1
|
Kazanietz MG, Cooke M. Protein kinase C signaling "in" and "to" the nucleus: Master kinases in transcriptional regulation. J Biol Chem 2024; 300:105692. [PMID: 38301892 PMCID: PMC10907189 DOI: 10.1016/j.jbc.2024.105692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 02/03/2024] Open
Abstract
PKC is a multifunctional family of Ser-Thr kinases widely implicated in the regulation of fundamental cellular functions, including proliferation, polarity, motility, and differentiation. Notwithstanding their primary cytoplasmic localization and stringent activation by cell surface receptors, PKC isozymes impel prominent nuclear signaling ultimately impacting gene expression. While transcriptional regulation may be wielded by nuclear PKCs, it most often relies on cytoplasmic phosphorylation events that result in nuclear shuttling of PKC downstream effectors, including transcription factors. As expected from the unique coupling of PKC isozymes to signaling effector pathways, glaring disparities in gene activation/repression are observed upon targeting individual PKC family members. Notably, specific PKCs control the expression and activation of transcription factors implicated in cell cycle/mitogenesis, epithelial-to-mesenchymal transition and immune function. Additionally, PKCs isozymes tightly regulate transcription factors involved in stepwise differentiation of pluripotent stem cells toward specific epithelial, mesenchymal, and hematopoietic cell lineages. Aberrant PKC expression and/or activation in pathological conditions, such as in cancer, leads to profound alterations in gene expression, leading to an extensive rewiring of transcriptional networks associated with mitogenesis, invasiveness, stemness, and tumor microenvironment dysregulation. In this review, we outline the current understanding of PKC signaling "in" and "to" the nucleus, with significant focus on established paradigms of PKC-mediated transcriptional control. Dissecting these complexities would allow the identification of relevant molecular targets implicated in a wide spectrum of diseases.
Collapse
Affiliation(s)
- Marcelo G Kazanietz
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| | - Mariana Cooke
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
2
|
Yang J, Yang N, Zhao H, Qiao Y, Li Y, Wang C, Lim KL, Zhang C, Yang W, Lu L. Adipose transplantation improves olfactory function and neurogenesis via PKCα-involved lipid metabolism in Seipin Knockout mice. Stem Cell Res Ther 2023; 14:239. [PMID: 37674230 PMCID: PMC10483743 DOI: 10.1186/s13287-023-03463-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 08/22/2023] [Indexed: 09/08/2023] Open
Abstract
BACKGROUND Lipodystrophy-associated metabolic disorders caused by Seipin deficiency lead to not only severe lipodystrophy but also neurological disorders. However, the underlying mechanism of Seipin deficiency-induced neuropathy is not well elucidated, and the possible restorative strategy needs to be explored. METHODS In the present study, we used Seipin knockout (KO) mice, combined with transcriptome analysis, mass spectrometry imaging, neurobehavior test, and cellular and molecular assay to investigate the systemic lipid metabolic abnormalities in lipodystrophic mice model and their effects on adult neurogenesis in the subventricular zone (SVZ) and olfactory function. After subcutaneous adipose tissue (AT) transplantation, metabolic and neurological function was measured in Seipin KO mice to clarify whether restoring lipid metabolic homeostasis would improve neurobehavior. RESULTS It was found that Seipin KO mice presented the ectopic accumulation of lipids in the lateral ventricle, accompanied by decreased neurogenesis in adult SVZ, diminished new neuron formation in the olfactory bulb, and impaired olfactory-related memory. Transcriptome analysis showed that the differentially expressed genes (DEGs) in SVZ of adult Seipin KO mice were significantly enriched in lipid metabolism. Mass spectrometry imaging showed that the levels of glycerophospholipid and diglyceride (DG) were significantly increased. Furthermore, we found that AT transplantation rescued the abnormality of peripheral metabolism in Seipin KO mice and ameliorated the ectopic lipid accumulation, concomitant with restoration of the SVZ neurogenesis and olfactory function. Mechanistically, PKCα expression was up-regulated in SVZ tissues of Seipin KO mice, which may be a potential mediator between lipid dysregulation and neurological disorder. DG analogue (Dic8) can up-regulate PKCα and inhibit the proliferation and differentiation of neural stem cells (NSCs) in vitro, while PKCα inhibitor can block this effect. CONCLUSION This study demonstrates that Seipin deficiency can lead to systemic lipid disorder with concomitant SVZ neurogenesis and impaired olfactory memory. However, AT restores lipid homeostasis and neurogenesis. PKCα is a key mediator mediating Seipin KO-induced abnormal lipid metabolism and impaired neurogenesis in the SVZ, and inhibition of PKCα can restore the impaired neurogenesis. This work reveals the underlying mechanism of Seipin deficiency-induced neurological dysfunction and provides new ideas for the treatment of neurological dysfunction caused by metabolic disorders.
Collapse
Affiliation(s)
- Jing Yang
- Department of Anatomy, Shanxi Medical University, Taiyuan, 030001, People's Republic of China
| | - Na Yang
- Department of Anatomy, Shanxi Medical University, Taiyuan, 030001, People's Republic of China
| | - Huifang Zhao
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, 030001, People's Republic of China
| | - Yan Qiao
- Analytical Instrumentation Center and State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, People's Republic of China
| | - Yanqiu Li
- Analytical Instrumentation Center and State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, People's Republic of China
| | - Chunfang Wang
- Laboratory Animal Research Center of Shanxi Medical University, Shanxi Key Laboratory of Animal and Animal Model of Human Diseases, Shanxi Medical University, Taiyuan, People's Republic of China
| | - Kah-Leong Lim
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Chengwu Zhang
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, 030001, People's Republic of China.
| | - Wulin Yang
- Anhui Province Key Laboratory of Medical Physics and Technology, Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, People's Republic of China.
- Cancer Hospital, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, People's Republic of China.
| | - Li Lu
- Department of Anatomy, Shanxi Medical University, Taiyuan, 030001, People's Republic of China.
- Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, People's Republic of China.
| |
Collapse
|
3
|
Luteijn RD, van Diemen F, Blomen VA, Boer IGJ, Manikam Sadasivam S, van Kuppevelt TH, Drexler I, Brummelkamp TR, Lebbink RJ, Wiertz EJ. A Genome-Wide Haploid Genetic Screen Identifies Heparan Sulfate-Associated Genes and the Macropinocytosis Modulator TMED10 as Factors Supporting Vaccinia Virus Infection. J Virol 2019; 93:e02160-18. [PMID: 30996093 PMCID: PMC6580964 DOI: 10.1128/jvi.02160-18] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 04/11/2019] [Indexed: 12/15/2022] Open
Abstract
Vaccinia virus is a promising viral vaccine and gene delivery candidate and has historically been used as a model to study poxvirus-host cell interactions. We employed a genome-wide insertional mutagenesis approach in human haploid cells to identify host factors crucial for vaccinia virus infection. A library of mutagenized HAP1 cells was exposed to modified vaccinia virus Ankara (MVA). Deep-sequencing analysis of virus-resistant cells identified host factors involved in heparan sulfate synthesis, Golgi organization, and vesicular protein trafficking. We validated EXT1, TM9SF2, and TMED10 (TMP21/p23/p24δ) as important host factors for vaccinia virus infection. The critical roles of EXT1 in heparan sulfate synthesis and vaccinia virus infection were confirmed. TM9SF2 was validated as a player mediating heparan sulfate expression, explaining its contribution to vaccinia virus infection. In addition, TMED10 was found to be crucial for virus-induced plasma membrane blebbing and phosphatidylserine-induced macropinocytosis, presumably by regulating the cell surface expression of the TAM receptor Axl.IMPORTANCE Poxviruses are large DNA viruses that can infect a wide range of host species. A number of these viruses are clinically important to humans, including variola virus (smallpox) and vaccinia virus. Since the eradication of smallpox, zoonotic infections with monkeypox virus and cowpox virus are emerging. Additionally, poxviruses can be engineered to specifically target cancer cells and are used as a vaccine vector against tuberculosis, influenza, and coronaviruses. Poxviruses rely on host factors for most stages of their life cycle, including attachment to the cell and entry. These host factors are crucial for virus infectivity and host cell tropism. We used a genome-wide knockout library of host cells to identify host factors necessary for vaccinia virus infection. We confirm a dominant role for heparin sulfate in mediating virus attachment. Additionally, we show that TMED10, previously not implicated in virus infections, facilitates virus uptake by modulating the cellular response to phosphatidylserine.
Collapse
Affiliation(s)
- Rutger D Luteijn
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Ferdy van Diemen
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | - Ingrid G J Boer
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | - Toin H van Kuppevelt
- Department of Biochemistry, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Ingo Drexler
- Institute for Virology, Universitätsklinikum Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| | | | - Robert Jan Lebbink
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Emmanuel J Wiertz
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
4
|
Diacylglycerol kinase control of protein kinase C. Biochem J 2019; 476:1205-1219. [DOI: 10.1042/bcj20180620] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 03/29/2019] [Accepted: 04/01/2019] [Indexed: 12/27/2022]
Abstract
Abstract
The diacylglycerol kinases (DGK) are lipid kinases that transform diacylglycerol (DAG) into phosphatidic acid (PA) in a reaction that terminates DAG-based signals. DGK provide negative regulation to conventional and novel protein kinase C (PKC) enzymes, limiting local DAG availability in a tissue- and subcellular-restricted manner. Defects in the expression/activity of certain DGK isoforms contribute substantially to cognitive impairment and mental disorders. Abnormal DGK overexpression in tumors facilitates invasion and resistance to chemotherapy preventing tumor immune destruction by tumor-infiltrating lymphocytes. Effective translation of these findings into therapeutic approaches demands a better knowledge of the physical and functional interactions between the DGK and PKC families. DGKζ is abundantly expressed in the nervous and immune system, where physically and functionally interacts with PKCα. The latest discoveries suggest that PDZ-mediated interaction facilitates spatial restriction of PKCα by DGKζ at the cell–cell contact sites in a mechanism where the two enzymes regulate each other. In T lymphocytes, DGKζ interaction with Sorting Nexin 27 (SNX27) guarantees the basal control of PKCα activation. SNX27 is a trafficking component required for normal brain function whose deficit has been linked to Alzheimer's disease (AD) pathogenesis. The enhanced PKCα activation as the result of SNX27 silencing in T lymphocytes aligns with the recent correlation found between gain-of-function PKCα mutations and AD and suggests that disruption of the mechanisms that provides a correct spatial organization of DGKζ and PKCα may lie at the basis of immune and neuronal synapse impairment.
Collapse
|
5
|
Abdrabou A, Wang Z. Post-Translational Modification and Subcellular Distribution of Rac1: An Update. Cells 2018; 7:cells7120263. [PMID: 30544910 PMCID: PMC6316090 DOI: 10.3390/cells7120263] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 12/06/2018] [Accepted: 12/10/2018] [Indexed: 12/27/2022] Open
Abstract
Rac1 is a small GTPase that belongs to the Rho family. The Rho family of small GTPases is a subfamily of the Ras superfamily. The Rho family of GTPases mediate a plethora of cellular effects, including regulation of cytoarchitecture, cell size, cell adhesion, cell polarity, cell motility, proliferation, apoptosis/survival, and membrane trafficking. The cycling of Rac1 between the GTP (guanosine triphosphate)- and GDP (guanosine diphosphate)-bound states is essential for effective signal flow to elicit downstream biological functions. The cycle between inactive and active forms is controlled by three classes of regulatory proteins: Guanine nucleotide exchange factors (GEFs), GTPase-activating proteins (GAPs), and guanine-nucleotide-dissociation inhibitors (GDIs). Other modifications include RNA splicing and microRNAs; various post-translational modifications have also been shown to regulate the activity and function of Rac1. The reported post-translational modifications include lipidation, ubiquitination, phosphorylation, and adenylylation, which have all been shown to play important roles in the regulation of Rac1 and other Rho GTPases. Moreover, the Rac1 activity and function are regulated by its subcellular distribution and translocation. This review focused on the most recent progress in Rac1 research, especially in the area of post-translational modification and subcellular distribution and translocation.
Collapse
Affiliation(s)
- Abdalla Abdrabou
- Department of Medical Genetics, and Signal Transduction Research Group, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada.
| | - Zhixiang Wang
- Department of Medical Genetics, and Signal Transduction Research Group, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada.
| |
Collapse
|
6
|
Cooke M, Magimaidas A, Casado-Medrano V, Kazanietz MG. Protein kinase C in cancer: The top five unanswered questions. Mol Carcinog 2017; 56:1531-1542. [PMID: 28112438 DOI: 10.1002/mc.22617] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 01/04/2017] [Accepted: 01/20/2017] [Indexed: 12/29/2022]
Abstract
Few kinases have been studied as extensively as protein kinase C (PKC), particularly in the context of cancer. As major cellular targets for the phorbol ester tumor promoters and diacylglycerol (DAG), a second messenger generated by stimulation of membrane receptors, PKC isozymes play major roles in the control of signaling pathways associated with proliferation, migration, invasion, tumorigenesis, and metastasis. However, despite decades of research, fundamental questions remain to be answered or are the subject of intense controversy. Primary among these unresolved issues are the role of PKC isozymes as either tumor promoter or tumor suppressor kinases and the incomplete understanding on isozyme-specific substrates and effectors. The involvement of PKC isozymes in cancer progression needs to be reassessed in the context of specific oncogenic and tumor suppressing alterations. In addition, there are still major hurdles in addressing isozyme-specific function due to the limited specificity of most pharmacological PKC modulators and the lack of validated predictive biomarkers for response, which impacts the translation of these agents to the clinic. In this review we focus on key controversial issues and upcoming challenges, with the expectation that understanding the intricacies of PKC function will help fulfill the yet unsuccessful promise of targeting PKCs for cancer therapeutics.
Collapse
Affiliation(s)
- Mariana Cooke
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Andrew Magimaidas
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Victoria Casado-Medrano
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Marcelo G Kazanietz
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
7
|
Nakano N, Tsuchiya Y, Kako K, Umezaki K, Sano K, Ikeno S, Otsuka E, Shigeta M, Nakagawa A, Sakata N, Itoh F, Nakano Y, Iemura SI, van Dinther M, Natsume T, Ten Dijke P, Itoh S. TMED10 Protein Interferes with Transforming Growth Factor (TGF)-β Signaling by Disrupting TGF-β Receptor Complex Formation. J Biol Chem 2017; 292:4099-4112. [PMID: 28115518 DOI: 10.1074/jbc.m116.769109] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 01/13/2017] [Indexed: 01/17/2023] Open
Abstract
The intensity and duration of TGF-β signaling determine the cellular biological response. How this is negatively regulated is not well understood. Here, we identified a novel negative regulator of TGF-β signaling, transmembrane p24-trafficking protein 10 (TMED10). TMED10 disrupts the complex formation between TGF-β type I (also termed ALK5) and type II receptors (TβRII). Misexpression studies revealed that TMED10 attenuated TGF-β-mediated signaling. A 20-amino acid-long region from Thr91 to Glu110 within the extracellular region of TMED10 was found to be crucial for TMED10 interaction with both ALK5 and TβRII. Synthetic peptides corresponding to this region inhibit both TGF-β-induced Smad2 phosphorylation and Smad-dependent transcriptional reporter activity. In a xenograft cancer model, where previously TGF-β was shown to elicit tumor-promoting effects, gain-of-function and loss-of-function studies for TMED10 revealed a decrease and increase in the tumor size, respectively. Thus, we determined herein that TMED10 expression levels are the key determinant for efficiency of TGF-β receptor complex formation and signaling.
Collapse
Affiliation(s)
- Naoko Nakano
- From the Laboratory of Biochemistry, Showa Pharmaceutical University, Machida, Tokyo 194-8543, Japan
| | - Yuki Tsuchiya
- From the Laboratory of Biochemistry, Showa Pharmaceutical University, Machida, Tokyo 194-8543, Japan
| | - Kenro Kako
- From the Laboratory of Biochemistry, Showa Pharmaceutical University, Machida, Tokyo 194-8543, Japan
| | - Kenryu Umezaki
- From the Laboratory of Biochemistry, Showa Pharmaceutical University, Machida, Tokyo 194-8543, Japan
| | - Keigo Sano
- From the Laboratory of Biochemistry, Showa Pharmaceutical University, Machida, Tokyo 194-8543, Japan
| | - Souichi Ikeno
- From the Laboratory of Biochemistry, Showa Pharmaceutical University, Machida, Tokyo 194-8543, Japan
| | - Eri Otsuka
- From the Laboratory of Biochemistry, Showa Pharmaceutical University, Machida, Tokyo 194-8543, Japan
| | - Masashi Shigeta
- From the Laboratory of Biochemistry, Showa Pharmaceutical University, Machida, Tokyo 194-8543, Japan
| | - Ai Nakagawa
- From the Laboratory of Biochemistry, Showa Pharmaceutical University, Machida, Tokyo 194-8543, Japan
| | - Nobuo Sakata
- From the Laboratory of Biochemistry, Showa Pharmaceutical University, Machida, Tokyo 194-8543, Japan
| | - Fumiko Itoh
- the Laboratory of Cardiovascular Medicine, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Yota Nakano
- From the Laboratory of Biochemistry, Showa Pharmaceutical University, Machida, Tokyo 194-8543, Japan
| | - Shun-Ichiro Iemura
- the Translational Research Center, Fukushima Medical University, 11-25 Sakaemachi, Fukushima City, Fukushima 960-8031, Japan
| | - Maarten van Dinther
- the Department of Molecular Cell Biology, Cancer Genomics Centre Netherlands, Leiden University Medical Center, S-1-P, 2300 RC Leiden, The Netherlands
| | - Tohru Natsume
- the Molecular Profiling Research Center for Drug Discovery (molprof), National Institute of Advanced Industrial Science and Technology (AIST), 2-4-7 Aomi, Koto-ku, Tokyo 135-0064, Japan, and
| | - Peter Ten Dijke
- the Department of Molecular Cell Biology, Cancer Genomics Centre Netherlands, Leiden University Medical Center, S-1-P, 2300 RC Leiden, The Netherlands.,the Science for Life Laboratory, Ludwig Institute for Cancer Research, Uppsala University, Uppsala SE-751 24, Sweden
| | - Susumu Itoh
- From the Laboratory of Biochemistry, Showa Pharmaceutical University, Machida, Tokyo 194-8543, Japan,
| |
Collapse
|
8
|
Pastor-Cantizano N, Montesinos JC, Bernat-Silvestre C, Marcote MJ, Aniento F. p24 family proteins: key players in the regulation of trafficking along the secretory pathway. PROTOPLASMA 2016; 253:967-985. [PMID: 26224213 DOI: 10.1007/s00709-015-0858-6] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 07/13/2015] [Indexed: 05/20/2023]
Abstract
p24 family proteins have been known for a long time, but their functions have remained elusive. However, they are emerging as essential regulators of protein trafficking along the secretory pathway, influencing the composition, structure, and function of different organelles in the pathway, especially the ER and the Golgi apparatus. In addition, they appear to modulate the transport of specific cargos, including GPI-anchored proteins, G-protein-coupled receptors, or K/HDEL ligands. As a consequence, they have been shown to play specific roles in signaling, development, insulin secretion, and the pathogenesis of Alzheimer's disease. The search of new putative ligands may open the way to discover new functions for this fascinating family of proteins.
Collapse
Affiliation(s)
- Noelia Pastor-Cantizano
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universitat de València, Avenida Vicente Andrés Estellés, s/n, E-46100, Burjassot, Valencia, Spain
| | - Juan Carlos Montesinos
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universitat de València, Avenida Vicente Andrés Estellés, s/n, E-46100, Burjassot, Valencia, Spain
| | - César Bernat-Silvestre
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universitat de València, Avenida Vicente Andrés Estellés, s/n, E-46100, Burjassot, Valencia, Spain
| | - María Jesús Marcote
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universitat de València, Avenida Vicente Andrés Estellés, s/n, E-46100, Burjassot, Valencia, Spain
| | - Fernando Aniento
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universitat de València, Avenida Vicente Andrés Estellés, s/n, E-46100, Burjassot, Valencia, Spain.
| |
Collapse
|
9
|
Reyland ME, Jones DNM. Multifunctional roles of PKCδ: Opportunities for targeted therapy in human disease. Pharmacol Ther 2016; 165:1-13. [PMID: 27179744 DOI: 10.1016/j.pharmthera.2016.05.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The serine-threonine protein kinase, protein kinase C-δ (PKCδ), is emerging as a bi-functional regulator of cell death and proliferation. Studies in PKCδ-/- mice have confirmed a pro-apoptotic role for this kinase in response to DNA damage and a tumor promoter role in some oncogenic contexts. In non-transformed cells, inhibition of PKCδ suppresses the release of cytochrome c and caspase activation, indicating a function upstream of apoptotic pathways. Data from PKCδ-/- mice demonstrate a role for PKCδ in the execution of DNA damage-induced and physiologic apoptosis. This has led to the important finding that inhibitors of PKCδ can be used therapeutically to reduce irradiation and chemotherapy-induced toxicity. By contrast, PKCδ is a tumor promoter in mouse models of mammary gland and lung cancer, and increased PKCδ expression is a negative prognostic indicator in Her2+ and other subtypes of human breast cancer. Understanding how these distinct functions of PKCδ are regulated is critical for the design of therapeutics to target this pathway. This review will discuss what is currently known about biological roles of PKCδ and prospects for targeting PKCδ in human disease.
Collapse
Affiliation(s)
- Mary E Reyland
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
| | - David N M Jones
- Department of Pharmacology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
10
|
Garg R, Benedetti LG, Abera MB, Wang H, Abba M, Kazanietz MG. Protein kinase C and cancer: what we know and what we do not. Oncogene 2014; 33:5225-37. [PMID: 24336328 DOI: 10.1038/onc.2013.524] [Citation(s) in RCA: 204] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 10/20/2013] [Accepted: 10/20/2013] [Indexed: 02/08/2023]
Abstract
Since their discovery in the late 1970s, protein kinase C (PKC) isozymes represent one of the most extensively studied signaling kinases. PKCs signal through multiple pathways and control the expression of genes relevant for cell cycle progression, tumorigenesis and metastatic dissemination. Despite the vast amount of information concerning the mechanisms that control PKC activation and function in cellular models, the relevance of individual PKC isozymes in the progression of human cancer is still a matter of controversy. Although the expression of PKC isozymes is altered in multiple cancer types, the causal relationship between such changes and the initiation and progression of the disease remains poorly defined. Animal models developed in the last years helped to better understand the involvement of individual PKCs in various cancer types and in the context of specific oncogenic alterations. Unraveling the enormous complexity in the mechanisms by which PKC isozymes have an impact on tumorigenesis and metastasis is key for reassessing their potential as pharmacological targets for cancer treatment.
Collapse
Affiliation(s)
- R Garg
- Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - L G Benedetti
- Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - M B Abera
- Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - H Wang
- Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - M Abba
- Centro de Investigaciones Inmunológicas Básicas y Aplicadas (CINIBA), Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Argentina
| | - M G Kazanietz
- Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
11
|
Affiliation(s)
- Joydip Das
- Department of Pharmacological
and Pharmaceutical Sciences, College of Pharmacy, University of Houston, 521 Science and Research Building 2, Houston, Texas 77204, United States
| | - Ghazi M. Rahman
- Department of Pharmacological
and Pharmaceutical Sciences, College of Pharmacy, University of Houston, 521 Science and Research Building 2, Houston, Texas 77204, United States
| |
Collapse
|
12
|
The type III secretion effector NleF of enteropathogenic Escherichia coli activates NF-κB early during infection. Infect Immun 2014; 82:4878-88. [PMID: 25183730 DOI: 10.1128/iai.02131-14] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The enteric pathogens enteropathogenic Escherichia coli (EPEC) and enterohemorrhagic E. coli employ a type 3 secretion system (T3SS) to manipulate the host inflammatory response during infection. Previously, it has been reported that EPEC, in a T3SS-dependent manner, induces an early proinflammatory response through activation of NF-κB via extracellular signal-regulated kinases 1 and 2 (ERK1/2) and protein kinase Cζ (PKCζ). However, the activation of NF-κB during infection has not yet been attributed to an effector. At later time points postinfection, NF-κB signaling is inhibited through the translocation of multiple effectors, including NleE and NleC. Here we report that the highly conserved non-LEE (locus of enterocyte effacement)-encoded effector F (NleF) shows both diffuse and mitochondrial localization during ectopic expression. Moreover, NleF induces the nuclear translocation of NF-κB p65 and the expression of interleukin 8 (IL-8) following ectopic expression and during EPEC infection. Furthermore, the proinflammatory activity and localization of NleF were dependent on the C-terminal amino acids LQCG. While the C-terminal domain of NleF has previously been shown to be essential for interaction with caspase-4, caspase-8, and caspase-9, the proinflammatory activity of NleF was independent of interaction with caspase-4, -8, or -9. In conclusion, EPEC, through the T3SS-dependent translocation of NleF, induces a proinflammatory response in an NF-κB-dependent manner in the early stages of infection.
Collapse
|
13
|
Zubeldia-Brenner L, Gutierrez-Uzquiza A, Barrio-Real L, Wang H, Kazanietz MG, Leskow FC. β3-chimaerin, a novel member of the chimaerin Rac-GAP family. Mol Biol Rep 2014; 41:2067-76. [PMID: 24430297 DOI: 10.1007/s11033-014-3055-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Accepted: 01/04/2014] [Indexed: 12/11/2022]
Abstract
Chimaerins are a family of diacylglycerol- and phorbol ester-regulated GTPase activating proteins (GAPs) for the small G-protein Rac. Extensive evidence indicates that these proteins play important roles in development, axon guidance, metabolism, cell motility, and T cell activation. Four isoforms have been reported to-date, which are products of CHN1 (α1- and α2-chimaerins) and CHN2 (β1- and β2-chimaerins) genes. Although these gene products are assumed to be generated by alternative splicing, bioinformatics analysis of the CHN2 gene revealed that β1- and β2-chimaerins are the products of alternative transcription start sites (TSSs) in different promoter regions. Furthermore, we found an additional TSS in CHN2 gene that leads to a novel product, which we named β3-chimaerin. Expression profile analysis revealed predominantly low levels for the β3-chimaerin transcript, with higher expression levels in epididymis, plasma blood leucocytes, spleen, thymus, as well as various areas of the brain. In addition to the prototypical SH2, C1, and Rac-GAP domains, β3-chimaerin has a unique N-terminal domain. Studies in cells established that β3-chimaerin has Rac-GAP activity and is responsive to phorbol esters. The enhanced responsiveness of β3-chimaerin for phorbol ester-induced translocation relative to β2-chimaerin suggests differential ligand accessibility to the C1 domain.
Collapse
Affiliation(s)
- Lautaro Zubeldia-Brenner
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, IQUIBICEN-CONICET, Universidad de Buenos Aires, C1428EGA, Buenos Aires, Argentina
| | | | | | | | | | | |
Collapse
|
14
|
Peterson TA, Stamnes M. ARF1-regulated coatomer directs the steady-state localization of protein kinase C epsilon at the Golgi apparatus. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012. [PMID: 23195223 DOI: 10.1016/j.bbamcr.2012.11.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Protein kinase C epsilon (PKCε) contributes to multiple signaling pathways affecting human disease. The function of PKCε requires it to undergo changes in subcellular distribution in response to signaling events. While the mechanisms underlying this translocation are incompletely understood, it involves the receptor for activated C kinase protein (RACK2/β'-COP). This receptor also functions as a vesicle coat protein in the secretory pathway where it is regulated by the small GTP-binding protein ADP-ribosylation factor, ARF1. We inhibited ARF1 activation to test the requirement for RACK2/β'-COP in PKCε localization in NIH3T3 fibroblasts. We found that steady-state localization of PKCε at the Golgi complex requires ARF1-regulated RACK2/β'-COP function. By contrast, we did not observe any defects in phorbol ester-induced translocation when ARF1 was inhibited. We also found that PKCε bound to isolated membranes through two distinct mechanisms. One mechanism was dependent upon RACK2/β'-COP while a second was RACK2/β'-COP-independent and stimulated by phorbol esters. Finally, we show that RACK2/β'-COP affects the subcellular distribution of a constitutively active form of PKCε, in a manner similar to what we observed for wild-type PKCε. Together, our data support a role for RACK2/β'-COP in the steady-state localization of PKCε at the Golgi apparatus, which may be independent of its role during PKCε translocation to the cell surface.
Collapse
Affiliation(s)
- Tabitha A Peterson
- Department of Molecular Physiology & Biophysics, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, IA 52242, USA
| | | |
Collapse
|
15
|
Garg R, Blando J, Perez CJ, Wang H, Benavides FJ, Kazanietz MG. Activation of nuclear factor κB (NF-κB) in prostate cancer is mediated by protein kinase C epsilon (PKCepsilon). J Biol Chem 2012; 287:37570-82. [PMID: 22955280 DOI: 10.1074/jbc.m112.398925] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Protein kinase C ε (PKCε) has emerged as an oncogenic kinase and plays important roles in cell survival, mitogenesis and invasion. PKCε is up-regulated in most epithelial cancers, including prostate, breast, and lung cancer. Here we report that PKCε is an essential mediator of NF-κB activation in prostate cancer cells. A strong correlation exists between PKCε overexpression and NF-κB activation status in prostate cancer cells. Moreover, transgenic overexpression of PKCε in the mouse prostate causes preneoplastic lesions that display significant NF-κB hyperactivation. PKCε RNAi depletion or inhibition in prostate cancer cells diminishes NF-κB translocation to the nucleus with subsequent impairment of both activation of NF-κB transcription and induction of NF-κB responsive genes in response to the proinflammatory cytokine tumor necrosis factor α (TNFα). On the other hand, PKCε overexpression in normal prostate cells enhances activation of the NF-κB pathway. A mechanistic analysis revealed that TNFα activates PKCε via a C1 domain/diacylglycerol-dependent mechanism that involves phosphatidylcholine-phospholipase C. Moreover, PKCε facilitates the assembly of the TNF receptor-I signaling complex to trigger NF-κB activation. Our studies identified a molecular link between PKCε and NF-κB that controls key responses implicated in prostate cancer progression.
Collapse
Affiliation(s)
- Rachana Garg
- Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | |
Collapse
|
16
|
Kobayashi T, Winslow S, Sunesson L, Hellman U, Larsson C. PKCα binds G3BP2 and regulates stress granule formation following cellular stress. PLoS One 2012; 7:e35820. [PMID: 22536444 PMCID: PMC3335008 DOI: 10.1371/journal.pone.0035820] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Accepted: 03/26/2012] [Indexed: 01/17/2023] Open
Abstract
Protein kinase C (PKC) isoforms regulate a number of processes crucial for the fate of a cell. In this study we identify previously unrecognized interaction partners of PKCα and a novel role for PKCα in the regulation of stress granule formation during cellular stress. Three RNA-binding proteins, cytoplasmic poly(A)(+) binding protein (PABPC1), IGF-II mRNA binding protein 3 (IGF2BP3), and RasGAP binding protein 2 (G3BP2) all co-precipitate with PKCα. RNase treatment abolished the association with IGF2BP3 and PABPC1 whereas the PKCα-G3BP2 interaction was largely resistant to this. Furthermore, interactions between recombinant PKCα and G3BP2 indicated that the interaction is direct and PKCα can phosphorylate G3BP2 in vitro. The binding is mediated via the regulatory domain of PKCα and the C-terminal RNA-binding domain of G3BP2. Both proteins relocate to and co-localize in stress granules, but not to P-bodies, when cells are subjected to stress. Heat shock-induced stress granule assembly and phosphorylation of eIF2α are suppressed following downregulation of PKCα by siRNA. In conclusion this study identifies novel interaction partners of PKCα and a novel role for PKCα in regulation of stress granules.
Collapse
Affiliation(s)
- Tamae Kobayashi
- Center for Molecular Pathology, Lund University, Malmö, Sweden
| | - Sofia Winslow
- Center for Molecular Pathology, Lund University, Malmö, Sweden
| | - Lovisa Sunesson
- Center for Molecular Pathology, Lund University, Malmö, Sweden
| | - Ulf Hellman
- Ludwig Institute for Cancer Research Ltd., Uppsala University, Uppsala, Sweden
| | - Christer Larsson
- Center for Molecular Pathology, Lund University, Malmö, Sweden
- * E-mail:
| |
Collapse
|
17
|
Jin T, Ding Q, Huang H, Xu D, Jiang Y, Zhou B, Li Z, Jiang X, He J, Liu W, Zhang Y, Pan Y, Wang Z, Thomas WG, Chen Y. PAQR10 and PAQR11 mediate Ras signaling in the Golgi apparatus. Cell Res 2012; 22:661-76. [PMID: 21968647 PMCID: PMC3317553 DOI: 10.1038/cr.2011.161] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2011] [Revised: 07/07/2011] [Accepted: 08/11/2011] [Indexed: 02/05/2023] Open
Abstract
Ras plays a pivotal role in many cellular activities, and its subcellular compartmentalization provides spatial and temporal selectivity. Here we report a mode of spatial regulation of Ras signaling in the Golgi apparatus by two highly homologous proteins PAQR10 and PAQR11 of the progestin and AdipoQ receptors family. PAQR10 and PAQR11 are exclusively localized in the Golgi apparatus. Overexpression of PAQR10/PAQR11 stimulates basal and EGF-induced ERK phosphorylation and increases the expression of ERK target genes in a dose-dependent manner. Overexpression of PAQR10/PAQR11 markedly elevates Golgi localization of HRas, NRas and KRas4A, but not KRas4B. PAQR10 and PAQR11 can also interact with HRas, NRas and KRas4A, but not KRas4B. The increased Ras protein at the Golgi apparatus by overexpression of PAQR10/PAQR11 is in an active state. Consistently, knockdown of PAQR10 and PAQR11 reduces EGF-stimulated ERK phosphorylation and Ras activation at the Golgi apparatus. Intriguingly, PAQR10 and PAQR11 are able to interact with RasGRP1, a guanine nucleotide exchange protein of Ras, and increase Golgi localization of RasGRP1. The C1 domain of RasGRP1 is both necessary and sufficient for the interaction of RasGRP1 with PAQR10/PAQR11. The simulation of ERK phosphorylation by overexpressed PAQR10/PAQR11 is abrogated by downregulation of RasGRP1. Furthermore, differentiation of PC12 cells is significantly enhanced by overexpression of PAQR10/PAQR11. Collectively, this study uncovers a new paradigm of spatial regulation of Ras signaling in the Golgi apparatus by PAQR10 and PAQR11.
Collapse
Affiliation(s)
- Ting Jin
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Qiurong Ding
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Heng Huang
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Daqian Xu
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yuhui Jiang
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Ben Zhou
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Zhenghu Li
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xiaomeng Jiang
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jing He
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Weizhong Liu
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yixuan Zhang
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yi Pan
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Zhenzhen Wang
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Walter G Thomas
- School of Biomedical Sciences, University of Queensland, Brisbane, Australia
| | - Yan Chen
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
18
|
Wertheimer E, Gutierrez-Uzquiza A, Rosemblit C, Lopez-Haber C, Sosa MS, Kazanietz MG. Rac signaling in breast cancer: a tale of GEFs and GAPs. Cell Signal 2012; 24:353-362. [PMID: 21893191 PMCID: PMC3312797 DOI: 10.1016/j.cellsig.2011.08.011] [Citation(s) in RCA: 147] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Accepted: 08/20/2011] [Indexed: 11/28/2022]
Abstract
Rac GTPases, small G-proteins widely implicated in tumorigenesis and metastasis, transduce signals from tyrosine-kinase, G-protein-coupled receptors (GPCRs), and integrins, and control a number of essential cellular functions including motility, adhesion, and proliferation. Deregulation of Rac signaling in cancer is generally a consequence of enhanced upstream inputs from tyrosine-kinase receptors, PI3K or Guanine nucleotide Exchange Factors (GEFs), or reduced Rac inactivation by GTPase Activating Proteins (GAPs). In breast cancer cells Rac1 is a downstream effector of ErbB receptors and mediates migratory responses by ErbB1/EGFR ligands such as EGF or TGFα and ErbB3 ligands such as heregulins. Recent advances in the field led to the identification of the Rac-GEF P-Rex1 as an essential mediator of Rac1 responses in breast cancer cells. P-Rex1 is activated by the PI3K product PIP3 and Gβγ subunits, and integrates signals from ErbB receptors and GPCRs. Most notably, P-Rex1 is highly overexpressed in human luminal breast tumors, particularly those expressing ErbB2 and estrogen receptor (ER). The P-Rex1/Rac signaling pathway may represent an attractive target for breast cancer therapy.
Collapse
Affiliation(s)
- Eva Wertheimer
- Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6160, USA
| | - Alvaro Gutierrez-Uzquiza
- Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6160, USA
| | - Cinthia Rosemblit
- Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6160, USA
| | - Cynthia Lopez-Haber
- Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6160, USA
| | - Maria Soledad Sosa
- Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6160, USA
| | - Marcelo G Kazanietz
- Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6160, USA.
| |
Collapse
|
19
|
Wang H, Xiao L, Kazanietz MG. p23/Tmp21 associates with protein kinase Cdelta (PKCdelta) and modulates its apoptotic function. J Biol Chem 2011; 286:15821-31. [PMID: 21454541 DOI: 10.1074/jbc.m111.227991] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
There is emerging evidence that C1 domains, motifs originally identified in PKC isozymes and responsible for binding of phorbol esters and diacylglycerol, interact with the Golgi/endoplasmic reticulum protein p23 (Tmp21). In this study, we investigated whether PKCδ, a kinase widely implicated in apoptosis and inhibition of cell cycle progression, associates with p23 and determined the potential functional implications of this interaction. Using a yeast two-hybrid approach, we found that the PKCδ C1b domain associates with p23 and identified two key residues (Asp(245) and Met(266)) implicated in this interaction. Interestingly, silencing p23 from LNCaP prostate cancer cells using RNAi markedly enhanced PKCδ-dependent apoptosis and activation of PKCδ downstream effectors ROCK and JNK by phorbol 12-myristate 13-acetate. Moreover, translocation of PKCδ to the plasma membrane by phorbol 12-myristate 13-acetate was enhanced in p23-depleted LNCaP cells. Notably, a PKCδ mutant that failed to interact with p23 triggered a strong apoptotic response when expressed in LNCaP cells. In summary, our data compellingly support the concept that C1 domains have dual roles both in lipid and protein associations and provide strong evidence that p23 acts as an anchoring protein that retains PKCδ at the perinuclear region, thus limiting the availability of this kinase for activation in response to stimuli.
Collapse
Affiliation(s)
- HongBin Wang
- Department of Pharmacology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6160, USA.
| | | | | |
Collapse
|
20
|
Marland JRK, Pan D, Buttery PC. Rac GTPase-activating protein (Rac GAP) α1-Chimaerin undergoes proteasomal degradation and is stabilized by diacylglycerol signaling in neurons. J Biol Chem 2010; 286:199-207. [PMID: 21056981 DOI: 10.1074/jbc.m110.166728] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
α1-Chimaerin is a neuron-specific member of the Rho GTPase-activating protein family that selectively inactivates the small GTPase Rac. It is known to regulate the structure of dendrites and dendritic spines. We describe here that under basal conditions α1-chimaerin becomes polyubiquitinated and undergoes rapid proteasomal degradation. This degradation is partly dependent on the N-terminal region that is unique to this isoform. Mimicking diacylglycerol (DAG) signaling with a phorbol ester stabilizes endogenous α1-chimaerin against degradation and causes accumulation of the protein. The stabilization requires phorbol ester binding via the C1 domain of the protein and is independent of PKC activity. In addition, overexpression of a constitutively active Rac1 mutant is sufficient to cause an accumulation of α1-chimaerin through a phospholipase C-dependent mechanism, showing that endogenous DAG signaling can also stabilize the protein. These results suggest that signaling via DAG may regulate the abundance of α1-chimaerin under physiological conditions, providing a new model for understanding how its activity could be controlled.
Collapse
Affiliation(s)
- Jamie R K Marland
- Centre for Brain Repair, University of Cambridge, Cambridge CB2 0PY, United Kingdom
| | | | | |
Collapse
|