techniques, which allow rapid graft integration without immune rejection in the treatment of severely burned patients, give hope that similar results will be observed in the vascular and urological fields.
Collapse
|
31
|
Xia Z, Guo X, Yu N, Zeng A, Si L, Long F, Zhang W, Wang X, Zhu L, Liu Z. The Application of Decellularized Adipose Tissue Promotes Wound Healing. Tissue Eng Regen Med 2020; 17:863-874. [PMID: 33165769 PMCID: PMC7710820 DOI: 10.1007/s13770-020-00286-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/07/2020] [Accepted: 07/20/2020] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Due to adipose-derived stem cells (ASCs) being easy to obtain, their rapid proliferation rate, and their multidirectional differentiation capabilities, they have been widely used in the field of regenerative medicine. With the progress of decellularized adipose tissue (DAT) and adipose tissue engineering research, the role of DAT in promoting angiogenesis has gradually been emphasized. METHODS We examined the biological characteristics and biosafety of DAT and evaluated the stem cell maintenance ability and promotion of growth factor secretion through conducting in vitro and in vivo studies. RESULTS The tested ASCs showed high rat:es of proliferation and adhered well to DAT. The expression levels of essential genes for cell stem maintenance, including OCT4, SOX2, and Nanog were low at 2-24 h and much higher at 48 and 96 h. The Adipogenic expression level of markers for ASCs proliferation including PPARγ, C/EPBα, and LPL increased from 2 to 96 h. Co-culture of ASCs and DAT increased the secretion of local growth factors, such as VEGF, PDGF-bb, bFGF, HGF, EGF, and FDGF-bb, and secretion gradually increased from 0 to 48 h. A model of full-thickness skin defects on the back of nude mice was established, and the co-culture of ASCs and DAT showed the best in vivo treatment effect. CONCLUSION The application of DAT promotes wound healing, and DAT combined with ASCs may be a promising material in adipose tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Zenan Xia
- Department of Plastic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Shuaifuyuan 1#, Dongcheng District, Beijing, 100730, China
| | - Xiao Guo
- Department of Plastic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Shuaifuyuan 1#, Dongcheng District, Beijing, 100730, China
| | - Nanze Yu
- Department of Plastic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Shuaifuyuan 1#, Dongcheng District, Beijing, 100730, China
| | - Ang Zeng
- Department of Plastic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Shuaifuyuan 1#, Dongcheng District, Beijing, 100730, China
| | - Loubin Si
- Department of Plastic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Shuaifuyuan 1#, Dongcheng District, Beijing, 100730, China
| | - Fei Long
- Department of Plastic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Shuaifuyuan 1#, Dongcheng District, Beijing, 100730, China
| | - Wenchao Zhang
- Department of Plastic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Shuaifuyuan 1#, Dongcheng District, Beijing, 100730, China
| | - Xiaojun Wang
- Department of Plastic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Shuaifuyuan 1#, Dongcheng District, Beijing, 100730, China
| | - Lin Zhu
- Department of Plastic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Shuaifuyuan 1#, Dongcheng District, Beijing, 100730, China.
| | - Zhifei Liu
- Department of Plastic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Shuaifuyuan 1#, Dongcheng District, Beijing, 100730, China.
| |
Collapse
|
32
|
Effects of Harvest Sites on Cryopreserved Adipose-Derived Stem Cells and ASC-Enriched Fat Grafts. Aesthetic Plast Surg 2020; 44:2286-2296. [PMID: 32754834 DOI: 10.1007/s00266-020-01900-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 07/23/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Enrichment of adipose-derived stem cells (ASCs) with fat grafts has demonstrated benefit for graft retention and histologic appearance. There is no consensus on the optimal harvest site for adipose-derived stem cells. This study aimed to investigate the effects of harvest sites on the characteristics of cryopreserved adipose-derived stem cells and the graft retention of cell-assisted lipotransfer. METHODS Lipoaspirates were harvested from 18 healthy volunteers who underwent liposuctions for body contouring. Twenty milliliters of lipoaspirates was, respectively, obtained from four sites, including the upper limb, abdomen, waist, and thighs, by the Coleman technique. Adipose-derived stem cells were ex vivo cultured and cryopreserved for four weeks. The biological characteristics of ASCs from four harvest sites were analyzed: MSC surface markers, cell proliferation, migration ability, and multipotential differentiation. The fat grafts were co-implanted with ASCs from four harvest sites and injected subcutaneously in mice. The ASC-enriched fat grafts were analyzed three months after transplantation. RESULTS Cryopreserved ASCs from the abdomen and thighs maintained more significant cell proliferation, migration ability, and differentiation potential, compared with cells from the upper limb and waist. Moreover, we achieved better graft retention of cell-assisted fat grafts with cryopreserved ASC from the abdomen and thighs. CONCLUSIONS The harvest site of adipose tissue affects the cellular activity and differentiation potential of cryopreserved ASCs. Improved understanding of harvest sites for ASCs can optimize the outcomes of cell-assisted fat grafts. Fat grafts enriched with cryopreserved ASCs from the abdomen or thighs are the optimal choices. LEVEL OF EVIDENCE V This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .
Collapse
|
33
|
Lutfi D, Turkof E. Adipose-derived stem cell enrichment is counter-productive for the majority of women seeking primary aesthetic breast augmentation by autologous fat transfer: A systematic review. J Plast Reconstr Aesthet Surg 2020; 73:2025-2032. [PMID: 32919950 DOI: 10.1016/j.bjps.2020.08.057] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 07/02/2020] [Accepted: 08/01/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Autologous lipotransfer (AL) is a popular method despite unpredictable retention rates. Higher retention rates have been reported when co-administering adipose-derived stem cells (ASCs), a process called cell-assisted lipotransfer (CAL). Our hypothesis is that CAL might indeed limit volume gain in most women seeking aesthetic breast augmentation because it doubles the amount of fat required without consistently improving the outcome. METHODS Electronic databases were searched for articles published between January 2008 and October 2019 in English and German. All original articles evaluating fat viability following autologous breast augmentation in vivo were included. Based on the reported retention rates, potential volume gains were estimated for CAL and AL. RESULTS A total of 23 studies were selected. The AL retention rate varied from 39% to 76%, whereas CAL increased this rate at best by 24%. The body mass index (BMI) ranged from 18.8 to 23.4 (20.4±1.6) in the study population, whereas the BMI of women in the same age group is 28.7 (±8.4). We calculated that, starting from 200 ml of harvested fat and after two sessions of AL of 100 ml each, the volume retained would be at most 152 ml. In contrast, after one session of CAL of 100 ml, while the remaining 100 ml are used to isolate ASCs, a maximum of 95 ml of fat would remain. CONCLUSION The volume gain after two sessions of AL is far superior to that after one session of CAL for the same volume of harvested fat. This is an important practical consideration for women with low BMI, as the extra fat required to isolate ASCs is not counterbalanced by an increase in the retention rate. Therefore, two sessions of AL may be preferable to maximize the volume gain.
Collapse
Affiliation(s)
- Dani Lutfi
- Medical University of Vienna, Department of Obstetrics and Gynecology, Währinger Gürtel 18-20, 1090 Wien, Austria
| | - Edvin Turkof
- Medical University of Vienna, Department of Obstetrics and Gynecology, Währinger Gürtel 18-20, 1090 Wien, Austria.
| |
Collapse
|
34
|
Hany E, Yahia S, Elsherbeny MF, Salama NM, Ateia IM, Abou El-Khier NT, El-Sherbiny I, Abou Elkhier MT. Evaluation of the osteogenic potential of rat adipose-derived stem cells with different polycaprolactone/alginate-based nanofibrous scaffolds: an in vitro study. Stem Cell Investig 2020; 7:14. [PMID: 32964007 DOI: 10.21037/sci-2020-015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 07/22/2020] [Indexed: 12/22/2022]
Abstract
Background Bone tissue engineering is a widely growing field that requires the combination of cells, scaffolds and signaling molecules. Adipose derived stem cells (ADSCs) are an accessible and abundant source of mesenchymal stem cells with high plasticity. Polycaprolactone/alginate (PCL/Alg) composite scaffolds have been used in bone regeneration and nano-hydroxyapatite (n-HA) is used as a reinforcing, osteoconductive component in scaffold fabrication. This study was conducted to assess the ability of three different PCL/Alg based scaffolds to induce osteogenic differentiation of ADSCs and to compare between them. Methods The study comprised 5 groups; negative control group with ADSCs cultured in complete culture media, positive control group with ADSCs cultured in osteogenic differentiation media, and 3 experimental groups with ADSCs seeded onto 3 scaffolds: S1 (PCL/Alg), S2 (PCL/Alg/Ca) and S3 (PCL/Alg/Ca/n-HA) respectively and cultured in osteogenic media. Mineralization and gene expression were assessed by Alizarin red S (ARS) staining and real time quantitative polymerase chain reaction (RT-qPCR). Evaluation was done at 7, 14 and 21 days. Results ARS staining reflected a time dependent increase through days 7, 14 and 21, with S3 (PCL/Alg/Ca/n-HA) group showing the highest mineralization levels. RT-qPCR detected upregulation of ALP gene expression at day 7 and decline thereafter. S2 (PCL/Alg/Ca) and S3 (PCL/Alg/Ca/n-HA) groups showed significantly higher gene expression levels than S1 (PCL/Alg). Conclusions ADSCs and PCL/Alg-based scaffolds compose a good tissue engineering complex for bone regeneration. Addition of n-HA to PCL/Alg scaffolds and crosslinking with CaCl2 efficiently improve the osteogenic potential of ADSCs.
Collapse
Affiliation(s)
- Eman Hany
- Oral Biology Department, Faculty of Dentistry, Mansoura University, Mansoura, Egypt
| | - Sarah Yahia
- Nanomedicine Lab, Center of Material Science, University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt
| | | | - Nagla Mahmoud Salama
- Oral Pathology Department, Faculty of Dentistry, Mansoura University, Mansoura, Egypt
| | - Islam Mohammed Ateia
- Oral Medicine and Periodontology Department, Faculty of Dentistry, Mansoura University, Mansoura, Egypt
| | - Noha Tharwat Abou El-Khier
- Medical Microbiology and Immunology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Ibrahim El-Sherbiny
- Nanomedicine Lab, Center of Material Science, University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt
| | | |
Collapse
|
35
|
K N, Ca V, Joseph J, U A, John A, Abraham A. Mesenchymal Stem Cells Seeded Decellularized Tendon Scaffold for Tissue Engineering. Curr Stem Cell Res Ther 2020; 16:155-164. [PMID: 32707028 DOI: 10.2174/1574888x15666200723123901] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 05/12/2020] [Accepted: 05/13/2020] [Indexed: 11/22/2022]
Abstract
Tendon is a collagenous tissue to connect bone and muscle. Healing of damaged/injured tendon is the primary clinical challenge in musculoskeletal regeneration because they often react poorly to treatment. Tissue engineering (a triad strategy of scaffolds, cells and growth factors) may have the potential to improve the quality of tendon tissue healing under such impaired situations. Tendon tissue engineering aims to synthesize graft alternatives to repair the injured tendon. Biological scaffolds derived from decellularized tissue may be a better option as their biomechanical properties are similar to the native tissue. This review is designed to provide background information on the current challenges in curing torn/worn out the tendon and the clinical relevance of decellularized scaffolds for such applications.
Collapse
Affiliation(s)
- Niveditha K
- Department of Biochemistry, University of Kerala, Thiruvananthapuram, Kerala 695581, India
| | - Vineeth Ca
- Department of Biochemistry, University of Kerala, Thiruvananthapuram, Kerala 695581, India
| | - Josna Joseph
- Advanced Centre for Tissue Engineering, Department of Biochemistry, University of Kerala, Thiruvananthapuram, Kerala 695581, India
| | - Arun U
- Department of Biochemistry, University of Kerala, Thiruvananthapuram, Kerala 695581, India
| | - Annie John
- Advanced Centre for Tissue Engineering, Department of Biochemistry, University of Kerala, Thiruvananthapuram, Kerala 695581, India
| | - Annie Abraham
- Department of Biochemistry, University of Kerala, Thiruvananthapuram, Kerala 695581, India
| |
Collapse
|
36
|
Non-toxic freezing media to retain the stem cell reserves in adipose tissues. Cryobiology 2020; 96:137-144. [PMID: 32687840 DOI: 10.1016/j.cryobiol.2020.07.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 07/01/2020] [Accepted: 07/16/2020] [Indexed: 01/10/2023]
Abstract
Subcutaneous adipose tissue is a rich source of stromal vascular fraction (SVF) and adipose-derived stromal/stem cells (ASCs) that are inherently multipotent and exhibit regenerative properties. In current practice, lipoaspirate specimens harvested from liposuction surgeries are routinely discarded as a biohazard waste due to a lack of simple, cost effective, and validated cryopreservation protocols. The aim of this study is to develop a xenoprotein-free cryoprotective agent cocktail that will allow for short-term (up to 6 months) preservation of lipoaspirate tissues suitable for fat grafting and/or stromal/stem cell isolation when stored at achievable temperatures (-20 °C or -80 °C). Lipoaspirates donated by three consenting healthy donors undergoing elective cosmetic liposuction surgeries were suspended in five freezing media (FM1: 10% DMSO and 35% BSA; FM2: 2% DMSO and 43% BSA; FM3: 10% DMSO and 35% lipoaspirate saline; FM4: 2% DMSO and 6% HSA; and FM5: 40% lipoaspirate saline and 10% PVP) all suspended in 1X DMEM/F12 and frozen using commercially available freezers (-20 °C or -80 °C) and stored at least for a 1 month. After 1 month of freezing storage, SVF cells and ASCs were isolated from the frozen-thawed lipoaspirates by digestion with collagenase type I. Cell viability was evaluated by fluorescence microscopy after staining with acridine orange and ethidium bromide. The SVF isolated from lipoaspirates frozen at -80 °C retained comparable cell viability with the tested freezing media (FM2, FM3, FM4) comparable with the conventional DMSO and animal serum media (FM1), whereas the FM5 media resulted in lower viability. In contrast, tissues frozen and stored at -20 °C did not yield live SVF cells after thawing and collagenase digestion. The surface marker expression (CD90, CD29, CD34, CD146, CD31, and CD45) of ASCs from frozen lipoaspirates at -80 °C in different cryoprotectant media were also evaluated and no significant differences were found between the groups. The adipogenic and osteogenic differentiation potential were studied by histochemical staining and gene expression by qRT-PCR. Oil Red O staining for adipogenesis revealed that the CPA media FM1, FM4 and FM5 displayed robust differentiation. Alizarin Red S staining for osteogenesis revealed that FM1 and FM4 media displayed superior differentiation in comparison to other tested media. Measurement of adipogenic and osteogenic gene expression by qRT-PCR provided similar outcomes and indicated that FM4 CPA media comparable with FM1 for adipogenesis and osteogenesis.
Collapse
|
37
|
IL-4 and SDF-1 Increase Adipose Tissue-Derived Stromal Cell Ability to Improve Rat Skeletal Muscle Regeneration. Int J Mol Sci 2020; 21:ijms21093302. [PMID: 32392778 PMCID: PMC7246596 DOI: 10.3390/ijms21093302] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 05/01/2020] [Accepted: 05/04/2020] [Indexed: 12/18/2022] Open
Abstract
Skeletal muscle regeneration depends on the satellite cells, which, in response to injury, activate, proliferate, and reconstruct damaged tissue. However, under certain conditions, such as large injuries or myopathies, these cells might not sufficiently support repair. Thus, other cell populations, among them adipose tissue-derived stromal cells (ADSCs), are tested as a tool to improve regeneration. Importantly, the pro-regenerative action of such cells could be improved by various factors. In the current study, we tested whether IL-4 and SDF-1 could improve the ability of ADSCs to support the regeneration of rat skeletal muscles. We compared their effect at properly regenerating fast-twitch EDL and poorly regenerating slow-twitch soleus. To this end, ADSCs subjected to IL-4 and SDF-1 were analyzed in vitro and also in vivo after their transplantation into injured muscles. We tested their proliferation rate, migration, expression of stem cell markers and myogenic factors, their ability to fuse with myoblasts, as well as their impact on the mass, structure and function of regenerating muscles. As a result, we showed that cytokine-pretreated ADSCs had a beneficial effect in the regeneration process. Their presence resulted in improved muscle structure and function, as well as decreased fibrosis development and a modulated immune response.
Collapse
|
38
|
de Andrade ALM, Brassolatti P, Luna GF, Parisi JR, de Oliveira Leal ÂM, Frade MAC, Parizotto NA. Effect of photobiomodulation associated with cell therapy in the process of cutaneous regeneration in third degree burns in rats. J Tissue Eng Regen Med 2020; 14:673-683. [PMID: 32096323 DOI: 10.1002/term.3028] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 12/11/2019] [Accepted: 02/03/2020] [Indexed: 12/19/2022]
Abstract
Due to the complexity involved in the healing process of full thickness burns, the literature looks for alternatives to optimize tissue reconstruction. The objective of this study was to explore the action of photobiomodulation therapy associated with MSCs in the healing process of third degree burns. A total of 96 male Wistar rats were used, distributed in four groups with 24 animals each: Control Group, Laser Group, Cell Therapy Group, and Laser Group and Cell Therapy. The burn was performed with aluminum plate (150 °C). We performed analysis of wound contraction, histology, immunohistochemistry, birefringence analysis, and immunoenzymatic assay to evaluate tissue quality. Our results demonstrate that the association of the techniques is able to accelerate the repair process, modulating the inflammatory process, presenting a cutaneous tissue with better quality. Thus, we conclude that the use of photobiomodulation therapy associated with cell therapy is a promising treatment in the repair of total thickness burns.
Collapse
Affiliation(s)
| | - Patricia Brassolatti
- Department of Morphology and Pathology, Federal University of São Carlos (UFSCar), São Carlos, Brazil
| | - Genoveva Flores Luna
- Department of Medicine, Post-Graduate Program in Biotechnology, Federal University of São Carlos (UFSCar), São Carlos, Brazil
| | - Julia Risso Parisi
- Department of Physiotherapy, Federal University of São Carlos (UFSCar), São Carlos, Brazil
| | - Ângela Merice de Oliveira Leal
- Department of Medicine, Post-Graduate Program in Biotechnology, Federal University of São Carlos (UFSCar), São Carlos, Brazil
| | - Marco Andrey Cipriani Frade
- Dermatology Division of Internal Medicine Department, Ribeirão Preto Medical School at University of São Paulo (USP), Ribeirão Preto, Brazil
| | | |
Collapse
|
39
|
Shi Y. MEG3 regulates apoptosis of adipose‑derived stem cells. Mol Med Rep 2020; 21:2435-2442. [PMID: 32323784 PMCID: PMC7185308 DOI: 10.3892/mmr.2020.11059] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 03/18/2020] [Indexed: 12/23/2022] Open
Abstract
In plastic surgery, the maneuverability and safety of autologous fat transplantation have become increasingly recognized and continuously improved. However, the uncertainty of adipocyte survival makes it difficult to predict postoperative effects. Adipose‑derived stem cells (ADSCs) exhibit remarkable paracrine activity, and the number of ADSCs in adipose tissue is closely related to tissue survival. Maternally expressed gene 3 (MEG3) is known to modulate the apoptosis of various cell types. The present study aimed to evaluate the hypothesis that MEG3 serves an important role in ADSC apoptosis by regulating the expression of p53, and to explore the regulatory mechanisms of p53 in ADSC apoptosis. MEG3 was overexpressed in ADSCs and these cells were evaluated for viability, TP53 expression, apoptosis, morphology, and Bax and Bcl‑2 expression by performing MTT assays, reverse transcription‑quantitative PCR, flow cytometry analysis and western blotting. This study demonstrated that MEG3 may have an important role in the spontaneous apoptosis of ADSCs, and apoptosis induced by oxidative stress. In addition, this study revealed that p53 had a regulatory role in the downstream Bcl‑2/Bax pathway. This study provides insight into the role of MEG3 in ADSC apoptosis, thereby facilitating the survival of ADSCs during adipose tissue transplantation. Further in vivo and in vitro experiments should be conducted, along with the development of clinical applications.
Collapse
Affiliation(s)
- Yao Shi
- Department of Breast Surgery, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
40
|
Icariside II facilitates the differentiation of ADSCs to schwann cells and restores erectile dysfunction through regulation of miR-33/GDNF axis. Biomed Pharmacother 2020; 125:109888. [PMID: 32066039 DOI: 10.1016/j.biopha.2020.109888] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 01/11/2020] [Accepted: 01/14/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Adipose derived stem cells (ADSCs) have the property to differentiate into neuron-like cells, which may provide a novel insight for the restoration of erectile dysfunction (ED) mainly induced by cavernous nerve injury. Icariside II (ICA II) has been reported to play a key role in the regulation of erectile function via stimulating the differentiation of ADSCs to Schwann Cells (SCs). However, the function and molecular mechanisms of ICA II in ED remains to be further clarified. METHODS The expression of S100, P75, GDNF and miR-33 was detected by qRT-PCR. And the relative proteins expression was determined by western blot. Cell viability was measured by Cell Counting Kit-8 (CCK-8) assay. Bioinformatics, luciferase reporter and RNA immunoprecipitation (RIP) assays were performed to verify the interaction between miR-33 and GDNF. Intracavernosal pressure (ICP), the ratio of ICP and mean arterial pressure (MAP), as well as nNOS expression were examined to evaluate the erectile function of SD rats with bilateral cavernous nerve injury (BCNI). RESULTS ICA II and miR-33 respectively promoted and inhibited the differentiation of ADSCs to SCs. MiR-33 could negatively regulate P75 and GDNF expression. ICA II exerted promotion effects on differentiation of ADSCs to SCs via regulating miR-33. GDNF was identified to be a target of miR-33. MiR-33 overexpression abrogated the stimulatory effect of ICA II on ADSCs' differentiation, which was blocked by GDNF overexpression. treated with ICA II recovered the erectile function of BCNI model rats through regulation of miR-33. CONCLUSION ICA II contributed to the differentiation of ADSCs to SCs viamiR-33/GDNF axis, contributing to the recovery of erectile function in BCNI rats.
Collapse
|
41
|
Probst FA, Fliefel R, Burian E, Probst M, Eddicks M, Cornelsen M, Riedl C, Seitz H, Aszódi A, Schieker M, Otto S. Bone regeneration of minipig mandibular defect by adipose derived mesenchymal stem cells seeded tri-calcium phosphate- poly(D,L-lactide-co-glycolide) scaffolds. Sci Rep 2020; 10:2062. [PMID: 32029875 PMCID: PMC7005305 DOI: 10.1038/s41598-020-59038-8] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 01/21/2020] [Indexed: 12/29/2022] Open
Abstract
Reconstruction of bone defects represents a serious issue for orthopaedic and maxillofacial surgeons, especially in extensive bone loss. Adipose-derived mesenchymal stem cells (ADSCs) with tri-calcium phosphates (TCP) are widely used for bone regeneration facilitating the formation of bone extracellular matrix to promote reparative osteogenesis. The present study assessed the potential of cell-scaffold constructs for the regeneration of extensive mandibular bone defects in a minipig model. Sixteen skeletally mature miniature pigs were divided into two groups: Control group and scaffolds seeded with osteogenic differentiated pADSCs (n = 8/group). TCP-PLGA scaffolds with or without cells were integrated in the mandibular critical size defects and fixed by titanium osteosynthesis plates. After 12 weeks, ADSCs seeded scaffolds (n = 7) demonstrated significantly higher bone volume (34.8% ± 4.80%) than scaffolds implanted without cells (n = 6, 22.4% ± 9.85%) in the micro-CT (p < 0.05). Moreover, an increased amount of osteocalcin deposition was found in the test group in comparison to the control group (27.98 ± 2.81% vs 17.10 ± 3.57%, p < 0.001). In conclusion, ADSCs seeding on ceramic/polymer scaffolds improves bone regeneration in large mandibular defects. However, further improvement with regard to the osteogenic capacity is necessary to transfer this concept into clinical use.
Collapse
Affiliation(s)
- Florian Andreas Probst
- Department of Oral and Maxillofacial Surgery and Facial Plastic Surgery, University Hospital, Ludwig-Maximilians-University, Munich, 80337, Germany.,Laboratory of Experimental Surgery and Regenerative Medicine (ExperiMed), Clinic for General, Trauma and Reconstructive Surgery, Ludwig-Maximilians-University, Munich, 80336, Germany
| | - Riham Fliefel
- Department of Oral and Maxillofacial Surgery and Facial Plastic Surgery, University Hospital, Ludwig-Maximilians-University, Munich, 80337, Germany. .,Laboratory of Experimental Surgery and Regenerative Medicine (ExperiMed), Clinic for General, Trauma and Reconstructive Surgery, Ludwig-Maximilians-University, Munich, 80336, Germany. .,Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Alexandria University, Alexandria, 21514, Egypt.
| | - Egon Burian
- Laboratory of Experimental Surgery and Regenerative Medicine (ExperiMed), Clinic for General, Trauma and Reconstructive Surgery, Ludwig-Maximilians-University, Munich, 80336, Germany.,Department of Neuroradiology, Klinikum rechts der Isar, Technical University Munich, Munich, 81675, Germany
| | - Monika Probst
- Department of Neuroradiology, Klinikum rechts der Isar, Technical University Munich, Munich, 81675, Germany
| | - Matthias Eddicks
- Clinic for Swine, Center for Clinical Veterinary Medicine, Ludwig-Maximilians-University, Oberschleissheim, 85764, Germany
| | - Matthias Cornelsen
- Fluid Technology and Microfluidics, University of Rostock, Rostock, 18059, Germany
| | - Christina Riedl
- Laboratory of Experimental Surgery and Regenerative Medicine (ExperiMed), Clinic for General, Trauma and Reconstructive Surgery, Ludwig-Maximilians-University, Munich, 80336, Germany
| | - Hermann Seitz
- Fluid Technology and Microfluidics, University of Rostock, Rostock, 18059, Germany
| | - Attila Aszódi
- Laboratory of Experimental Surgery and Regenerative Medicine (ExperiMed), Clinic for General, Trauma and Reconstructive Surgery, Ludwig-Maximilians-University, Munich, 80336, Germany
| | - Matthias Schieker
- Laboratory of Experimental Surgery and Regenerative Medicine (ExperiMed), Clinic for General, Trauma and Reconstructive Surgery, Ludwig-Maximilians-University, Munich, 80336, Germany
| | - Sven Otto
- Department of Oral and Maxillofacial Surgery and Facial Plastic Surgery, University Hospital, Ludwig-Maximilians-University, Munich, 80337, Germany.,Laboratory of Experimental Surgery and Regenerative Medicine (ExperiMed), Clinic for General, Trauma and Reconstructive Surgery, Ludwig-Maximilians-University, Munich, 80336, Germany
| |
Collapse
|
42
|
Effect of Autologous Adipose-Derived Stromal Vascular Fraction Transplantation on Endometrial Regeneration in Patients of Asherman's Syndrome: a Pilot Study. Reprod Sci 2020; 27:561-568. [PMID: 32046396 DOI: 10.1007/s43032-019-00055-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 06/12/2019] [Indexed: 12/11/2022]
Abstract
This study aimed to investigate the efficacy of the transplantation of autologous adipose-derived stromal vascular fraction (AD-SVF) containing adipose stem cells (ASCs) in regenerating functional endometrium in patients with severe Asherman's syndrome (AS). This was a prospective clinical study involving six infertile women aged 20-44 years who were diagnosed with severe AS by hysteroscopy. Autologous AD-SVF were isolated from patient's adipose tissue obtained by liposuction and then transplanted into uterus by transcervical instillation using an embryo transfer catheter followed by estrogen hormone therapy. Endometrial growth and pregnancy outcomes were assessed after fresh or frozen embryo transfer. Of the five patients who remained in the study, two women who had amenorrhea resumed their menstruation with irregular scant bleeding. Three women with oligomenorrhea had increased menstrual amount. Before therapy, the maximum EMT measured ultrasonographically was 3.0 ± 1.0 mm (range: 1.7 to 4.4 mm), which significantly increased to 6.9 ± 2.9 mm (range: 5.2 to 12.0 mm, p = 0.043) after cell transplantation and hormone therapy. Five women had embryo transfer after therapy: one fresh and four frozen-thawed. One woman conceived but aborted spontaneously at 9-week gestation. AD-SVF is a safe and easily available cell product containing adipose-derived stem cells. Autologous transplantation of AD-SVF may regenerate damaged human endometrium and increase endometrial receptivity. Our study showed the feasibility of AD-SVF in restoring endometrial function and increasing endometrial thickness. This cell therapy may become a promising treatment for infertile women with endometrial dysfunction and needs further investigation.
Collapse
|
43
|
Organic and inorganic zinc show similar regulatory effects on the expression of some germ cell specific markers induced in bone marrow mesenchymal stem cells after treatment with retinoic acid. Biologia (Bratisl) 2019. [DOI: 10.2478/s11756-019-00306-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
44
|
Wang Y, Xu J, Meyers CA, Gao Y, Tian Y, Broderick K, Peault B, James AW. PDGFRα marks distinct perivascular populations with different osteogenic potential within adipose tissue. Stem Cells 2019; 38:276-290. [PMID: 31742801 DOI: 10.1002/stem.3108] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 09/11/2019] [Accepted: 10/09/2019] [Indexed: 12/14/2022]
Abstract
The perivascular niche within adipose tissue is known to house multipotent cells, including osteoblast precursors. However, the identity of perivascular subpopulations that may mineralize or ossify most readily is not known. Here, we utilize inducible PDGFRα (platelet-derived growth factor alpha) reporter animals to identify subpopulations of perivascular progenitor cells. Results showed that PDGFRα-expressing cells are present in four histologic niches within inguinal fat, including two perivascular locations. PDGFRα+ cells are most frequent within the tunica adventitia of arteries and veins, where PDGFRα+ cells populate the inner aspects of the adventitial layer. Although both PDGFRα+ and PDGFRα- fractions are multipotent progenitor cells, adipose tissue-derived PDGFRα+ stromal cells proliferate faster and mineralize to a greater degree than their PDGFRα- counterparts. Likewise, PDGFRα+ ectopic implants reconstitute the perivascular niche and ossify to a greater degree than PDGFRα- cell fractions. Adventicytes can be further grouped into three distinct groups based on expression of PDGFRα and/or CD34. When further partitioned, adventicytes co-expressing PDGFRα and CD34 represented a cell fraction with the highest mineralization potential. Long-term tracing studies showed that PDGFRα-expressing adventicytes give rise to adipocytes, but not to other cells within the vessel wall under homeostatic conditions. However, upon bone morphogenetic protein 2 (BMP2)-induced ossicle formation, descendants of PDGFRα+ cells gave rise to osteoblasts, adipocytes, and "pericyte-like" cells within the ossicle. In sum, PDGFRα marks distinct perivascular osteoprogenitor cell subpopulations within adipose tissue. The identification of perivascular osteoprogenitors may contribute to our improved understanding of pathologic mineralization/ossification.
Collapse
Affiliation(s)
- Yiyun Wang
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland
| | - Jiajia Xu
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland
| | - Carolyn A Meyers
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland
| | - Yongxing Gao
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland
| | - Ye Tian
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland
| | - Kristen Broderick
- Department of Plastic Surgery, Johns Hopkins University, Baltimore, Maryland
| | - Bruno Peault
- UCLA and Orthopaedic Hospital Department of Orthopaedic Surgery and the Orthopaedic Hospital Research Center, Los Angeles, California.,Center for Cardiovascular Science and MRC Center for Regenerative Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Aaron W James
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland.,UCLA and Orthopaedic Hospital Department of Orthopaedic Surgery and the Orthopaedic Hospital Research Center, Los Angeles, California
| |
Collapse
|
45
|
Biological Features Implies Potential Use of Autologous Adipose-Derived Stem/Progenitor Cells in Wound Repair and Regenerations for the Patients with Lipodystrophy. Int J Mol Sci 2019; 20:ijms20215505. [PMID: 31694186 PMCID: PMC6862495 DOI: 10.3390/ijms20215505] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 10/30/2019] [Accepted: 11/03/2019] [Indexed: 12/27/2022] Open
Abstract
A paradigm shift in plastic and reconstructive surgery is brought about the usage of cell-based therapies for wound healing and regeneration. Considering the imitations in the reconstructive surgeries in restoring tissue loss and deficiency, stem cell-based therapy, in particular, has been expected to pave the way for a new solution to the regenerative approaches. Limitations in the reconstructive surgeries in restoring tissue loss and deficiency have paved the way for new regenerative approaches. Among them, adipose-derived stem/progenitor cells (ADSCs)-based therapy could be the most promising clue, since ADSCs have pluripotent differentiation capabilities not only in adipocytes but also in a variety of cell types. Accumulating evidences have indicated that the unfavorable development of adipose-tissue damage, namely, lipodystrophy, is a systemic complication, which is closely related to metabolic abnormality. Considering ADSC-based regenerative medicine should be applied for the treatment of lipodystrophy, it is inevitable to ascertain whether the ADSCs obtained from the patients with lipodystrophy are capable of being used. It will be very promising and realistic if this concept is applied to lipoatrophy; one form of lipodystrophies that deteriorates the patients’ quality of life because of excessive loss of soft tissue in the exposed areas such as face and extremities. Since lipodystrophy is frequently observed in the human immunodeficiency virus (HIV)-infected patients receiving highly active antiretroviral therapy (HAART), the present study aims to examine the biological potentials of ADSCs isolated from the HIV-infected patients with lipodystrophy associated with the HAART treatment. Growth properties, adipogenic differentiation, and mitochondrial reactive oxygen species (ROS) production were examined in ADSCs from HIV-infected and HIV-uninfected patients. Our results clearly demonstrated that ADSCs from both patients showed indistinguishable growth properties and potentials for adipocyte differentiation in vitro. Thus, although the number of cases were limited, ADSCs isolated from the patients with lipodystrophy retain sufficient physiological and biological activity for the reconstitution of adipose-tissue, suggesting that ADSCs from the patients with lipodystrophy could be used for autologous ADSC-based regenerative therapy.
Collapse
|
46
|
Metabolic and proliferation evaluation of human adipose-derived mesenchymal stromal cells (ASC) in different culture medium volumes: standardization of static culture. Biologicals 2019; 62:93-101. [PMID: 31495708 DOI: 10.1016/j.biologicals.2019.08.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 07/01/2019] [Accepted: 08/20/2019] [Indexed: 01/22/2023] Open
Abstract
Adipose-derived mesenchymal stromal/stem cells (ASC) have acquired a prominent role in tissue engineering and regenerative medicine. However, the standardization of basic culture procedures in this cellular type is still not well established according to the main qualitative cellular attributes. We evaluate the cell growth profile of human ASC in a different culture medium volumes and their nutritional composition utilizing static cultivation. Culture medium volumes (5, 10 and 15 mL/25 cm2) in T-flasks were evaluated by kinetic parameters and the metabolic composition was determined by biochemical analysis and Fourier transform infrared (FT-IR) absorption spectroscopy. 50% renewal of culture medium volume every 48 h was adopted. Immunophenotypic characterization and cell differentiation were performed. There was no difference (p > 0.05) in the kinetic parameters of cell proliferation between the culture medium volumes or in FT-IR composition. However, the concentrations of glucose, glutamine, lactate, and glutamate varied significantly during the cultivation process as a function of the medium volume. ASC presented specific antigens and differentiation potential of mesenchymal stromal/stem cells. It was concluded that the minimal culture medium volume (5 mL/25 cm2 in static culture) was sufficient to maintain the stability, potency, and growth of ASC, representing an economic and safe standardization for this cell culture process.
Collapse
|
47
|
Yin GN, Wang L, Lin XN, Shi L, Gao ZL, Han FC, Li P, Jin YC, Suh JK, Ryu JK, Wang X, Jin HR. Combination of stromal vascular fraction and Ad-COMP-Ang1 gene therapy improves long-term therapeutic efficacy for diabetes-induced erectile dysfunction. Asian J Androl 2019; 20:465-472. [PMID: 29667617 PMCID: PMC6116680 DOI: 10.4103/aja.aja_16_18] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Men with diabetic erectile dysfunction (ED) respond poorly to the currently available oral phosphodiesterase-5 inhibitors. Therefore, functional therapies for diabetic ED are needed. Stromal vascular fraction (SVF) and the adenovirus-mediated cartilage oligomeric matrix angiopoietin-1 (Ad-COMP-Ang1) gene are known to play critical roles in penile erection. We previously reported that SVF and Ad-COMP-Ang1 have only a short-term effect in restoring erectile function. Further improvements to ED therapy are needed for long-lasting effects. In the present study, we aimed to test if the combination of SVF and Ad-COMP-Ang1 could extend the erection effect in diabetic ED. We found that the combination therapy showed a long-term effect in restoring erectile function through enhanced penile endothelial and neural cell regeneration. Combination therapy with SVF and Ad-COMP-Ang1 notably restored cavernous endothelial cell numbers, pericyte numbers, endothelial cell–cell junctions, decreased cavernous endothelial cell permeability, and promoted neural regeneration for at least 4 weeks in diabetic mice. In summary, this is an initial description of the long-term effect of combination therapy with SVF and Ad-COMP-Ang1 in restoring erectile function through a dual effect on endothelial and neural cell regeneration. Such combination therapy may have therapeutic potential for the treatment of diabetic ED.
Collapse
Affiliation(s)
- Guo-Nan Yin
- National Research Center for Sexual Medicine and Department of Urology, Inha University School of Medicine, Incheon 22332, Korea
| | - Lin Wang
- Department of Urology, Yantai Yuhuangding Hospital Affiliated to Medical College of Qingdao University, Yantai 264000, China
| | - Xiang-Nan Lin
- Department of Urology, Yantai Yuhuangding Hospital Affiliated to Medical College of Qingdao University, Yantai 264000, China
| | - Lei Shi
- Department of Urology, Yantai Yuhuangding Hospital Affiliated to Medical College of Qingdao University, Yantai 264000, China
| | - Zhen-Lin Gao
- Department of Urology, Yantai Yuhuangding Hospital Affiliated to Medical College of Qingdao University, Yantai 264000, China
| | - Feng-Chan Han
- Key Laboratory for Genetic Hearing Disorders in Shandong, Binzhou Medical University, Yantai 264003, China
| | - Ping Li
- Key Laboratory for Genetic Hearing Disorders in Shandong, Binzhou Medical University, Yantai 264003, China
| | - Yin-Chuan Jin
- Department of Histology and Embryology, Binzhou Medical University, Yantai, Shandong 264000, China
| | - Jun-Kyu Suh
- National Research Center for Sexual Medicine and Department of Urology, Inha University School of Medicine, Incheon 22332, Korea
| | - Ji-Kan Ryu
- National Research Center for Sexual Medicine and Department of Urology, Inha University School of Medicine, Incheon 22332, Korea
| | - Xiong Wang
- Reproductive Medicine Center, Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai 264000, China
| | - Hai-Rong Jin
- Department of Urology, Yantai Yuhuangding Hospital Affiliated to Medical College of Qingdao University, Yantai 264000, China
| |
Collapse
|
48
|
Meyers CA, Xu J, Zhang L, Chang L, Wang Y, Asatrian G, Ding C, Yan N, Zou E, Broderick K, Lee M, Peault B, James AW. Skeletogenic Capacity of Human Perivascular Stem Cells Obtained Via Magnetic-Activated Cell Sorting. Tissue Eng Part A 2019; 25:1658-1666. [PMID: 31020920 DOI: 10.1089/ten.tea.2019.0031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Human perivascular stem/stromal cells (PSC) are a multipotent mesenchymal progenitor cell population defined by their perivascular residence. PSC are increasingly studied for their application in skeletal regenerative medicine. PSC from subcutaneous white adipose tissue are most commonly isolated via fluorescence-activated cell sorting (FACS), and defined as a bipartite population of CD146+CD34-CD31-CD45- pericytes and CD34+CD146-CD31-CD45- adventitial cells. FACS poses several challenges for clinical translation, including requirements for facilities, equipment, and personnel. The purpose of this study is to identify if magnetic-activated cell sorting (MACS) is a feasible method to derive PSC, and to determine if MACS-derived PSC are comparable to our previous experience with FACS-derived PSC. In brief, CD146+ pericytes and CD34+ adventitial cells were enriched from human lipoaspirate using a multistep column approach. Next, cell identity and purity were analyzed by flow cytometry. In vitro multilineage differentiation studies were performed with MACS-defined PSC subsets. Finally, in vivo application was performed in nonhealing calvarial bone defects in Scid mice. Results showed that human CD146+ pericytes and CD34+ adventitial cells may be enriched by MACS, with defined purity, anticipated cell surface marker expression, and capacity for multilineage differentiation. In vivo, MACS-derived PSC induce ossification of bone defects. These data document the feasibility of a MACS approach for the enrichment and application of PSC in the field of tissue engineering and regenerative medicine. Impact Statement Our findings suggest that perivascular stem/stromal cells, and in particular adventitial cells, may be isolated by magnetic-activated cell sorting and applied as an uncultured autologous stem cell therapy in a same-day setting for bone defect repair.
Collapse
Affiliation(s)
- Carolyn A Meyers
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland
| | - Jiajia Xu
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland
| | - Leititia Zhang
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland.,Department of Oral and Maxillofacial Surgery, School of Stomatology, China Medical University, Shenyang, Liaoning Province, P.R. China
| | - Leslie Chang
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland
| | - Yiyun Wang
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland
| | - Greg Asatrian
- UCLA and Orthopaedic Hospital Department of Orthopaedic Surgery and the Orthopaedic Hospital Research Center, Los Angeles, California
| | - Catherine Ding
- UCLA and Orthopaedic Hospital Department of Orthopaedic Surgery and the Orthopaedic Hospital Research Center, Los Angeles, California
| | - Noah Yan
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland
| | - Erin Zou
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland
| | - Kristen Broderick
- Department of Surgery, Johns Hopkins University, Baltimore, Maryland
| | - Min Lee
- School of Dentistry, University of California, Los Angeles, California
| | - Bruno Peault
- UCLA and Orthopaedic Hospital Department of Orthopaedic Surgery and the Orthopaedic Hospital Research Center, Los Angeles, California.,Center For Cardiovascular Science and MRC Center for Regenerative Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Aaron W James
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland.,UCLA and Orthopaedic Hospital Department of Orthopaedic Surgery and the Orthopaedic Hospital Research Center, Los Angeles, California
| |
Collapse
|
49
|
Radhakrishnan S, Trentz OA, Martin CA, Reddy MS, Rela M, Chinnarasu M, Kalkura N, Sellathamby S. Effect of passaging on the stemness of infrapatellar fat pad‑derived stem cells and potential role of nucleostemin as a prognostic marker of impaired stemness. Mol Med Rep 2019; 20:813-829. [PMID: 31115526 PMCID: PMC6579983 DOI: 10.3892/mmr.2019.10268] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 04/09/2019] [Indexed: 12/13/2022] Open
Abstract
Infrapatellar fat pad‑derived stem cells (IFPSCs) are emerging as an alternative to adipose tissue‑derived stem cells (ADSCs) from other sources. They are a reliable source of autologous stem cells obtained from medical waste that are suitable for use in cell‑based therapy, tissue engineering and regenerative medicine. Such clinical applications require a vast number of high‑quality IFPSCs. Unlike embryonic stem cells (ESCs), ADSCs and IFPSCs have limited population doubling capacity; however, in vitro expansion of primary IFPSCs through multiple passages (referred to as P) is a crucial step to acquire the desired population of cells. The present study investigated the effect of multiple passages on the stemness of IFPSCs during expansion and the possibility of predicting the loss of stemness using certain markers. IFPSCs were isolated from infrapatellar fat pad tissue resected during knee arthroplasty performed on aged patients (>65 years old). These cells from the stromal vascular fraction were serially passaged to at least to P7, and their stemness characteristics were examined at each passage. It was observed that IFPSCs maintained their spindle‑shaped morphology, self‑renewability and homogeneity at P2‑4. Furthermore, immunostaining revealed that these cells expressed mesenchymal stem cell (CD166, CD90 and CD105) and ESC markers [Sox2, Nanog, Oct4 and nucleostemin (NS)], whereas the hematopoietic stem cell marker CD45 was absent. These cells were also able to differentiate into the three germ layer cell types, thus confirming their ability to generate clinical grade cells. The findings indicated that prolonged culture of IFPSCs (P>6) led to the loss of the stem cell proliferative marker NS, with an increased population doubling time and progression toward neuronal differentiation, acquiring a neurogenic phenotype. Additionally, IFPSCs demonstrated an inherent ability to secrete neurotrophic factors and express receptors for these factors, which is the cause of neuronal differentiation at later passages. Therefore, these findings validated NS as a prognostic indicator for impaired stemness and identified IFPSCs as a promising source for cell‑based therapy, particularly for neurodegenerative diseases.
Collapse
Affiliation(s)
- Subathra Radhakrishnan
- National Foundation for Liver Research, Cell Laboratory, Gleneagles Global Health City, Chennai 600100, India
- Department of Biomedical Science, Bharathidasan University, Tiruchirappalli 620024, India
| | - Omana Anna Trentz
- MIOT Institute of Research, MIOT International, Chennai 600089, India
| | - Catherine Ann Martin
- National Foundation for Liver Research, Cell Laboratory, Gleneagles Global Health City, Chennai 600100, India
- Crystal Growth Centre, Anna University, Chennai 600025, India
| | - Mettu Srinivas Reddy
- National Foundation for Liver Research, Cell Laboratory, Gleneagles Global Health City, Chennai 600100, India
- Institute of Liver Disease and Transplantation, Gleneagles Global Health City, Chennai 600100, India
| | - Mohamed Rela
- National Foundation for Liver Research, Cell Laboratory, Gleneagles Global Health City, Chennai 600100, India
- Institute of Liver Disease and Transplantation, Gleneagles Global Health City, Chennai 600100, India
| | - Marimuthu Chinnarasu
- Institute of Liver Disease and Transplantation, Gleneagles Global Health City, Chennai 600100, India
| | | | | |
Collapse
|
50
|
Procházka V, Matějka R, Ižák T, Szabó O, Štěpanovská J, Filová E, Bačáková L, Jirásek V, Kromka A. Nanocrystalline diamond-based impedance sensors for real-time monitoring of adipose tissue-derived stem cells. Colloids Surf B Biointerfaces 2019; 177:130-136. [DOI: 10.1016/j.colsurfb.2019.01.048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 01/22/2019] [Accepted: 01/23/2019] [Indexed: 01/24/2023]
|