1
|
Li X, Zhu P, Chen YJ, Huang L, Wang D, Newton DT, Hsu CC, Lin G, Tao WA, Staiger CJ, Zhang C. The EXO70 inhibitor Endosidin2 alters plasma membrane protein composition in Arabidopsis roots. FRONTIERS IN PLANT SCIENCE 2023; 14:1171957. [PMID: 37324680 PMCID: PMC10264680 DOI: 10.3389/fpls.2023.1171957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 05/15/2023] [Indexed: 06/17/2023]
Abstract
To sustain normal growth and allow rapid responses to environmental cues, plants alter the plasma membrane protein composition under different conditions presumably by regulation of delivery, stability, and internalization. Exocytosis is a conserved cellular process that delivers proteins and lipids to the plasma membrane or extracellular space in eukaryotes. The octameric exocyst complex contributes to exocytosis by tethering secretory vesicles to the correct site for membrane fusion; however, whether the exocyst complex acts universally for all secretory vesicle cargo or just for specialized subsets used during polarized growth and trafficking is currently unknown. In addition to its role in exocytosis, the exocyst complex is also known to participate in membrane recycling and autophagy. Using a previously identified small molecule inhibitor of the plant exocyst complex subunit EXO70A1, Endosidin2 (ES2), combined with a plasma membrane enrichment method and quantitative proteomic analysis, we examined the composition of plasma membrane proteins in the root of Arabidopsis seedlings, after inhibition of the ES2-targetted exocyst complex, and verified our findings by live imaging of GFP-tagged plasma membrane proteins in root epidermal cells. The abundance of 145 plasma membrane proteins was significantly reduced following short-term ES2 treatments and these likely represent candidate cargo proteins of exocyst-mediated trafficking. Gene Ontology analysis showed that these proteins play diverse functions in cell growth, cell wall biosynthesis, hormone signaling, stress response, membrane transport, and nutrient uptake. Additionally, we quantified the effect of ES2 on the spatial distribution of EXO70A1 with live-cell imaging. Our results indicate that the plant exocyst complex mediates constitutive dynamic transport of subsets of plasma membrane proteins during normal root growth.
Collapse
Affiliation(s)
- Xiaohui Li
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, United States
- Center for Plant Biology, Purdue University, West Lafayette, IN, United States
| | - Peipei Zhu
- Department of Biochemistry, Purdue University, West Lafayette, IN, United States
- Department of Chemistry, Purdue University, West Lafayette, IN, United States
| | - Yen-Ju Chen
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, United States
- Center for Plant Biology, Purdue University, West Lafayette, IN, United States
| | - Lei Huang
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, United States
- Center for Plant Biology, Purdue University, West Lafayette, IN, United States
| | - Diwen Wang
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, United States
- Center for Plant Biology, Purdue University, West Lafayette, IN, United States
| | - David T. Newton
- Department of Statistics, Purdue University, West Lafayette, IN, United States
| | - Chuan-Chih Hsu
- Department of Biochemistry, Purdue University, West Lafayette, IN, United States
| | - Guang Lin
- Department of Mathematics, Purdue University, West Lafayette, IN, United States
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, United States
| | - W. Andy Tao
- Department of Biochemistry, Purdue University, West Lafayette, IN, United States
- Department of Chemistry, Purdue University, West Lafayette, IN, United States
| | - Christopher J. Staiger
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, United States
- Center for Plant Biology, Purdue University, West Lafayette, IN, United States
- Department of Biological Sciences, Purdue University, West Lafayette, IN, United States
| | - Chunhua Zhang
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, United States
- Center for Plant Biology, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
2
|
Lamas-Maceiras M, Vizoso-Vázquez Á, Barreiro-Alonso A, Cámara-Quílez M, Cerdán ME. Thanksgiving to Yeast, the HMGB Proteins History from Yeast to Cancer. Microorganisms 2023; 11:microorganisms11040993. [PMID: 37110415 PMCID: PMC10142021 DOI: 10.3390/microorganisms11040993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/03/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
Yeasts have been a part of human life since ancient times in the fermentation of many natural products used for food. In addition, in the 20th century, they became powerful tools to elucidate the functions of eukaryotic cells as soon as the techniques of molecular biology developed. Our molecular understandings of metabolism, cellular transport, DNA repair, gene expression and regulation, and the cell division cycle have all been obtained through biochemistry and genetic analysis using different yeasts. In this review, we summarize the role that yeasts have had in biological discoveries, the use of yeasts as biological tools, as well as past and on-going research projects on HMGB proteins along the way from yeast to cancer.
Collapse
Affiliation(s)
- Mónica Lamas-Maceiras
- Centro Interdisciplinar de Química y Biología (CICA), As Carballeiras, s/n, Campus de Elviña, Universidade da Coruña, 15071 A Coruña, Spain
- Instituto de Investigación Biomédica de A Coruña (INIBIC), As Xubias de Arriba 84, 15006 A Coruña, Spain
- Facultad de Ciencias, A Fraga, s/n, Campus de A Zapateira, Universidade da Coruña, 15071 A Coruña, Spain
| | - Ángel Vizoso-Vázquez
- Centro Interdisciplinar de Química y Biología (CICA), As Carballeiras, s/n, Campus de Elviña, Universidade da Coruña, 15071 A Coruña, Spain
- Instituto de Investigación Biomédica de A Coruña (INIBIC), As Xubias de Arriba 84, 15006 A Coruña, Spain
- Facultad de Ciencias, A Fraga, s/n, Campus de A Zapateira, Universidade da Coruña, 15071 A Coruña, Spain
| | - Aida Barreiro-Alonso
- Centro Interdisciplinar de Química y Biología (CICA), As Carballeiras, s/n, Campus de Elviña, Universidade da Coruña, 15071 A Coruña, Spain
- Instituto de Investigación Biomédica de A Coruña (INIBIC), As Xubias de Arriba 84, 15006 A Coruña, Spain
- Facultad de Ciencias, A Fraga, s/n, Campus de A Zapateira, Universidade da Coruña, 15071 A Coruña, Spain
| | - María Cámara-Quílez
- Centro Interdisciplinar de Química y Biología (CICA), As Carballeiras, s/n, Campus de Elviña, Universidade da Coruña, 15071 A Coruña, Spain
- Instituto de Investigación Biomédica de A Coruña (INIBIC), As Xubias de Arriba 84, 15006 A Coruña, Spain
- Facultad de Ciencias, A Fraga, s/n, Campus de A Zapateira, Universidade da Coruña, 15071 A Coruña, Spain
| | - María Esperanza Cerdán
- Centro Interdisciplinar de Química y Biología (CICA), As Carballeiras, s/n, Campus de Elviña, Universidade da Coruña, 15071 A Coruña, Spain
- Instituto de Investigación Biomédica de A Coruña (INIBIC), As Xubias de Arriba 84, 15006 A Coruña, Spain
- Facultad de Ciencias, A Fraga, s/n, Campus de A Zapateira, Universidade da Coruña, 15071 A Coruña, Spain
| |
Collapse
|
3
|
Tsirkas I, Zur T, Dovrat D, Cohen A, Ravkaie L, Aharoni A. Protein fluorescent labeling in live yeast cells using scFv-based probes. CELL REPORTS METHODS 2022; 2:100357. [PMID: 36590693 PMCID: PMC9795370 DOI: 10.1016/j.crmeth.2022.100357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 09/19/2022] [Accepted: 11/10/2022] [Indexed: 12/12/2022]
Abstract
The fusion of fluorescent proteins (FPs) to endogenous proteins is a widespread approach for microscopic examination of protein function, expression, and localization in the cell. However, proteins that are sensitive to FP fusion or expressed at low levels are difficult to monitor using this approach. Here, we develop a single-chain fragment variable (scFv)-FP approach to efficiently label Saccharomyces cerevisiae proteins that are tagged with repeats of hemagglutinin (HA)-tag sequences. We demonstrate the successful labeling of DNA-binding proteins and proteins localized to different cellular organelles including the nuclear membrane, peroxisome, Golgi apparatus, and mitochondria. This approach can lead to a significant increase in fluorescence intensity of the labeled protein, allows C'-terminal labeling of difficult-to-tag proteins and increased detection sensitivity of DNA-damage foci. Overall, the development of a scFv-FP labeling approach in yeast provides a general and simple tool for the function and localization analysis of the yeast proteome.
Collapse
Affiliation(s)
- Ioannis Tsirkas
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Be’er Sheva 84105, Israel
| | - Tomer Zur
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Be’er Sheva 84105, Israel
| | - Daniel Dovrat
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Be’er Sheva 84105, Israel
| | - Amit Cohen
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Be’er Sheva 84105, Israel
| | - Lior Ravkaie
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Be’er Sheva 84105, Israel
| | - Amir Aharoni
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Be’er Sheva 84105, Israel
| |
Collapse
|
4
|
Hématy K, De Bellis D, Wang X, Mähönen AP, Geldner N. Analysis of exocyst function in endodermis reveals its widespread contribution and specificity of action. PLANT PHYSIOLOGY 2022; 189:557-566. [PMID: 35099565 PMCID: PMC9157074 DOI: 10.1093/plphys/kiac019] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 12/07/2021] [Indexed: 06/14/2023]
Abstract
The exocyst is the main plasma membrane vesicle-tethering complex in eukaryotes and is composed of eight different subunits. Yet, in plant genomes, many subunits display multiple copies, thought to reflect evolution of complex subtypes with divergent functions. In Arabidopsis thaliana root endodermal cells, the isoform EXO70A1 is required for positioning of CASP1 at the Casparian Strip Domain, but not for its non-targeted secretion to the plasma membrane. Here, we show that exo84b resembles exo70a1 mutants regarding CASP1 mistargeting and secretion of apoplastic proteins, but exo84b additionally affects secretion of other integral plasma membrane proteins. Moreover, conditional, cell-type-specific gene editing of the single-copy core component SEC6 allows visualization of secretion defects in plant cells with a complete lack of exocyst complex function. Our approach opens avenues for deciphering the complexity/diversity of exocyst functions in plant cells and enables analysis of central trafficking components with lethal phenotypes.
Collapse
Affiliation(s)
- Kian Hématy
- Department of Plant Molecular Biology, University of Lausanne, Lausanne 1015, Switzerland
- Institut Jean-Pierre Bourgin, INRAe, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France
| | - Damien De Bellis
- Department of Plant Molecular Biology, University of Lausanne, Lausanne 1015, Switzerland
- Electron Microscopy Facility, University of Lausanne, Lausanne 1015, Switzerland
| | - Xin Wang
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki 00014, Finland
- Faculty of Biological and Environmental Sciences and Viikki Plant Science Centre, Organismal and Evolutionary Biology Research Programme, University of Helsinki, Helsinki 00014, Finland
| | - Ari Pekka Mähönen
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki 00014, Finland
- Faculty of Biological and Environmental Sciences and Viikki Plant Science Centre, Organismal and Evolutionary Biology Research Programme, University of Helsinki, Helsinki 00014, Finland
| | - Niko Geldner
- Department of Plant Molecular Biology, University of Lausanne, Lausanne 1015, Switzerland
| |
Collapse
|
5
|
Lawson MJ, Drawert B, Petzold L, Yi TM. A positive feedback loop involving the Spa2 SHD domain contributes to focal polarization. PLoS One 2022; 17:e0263347. [PMID: 35134079 PMCID: PMC8824340 DOI: 10.1371/journal.pone.0263347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 01/16/2022] [Indexed: 11/18/2022] Open
Abstract
Focal polarization is necessary for finely arranged cell-cell interactions. The yeast mating projection, with its punctate polarisome, is a good model system for this process. We explored the critical role of the polarisome scaffold protein Spa2 during yeast mating with a hypothesis motivated by mathematical modeling and tested by in vivo experiments. Our simulations predicted that two positive feedback loops generate focal polarization, including a novel feedback pathway involving the N-terminal domain of Spa2. We characterized the latter using loss-of-function and gain-of-function mutants. The N-terminal region contains a Spa2 Homology Domain (SHD) which is conserved from yeast to humans, and when mutated largely reproduced the spa2Δ phenotype. Our work together with published data show that the SHD domain recruits Msb3/4 that stimulates Sec4-mediated transport of Bud6 to the polarisome. There, Bud6 activates Bni1-catalyzed actin cable formation, recruiting more Spa2 and completing the positive feedback loop. We demonstrate that disrupting this loop at any point results in morphological defects. Gain-of-function perturbations partially restored focal polarization in a spa2 loss-of-function mutant without restoring localization of upstream components, thus supporting the pathway order. Thus, we have collected data consistent with a novel positive feedback loop that contributes to focal polarization during pheromone-induced polarization in yeast.
Collapse
Affiliation(s)
- Michael J. Lawson
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States of America
| | - Brian Drawert
- Department of Computer Science, University of North Carolina Asheville, Asheville, NC, United States of America
| | - Linda Petzold
- Department of Computer Science, University of California, Santa Barbara, Santa Barbara, CA, United States of America
| | - Tau-Mu Yi
- Molecular, Cellular, and Developmental Biology, 3131 Biological Sciences II, University of California, Santa Barbara, Santa Barbara, CA, United States of America
- * E-mail:
| |
Collapse
|
6
|
ER exit sites in Drosophila display abundant ER-Golgi vesicles and pearled tubes but no megacarriers. Cell Rep 2021; 36:109707. [PMID: 34525362 DOI: 10.1016/j.celrep.2021.109707] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 07/24/2021] [Accepted: 08/20/2021] [Indexed: 01/08/2023] Open
Abstract
Secretory cargos are collected at endoplasmic reticulum (ER) exit sites (ERES) before transport to the Golgi apparatus. Decades of research have provided many details of the molecular events underlying ER-Golgi exchanges. Essential questions, however, remain about the organization of the ER-Golgi interface in cells and the type of membrane structures mediating traffic from ERES. To investigate these, we use transgenic tagging in Drosophila flies, 3D-structured illumination microscopy (SIM), and focused ion beam scanning electron microscopy (FIB-SEM) to characterize ERES-Golgi units in collagen-producing fat body, imaginal discs, and imaginal discs overexpressing ERES determinant Tango1. Facing ERES, we find a pre-cis-Golgi region, equivalent to the vertebrate ER-Golgi intermediate compartment (ERGIC), involved in both anterograde and retrograde transport. This pre-cis-Golgi is continuous with the rest of the Golgi, not a separate compartment or collection of large carriers, for which we find no evidence. We observe, however, many vesicles, as well as pearled tubules connecting ERES and Golgi.
Collapse
|
7
|
Inhibition of Tunneling Nanotubes between Cancer Cell and the Endothelium Alters the Metastatic Phenotype. Int J Mol Sci 2021; 22:ijms22116161. [PMID: 34200503 PMCID: PMC8200952 DOI: 10.3390/ijms22116161] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 05/29/2021] [Accepted: 05/31/2021] [Indexed: 11/17/2022] Open
Abstract
The interaction of tumor cells with blood vessels is one of the key steps during cancer metastasis. Metastatic cancer cells exhibit phenotypic state changes during this interaction: (1) they form tunneling nanotubes (TNTs) with endothelial cells, which act as a conduit for intercellular communication; and (2) metastatic cancer cells change in order to acquire an elongated phenotype, instead of the classical cellular aggregates or mammosphere-like structures, which it forms in three-dimensional cultures. Here, we demonstrate mechanistically that a siRNA-based knockdown of the exocyst complex protein Sec3 inhibits TNT formation. Furthermore, a set of pharmacological inhibitors for Rho GTPase–exocyst complex-mediated cytoskeletal remodeling is introduced, which inhibits TNT formation, and induces the reversal of the more invasive phenotype of cancer cell (spindle-like) into a less invasive phenotype (cellular aggregates or mammosphere). Our results offer mechanistic insights into this nanoscale communication and shift of phenotypic state during cancer–endothelial interactions.
Collapse
|
8
|
Feng Z, Yang K, Pastor-Pareja JC. Tales of the ER-Golgi Frontier: Drosophila-Centric Considerations on Tango1 Function. Front Cell Dev Biol 2021; 8:619022. [PMID: 33505971 PMCID: PMC7829582 DOI: 10.3389/fcell.2020.619022] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 12/14/2020] [Indexed: 12/15/2022] Open
Abstract
In the secretory pathway, the transfer of cargo from the ER to the Golgi involves dozens of proteins that localize at specific regions of the ER called ER exit sites (ERES), where cargos are concentrated preceding vesicular transport to the Golgi. Despite many years of research, we are missing crucial details of how this highly dynamic ER-Golgi interface is defined, maintained and functions. Mechanisms allowing secretion of large cargos such as the very abundant collagens are also poorly understood. In this context, Tango1, discovered in the fruit fly Drosophila and widely conserved in animal evolution, has received a lot of attention in recent years. Tango1, an ERES-localized transmembrane protein, is the single fly member of the MIA/cTAGE family, consisting in humans of TANGO1 and at least 14 different related proteins. After its discovery in flies, a specific role of human TANGO1 in mediating secretion of collagens was reported. However, multiple studies in Drosophila have demonstrated that Tango1 is required for secretion of all cargos. At all ERES, through self-interaction and interactions with other proteins, Tango1 aids ERES maintenance and tethering of post-ER membranes. In this review, we discuss discoveries on Drosophila Tango1 and put them in relation with research on human MIA/cTAGE proteins. In doing so, we aim to offer an integrated view of Tango1 function and the nature of ER-Golgi transport from an evolutionary perspective.
Collapse
Affiliation(s)
- Zhi Feng
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Ke Yang
- School of Life Sciences, Tsinghua University, Beijing, China
| | - José C Pastor-Pareja
- School of Life Sciences, Tsinghua University, Beijing, China.,Tsinghua-Peking Center for Life Sciences, Beijing, China
| |
Collapse
|
9
|
Bach S, Colas P, Blondel M. [Budding yeast, a model and a tool… also for biomedical research]. Med Sci (Paris) 2020; 36:504-514. [PMID: 32452373 DOI: 10.1051/medsci/2020077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Yeast has been used for thousands of years as a leavening agent and for alcoholic fermentation, but it is only in 1857 that Louis Pasteur described the microorganism at the basis of these two tremendously important economic activities. From there, yeast strains could be selected and modified on a rational basis to optimize these uses, thereby also allowing the development of yeast as a popular eukaryotic model system. This model led to a cornucopia of seminal discoveries in cell biology. For about two decades yeast has also been used as a model and a tool for therapeutic research, from the production of therapeutics and the development of diagnostic tools to the identification of new therapeutic targets, drug candidates and chemical probes. These diverse chemobiological applications of yeast are presented and discussed in the present review article.
Collapse
Affiliation(s)
- Stéphane Bach
- Sorbonne Université, CNRS, UMR8227, Laboratoire de Biologie Intégrative des Modèles Marins, Station Biologique de Roscoff, place Georges Teissier, 29680 Roscoff, France - Sorbonne Université, CNRS, FR2424, Plateforme de criblage KISSf, Station Biologique de Roscoff, place Georges Teissier, 29680 Roscoff, France
| | - Pierre Colas
- Sorbonne Université, CNRS, UMR8227, Laboratoire de Biologie Intégrative des Modèles Marins, Station Biologique de Roscoff, place Georges Teissier, 29680 Roscoff, France
| | - Marc Blondel
- Univ Brest, Inserm, EFS, UMR1078, GGB, F-29200 Brest, France - CHRU Brest, service de génétique clinique et de biologie de la reproduction, F-29200 Brest, France
| |
Collapse
|
10
|
A Validated Set of Fluorescent-Protein-Based Markers for Major Organelles in Yeast (Saccharomyces cerevisiae). mBio 2019; 10:mBio.01691-19. [PMID: 31481383 PMCID: PMC6722415 DOI: 10.1128/mbio.01691-19] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Eukaryotic cells share a basic scheme of internal organization featuring membrane-based organelles. The use of fluorescent proteins (FPs) greatly facilitated live-cell imaging of organelle dynamics and protein trafficking. One major limitation of this approach is that the fusion of an FP to a target protein can and often does compromise the function of the target protein and alter its subcellular localization. The optimization process to obtain a desirable fusion construct can be time-consuming or even unsuccessful. In this work, we set out to provide a validated set of FP-based markers for major organelles in the budding yeast (Saccharomyces cerevisiae). Out of over 160 plasmids constructed, we present a final set of 42 plasmids, the recommendations for which are backed up by meticulous evaluations. The tool set includes three colors (green, red, and blue) and covers the endoplasmic reticulum (ER), nucleus, Golgi apparatus, endosomes, vacuoles, mitochondria, peroxisomes, and lipid droplets. The fidelity of the markers was established by systematic cross-comparison and quantification. Functional assays were performed to examine the impact of marker expression on the secretory pathway, endocytic pathway, and metabolic activities of mitochondria and peroxisomes. Concomitantly, our work constitutes a reassessment of organelle identities in this model organism. Our data support the recognition that "late Golgi" and "early endosomes," two seemingly distinct terms, denote the same compartment in yeast. Conversely, all other organelles can be visually separated from each other at the resolution of conventional light microscopy, and quantification results justify their classification as distinct entities.IMPORTANCE Cells contain elaborate internal structures. For eukaryotic cells, like those in our bodies, the internal space is compartmentalized into membrane-bound organelles, each tasked with specialized functions. Oftentimes, one needs to visualize organelles to understand a complex cellular process. Here, we provide a validated set of fluorescent protein-based markers for major organelles in budding yeast. Yeast is a commonly used model when investigating basic mechanisms shared among eukaryotes. Fluorescent proteins are produced by cells themselves, avoiding the need for expensive chemical dyes. Through extensive cross-comparison, we make sure that each of our markers labels and only labels the intended organelle. We also carefully examined if the presence of our markers has any negative impact on the functionality of the cells and found none. Our work also helps answer a related question: are the structures we see really what we think they are?
Collapse
|
11
|
Sneaking Out for Happy Hour: Yeast-Based Approaches to Explore and Modulate Immune Response and Immune Evasion. Genes (Basel) 2019; 10:genes10090667. [PMID: 31480411 PMCID: PMC6770942 DOI: 10.3390/genes10090667] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 08/26/2019] [Accepted: 08/28/2019] [Indexed: 01/09/2023] Open
Abstract
Many pathogens (virus, bacteria, fungi, or parasites) have developed a wide variety of mechanisms to evade their host immune system. The budding yeast Saccharomyces cerevisiae has successfully been used to decipher some of these immune evasion strategies. This includes the cis-acting mechanism that limits the expression of the oncogenic Epstein–Barr virus (EBV)-encoded EBNA1 and thus of antigenic peptides derived from this essential but highly antigenic viral protein. Studies based on budding yeast have also revealed the molecular bases of epigenetic switching or recombination underlying the silencing of all except one members of extended families of genes that encode closely related and highly antigenic surface proteins. This mechanism is exploited by several parasites (that include pathogens such as Plasmodium, Trypanosoma, Candida, or Pneumocystis) to alternate their surface antigens, thereby evading the immune system. Yeast can itself be a pathogen, and pathogenic fungi such as Candida albicans, which is phylogenetically very close to S. cerevisiae, have developed stealthiness strategies that include changes in their cell wall composition, or epitope-masking, to control production or exposure of highly antigenic but essential polysaccharides in their cell wall. Finally, due to the high antigenicity of its cell wall, yeast has been opportunistically exploited to create adjuvants and vectors for vaccination.
Collapse
|
12
|
Mao Y, Tu R, Huang Y, Mao D, Yang Z, Lau PK, Wang J, Ni J, Guo Y, Xie T. The exocyst functions in niche cells to promote germline stem cell differentiation by directly controlling EGFR membrane trafficking. Development 2019; 146:dev.174615. [PMID: 31142545 DOI: 10.1242/dev.174615] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 05/14/2019] [Indexed: 12/31/2022]
Abstract
The niche controls stem cell self-renewal and differentiation in animal tissues. Although the exocyst is known to be important for protein membrane trafficking and secretion, its role in stem cells and niches has never been reported. Here, this study shows that the exocyst functions in the niche to promote germline stem cell (GSC) progeny differentiation in the Drosophila ovary by directly regulating EGFR membrane trafficking and signaling. Inactivation of exocyst components in inner germarial sheath cells, which form the differentiation niche, causes a severe GSC differentiation defect. The exocyst is required for maintaining niche cells and preventing BMP signaling in GSC progeny by promoting EGFR membrane targeting and signaling through direct association with EGFR. Finally, it is also required for EGFR membrane targeting, recycling and signaling in human cells. Therefore, this study reveals a novel function of the exocyst in niche cells to promote stem cell progeny differentiation by directly controlling EGFR membrane trafficking and signaling in vivo, and also provides important insight into how the niche controls stem cell progeny differentiation at the molecular level.
Collapse
Affiliation(s)
- Ying Mao
- PKU-THU Joint Center for Life Sciences, College of Life Sciences, School of Medical Sciences, Tsinghua University, Beijing 100084, China
| | - Renjun Tu
- Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO 64110, USA
| | - Yan Huang
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Decai Mao
- PKU-THU Joint Center for Life Sciences, College of Life Sciences, School of Medical Sciences, Tsinghua University, Beijing 100084, China
| | - Zhihao Yang
- PKU-THU Joint Center for Life Sciences, College of Life Sciences, School of Medical Sciences, Tsinghua University, Beijing 100084, China
| | - Pik Ki Lau
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Jinhui Wang
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Jianquan Ni
- PKU-THU Joint Center for Life Sciences, College of Life Sciences, School of Medical Sciences, Tsinghua University, Beijing 100084, China
| | - Yusong Guo
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Ting Xie
- Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO 64110, USA
| |
Collapse
|
13
|
Ribatti D. Lelio Orci, the modern master of morphology. Cell Biol Int 2019; 43:846-851. [PMID: 31115951 DOI: 10.1002/cbin.11178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 05/18/2019] [Indexed: 11/10/2022]
Abstract
Lelio Orci has made seminal contributions to our understanding of pancreatic islet structure and function. He introduced quantitative criteria to structural analysis in the study of endocrine pancreas in a series of works performed in collaboration with Albert Renold, Roger Unger, and Donald Steiner. Orci has moved islet cell morphology from the primitive era of histochemistry and electron microscopy into the modern era of cell biology, applying the most advanced techniques and covering every aspect of normal and pathological structure-function relationships. In collaboration with James Rothman in New York and Randy Schekman in Berkley, Orci discovered that the transport steps from the endoplasmic reticulum to the Golgi complex, and within the Golgi, are mediated by two sets of vesicles coated with protein envelopes different from clathrin.
Collapse
Affiliation(s)
- Domenico Ribatti
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari Medical School, 70124 Bari, Italy
| |
Collapse
|
14
|
Wang J, Tian L, Zhang DD, Short DPG, Zhou L, Song SS, Liu Y, Wang D, Kong ZQ, Cui WY, Ma XF, Klosterman SJ, Subbarao KV, Chen JY, Dai XF. SNARE-Encoding Genes VdSec22 and VdSso1 Mediate Protein Secretion Required for Full Virulence in Verticillium dahliae. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2018; 31:651-664. [PMID: 29419372 DOI: 10.1094/mpmi-12-17-0289-r] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Proteins that mediate cellular and subcellular membrane fusion are key factors in vesicular trafficking in all eukaryotic cells, including the secretion and transport of plant pathogen virulence factors. In this study, we identified vesicle-fusion components that included 22 soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs), four Sec1/Munc18 (SM) family proteins, and 10 Rab GTPases encoded in the genome of the vascular wilt pathogen Verticillium dahliae Vd991. Targeted deletion of two SNARE-encoding genes in V. dahliae, VdSec22 and VdSso1, significantly reduced virulence of both mutants on cotton, relative to the wild-type Vd991 strain. Comparative analyses of the secreted protein content (exoproteome) revealed that many enzymes involved in carbohydrate hydrolysis were regulated by VdSec22 or VdSso1. Consistent with a role of these enzymes in plant cell-wall degradation, pectin, cellulose, and xylan utilization were reduced in the VdSec22 or VdSso1 mutant strains along with a loss of exoproteome cytotoxic activity on cotton leaves. Comparisons with a pathogenicity-related exoproteome revealed that several known virulence factors were not regulated by VdSec22 or VdSso1, but some of the proteins regulated by VdSec22 or VdSso1 displayed different characteristics, including the lack of a typical signal peptide, suggesting that V. dahliae employs more than one secretory route to transport proteins to extracellular sites during infection.
Collapse
Affiliation(s)
- Jie Wang
- 1 Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Li Tian
- 3 College of Life Science, Qufu Normal University, Qufu, 273165, Shandong, China; and
| | - Dan-Dan Zhang
- 1 Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Dylan P G Short
- 2 Department of Plant Pathology, University of California, Davis, c/o U.S. Agricultural Research Station, Salinas, CA, U.S.A
| | - Lei Zhou
- 1 Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Shuang-Shuang Song
- 3 College of Life Science, Qufu Normal University, Qufu, 273165, Shandong, China; and
| | - Yan Liu
- 3 College of Life Science, Qufu Normal University, Qufu, 273165, Shandong, China; and
| | - Dan Wang
- 1 Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Zhi-Qiang Kong
- 1 Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Wei-Ye Cui
- 1 Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Xue-Feng Ma
- 1 Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Steven J Klosterman
- 4 United States Department of Agriculture, Agricultural Research Service, Salinas, CA, U.S.A
| | - Krishna V Subbarao
- 2 Department of Plant Pathology, University of California, Davis, c/o U.S. Agricultural Research Station, Salinas, CA, U.S.A
| | - Jie-Yin Chen
- 1 Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Xiao-Feng Dai
- 1 Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| |
Collapse
|
15
|
Sheng J, Flick H, Feng X. Systematic Optimization of Protein Secretory Pathways in Saccharomyces cerevisiae to Increase Expression of Hepatitis B Small Antigen. Front Microbiol 2017; 8:875. [PMID: 28559891 PMCID: PMC5432677 DOI: 10.3389/fmicb.2017.00875] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 05/01/2017] [Indexed: 11/13/2022] Open
Abstract
Hepatitis B is a major disease that chronically infects millions of people in the world, especially in developing countries. Currently, one of the effective vaccines to prevent Hepatitis B is the Hepatitis B Small Antigen (HBsAg), which is mainly produced by the recombinant yeast Saccharomyces cerevisiae. In order to bring down the price, which is still too high for people in developing countries to afford, it is important to understand key cellular processes that limit protein expression. In this study, we took advantage of yeast knockout collection (YKO) and screened 194 S. cerevisiae strains with single gene knocked out in four major steps of the protein secretory pathway, i.e., endoplasmic-reticulum (ER)-associated protein degradation, protein folding, unfolded protein response (UPR), and translocation and exocytosis. The screening showed that the single deletion of YPT32, SBH1, and HSP42 led to the most significant increase of HBsAg expression over the wild type while the deletion of IRE1 led to a profound decrease of HBsAg expression. The synergistic effects of gene knockout and gene overexpression were next tested. We found that simultaneously deleting YPT32 and overexpressing IRE1 led to a 2.12-fold increase in HBsAg expression over the wild type strain. The results of this study revealed novel genetic targets of protein secretory pathways that could potentially improve the manufacturing of broad scope vaccines in a cost-effective way using recombinant S. cerevisiae.
Collapse
Affiliation(s)
- Jiayuan Sheng
- Department of Biological Systems Engineering, Virginia Polytechnic Institute and State UniversityBlacksburg, VA, United States
| | - Hunter Flick
- Department of Chemical Engineering, Virginia Polytechnic Institute and State UniversityBlacksburg, VA, United States
| | - Xueyang Feng
- Department of Biological Systems Engineering, Virginia Polytechnic Institute and State UniversityBlacksburg, VA, United States
| |
Collapse
|
16
|
Matlin KS, Caplan MJ. The secretory pathway at 50: a golden anniversary for some momentous grains of silver. Mol Biol Cell 2017; 28:229-232. [PMID: 28082520 PMCID: PMC5231891 DOI: 10.1091/mbc.e16-07-0508] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 11/17/2016] [Accepted: 11/22/2016] [Indexed: 11/30/2022] Open
Abstract
The secretory pathway along which newly synthesized secretory and membrane proteins traffic through the cell was revealed in two articles published 50 years ago. This discovery was the culmination of decades of effort to unite the power of biochemical and morphological methodologies in order to elucidate the dynamic nature of the cell's biosynthetic machinery. The secretory pathway remains a central paradigm of modern cell biology. Its elucidation 50 years ago inspired tremendous multidisciplinary and on-going efforts to understand the machinery that makes it run, the adaptations that permit it to serve the needs of specialized cell types, and the pathological consequences that arise when it is perturbed.
Collapse
Affiliation(s)
- Karl S Matlin
- Department of Surgery, University of Chicago, Chicago, IL 60637-1470
| | - Michael J Caplan
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06520-8026
| |
Collapse
|
17
|
Kludas J, Arvas M, Castillo S, Pakula T, Oja M, Brouard C, Jäntti J, Penttilä M, Rousu J. Machine Learning of Protein Interactions in Fungal Secretory Pathways. PLoS One 2016; 11:e0159302. [PMID: 27441920 PMCID: PMC4956264 DOI: 10.1371/journal.pone.0159302] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 06/30/2016] [Indexed: 12/18/2022] Open
Abstract
In this paper we apply machine learning methods for predicting protein interactions in fungal secretion pathways. We assume an inter-species transfer setting, where training data is obtained from a single species and the objective is to predict protein interactions in other, related species. In our methodology, we combine several state of the art machine learning approaches, namely, multiple kernel learning (MKL), pairwise kernels and kernelized structured output prediction in the supervised graph inference framework. For MKL, we apply recently proposed centered kernel alignment and p-norm path following approaches to integrate several feature sets describing the proteins, demonstrating improved performance. For graph inference, we apply input-output kernel regression (IOKR) in supervised and semi-supervised modes as well as output kernel trees (OK3). In our experiments simulating increasing genetic distance, Input-Output Kernel Regression proved to be the most robust prediction approach. We also show that the MKL approaches improve the predictions compared to uniform combination of the kernels. We evaluate the methods on the task of predicting protein-protein-interactions in the secretion pathways in fungi, S.cerevisiae, baker's yeast, being the source, T. reesei being the target of the inter-species transfer learning. We identify completely novel candidate secretion proteins conserved in filamentous fungi. These proteins could contribute to their unique secretion capabilities.
Collapse
Affiliation(s)
- Jana Kludas
- Helsinki Institute for Information Technology HIIT, Department of Computer Science, Aalto University, Espoo, Finland
| | - Mikko Arvas
- VTT Technical Research Centre of Finland, Espoo, Finland
| | | | - Tiina Pakula
- VTT Technical Research Centre of Finland, Espoo, Finland
| | - Merja Oja
- VTT Technical Research Centre of Finland, Espoo, Finland
| | - Céline Brouard
- Helsinki Institute for Information Technology HIIT, Department of Computer Science, Aalto University, Espoo, Finland
| | - Jussi Jäntti
- VTT Technical Research Centre of Finland, Espoo, Finland
| | - Merja Penttilä
- VTT Technical Research Centre of Finland, Espoo, Finland
| | - Juho Rousu
- Helsinki Institute for Information Technology HIIT, Department of Computer Science, Aalto University, Espoo, Finland
| |
Collapse
|
18
|
Reinecke J, Caplan S. Endocytosis and the Src family of non-receptor tyrosine kinases. Biomol Concepts 2015; 5:143-55. [PMID: 25372749 DOI: 10.1515/bmc-2014-0003] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 02/12/2014] [Indexed: 11/15/2022] Open
Abstract
The regulated intracellular transport of nutrient, adhesion, and growth factor receptors is crucial for maintaining cell and tissue homeostasis. Endocytosis, or endocytic membrane trafficking, involves the steps of intracellular transport that include, but are not limited to, internalization from the plasma membrane, sorting in early endosomes, transport to late endosomes/lysosomes followed by degradation, and/or recycling back to the plasma membrane through tubular recycling endosomes. In addition to regulating the localization of transmembrane receptor proteins, the endocytic pathway also controls the localization of non-receptor molecules. The non-receptor tyrosine kinase c-Src (Src) and its closely related family members Yes and Fyn represent three proteins whose localization and signaling activities are tightly regulated by endocytic trafficking. Here, we provide a brief overview of endocytosis, Src function and its biochemical regulation. We will then concentrate on recent advances in understanding how Src intracellular localization is regulated and how its subcellular localization ultimately dictates downstream functioning. As Src kinases are hyperactive in many cancers, it is essential to decipher the spatiotemporal regulation of this important family of tyrosine kinases.
Collapse
|
19
|
Retromer in Alzheimer disease, Parkinson disease and other neurological disorders. Nat Rev Neurosci 2015; 16:126-32. [PMID: 25669742 DOI: 10.1038/nrn3896] [Citation(s) in RCA: 177] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Retromer is a protein assembly that has a central role in endosomal trafficking, and retromer dysfunction has been linked to a growing number of neurological disorders. First linked to Alzheimer disease, retromer dysfunction causes a range of pathophysiological consequences that have been shown to contribute to the core pathological features of the disease. Genetic studies have established that retromer dysfunction is also pathogenically linked to Parkinson disease, although the biological mechanisms that mediate this link are only now being elucidated. Most recently, studies have shown that retromer is a tractable target in drug discovery for these and other disorders of the nervous system.
Collapse
|
20
|
Abstract
Recent development of large-scale analyses such as the secretome analysis has enabled the discovery of a vast number of intracellular proteins that are secreted outside the cell. Often, these proteins do not contain any known signal sequence required for conventional protein secretion. In order to avoid misidentification of such "leaked" proteins as "secreted" proteins, reconstructing the process of protein secretion is essential. Here, we describe methods for the detection of reconstructed unconventional protein secretion and determination of regulatory proteins of secretion in Saccharomyces cerevisiae. We show that conjugating target proteins with a tag-sequence and utilizing various reagents and tools can facilitate quantitative detection of the secretion of target proteins. We expect that these methods will reveal novel unconventional secretion pathways of proteins.
Collapse
Affiliation(s)
- Natsuko Miura
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | | |
Collapse
|
21
|
Reilly MC, Qin L, Craig JP, Starr TL, Glass NL. Deletion of homologs of the SREBP pathway results in hyper-production of cellulases in Neurospora crassa and Trichoderma reesei. BIOTECHNOLOGY FOR BIOFUELS 2015; 8:121. [PMID: 26288653 PMCID: PMC4539670 DOI: 10.1186/s13068-015-0297-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 07/24/2015] [Indexed: 05/05/2023]
Abstract
BACKGROUND The filamentous fungus Neurospora crassa efficiently utilizes plant biomass and is a model organism for genetic, molecular and cellular biology studies. Here, a set of 567 single-gene deletion strains was assessed for cellulolytic activity as compared to the wild-type parental strain. Mutant strains included were those carrying a deletion in: (1) genes encoding proteins homologous to those implicated in the Saccharomyces cerevisiae secretion apparatus; (2) genes that are homologous to those known to differ between the Trichoderma reesei hyper-secreting strain RUT-C30 and its ancestral wild-type strain; (3) genes encoding proteins identified in the secretome of N. crassa when cultured on plant biomass and (4) genes encoding proteins predicted to traverse the secretory pathway. RESULTS The 567 single-gene deletion collection was cultured on crystalline cellulose and a comparison of levels of secreted protein and cellulase activity relative to the wild-type strain resulted in the identification of seven hyper-production and 18 hypo-production strains. Some of these deleted genes encoded proteins that are likely to act in transcription, protein synthesis and intracellular trafficking, but many encoded fungal-specific proteins of undetermined function. Characterization of several mutants peripherally linked to protein processing or secretion showed that the hyper- or hypo-production phenotypes were primarily a response to cellulose. The altered secretome of these strains was not limited to the production of cellulolytic enzymes, yet was part of the cellulosic response driven by the cellulase transcription factor CLR-2. Mutants implicated the loss of the SREBP pathway, which has been found to regulate ergosterol biosynthesis genes in response to hypoxic conditions, resulted in a hyper-production phenotype. Deletion of two SREBP pathway components in T. reesei also conferred a hyper-production phenotype under cellulolytic conditions. CONCLUSIONS These studies demonstrate the utility of screening the publicly available N. crassa single-gene deletion strain collection for a particular phenotype. Mutants in a predicted E3 ligase and its target SREBP transcription factor played an unanticipated role in protein production under cellulolytic conditions. Furthermore, phenotypes similar to those observed in N. crassa were seen following the targeted deletion of orthologous SREBP pathway loci in T. reesei, a fungal species commonly used in industrial enzyme production.
Collapse
Affiliation(s)
- Morgann C Reilly
- />Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720 USA
- />The Energy Biosciences Institute, University of California, Berkeley, CA 94720 USA
| | - Lina Qin
- />Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720 USA
- />The Energy Biosciences Institute, University of California, Berkeley, CA 94720 USA
| | - James P Craig
- />Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720 USA
- />The Energy Biosciences Institute, University of California, Berkeley, CA 94720 USA
| | - Trevor L Starr
- />Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720 USA
- />The Energy Biosciences Institute, University of California, Berkeley, CA 94720 USA
| | - N Louise Glass
- />Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720 USA
- />The Energy Biosciences Institute, University of California, Berkeley, CA 94720 USA
| |
Collapse
|
22
|
Gil-Bona A, Llama-Palacios A, Parra CM, Vivanco F, Nombela C, Monteoliva L, Gil C. Proteomics unravels extracellular vesicles as carriers of classical cytoplasmic proteins in Candida albicans. J Proteome Res 2014; 14:142-53. [PMID: 25367658 DOI: 10.1021/pr5007944] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The commensal fungus Candida albicans secretes a considerable number of proteins and, as in different fungal pathogens, extracellular vesicles (EVs) have also been observed. Our report contains the first proteomic analysis of EVs in C. albicans and a comparative proteomic study of the soluble secreted proteins. With this purpose, cell-free culture supernatants from C. albicans were separated into EVs and EV-free supernatant and analyzed by LC-MS/MS. A total of 96 proteins were identified including 75 and 61 proteins in EVs and EV-free supernatant, respectively. Out of these, 40 proteins were found in secretome by proteomic analysis for the first time. The soluble proteins were enriched in cell wall and secreted pathogenesis related proteins. Interestingly, more than 90% of these EV-free supernatant proteins were classical secretory proteins with predicted N-terminal signal peptide, whereas all the leaderless proteins involved in metabolism, including some moonlighting proteins, or in the exocytosis and endocytosis process were exclusively cargo of the EVs. We propose a model of the different mechanisms used by C. albicans secreted proteins to reach the extracellular medium. Furthermore, we tested the potential of the Bgl2 protein, identified in vesicles and EV-free supernatant, to protect against a systemic candidiasis in a murine model.
Collapse
Affiliation(s)
- Ana Gil-Bona
- Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense de Madrid , 28040 Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
23
|
Ray K. From fission to fusion: a perspective on the research that won the Nobel Prize in Physiology or Medicine, 2013. J Biosci 2014; 39:3-12. [PMID: 24499785 DOI: 10.1007/s12038-014-9416-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Secretion is widespread in all eukaryotic cells: all of us experience this in the course of daily life--saliva, mucus, sweat, tears, bile juice, adrenalin, etc.--the list is extremely long. How does a cell manage to repeatedly spit out some stuff without losing the rest? The answer is: through regulated vesicle trafficking within the cell. The Nobel Prize in Physiology or Medicine 2013 was awarded to Drs Randy Schekman, James E Rothman and Thomas C Südhof for their 'discoveries of machinery regulating vesicle traffic, a major transport system in our cells'. Dr Randy Schekman and his colleagues discovered a number of genes required for vesicle trafficking from the endoplasmic reticulum (ER) and Golgi; the James E Rothman group unravelled the protein machinery that allows vesicles to bud off from the membrane and fuse to their targets; and Dr Thomas C Südhof along with his colleagues revealed how calcium ions could instruct vesicles to fuse and discharge their contents with precision. These enabled the biotechnology industry to produce a variety of pharmaceutical and industrial products like insulin and hepatitis B vaccines, in a cost-efficient manner, using yeast and tissue cultured cells.
Collapse
Affiliation(s)
- Krishanu Ray
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai 400 005, India,
| |
Collapse
|
24
|
The vacuolar-sorting protein Snf7 is required for export of virulence determinants in members of the Cryptococcus neoformans complex. Sci Rep 2014; 4:6198. [PMID: 25178636 PMCID: PMC4151102 DOI: 10.1038/srep06198] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 08/04/2014] [Indexed: 02/06/2023] Open
Abstract
Fungal pathogenesis requires a number of extracellularly released virulence factors. Recent studies demonstrating that most fungal extracellular molecules lack secretory tags suggest that unconventional secretion mechanisms and fungal virulence are strictly connected. Proteins of the endosomal sorting complex required for transport (ESCRT) have been recently associated with polysaccharide export in the yeast-like human pathogen Cryptococcus neoformans. Snf7 is a key ESCRT operator required for unconventional secretion in Eukaryotes. In this study we generated snf7Δ mutant strains of C. neoformans and its sibling species C. gattii. Lack of Snf7 resulted in important alterations in polysaccharide secretion, capsular formation and pigmentation. This phenotype culminated with loss of virulence in an intranasal model of murine infection in both species. Our data support the notion that Snf7 expression regulates virulence in C. neoformans and C. gattii by ablating polysaccharide and melanin traffic. These results are in agreement with the observation that unconventional secretion is essential for cryptococcal pathogenesis and strongly suggest the occurrence of still obscure mechanisms of exportation of non-protein molecules in Eukaryotes.
Collapse
|
25
|
Kawamura S, Nagano M, Toshima JY, Toshima J. Analysis of subcellular localization and function of the yeast Rab6 homologue, Ypt6p, using a novel amino-terminal tagging strategy. Biochem Biophys Res Commun 2014; 450:519-25. [PMID: 24924636 DOI: 10.1016/j.bbrc.2014.06.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 06/01/2014] [Indexed: 11/25/2022]
Abstract
Ypt6p, the yeast homologue of mammalian Rab6, is involved in the multiple processes regulated by membrane trafficking such as vacuole maturation and membrane protein recycling. Although several lines of evidence suggest that Ypt6p is possibly localized to multiple membrane compartments, the precise localization of endogenous Ypt6p remains to be elucidated. In this study, we developed a novel method for N-terminal tagging of endogenous protein based on homologous recombination and investigated the subcellular localization and function of Ypt6p. Ypt6p and its GTP-bound form were predominantly localized to the cis- to medial-Golgi compartments whereas the GDP-bound form of Ypt6p was localized to the cytosol. Ric1p, a component of the specific GEF complex for Ypt6p, largely colocalized with Ypt6p in the early Golgi, and localization of Ypt6p changed to the cytosol in ric1Δ cells. On the other hand, Gyp6p, a putative GAP for Ypt6p, was localized to the trans-Golgi compartment and deletion of GYP6 increased the localization of Ypt6p at the trans-Golgi, suggesting that Gyp6p promotes the dissociation of Ypt6p from the Golgi when arriving at the trans-Golgi compartment. Additionally, we demonstrated that overexpression of the GDP-bound form of Ypt6p caused defective vacuole formation and recycling of Snc1p to the plasma membrane. These results suggest that the GTP-binding activity of Ypt6p is necessary for intra-Golgi trafficking and protein recycling in the early Golgi compartment.
Collapse
Affiliation(s)
- Sonoko Kawamura
- Department of Biological Science and Technology, Tokyo University of Science, Niijuku 6-3-1, Katsusika-ku, Tokyo 125-8585, Japan
| | - Makoto Nagano
- Research Center for RNA Science, RIST, Tokyo University of Science, Niijuku 6-3-1, Katsusika-ku, Tokyo 125-8585, Japan
| | - Junko Y Toshima
- Research Center for RNA Science, RIST, Tokyo University of Science, Niijuku 6-3-1, Katsusika-ku, Tokyo 125-8585, Japan; Faculty of Science and Engineering, Waseda University, Wakamatsu 2-2, Shinjuku-ku, Tokyo 162-8480, Japan.
| | - Jiro Toshima
- Department of Biological Science and Technology, Tokyo University of Science, Niijuku 6-3-1, Katsusika-ku, Tokyo 125-8585, Japan; Research Center for RNA Science, RIST, Tokyo University of Science, Niijuku 6-3-1, Katsusika-ku, Tokyo 125-8585, Japan.
| |
Collapse
|
26
|
Kwon MJ, Arentshorst M, Fiedler M, de Groen FLM, Punt PJ, Meyer V, Ram AFJ. Molecular genetic analysis of vesicular transport in Aspergillus niger reveals partial conservation of the molecular mechanism of exocytosis in fungi. Microbiology (Reading) 2014; 160:316-329. [DOI: 10.1099/mic.0.074252-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The filamentous fungus Aspergillus niger is an industrially exploited protein expression platform, well known for its capacity to secrete high levels of proteins. To study the process of protein secretion in A. niger, we established a GFP-v-SNARE reporter strain in which the trafficking and dynamics of secretory vesicles can be followed in vivo. The biological role of putative A. niger orthologues of seven secretion-specific genes, known to function in key aspects of the protein secretion machinery in Saccharomyces cerevisiae, was analysed by constructing respective gene deletion mutants in the GFP-v-SNARE reporter strain. Comparison of the deletion phenotype of conserved proteins functioning in the secretory pathway revealed common features but also interesting differences between S. cerevisiae and A. niger. Deletion of the S. cerevisiae Sec2p orthologue in A. niger (SecB), encoding a guanine exchange factor for the GTPase Sec4p (SrgA in A. niger), did not have an obvious phenotype, while SEC2 deletion in S. cerevisiae is lethal. Similarly, deletion of the A. niger orthologue of the S. cerevisiae exocyst subunit Sec3p (SecC) did not result in a lethal phenotype as in S. cerevisiae, although severe growth reduction of A. niger was observed. Deletion of secA, secH and ssoA (encoding SecA, SecH and SsoA the A. niger orthologues of S. cerevisiae Sec1p, Sec8p and Sso1/2p, respectively) showed that these genes are essential for A. niger, similar to the situation in S. cerevisiae. These data demonstrate that the orchestration of exocyst-mediated vesicle transport is only partially conserved in S. cerevisiae and A. niger.
Collapse
Affiliation(s)
- Min Jin Kwon
- Kluyver Centre for Genomics of Industrial Fermentation, P.O. Box 5057, 2600 GA Delft, The Netherlands
- Department Molecular Microbiology and Biotechnology, Institute of Biology Leiden, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| | - Mark Arentshorst
- Department Molecular Microbiology and Biotechnology, Institute of Biology Leiden, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| | - Markus Fiedler
- Department Applied and Molecular Microbiology, Institute of Biotechnology, Berlin University of Technology, Gustav-Meyer-Allee 25, 13355 Berlin, Germany
| | - Florence L. M. de Groen
- Department Molecular Microbiology and Biotechnology, Institute of Biology Leiden, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| | - Peter J. Punt
- Department Molecular Microbiology and Biotechnology, Institute of Biology Leiden, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| | - Vera Meyer
- Department Applied and Molecular Microbiology, Institute of Biotechnology, Berlin University of Technology, Gustav-Meyer-Allee 25, 13355 Berlin, Germany
- Kluyver Centre for Genomics of Industrial Fermentation, P.O. Box 5057, 2600 GA Delft, The Netherlands
- Department Molecular Microbiology and Biotechnology, Institute of Biology Leiden, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| | - Arthur F. J. Ram
- Kluyver Centre for Genomics of Industrial Fermentation, P.O. Box 5057, 2600 GA Delft, The Netherlands
- Department Molecular Microbiology and Biotechnology, Institute of Biology Leiden, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| |
Collapse
|
27
|
Cordat E, Reithmeier RA. Structure, Function, and Trafficking of SLC4 and SLC26 Anion Transporters. CURRENT TOPICS IN MEMBRANES 2014; 73:1-67. [DOI: 10.1016/b978-0-12-800223-0.00001-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
28
|
Kubicek CP, Starr TL, Glass NL. Plant cell wall-degrading enzymes and their secretion in plant-pathogenic fungi. ANNUAL REVIEW OF PHYTOPATHOLOGY 2014; 52:427-51. [PMID: 25001456 DOI: 10.1146/annurev-phyto-102313-045831] [Citation(s) in RCA: 441] [Impact Index Per Article: 44.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Approximately a tenth of all described fungal species can cause diseases in plants. A common feature of this process is the necessity to pass through the plant cell wall, an important barrier against pathogen attack. To this end, fungi possess a diverse array of secreted enzymes to depolymerize the main structural polysaccharide components of the plant cell wall, i.e., cellulose, hemicellulose, and pectin. Recent advances in genomic and systems-level studies have begun to unravel this diversity and have pinpointed cell wall-degrading enzyme (CWDE) families that are specifically present or enhanced in plant-pathogenic fungi. In this review, we discuss differences between the CWDE arsenal of plant-pathogenic and non-plant-pathogenic fungi, highlight the importance of individual enzyme families for pathogenesis, illustrate the secretory pathway that transports CWDEs out of the fungal cell, and report the transcriptional regulation of expression of CWDE genes in both saprophytic and phytopathogenic fungi.
Collapse
|
29
|
Rodrigues ML, Franzen AJ, Nimrichter L, Miranda K. Vesicular mechanisms of traffic of fungal molecules to the extracellular space. Curr Opin Microbiol 2013; 16:414-20. [DOI: 10.1016/j.mib.2013.04.002] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Revised: 04/02/2013] [Accepted: 04/05/2013] [Indexed: 11/24/2022]
|
30
|
Feizi A, Österlund T, Petranovic D, Bordel S, Nielsen J. Genome-scale modeling of the protein secretory machinery in yeast. PLoS One 2013; 8:e63284. [PMID: 23667601 PMCID: PMC3646752 DOI: 10.1371/journal.pone.0063284] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Accepted: 03/31/2013] [Indexed: 11/19/2022] Open
Abstract
The protein secretory machinery in Eukarya is involved in post-translational modification (PTMs) and sorting of the secretory and many transmembrane proteins. While the secretory machinery has been well-studied using classic reductionist approaches, a holistic view of its complex nature is lacking. Here, we present the first genome-scale model for the yeast secretory machinery which captures the knowledge generated through more than 50 years of research. The model is based on the concept of a Protein Specific Information Matrix (PSIM: characterized by seven PTMs features). An algorithm was developed which mimics secretory machinery and assigns each secretory protein to a particular secretory class that determines the set of PTMs and transport steps specific to each protein. Protein abundances were integrated with the model in order to gain system level estimation of the metabolic demands associated with the processing of each specific protein as well as a quantitative estimation of the activity of each component of the secretory machinery.
Collapse
Affiliation(s)
- Amir Feizi
- Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, Gothenburg, Sweden
| | - Tobias Österlund
- Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, Gothenburg, Sweden
| | - Dina Petranovic
- Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, Gothenburg, Sweden
| | - Sergio Bordel
- Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, Gothenburg, Sweden
| | - Jens Nielsen
- Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, Gothenburg, Sweden
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Hørsholm, Denmark
| |
Collapse
|
31
|
Rodrigues ML, Nakayasu ES, Almeida IC, Nimrichter L. The impact of proteomics on the understanding of functions and biogenesis of fungal extracellular vesicles. J Proteomics 2013; 97:177-86. [PMID: 23583696 DOI: 10.1016/j.jprot.2013.04.001] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2013] [Revised: 03/20/2013] [Accepted: 04/03/2013] [Indexed: 12/15/2022]
Abstract
Several microbial molecules are released to the extracellular space in vesicle-like structures. In pathogenic fungi, these molecules include pigments, polysaccharides, lipids, and proteins, which traverse the cell wall in vesicles that accumulate in the extracellular space. The diverse composition of fungal extracellular vesicles (EV) is indicative of multiple mechanisms of cellular biogenesis, a hypothesis that was supported by EV proteomic studies in a set of Saccharomyces cerevisiae strains with defects in both conventional and unconventional secretory pathways. In the human pathogens Cryptococcus neoformans, Histoplasma capsulatum, and Paracoccidioides brasiliensis, extracellular vesicle proteomics revealed the presence of proteins with both immunological and pathogenic activities. In fact, fungal EV have been demonstrated to interfere with the activity of immune effector cells and to increase fungal pathogenesis. In this review, we discuss the impact of proteomics on the understanding of functions and biogenesis of fungal EV, as well as the potential role of these structures in fungal pathogenesis. This article is part of a Special Issue entitled: Trends in Microbial Proteomics.
Collapse
Affiliation(s)
- Marcio L Rodrigues
- Fundação Oswaldo Cruz - Fiocruz, Centro de Desenvolvimento Tecnológico em Saúde (CDTS), Rio de Janeiro, Brazil; Instituto de Microbiologia Professor Paulo de Góes, Universidade Federal do Rio de Janeiro, Brazil.
| | - Ernesto S Nakayasu
- The Border Biomedical Research Center, Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, USA; Biological Science Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Igor C Almeida
- The Border Biomedical Research Center, Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, USA
| | - Leonardo Nimrichter
- Instituto de Microbiologia Professor Paulo de Góes, Universidade Federal do Rio de Janeiro, Brazil
| |
Collapse
|
32
|
Ding Y, Wang J, Wang J, Stierhof YD, Robinson DG, Jiang L. Unconventional protein secretion. TRENDS IN PLANT SCIENCE 2012; 17:606-15. [PMID: 22784825 DOI: 10.1016/j.tplants.2012.06.004] [Citation(s) in RCA: 122] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2012] [Revised: 06/08/2012] [Accepted: 06/12/2012] [Indexed: 05/11/2023]
Abstract
It is generally believed that protein secretion or exocytosis is achieved via a conventional ER (endoplasmic reticulum)-Golgi-TGN (trans-Golgi network)-PM (plasma membrane) pathway in the plant endomembrane system. However, such signal peptide (SP)-dependent protein secretion cannot explain the increasing number of SP-lacking proteins which are found outside of the PM in plant cells. The process by which such leaderless secretory proteins (LSPs) gain access to the cell exterior is termed unconventional protein secretion (UPS) and has been well-studied in animal and yeast cells, but largely ignored by the plant community. Here, we review the evidence for UPS in plants especially in regard to the recently discovered EXPO (exocyst-positive-organelle).
Collapse
Affiliation(s)
- Yu Ding
- School of Life Sciences, Centre for Cell and Developmental Biology, the Chinese University of Hong Kong, Hong Kong, China
| | | | | | | | | | | |
Collapse
|
33
|
Tracing putative trafficking of the glycolytic enzyme enolase via SNARE-driven unconventional secretion. EUKARYOTIC CELL 2012; 11:1075-82. [PMID: 22753847 DOI: 10.1128/ec.00075-12] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Glycolytic enzymes are cytosolic proteins, but they also play important extracellular roles in cell-cell communication and infection. We used Saccharomyces cerevisiae to analyze the secretory pathway of some of these enzymes, including enolase, phosphoglucose isomerase, triose phosphate isomerase, and fructose 1,6-bisphosphate aldolase. Enolase, phosphoglucose isomerase, and an N-terminal 28-amino-acid-long fragment of enolase were secreted in a sec23-independent manner. The enhanced green fluorescent protein (EGFP)-conjugated enolase fragment formed cellular foci, some of which were found at the cell periphery. Therefore, we speculated that an overview of the secretory pathway could be gained by investigating the colocalization of the enolase fragment with intracellular proteins. The DsRed-conjugated enolase fragment colocalized with membrane proteins at the cis-Golgi complex, nucleus, endosome, and plasma membrane, but not the mitochondria. In addition, the secretion of full-length enolase was inhibited in a knockout mutant of the intracellular SNARE protein-coding gene TLG2. Our results suggest that enolase is secreted via a SNARE-dependent secretory pathway in S. cerevisiae.
Collapse
|
34
|
Surma MA, Klose C, Simons K. Lipid-dependent protein sorting at the trans-Golgi network. Biochim Biophys Acta Mol Cell Biol Lipids 2011; 1821:1059-67. [PMID: 22230596 DOI: 10.1016/j.bbalip.2011.12.008] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2011] [Revised: 12/02/2011] [Accepted: 12/03/2011] [Indexed: 12/14/2022]
Abstract
In eukaryotic cells, the trans-Golgi network serves as a sorting station for post-Golgi traffic. In addition to coat- and adaptor-mediated mechanisms, studies in mammalian epithelial cells and yeast have provided evidence for lipid-dependent protein sorting as a major delivery mechanism for cargo sorting to the cell surface. The mechanism for lipid-mediated sorting is the generation of raft platforms of sphingolipids, sterols and specific sets of cargo proteins by phase segregation in the TGN. Here, we review the evidence for such lipid-raft-based sorting at the TGN, as well as their involvement in the formation of TGN-to-PM transport carriers. This article is part of a Special Issue entitled Lipids and Vesicular Transport.
Collapse
Affiliation(s)
- Michal A Surma
- Max Planck Institute for Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, 01307 Dresden, Germany
| | | | | |
Collapse
|