1
|
Martin AP, Bradshaw GA, Eisert RJ, Egan ED, Tveriakhina L, Rogers JM, Dates AN, Scanavachi G, Aster JC, Kirchhausen T, Kalocsay M, Blacklow SC. A spatiotemporal Notch interaction map from plasma membrane to nucleus. Sci Signal 2023; 16:eadg6474. [PMID: 37527352 PMCID: PMC10560377 DOI: 10.1126/scisignal.adg6474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 07/07/2023] [Indexed: 08/03/2023]
Abstract
Notch signaling relies on ligand-induced proteolysis of the transmembrane receptor Notch to liberate a nuclear effector that drives cell fate decisions. Upon ligand binding, sequential cleavage of Notch by the transmembrane protease ADAM10 and the intracellular protease γ-secretase releases the Notch intracellular domain (NICD), which translocates to the nucleus and forms a complex that induces target gene transcription. To map the location and timing of the individual steps required for the proteolysis and movement of Notch from the plasma membrane to the nucleus, we used proximity labeling with quantitative, multiplexed mass spectrometry to monitor the interaction partners of endogenous NOTCH2 after ligand stimulation in the presence of a γ-secretase inhibitor and as a function of time after inhibitor removal. Our studies showed that γ-secretase-mediated cleavage of NOTCH2 occurred in an intracellular compartment and that formation of nuclear complexes and recruitment of chromatin-modifying enzymes occurred within 45 min of inhibitor washout. These findings provide a detailed spatiotemporal map tracking the path of Notch from the plasma membrane to the nucleus and identify signaling events that are potential targets for modulating Notch activity.
Collapse
Affiliation(s)
- Alexandre P. Martin
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Gary A. Bradshaw
- Department of Systems Biology, Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Robyn J. Eisert
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Emily D. Egan
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Lena Tveriakhina
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Julia M. Rogers
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Andrew N. Dates
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Gustavo Scanavachi
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Jon C. Aster
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Tom Kirchhausen
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Marian Kalocsay
- Department of Experimental Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Stephen C. Blacklow
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
- Department of Cancer Biology, Dana Farber Cancer Institute, Boston, MA 02215, USA
- Lead contact
| |
Collapse
|
2
|
Chen D, Yu W, Aitken L, Gunn-Moore F. Willin/FRMD6: A Multi-Functional Neuronal Protein Associated with Alzheimer's Disease. Cells 2021; 10:cells10113024. [PMID: 34831245 PMCID: PMC8616527 DOI: 10.3390/cells10113024] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/24/2021] [Accepted: 10/25/2021] [Indexed: 12/18/2022] Open
Abstract
The FERM domain-containing protein 6 (FRMD6), also known as Willin, is an upstream regulator of Hippo signaling that has recently been shown to modulate actin cytoskeleton dynamics and mechanical phenotype of neuronal cells through ERK signaling. Physiological functions of Willin/FRMD6 in the nervous system include neuronal differentiation, myelination, nerve injury repair, and vesicle exocytosis. The newly established neuronal role of Willin/FRMD6 is of particular interest given the mounting evidence suggesting a role for Willin/FRMD6 in Alzheimer's disease (AD), including a series of genome wide association studies that position Willin/FRMD6 as a novel AD risk gene. Here we describe recent findings regarding the role of Willin/FRMD6 in the nervous system and its actions in cellular perturbations related to the pathogenesis of AD.
Collapse
|
3
|
Jewett CE, Soh AWJ, Lin CH, Lu Q, Lencer E, Westlake CJ, Pearson CG, Prekeris R. RAB19 Directs Cortical Remodeling and Membrane Growth for Primary Ciliogenesis. Dev Cell 2021; 56:325-340.e8. [PMID: 33561422 DOI: 10.1016/j.devcel.2020.12.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 10/09/2020] [Accepted: 12/07/2020] [Indexed: 12/14/2022]
Abstract
Primary cilia are sensory organelles that utilize the compartmentalization of membrane and cytoplasm to communicate signaling events, and yet, how the formation of a cilium is coordinated with reorganization of the cortical membrane and cytoskeleton is unclear. Using polarized epithelia, we find that cortical actin clearing and apical membrane partitioning occur where the centrosome resides at the cell surface prior to ciliation. RAB19, a previously uncharacterized RAB, associates with the RAB-GAP TBC1D4 and the HOPS-tethering complex to coordinate cortical clearing and ciliary membrane growth, which is essential for ciliogenesis. This RAB19-directed pathway is not exclusive to polarized epithelia, as RAB19 loss in nonpolarized cell types blocks ciliogenesis with a docked ciliary vesicle. Remarkably, inhibiting actomyosin contractility can substitute for the function of the RAB19 complex and restore ciliogenesis in knockout cells. Together, this work provides a mechanistic understanding behind a cytoskeletal clearing and membrane partitioning step required for ciliogenesis.
Collapse
Affiliation(s)
- Cayla E Jewett
- Department of Cell and Developmental Biology, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Adam W J Soh
- Department of Cell and Developmental Biology, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Carrie H Lin
- Department of Cell and Developmental Biology, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Quanlong Lu
- Laboratory of Cell and Developmental Signaling, National Cancer Institute-Frederick, Frederick, MD 21702, USA
| | - Ezra Lencer
- Department of Cell and Developmental Biology, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Christopher J Westlake
- Laboratory of Cell and Developmental Signaling, National Cancer Institute-Frederick, Frederick, MD 21702, USA
| | - Chad G Pearson
- Department of Cell and Developmental Biology, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Rytis Prekeris
- Department of Cell and Developmental Biology, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA.
| |
Collapse
|
4
|
Autophagy and Mitophagy-Related Pathways at the Crossroads of Genetic Pathways Involved in Familial Sarcoidosis and Host-Pathogen Interactions Induced by Coronaviruses. Cells 2021; 10:cells10081995. [PMID: 34440765 PMCID: PMC8393644 DOI: 10.3390/cells10081995] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 07/16/2021] [Accepted: 07/29/2021] [Indexed: 12/12/2022] Open
Abstract
Sarcoidosis is a multisystem disease characterized by the development and accumulation of granulomas, the hallmark of an inflammatory process induced by environmental and/or infectious and or genetic factors. This auto-inflammatory disease mainly affects the lungs, the gateway to environmental aggressions and viral infections. We have shown previously that genetic predisposition to sarcoidosis occurring in familial cases is related to a large spectrum of pathogenic variants with, however, a clustering around mTOR (mammalian Target Of Rapamycin)-related pathways and autophagy regulation. The context of the COVID-19 pandemic led us to evaluate whether such genetic defects may increase the risk of a severe course of SARS-CoV2 infection in patients with sarcoidosis. We extended a whole exome screening to 13 families predisposed to sarcoidosis and crossed the genes sharing mutations with the list of genes involved in the SARS-CoV2 host-pathogen protein-protein interactome. A similar analysis protocol was applied to a series of 100 healthy individuals. Using ENRICH.R, a comprehensive gene set enrichment web server, we identified the functional pathways represented in the set of genes carrying deleterious mutations and confirmed the overrepresentation of autophagy- and mitophagy-related functions in familial cases of sarcoidosis. The same protocol was applied to the set of genes common to sarcoidosis and the SARS-CoV2-host interactome and found a significant enrichment of genes related to mitochondrial factors involved in autophagy, mitophagy, and RIG-I-like (Retinoic Acid Inducible Gene 1) Receptor antiviral response signaling. From these results, we discuss the hypothesis according to which sarcoidosis is a model for studying genetic abnormalities associated with host response to viral infections as a consequence of defects in autophagy and mitophagy processes.
Collapse
|
5
|
Wu H, Voeltz GK. Reticulon-3 Promotes Endosome Maturation at ER Membrane Contact Sites. Dev Cell 2021; 56:52-66.e7. [PMID: 33434526 DOI: 10.1016/j.devcel.2020.12.014] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 09/28/2020] [Accepted: 11/02/2020] [Indexed: 10/22/2022]
Abstract
ER tubules form and maintain membrane contact sites (MCSs) with endosomes. How and why these ER-endosome MCSs persist as endosomes traffic and mature is poorly understood. Here we find that a member of the reticulon protein family, Reticulon-3L (Rtn3L), enriches at ER-endosome MCSs as endosomes mature. We show that this localization is due to the long divergent N-terminal cytoplasmic domain of Rtn3L. We found that Rtn3L is recruited to ER-endosome MCSs by endosomal protein Rab9a, which marks a transition stage between early and late endosomes. Rab9a utilizes an FSV region to recruit Rtn3L via its six LC3-interacting region motifs. Consistent with our localization results, depletion or deletion of RTN3 from cells results in endosome maturation and cargo sorting defects, similar to RAB9A depletion. Together our data identify a tubular ER protein that promotes endosome maturation at ER MCSs.
Collapse
Affiliation(s)
- Haoxi Wu
- Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, CO 80309, USA; Howard Hughes Medical Institute, Boulder, CO 80309, USA
| | - Gia K Voeltz
- Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, CO 80309, USA; Howard Hughes Medical Institute, Boulder, CO 80309, USA.
| |
Collapse
|
6
|
A SARS-CoV-2 -human metalloproteome interaction map. J Inorg Biochem 2021; 219:111423. [PMID: 33813307 PMCID: PMC7955571 DOI: 10.1016/j.jinorgbio.2021.111423] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/16/2021] [Accepted: 03/08/2021] [Indexed: 12/12/2022]
Abstract
The recent pandemic caused by the novel coronavirus resulted in the greatest global health crisis since the Spanish flu pandemic of 1918. There is limited knowledge of whether SARS-CoV-2 is physically associated with human metalloproteins. Recently, high-confidence, experimentally supported protein-protein interactions between SARS-CoV-2 and human proteins were reported. In this work, 58 metalloproteins among these human targets have been identified by a structure-based approach. This study reveals that most human metalloproteins interact with the recently discovered SARS-CoV-2 orf8 protein, whose antibodies are one of the principal markers of SARS-CoV-2 infections. Furthermore, this work provides sufficient evidence to conclude that Zn2+ plays an important role in the interplay between the novel coronavirus and humans. First, the content of Zn-binding proteins in the involved human metalloproteome is significantly higher than that of the other metal ions. Second, a molecular linkage between the identified human Zn-binding proteome with underlying medical conditions, that might increase the risk of severe illness from the SARS-CoV-2 virus, has been found. Likely perturbations of host cellular metal homeostasis by SARS-CoV-2 infection are highlighted.
Collapse
|
7
|
Paraschiv A, Lagny TJ, Campos CV, Coudrier E, Bassereau P, Šarić A. Influence of membrane-cortex linkers on the extrusion of membrane tubes. Biophys J 2021; 120:598-606. [PMID: 33460596 PMCID: PMC7896025 DOI: 10.1016/j.bpj.2020.12.028] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 12/10/2020] [Accepted: 12/30/2020] [Indexed: 01/06/2023] Open
Abstract
The cell membrane is an inhomogeneous system composed of phospholipids, sterols, carbohydrates, and proteins that can be directly attached to underlying cytoskeleton. The protein linkers between the membrane and the cytoskeleton are believed to have a profound effect on the mechanical properties of the cell membrane and its ability to reshape. Here, we investigate the role of membrane-cortex linkers on the extrusion of membrane tubes using computer simulations and experiments. In simulations, we find that the force for tube extrusion has a nonlinear dependence on the density of membrane-cortex attachments: at a range of low and intermediate linker densities, the force is not significantly influenced by the presence of the membrane-cortex attachments and resembles that of the bare membrane. For large concentrations of linkers, however, the force substantially increases compared with the bare membrane. In both cases, the linkers provided membrane tubes with increased stability against coalescence. We then pulled tubes from HEK cells using optical tweezers for varying expression levels of the membrane-cortex attachment protein Ezrin. In line with simulations, we observed that overexpression of Ezrin led to an increased extrusion force, while Ezrin depletion had a negligible effect on the force. Our results shed light on the importance of local protein rearrangements for membrane reshaping at nanoscopic scales.
Collapse
Affiliation(s)
- Alexandru Paraschiv
- Department of Physics and Astronomy, Institute for the Physics of Living Systems, University College London, London, United Kingdom; MRC Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
| | - Thibaut J Lagny
- Laboratoire Physico-Chimie Curie, Institut Curie, PSL Research University, CNRS UMR168, Paris, France; Sorbonne Université, Paris, France; Institut Curie, PSL Research University CNRS UMR 144, Paris, France
| | - Christian Vanhille Campos
- Department of Physics and Astronomy, Institute for the Physics of Living Systems, University College London, London, United Kingdom; MRC Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
| | - Evelyne Coudrier
- Institut Curie, PSL Research University CNRS UMR 144, Paris, France
| | - Patricia Bassereau
- Laboratoire Physico-Chimie Curie, Institut Curie, PSL Research University, CNRS UMR168, Paris, France; Sorbonne Université, Paris, France
| | - Anđela Šarić
- Department of Physics and Astronomy, Institute for the Physics of Living Systems, University College London, London, United Kingdom; MRC Laboratory for Molecular Cell Biology, University College London, London, United Kingdom.
| |
Collapse
|
8
|
Ramalho JJ, Sepers JJ, Nicolle O, Schmidt R, Cravo J, Michaux G, Boxem M. C-terminal phosphorylation modulates ERM-1 localization and dynamics to control cortical actin organization and support lumen formation during Caenorhabditiselegans development. Development 2020; 147:dev188011. [PMID: 32586975 PMCID: PMC10755404 DOI: 10.1242/dev.188011] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 06/13/2020] [Indexed: 12/31/2023]
Abstract
ERM proteins are conserved regulators of cortical membrane specialization that function as membrane-actin linkers and molecular hubs. The activity of ERM proteins requires a conformational switch from an inactive cytoplasmic form into an active membrane- and actin-bound form, which is thought to be mediated by sequential PIP2 binding and phosphorylation of a conserved C-terminal threonine residue. Here, we use the single Caenorhabditiselegans ERM ortholog, ERM-1, to study the contribution of these regulatory events to ERM activity and tissue formation in vivo Using CRISPR/Cas9-generated erm-1 mutant alleles, we demonstrate that a PIP2-binding site is crucially required for ERM-1 function. By contrast, dynamic regulation of C-terminal T544 phosphorylation is not essential but modulates ERM-1 apical localization and dynamics in a tissue-specific manner, to control cortical actin organization and support lumen formation in epithelial tubes. Our work highlights the dynamic nature of ERM protein regulation during tissue morphogenesis and the importance of C-terminal phosphorylation in fine-tuning ERM activity in a tissue-specific context.
Collapse
Affiliation(s)
- João J Ramalho
- Division of Developmental Biology, Institute of Biodynamics and Biocomplexity, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Jorian J Sepers
- Division of Developmental Biology, Institute of Biodynamics and Biocomplexity, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Ophélie Nicolle
- Univ Rennes, CNRS, IGDR (Institut de Génétique et de Développement de Rennes), UMR 6290, F-35000 Rennes, France
| | - Ruben Schmidt
- Division of Developmental Biology, Institute of Biodynamics and Biocomplexity, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Janine Cravo
- Division of Developmental Biology, Institute of Biodynamics and Biocomplexity, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Grégoire Michaux
- Univ Rennes, CNRS, IGDR (Institut de Génétique et de Développement de Rennes), UMR 6290, F-35000 Rennes, France
| | - Mike Boxem
- Division of Developmental Biology, Institute of Biodynamics and Biocomplexity, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| |
Collapse
|
9
|
Beck J, Kressel M. FERM domain-containing protein 6 identifies a subpopulation of varicose nerve fibers in different vertebrate species. Cell Tissue Res 2020; 381:13-24. [PMID: 32200438 PMCID: PMC7306050 DOI: 10.1007/s00441-020-03189-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 02/16/2020] [Indexed: 12/29/2022]
Abstract
FERM domain-containing protein 6 (FRMD6) is a member of the FERM protein superfamily, which is evolutionary highly conserved and has recently been identified as an upstream regulator of the conserved growth-promoting Hippo signaling pathway. In clinical studies, the FRMD6 gene is correlated with high significance to Alzheimer's disease and cognitive impairment implicating a wider role of this protein in the nervous system. Scare data are available on the localization of endogenous FRMD6 in neural tissues. Using a FRMD6-directed antiserum, we detected specific immunoreactivity in varicose nerve fibers in the rat central and peripheral nervous system. FRMD6-immunoreactive (-ir) neurons were found in the sensory ganglia of cranial nerves, which were marked by a pool of labeled cytoplasmic granules. Cross-species comparative studies detected a morphologically identical fiber population and a comparable fiber distribution in tissues from xenopus and human cranial nerves and ganglia. In the spinal cord, FRMD6-ir was detectable in the terminal endings of primary afferent neurons containing substance P (SP). In the rat diencephalon, FRMD6-ir was co-localized with either SP- or arginine vasopressin-positive fibers in Broca's diagonal band and the lateral septum. Dense fiber terminals containing both FRMD6-ir and growth hormone-releasing hormone were found in the median eminence. The intimate association of FRMD6 with secretory vesicles was investigated in vitro. Induction of exocytotic vesicles in cultured cells by ectopic expression of the SP precursor molecule preprotachykinin A led to a redistribution and co-localization of endogenous FRMD6 with secretory granules closely mimicking the observations in tissues.
Collapse
Affiliation(s)
- Josefa Beck
- Institute of Anatomy and Cell Biology, University of Erlangen, Krankenhausstr. 9, 91054, Erlangen, Germany
| | - Michael Kressel
- Institute of Anatomy and Cell Biology, University of Erlangen, Krankenhausstr. 9, 91054, Erlangen, Germany.
| |
Collapse
|
10
|
Bowman SL, Bi-Karchin J, Le L, Marks MS. The road to lysosome-related organelles: Insights from Hermansky-Pudlak syndrome and other rare diseases. Traffic 2020; 20:404-435. [PMID: 30945407 DOI: 10.1111/tra.12646] [Citation(s) in RCA: 120] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 04/02/2019] [Accepted: 04/02/2019] [Indexed: 12/11/2022]
Abstract
Lysosome-related organelles (LROs) comprise a diverse group of cell type-specific, membrane-bound subcellular organelles that derive at least in part from the endolysosomal system but that have unique contents, morphologies and functions to support specific physiological roles. They include: melanosomes that provide pigment to our eyes and skin; alpha and dense granules in platelets, and lytic granules in cytotoxic T cells and natural killer cells, which release effectors to regulate hemostasis and immunity; and distinct classes of lamellar bodies in lung epithelial cells and keratinocytes that support lung plasticity and skin lubrication. The formation, maturation and/or secretion of subsets of LROs are dysfunctional or entirely absent in a number of hereditary syndromic disorders, including in particular the Hermansky-Pudlak syndromes. This review provides a comprehensive overview of LROs in humans and model organisms and presents our current understanding of how the products of genes that are defective in heritable diseases impact their formation, motility and ultimate secretion.
Collapse
Affiliation(s)
- Shanna L Bowman
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania.,Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Jing Bi-Karchin
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania.,Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Linh Le
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania.,Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Cell and Molecular Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Michael S Marks
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania.,Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
11
|
Izumida M, Togawa K, Hayashi H, Matsuyama T, Kubo Y. Production of Vesicular Stomatitis Virus Glycoprotein-Pseudotyped Lentiviral Vector Is Enhanced by Ezrin Silencing. Front Bioeng Biotechnol 2020; 8:368. [PMID: 32411688 PMCID: PMC7201057 DOI: 10.3389/fbioe.2020.00368] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Accepted: 04/02/2020] [Indexed: 11/17/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1)-based viral vector is widely used as a biomaterial to transfer a gene of interest into target cells in many biological study fields including gene therapy. Vesicular stomatitis virus glycoprotein (VSV-G)-containing HIV-1 vector much more efficiently transduces various mammalian cells than other viral envelope proteins-containing vectors. Understanding the mechanism would contribute to development of a novel method of efficient HIV-1 vector production. HIV-1 vector is generally constructed by transient transfection of human 293T or African green monkey COS7 cells. It was found in this study that HIV-1 Gag protein is constitutively digested in lysosomes of African green monkey cells. Surprisingly, VSV-G elevated HIV-1 Gag protein levels, suggesting that VSV-G protects Gag protein from the lysosomal degradation. Unphosphorylated ezrin, but not phosphorylated ezrin, was detected in COS7 cells, and ezrin silencing elevated Gag protein levels in the presence of VSV-G. Expression of unphosphorylated ezrin reduced Gag protein amounts. These results indicate that unphosphorylated ezrin proteins inhibit the VSV-G-mediated stabilization of HIV-1 Gag protein. Trafficking of HIV-1 Gag-associated intracellular vesicles may be controlled by ezrin. Finally, this study found that ezrin silencing yields higher amount of VSV-G-pseudotyped HIV-1 vector.
Collapse
Affiliation(s)
- Mai Izumida
- Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan.,Program for Nurturing Global Leaders in Tropical and Emerging Communicable Diseases, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Kei Togawa
- Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Hideki Hayashi
- Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan.,Medical University Research Administrator, Nagasaki University School of Medicine, Nagasaki, Japan
| | - Toshifumi Matsuyama
- Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan.,Department of Cancer Stem Cell Biology, Institute of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Yoshinao Kubo
- Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan.,Program for Nurturing Global Leaders in Tropical and Emerging Communicable Diseases, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan.,Department of Clinical Medicine, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| |
Collapse
|
12
|
van der Beek J, Jonker C, van der Welle R, Liv N, Klumperman J. CORVET, CHEVI and HOPS – multisubunit tethers of the endo-lysosomal system in health and disease. J Cell Sci 2019; 132:132/10/jcs189134. [DOI: 10.1242/jcs.189134] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
ABSTRACT
Multisubunit tethering complexes (MTCs) are multitasking hubs that form a link between membrane fusion, organelle motility and signaling. CORVET, CHEVI and HOPS are MTCs of the endo-lysosomal system. They regulate the major membrane flows required for endocytosis, lysosome biogenesis, autophagy and phagocytosis. In addition, individual subunits control complex-independent transport of specific cargoes and exert functions beyond tethering, such as attachment to microtubules and SNARE activation. Mutations in CHEVI subunits lead to arthrogryposis, renal dysfunction and cholestasis (ARC) syndrome, while defects in CORVET and, particularly, HOPS are associated with neurodegeneration, pigmentation disorders, liver malfunction and various forms of cancer. Diseases and phenotypes, however, vary per affected subunit and a concise overview of MTC protein function and associated human pathologies is currently lacking. Here, we provide an integrated overview on the cellular functions and pathological defects associated with CORVET, CHEVI or HOPS proteins, both with regard to their complexes and as individual subunits. The combination of these data provides novel insights into how mutations in endo-lysosomal proteins lead to human pathologies.
Collapse
Affiliation(s)
- Jan van der Beek
- Section Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Institute for Biomembranes, Utrecht University, Utrecht 3584 CX, The Netherlands
| | - Caspar Jonker
- Section Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Institute for Biomembranes, Utrecht University, Utrecht 3584 CX, The Netherlands
| | - Reini van der Welle
- Section Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Institute for Biomembranes, Utrecht University, Utrecht 3584 CX, The Netherlands
| | - Nalan Liv
- Section Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Institute for Biomembranes, Utrecht University, Utrecht 3584 CX, The Netherlands
| | - Judith Klumperman
- Section Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Institute for Biomembranes, Utrecht University, Utrecht 3584 CX, The Netherlands
| |
Collapse
|
13
|
Hodgson JJ, Buchon N, Blissard GW. Identification of insect genes involved in baculovirus AcMNPV entry into insect cells. Virology 2019; 527:1-11. [PMID: 30445201 DOI: 10.1016/j.virol.2018.10.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 10/19/2018] [Accepted: 10/21/2018] [Indexed: 01/01/2023]
Abstract
The baculovirus Autographa californica multiple nucleopolyhedrovirus (AcMNPV) is a model enveloped DNA virus that infects and replicates in lepidopteran insect cells, and can efficiently enter a wide variety of non-host cells. Budded virions of AcMNPV enter cells by endocytosis and traffic to the nucleus where the virus initiates gene expression and genome replication. While trafficking of nucleocapsids by actin propulsion has been studied in detail, other important components of trafficking during entry remain poorly understood. We used a recombinant AcMNPV virus expressing an EGFP reporter in combination with an RNAi screen in Drosophila DL1 cells, to identify host proteins involved in AcMNPV entry. The RNAi screen targeted 86 genes involved in vesicular trafficking, including genes coding for VPS and ESCRT proteins, Rab GTPases, Exocyst proteins, and Clathrin adaptor proteins. We identified 24 genes required for efficient virus entry and reporter expression, and 4 genes that appear to restrict virus entry.
Collapse
Affiliation(s)
- Jeffrey J Hodgson
- Boyce Thompson Institute at Cornell University, Tower Road, Ithaca, NY 14853, USA.
| | - Nicolas Buchon
- Department of Entomology, Cornell University, Ithaca, NY 14853, USA.
| | - Gary W Blissard
- Boyce Thompson Institute at Cornell University, Tower Road, Ithaca, NY 14853, USA.
| |
Collapse
|
14
|
Heredero-Bermejo I, Varberg JM, Charvat R, Jacobs K, Garbuz T, Sullivan WJ, Arrizabalaga G. TgDrpC, an atypical dynamin-related protein in Toxoplasma gondii, is associated with vesicular transport factors and parasite division. Mol Microbiol 2018; 111:46-64. [PMID: 30362624 DOI: 10.1111/mmi.14138] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/21/2018] [Indexed: 01/01/2023]
Abstract
Dynamin-related proteins (Drps) are involved in diverse processes such as organelle division and vesicle trafficking. The intracellular parasite Toxoplasma gondii possesses three distinct Drps. TgDrpC, whose function remains unresolved, is unusual in that it lacks a conserved GTPase Effector Domain, which is typically required for function. Here, we show that TgDrpC localizes to cytoplasmic puncta; however, in dividing parasites, TgDrpC redistributes to the growing edge of the daughter cells. By conditional knockdown, we determined that loss of TgDrpC stalls division and leads to rapid deterioration of multiple organelles and the IMC. We also show that TgDrpC interacts with proteins that exhibit homology to those involved in vesicle transport, including members of the adaptor complex 2. Two of these proteins, a homolog of the adaptor protein 2 (AP-2) complex subunit alpha-1 and a homolog of the ezrin-radixin-moesin (ERM) family proteins, localize to puncta and associate with the daughter cells. Consistent with the association with vesicle transport proteins, re-distribution of TgDrpC to the IMC during division is dependent on post-Golgi trafficking. Together, these results support that TgDrpC contributes to vesicle trafficking and is critical for stability of parasite organelles and division.
Collapse
Affiliation(s)
- Irene Heredero-Bermejo
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Joseph M Varberg
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Robert Charvat
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Kylie Jacobs
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Tamila Garbuz
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - William J Sullivan
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.,Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Gustavo Arrizabalaga
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.,Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| |
Collapse
|
15
|
Tsai FC, Bertin A, Bousquet H, Manzi J, Senju Y, Tsai MC, Picas L, Miserey-Lenkei S, Lappalainen P, Lemichez E, Coudrier E, Bassereau P. Ezrin enrichment on curved membranes requires a specific conformation or interaction with a curvature-sensitive partner. eLife 2018; 7:37262. [PMID: 30234483 PMCID: PMC6167055 DOI: 10.7554/elife.37262] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 09/14/2018] [Indexed: 01/12/2023] Open
Abstract
One challenge in cell biology is to decipher the biophysical mechanisms governing protein enrichment on curved membranes and the resulting membrane deformation. The ERM protein ezrin is abundant and associated with cellular membranes that are flat, positively or negatively curved. Using in vitro and cell biology approaches, we assess mechanisms of ezrin’s enrichment on curved membranes. We evidence that wild-type ezrin (ezrinWT) and its phosphomimetic mutant T567D (ezrinTD) do not deform membranes but self-assemble anti-parallelly, zipping adjacent membranes. EzrinTD’s specific conformation reduces intermolecular interactions, allows binding to actin filaments, which reduces membrane tethering, and promotes ezrin binding to positively-curved membranes. While neither ezrinTD nor ezrinWT senses negative curvature alone, we demonstrate that interacting with curvature-sensing I-BAR-domain proteins facilitates ezrin enrichment in negatively-curved membrane protrusions. Overall, our work demonstrates that ezrin can tether membranes, or be targeted to curved membranes, depending on conformations and interactions with actin and curvature-sensing binding partners.
Collapse
Affiliation(s)
- Feng-Ching Tsai
- Laboratoire Physico Chimie Curie, Institut Curie, PSL Research University, CNRS UMR168, Paris, France.,Sorbonne Université, Paris, France
| | - Aurelie Bertin
- Laboratoire Physico Chimie Curie, Institut Curie, PSL Research University, CNRS UMR168, Paris, France.,Sorbonne Université, Paris, France
| | - Hugo Bousquet
- Sorbonne Université, Paris, France.,Compartimentation et dynamique cellulaire, Institut Curie, PSL Research University, CNRS UMR144, Paris, France
| | - John Manzi
- Laboratoire Physico Chimie Curie, Institut Curie, PSL Research University, CNRS UMR168, Paris, France.,Sorbonne Université, Paris, France
| | - Yosuke Senju
- Program in Cell and Molecular Biology, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Meng-Chen Tsai
- Université Côte d'Azur, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France.,Département de Microbiologie, Unité des Toxines Bactériennes, Université Paris Descartes, Institut Pasteur, Paris, France
| | - Laura Picas
- Institut de Recherche en Infectiologie de Montpellier (IRIM), CNRS UMR 9004, Montpellier, France
| | - Stephanie Miserey-Lenkei
- Sorbonne Université, Paris, France.,Compartimentation et dynamique cellulaire, Institut Curie, PSL Research University, CNRS UMR144, Paris, France
| | - Pekka Lappalainen
- Program in Cell and Molecular Biology, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Emmanuel Lemichez
- Département de Microbiologie, Unité des Toxines Bactériennes, Université Paris Descartes, Institut Pasteur, Paris, France
| | - Evelyne Coudrier
- Sorbonne Université, Paris, France.,Compartimentation et dynamique cellulaire, Institut Curie, PSL Research University, CNRS UMR144, Paris, France
| | - Patricia Bassereau
- Laboratoire Physico Chimie Curie, Institut Curie, PSL Research University, CNRS UMR168, Paris, France.,Sorbonne Université, Paris, France
| |
Collapse
|
16
|
Regulation of ErbB2 localization and function in breast cancer cells by ERM proteins. Oncotarget 2018; 7:25443-60. [PMID: 27029001 PMCID: PMC5041916 DOI: 10.18632/oncotarget.8327] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 03/10/2016] [Indexed: 12/20/2022] Open
Abstract
The ERM protein family is implicated in processes such as signal transduction, protein trafficking, cell proliferation and migration. Consequently, dysregulation of ERM proteins has been described to correlate with carcinogenesis of different cancer types. However, the underlying mechanisms are poorly understood. Here, we demonstrate a novel functional interaction between ERM proteins and the ErbB2 receptor tyrosine kinase in breast cancer cells. We show that the ERM proteins ezrin and radixin are associated with ErbB2 receptors at the plasma membrane, and depletion or functional inhibition of ERM proteins destabilizes the interaction of ErbB2 with ErbB3, Hsp90 and Ebp50. Accompanied by the dissociation of this protein complex, binding of ErbB2 to the ubiquitin-ligase c-Cbl is increased, and ErbB2 becomes dephosphorylated, ubiquitinated and internalized. Furthermore, signaling via Akt- and Erk-mediated pathways is impaired upon ERM inhibition. Finally, interference with ERM functionality leads to receptor degradation and reduced cellular levels of ErbB2 and ErbB3 receptors in breast cancer cells.
Collapse
|
17
|
Podinovskaia M, Spang A. The Endosomal Network: Mediators and Regulators of Endosome Maturation. ENDOCYTOSIS AND SIGNALING 2018; 57:1-38. [DOI: 10.1007/978-3-319-96704-2_1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
18
|
Saygideğer-Kont Y, Minas TZ, Jones H, Hour S, Çelik H, Temel I, Han J, Atabey N, Erkizan HV, Toretsky JA, Üren A. Ezrin Enhances EGFR Signaling and Modulates Erlotinib Sensitivity in Non-Small Cell Lung Cancer Cells. Neoplasia 2016; 18:111-20. [PMID: 26936397 PMCID: PMC5005263 DOI: 10.1016/j.neo.2016.01.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 12/20/2015] [Accepted: 01/04/2016] [Indexed: 12/19/2022] Open
Abstract
Ezrin is a scaffolding protein that is involved in oncogenesis by linking cytoskeletal and membrane proteins. Ezrin interacts with epidermal growth factor receptor (EGFR) in the cell membrane, but little is known about the effects of this interaction on EGFR signaling pathway. In this study, we established the biological and functional significance of ezrin-EGFR interaction in non–small cell lung cancer (NSCLC) cells. Endogenous ezrin and EGRF interaction was confirmed by co-immunoprecipitation and immunofluorescent staining. When expression of ezrin was inhibited, EGFR activity and phosphorylation levels of downstream signaling pathway proteins ERK and STAT3 were decreased. Cell fractionation experiments revealed that nuclear EGFR was significantly diminished in ezrin-knockdown cells. Consequently, mRNA levels of EGFR target genes AURKA, COX-2, cyclin D1, and iNOS were decreased in ezrin-depleted cells. A small molecule inhibitor of ezrin, NSC305787, reduced EGF-induced phosphorylation of EGFR and downstream target proteins, EGFR nuclear translocation, and mRNA levels of nuclear EGFR target genes similar to ezrin suppression. NSC305787 showed synergism with erlotinib in wild-type EGFR-expressing NSCLC cells, whereas no synergy was observed in EGFR-null cells. Phosphorylation of ezrin on Y146 was found as an enhancer of ezrin-EGFR interaction and required for increased proliferation, colony formation, and drug resistance to erlotinib. These findings suggest that ezrin-EGFR interaction augments oncogenic functions of EGFR and that targeting ezrin may provide a potential novel approach to overcome erlotinib resistance in NSCLC cells.
Collapse
Affiliation(s)
- Yasemin Saygideğer-Kont
- Department of Oncology, Georgetown University Medical Center, Washington, DC, USA; Department of Molecular Medicine, Institute of Health Sciences, Dokuz Eylul University, Izmir, Turkey
| | - Tsion Zewdu Minas
- Department of Oncology, Georgetown University Medical Center, Washington, DC, USA
| | - Hayden Jones
- Department of Oncology, Georgetown University Medical Center, Washington, DC, USA
| | - Sarah Hour
- Department of Oncology, Georgetown University Medical Center, Washington, DC, USA
| | - Haydar Çelik
- Department of Oncology, Georgetown University Medical Center, Washington, DC, USA
| | - Idil Temel
- Department of Oncology, Georgetown University Medical Center, Washington, DC, USA
| | - Jenny Han
- Department of Oncology, Georgetown University Medical Center, Washington, DC, USA
| | - Nese Atabey
- Department of Medical Biology, Dokuz Eylul University School of Medicine, Izmir, Turkey
| | | | - Jeffrey A Toretsky
- Department of Oncology, Georgetown University Medical Center, Washington, DC, USA
| | - Aykut Üren
- Department of Oncology, Georgetown University Medical Center, Washington, DC, USA.
| |
Collapse
|
19
|
Götzl JK, Lang CM, Haass C, Capell A. Impaired protein degradation in FTLD and related disorders. Ageing Res Rev 2016; 32:122-139. [PMID: 27166223 DOI: 10.1016/j.arr.2016.04.008] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 03/21/2016] [Accepted: 04/23/2016] [Indexed: 12/12/2022]
Abstract
Impaired protein degradation has been discussed as a cause or consequence of various neurodegenerative diseases, such as Alzheimer's, Parkinson's and Huntington's disease. More recently, evidence accumulated that dysfunctional protein degradation may play a role in frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS). Since in almost all neurodegenerative diseases, protein aggregates are disease-defining hallmarks, it is most likely that impaired protein degradation contributes to disease onset and progression. In the majority of FTD cases, the pathological protein aggregates contain either microtubuleassociated protein tau or TAR DNA-binding protein (TDP)-43. Aggregates are also positive for ubiquitin and p62/sequestosome 1 (SQSTM1) indicating that these aggregates are targeted for degradation. FTD-linked mutations in genes encoding three autophagy adaptor proteins, p62/SQSTM1, ubiquilin 2 and optineurin, indicate that impaired autophagy might cause FTD. Furthermore, the strongest evidence for lysosomal impairment in FTD is provided by the progranulin (GRN) gene, which is linked to FTD and neuronal ceroid lipofuscinosis. In this review, we summarize the observations that have been made during the last years linking the accumulation of disease-associated proteins in FTD to impaired protein degradation pathways. In addition, we take resent findings for nucleocytoplasmic transport defects of TDP-43, as discussed for hexanucleotide repeat expansions in C9orf72 into account and provide a hypothesis how the interplay of altered nuclear transport and protein degradation leads to the accumulation of protein deposits.
Collapse
|
20
|
Ubelmann F, Burrinha T, Salavessa L, Gomes R, Ferreira C, Moreno N, Guimas Almeida C. Bin1 and CD2AP polarise the endocytic generation of beta-amyloid. EMBO Rep 2016; 18:102-122. [PMID: 27895104 DOI: 10.15252/embr.201642738] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 10/14/2016] [Accepted: 10/19/2016] [Indexed: 01/31/2023] Open
Abstract
The mechanisms driving pathological beta-amyloid (Aβ) generation in late-onset Alzheimer's disease (AD) are unclear. Two late-onset AD risk factors, Bin1 and CD2AP, are regulators of endocytic trafficking, but it is unclear how their endocytic function regulates Aβ generation in neurons. We identify a novel neuron-specific polarisation of Aβ generation controlled by Bin1 and CD2AP We discover that Bin1 and CD2AP control Aβ generation in axonal and dendritic early endosomes, respectively. Both Bin1 loss of function and CD2AP loss of function raise Aβ generation by increasing APP and BACE1 convergence in early endosomes, however via distinct sorting events. When Bin1 levels are reduced, BACE1 is trapped in tubules of early endosomes and fails to recycle in axons. When CD2AP levels are reduced, APP is trapped at the limiting membrane of early endosomes and fails to be sorted for degradation in dendrites. Hence, Bin1 and CD2AP keep APP and BACE1 apart in early endosomes by distinct mechanisms in axon and dendrites. Individuals carrying variants of either factor would slowly accumulate Aβ in neurons increasing the risk for late-onset AD.
Collapse
Affiliation(s)
- Florent Ubelmann
- Neuronal Trafficking in Aging Lab, CEDOC, Chronic Diseases Research Centre, NOVA Medical School/Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Tatiana Burrinha
- Neuronal Trafficking in Aging Lab, CEDOC, Chronic Diseases Research Centre, NOVA Medical School/Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Laura Salavessa
- Neuronal Trafficking in Aging Lab, CEDOC, Chronic Diseases Research Centre, NOVA Medical School/Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Ricardo Gomes
- Neuronal Trafficking in Aging Lab, CEDOC, Chronic Diseases Research Centre, NOVA Medical School/Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Cláudio Ferreira
- Neuronal Trafficking in Aging Lab, CEDOC, Chronic Diseases Research Centre, NOVA Medical School/Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Nuno Moreno
- Advance Imaging Lab, Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Cláudia Guimas Almeida
- Neuronal Trafficking in Aging Lab, CEDOC, Chronic Diseases Research Centre, NOVA Medical School/Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisboa, Portugal
| |
Collapse
|
21
|
Muriel O, Tomas A, Scott CC, Gruenberg J. Moesin and cortactin control actin-dependent multivesicular endosome biogenesis. Mol Biol Cell 2016; 27:3305-3316. [PMID: 27605702 PMCID: PMC5170863 DOI: 10.1091/mbc.e15-12-0853] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 08/31/2016] [Indexed: 11/11/2022] Open
Abstract
Moesin and cortactin on early endosomes are necessary for the formation of F-actin networks that mediate multivesicular endosome biogenesis and transport through the degradative pathway toward lysosomes. Presumably, this mechanism helps segregate recycling membranes from the maturing multivesicular endosomes. We used in vivo and in vitro strategies to study the mechanisms of multivesicular endosome biogenesis. We found that, whereas annexinA2 and ARP2/3 mediate F-actin nucleation and branching, respectively, the ERM protein moesin supports the formation of F-actin networks on early endosomes. We also found that moesin plays no role during endocytosis and recycling to the plasma membrane but is absolutely required, much like actin, for early-to-late-endosome transport and multivesicular endosome formation. Both actin network formation in vitro and early-to-late endosome transport in vivo also depend on the F-actin–binding protein cortactin. Our data thus show that moesin and cortactin are necessary for formation of F-actin networks that mediate endosome biogenesis or maturation and transport through the degradative pathway. We propose that the primary function of endosomal F-actin is to control the membrane remodeling that accompanies endosome biogenesis. We also speculate that this mechanism helps segregate tubular and multivesicular membranes along the recycling and degradation pathways, respectively.
Collapse
Affiliation(s)
- Olivia Muriel
- Department of Biochemistry, University of Geneva, 1211 Geneva 4, Switzerland
| | - Alejandra Tomas
- Department of Biochemistry, University of Geneva, 1211 Geneva 4, Switzerland
| | - Cameron C Scott
- Department of Biochemistry, University of Geneva, 1211 Geneva 4, Switzerland
| | - Jean Gruenberg
- Department of Biochemistry, University of Geneva, 1211 Geneva 4, Switzerland
| |
Collapse
|
22
|
Gadila SKG, Kim K. Cargo trafficking from the trans-Golgi network towards the endosome. Biol Cell 2016; 108:205-18. [DOI: 10.1111/boc.201600001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 03/30/2016] [Accepted: 03/31/2016] [Indexed: 11/28/2022]
Affiliation(s)
| | - Kyoungtae Kim
- Department of Biology; Missouri State University; Springfield MO 65807 USA
| |
Collapse
|
23
|
Abstract
In all eukaryotes, the plasma membrane is critically important as it maintains the architectural integrity of the cell. Proper anchorage and interaction between the plasma membrane and the cytoskeleton is critical for normal cellular processes. The ERM (ezrin-radixin-moesin) proteins are a class of highly homologous proteins involved in linking the plasma membrane to the cortical actin cytoskeleton. This review takes a succinct look at the biology of the ERM proteins including their structure and function. Current reports on their regulation that leads to activation and deactivation was examined before taking a look at the different interacting partners. Finally, emerging roles of each of the ERM family members in cancer was highlighted.
Collapse
Affiliation(s)
- Godwin A Ponuwei
- Cell migration laboratory, Molecular and Cellular Medicine Unit, Department of Biomedical Sciences, School of Biological Sciences, Hopkins Building, University of Reading, Whiteknights, Berkshire, UK. .,Molecular and Cellular Medicine unit, Department of Biomedical sciences, School of Life Sciences, Hopkins Building, Whiteknights Campus, University of Reading, Reading, Berkshire, UK.
| |
Collapse
|
24
|
van der Kant R, Jonker CTH, Wijdeven RH, Bakker J, Janssen L, Klumperman J, Neefjes J. Characterization of the Mammalian CORVET and HOPS Complexes and Their Modular Restructuring for Endosome Specificity. J Biol Chem 2015; 290:30280-90. [PMID: 26463206 DOI: 10.1074/jbc.m115.688440] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Indexed: 01/30/2023] Open
Abstract
Trafficking of cargo through the endosomal system depends on endosomal fusion events mediated by SNARE proteins, Rab-GTPases, and multisubunit tethering complexes. The CORVET and HOPS tethering complexes, respectively, regulate early and late endosomal tethering and have been characterized in detail in yeast where their sequential membrane targeting and assembly is well understood. Mammalian CORVET and HOPS subunits significantly differ from their yeast homologues, and novel proteins with high homology to CORVET/HOPS subunits have evolved. However, an analysis of the molecular interactions between these subunits in mammals is lacking. Here, we provide a detailed analysis of interactions within the mammalian CORVET and HOPS as well as an additional endosomal-targeting complex (VIPAS39-VPS33B) that does not exist in yeast. We show that core interactions within CORVET and HOPS are largely conserved but that the membrane-targeting module in HOPS has significantly changed to accommodate binding to mammalian-specific RAB7 interacting lysosomal protein (RILP). Arthrogryposis-renal dysfunction-cholestasis (ARC) syndrome-associated mutations in VPS33B selectively disrupt recruitment to late endosomes by RILP or binding to its partner VIPAS39. Within the shared core of CORVET/HOPS, we find that VPS11 acts as a molecular switch that binds either CORVET-specific TGFBRAP1 or HOPS-specific VPS39/RILP thereby allowing selective targeting of these tethering complexes to early or late endosomes to time fusion events in the endo/lysosomal pathway.
Collapse
Affiliation(s)
- Rik van der Kant
- From the Division of Cell Biology, Netherlands Cancer Institute, Amsterdam, 1066 CX, The Netherlands and
| | - Caspar T H Jonker
- Department of Cell Biology, Center of Molecular Medicine, Utrecht, 3584 CX, The Netherlands
| | - Ruud H Wijdeven
- From the Division of Cell Biology, Netherlands Cancer Institute, Amsterdam, 1066 CX, The Netherlands and
| | - Jeroen Bakker
- From the Division of Cell Biology, Netherlands Cancer Institute, Amsterdam, 1066 CX, The Netherlands and
| | - Lennert Janssen
- From the Division of Cell Biology, Netherlands Cancer Institute, Amsterdam, 1066 CX, The Netherlands and
| | - Judith Klumperman
- Department of Cell Biology, Center of Molecular Medicine, Utrecht, 3584 CX, The Netherlands
| | - Jacques Neefjes
- From the Division of Cell Biology, Netherlands Cancer Institute, Amsterdam, 1066 CX, The Netherlands and
| |
Collapse
|
25
|
RILP interacts with HOPS complex via VPS41 subunit to regulate endocytic trafficking. Sci Rep 2014; 4:7282. [PMID: 25445562 PMCID: PMC4250914 DOI: 10.1038/srep07282] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 11/13/2014] [Indexed: 11/30/2022] Open
Abstract
The HOPS complex serves as a tethering complex with GEF activity for Ypt7p in yeast to regulate late endosomal membrane maturation. While the role of HOPS complex is well established in yeast cells, its functional and mechanistic aspects in mammalian cells are less well defined. In this study, we report that RILP, a downstream effector of Rab7, interacts with HOPS complex and recruits HOPS subunits to the late endosomal compartment. Structurally, the amino-terminal portion of RILP interacts with HOPS complex. Unexpectedly, this interaction is independent of Rab7. VPS41 subunit of HOPS complex was defined to be the major partner for interacting with RILP. The carboxyl-terminal region of VPS41 was mapped to be responsible for the interaction. Functionally, either depletion of VPS41 by shRNA or overexpression of VPS41 C-terminal half retarded EGF-induced degradation of EGFR. These results suggest that interaction of RILP with HOPS complex via VPS41 plays a role in endocytic trafficking of EGFR.
Collapse
|
26
|
Zlatic SA, Tornieri K, L'hernault SW, Faundez V. Metazoan cell biology of the HOPS tethering complex. CELLULAR LOGISTICS 2014; 1:111-117. [PMID: 21922076 DOI: 10.4161/cl.1.3.17279] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2011] [Revised: 07/18/2011] [Accepted: 07/20/2011] [Indexed: 01/09/2023]
Abstract
Membrane fusion with vacuoles, the lysosome equivalent of the yeast Saccharomyces cerevisiae, is among the best understood membrane fusion events. Our precise understanding of this fusion machinery stems from powerful genetics and elegant in vitro reconstitution assays. Central to vacuolar membrane fusion is the multi-subunit tether the HO motypic fusion and Protein Sorting (HOPS) complex, a complex of proteins that organizes other necessary components of the fusion machinery. We lack a similarly detailed molecular understanding of membrane fusion with lysosomes or lysosome-related organelles in metazoans. However, it is likely that fundamental principles of how rabs, SNAREs and HOPS tethers work to fuse membranes with lysosomes and related organelles are conserved between Saccharomyces cerevisiae and metazoans. Here, we discuss emerging differences in the coat-dependent mechanisms that govern HOPS complex subcellular distribution between Saccharomyces cerevisiae and metazoans. These differences reside upstream of the membrane fusion event. We propose that the differences in how coats segregate class C Vps/HOPS tethers to organelles and domains of metazoan cells are adaptations to complex architectures that characterize metazoan cells such as those of neuronal and epithelial tissues.
Collapse
Affiliation(s)
- Stephanie A Zlatic
- Graduate Program in Biochemistry, Cell and Developmental Biology; Emory University; Atlanta, GA USA
| | | | | | | |
Collapse
|
27
|
Endosome maturation, transport and functions. Semin Cell Dev Biol 2014; 31:2-10. [DOI: 10.1016/j.semcdb.2014.03.034] [Citation(s) in RCA: 305] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 03/21/2014] [Accepted: 03/31/2014] [Indexed: 12/29/2022]
|
28
|
Kvalvaag AS, Pust S, Sandvig K. Vps11, a subunit of the tethering complexes HOPS and CORVET, is involved in regulation of glycolipid degradation and retrograde toxin transport. Commun Integr Biol 2014; 7:e28129. [PMID: 24778763 PMCID: PMC3995726 DOI: 10.4161/cib.28129] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Revised: 02/04/2014] [Accepted: 02/06/2014] [Indexed: 11/19/2022] Open
Abstract
We recently reported that ERM (ezrin, radixin, moesin) proteins are involved in intracellular sorting of Shiga toxin (Stx) and its receptor globotriaosylceramide (Gb3), and that depletion of ezrin and moesin reduced retrograde Golgi transport of Stx. In the same study, we found that knockdown of Vps11, a core subunit of both the homotypic fusion and protein sorting (HOPS) complex and the class C core vacuole/endosome tethering factor (CORVET), increased retrograde transport of Stx and could counteract the inhibiting effect of moesin and ezrin knockdown. In this study we demonstrate that Vps11 knockdown also leads to increased Stx toxicity as well as increased retrograde transport and toxicity of ricin. Additionally, we show that knockdown of Vps11 restores the reduced Gb3 level observed after moesin depletion.
Collapse
Affiliation(s)
- Audun Sverre Kvalvaag
- Department of Biochemistry; Institute for Cancer Research; The Norwegian Radium Hospital; Oslo University Hospital; Montebello, Oslo, Norway ; Department of Biosciences; Faculty of Mathematics and Natural Sciences; University of Oslo; Oslo, Norway ; Centre for Cancer Biomedicine; Faculty of Medicine; University of Oslo; Montebello, Oslo, Norway
| | - Sascha Pust
- Department of Biochemistry; Institute for Cancer Research; The Norwegian Radium Hospital; Oslo University Hospital; Montebello, Oslo, Norway ; Centre for Cancer Biomedicine; Faculty of Medicine; University of Oslo; Montebello, Oslo, Norway
| | - Kirsten Sandvig
- Department of Biochemistry; Institute for Cancer Research; The Norwegian Radium Hospital; Oslo University Hospital; Montebello, Oslo, Norway ; Department of Biosciences; Faculty of Mathematics and Natural Sciences; University of Oslo; Oslo, Norway ; Centre for Cancer Biomedicine; Faculty of Medicine; University of Oslo; Montebello, Oslo, Norway
| |
Collapse
|
29
|
Viswanatha R, Wayt J, Ohouo PY, Smolka MB, Bretscher A. Interactome analysis reveals ezrin can adopt multiple conformational states. J Biol Chem 2013; 288:35437-51. [PMID: 24151071 DOI: 10.1074/jbc.m113.505669] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Ezrin, a member of the ezrin-radixin-moesin family (ERM), is an essential regulator of the structure of microvilli on the apical aspect of epithelial cells. Ezrin provides a linkage between membrane-associated proteins and F-actin, oscillating between active/open and inactive/closed states, and is regulated in part by phosphorylation of a C-terminal threonine. In the open state, ezrin can bind a number of ligands, but in the closed state the ligand-binding sites are inaccessible. In vitro analysis has proposed that there may be a third hyperactivated form of ezrin. To gain a better understanding of ezrin, we conducted an unbiased proteomic analysis of ezrin-binding proteins in an epithelial cell line, Jeg-3. We refined our list of interactors by comparing the interactomes using quantitative mass spectrometry between wild-type ezrin, closed ezrin, open ezrin, and hyperactivated ezrin. The analysis reveals several novel interactors confirmed by their localization to microvilli, as well as a significant class of proteins that bind closed ezrin. Taken together, the data indicate that ezrin can exist in three different conformational states, and different ligands "perceive" ezrin conformational states differently.
Collapse
Affiliation(s)
- Raghuvir Viswanatha
- From the Department of Molecular Biology and Genetics and Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York 14853
| | | | | | | | | |
Collapse
|
30
|
Kvalvaag AS, Pust S, Sundet KI, Engedal N, Simm R, Sandvig K. The ERM proteins ezrin and moesin regulate retrograde Shiga toxin transport. Traffic 2013; 14:839-52. [PMID: 23593995 DOI: 10.1111/tra.12077] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Revised: 04/12/2013] [Accepted: 04/17/2013] [Indexed: 01/23/2023]
Abstract
The ERM proteins (ezrin, radixin and moesin) are known for connecting the actin cytoskeleton to the plasma membrane. They have been found to associate with lipid rafts as well as to be important for endosomal sorting and receptor signaling. However, little is known about the role of ERM proteins in retrograde transport and lipid homeostasis. In this study, we show that ezrin and moesin are important for efficient cell surface association of Shiga toxin (Stx) as well as for its retrograde transport. Furthermore, we show that depletion of these proteins influences endosomal dynamics and seems to enhance Stx transport toward lysosomes. We also show that knockdown of Vps11, a subunit of the HOPS complex, leads to increased retrograde Stx transport and reverses the inhibiting effect of ezrin and moesin knockdown. Importantly, retrograde transport of the plant toxin ricin, which binds to both glycolipids and glycoproteins with a terminal galactose, seems to be unaffected by ezrin and moesin depletion.
Collapse
Affiliation(s)
- Audun Sverre Kvalvaag
- Department of Biochemistry, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Montebello, N-0379, Oslo, Norway
| | | | | | | | | | | |
Collapse
|
31
|
Karunakaran S, Fratti RA. The lipid composition and physical properties of the yeast vacuole affect the hemifusion-fusion transition. Traffic 2013; 14:650-62. [PMID: 23438067 DOI: 10.1111/tra.12064] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Revised: 02/21/2013] [Accepted: 02/25/2013] [Indexed: 12/12/2022]
Abstract
Yeast vacuole fusion requires the formation of SNARE bundles between membranes. Although the function of vacuolar SNAREs is controlled in part by regulatory lipids, the exact role of the membrane in regulating fusion remains unclear. Because SNAREs are membrane-anchored and transmit the force required for fusion to the bilayer, we hypothesized that the lipid composition and curvature of the membrane aid in controlling fusion. Here, we examined the effect of altering membrane fluidity and curvature on the functionality of fusion-incompetent SNARE mutants that are thought to generate insufficient force to trigger the hemifusion-fusion transition. The hemifusion-fusion transition was inhibited by disrupting the 3Q:1R stoichiometry of SNARE bundles with the mutant SNARE Vam7p(Q283R) . Similarly, replacing the transmembrane domain of the syntaxin homolog Vam3p with a lipid anchor allowed hemifusion, but not content mixing. Hemifusion-stalled reactions containing either of the SNARE mutants were stimulated to fuse with chlorpromazine, an amphipathic molecule that alters membrane fluidity and curvature. The activity of mutant SNAREs was also rescued by the overexpression of SNAREs, thus multiplying the force transferred to the membrane. Thus, we conclude that either increasing membrane fluidity, or multiplying SNARE-generated energy restored the fusogenicity of mutant SNAREs that are stalled at hemifusion. We also found that regulatory lipids differentially modulated the complex formation of wild-type SNAREs. Together, these data indicate that the physical properties and the lipid composition of the membrane affect the function of SNAREs in promoting the hemifusion-fusion transition.
Collapse
Affiliation(s)
- Surya Karunakaran
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | |
Collapse
|
32
|
Khan LA, Zhang H, Abraham N, Sun L, Fleming JT, Buechner M, Hall DH, Gobel V. Intracellular lumen extension requires ERM-1-dependent apical membrane expansion and AQP-8-mediated flux. Nat Cell Biol 2013; 15:143-56. [PMID: 23334498 PMCID: PMC4091717 DOI: 10.1038/ncb2656] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Accepted: 11/16/2012] [Indexed: 01/29/2023]
Abstract
Many unicellular tubes such as capillaries form lumens intracellularly, a process that is not well understood. Here we show that the cortical membrane organizer ERM-1 is required to expand the intracellular apical/lumenal membrane and its actin undercoat during single-cell C.elegans excretory canal morphogenesis. We characterize AQP-8, identified in an ERM-1 overexpression (ERM-1[++]) suppressor screen, as a canalicular aquaporin that interacts with ERM-1 in lumen extension in a mercury-sensitive manner, implicating water-channel activity. AQP-8 is transiently recruited to the lumen by ERM-1, co-localizing in peri-lumenal cuffs interspaced along expanding canals. An ERM-1[++]-mediated increase in the number of lumen-associated canaliculi is reversed by AQP-8 depletion. We propose that the ERM-1-AQP-8 interaction propels lumen extension by translumenal flux, suggesting a direct morphogenetic effect of water-channel-regulated fluid pressure.
Collapse
Affiliation(s)
- Liakot A Khan
- Department of Pediatrics, Massachusetts General Hospital, Boston, 02114, USA
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Comparative proteomic analysis of HIV-1 particles reveals a role for Ezrin and EHD4 in the Nef-dependent increase of virus infectivity. J Virol 2013; 87:3729-40. [PMID: 23325686 DOI: 10.1128/jvi.02477-12] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nef is a human immunodeficiency virus type 1 (HIV-1) auxiliary protein that plays an important role in virus replication and the onset of acquired immunodeficiency. Although known functions of Nef might explain its contribution to HIV-1-associated pathogenesis, how Nef increases virus infectivity is still an open question. In vitro, Nef-deleted viruses have a defect that prevents efficient completion of early steps of replication. We have previously shown that this restriction is not due to the absence of Nef in viral particles. Rather, a loss of function in virus-producing cells accounts for the lower infectivity of nef-deleted viruses compared to wild-type (WT) viruses. Here we used DiGE and iTRAQ to identify differences between the proteomes of WT and nef-deleted viruses. We observe that glucosidase II is enriched in WT virions, whereas Ezrin, ALG-2, CD81, and EHD4 are enriched in nef-deleted virions. Functional analysis shows that glucosidase II, ALG-2, and CD81 have no or only Nef-independent effect on infectivity. In contrast, Ezrin and EHD4 are involved in the ability of Nef to increase virus infectivity (referred to thereafter as Nef potency). Indeed, simultaneous Ezrin and EHD4 depletion in SupT1 and 293T virus-producing cells result in an ∼30 and ∼70% decrease of Nef potency, respectively. Finally, while Ezrin behaves as an inhibitory factor counteracted by Nef, EHD4 should be considered as a cofactors required by Nef to increase virus infectivity.
Collapse
|
34
|
Maniti O, Carvalho K, Picart C. Model membranes to shed light on the biochemical and physical properties of ezrin/radixin/moesin. Biochimie 2013; 95:3-11. [PMID: 23041444 PMCID: PMC4112940 DOI: 10.1016/j.biochi.2012.09.033] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Accepted: 09/28/2012] [Indexed: 10/27/2022]
Abstract
Ezrin, radixin and moesin (ERM) proteins are now more and more recognized to play a key role in a large number of important physiological processes such as morphogenesis, cancer metastasis and virus infection. Several recent reviews extensively discuss their biological functions [1 -4 ]. In this review, we will first remind the main features of this family of proteins, which are now known as linkers and regulators of the plasma membrane/cytoskeleton linkage. We will then briefly review their implication in pathological processes such as cancer and viral infection. In a second part, we will focus on biochemical and biophysical approaches to study ERM interaction with lipid membranes and conformational change in well-defined environments. In vitro studies using biomimetic lipid membranes, especially large unilamellar vesicles (LUVs), giant unilamellar vesicles (GUVs) and supported lipid bilayers (SLBs) and recombinant proteins help to understand the molecular mechanism of conformational activation of ERM proteins. These tools are aimed to decorticate the different steps of the interaction, to simplify the experiments performed in vivo in much more complex biological environments.
Collapse
Affiliation(s)
- Ofélia Maniti
- CNRS UMR 5628 (LMGP), Grenoble Institute of Technology and CNRS, 3 parvis Louis Néel, F-38016 Grenoble Cedex, France
- Institut de Chimie et de Biochimie Moléculaires et Supramoléculaires, UMR 5246, CNRS, Université de Lyon, Université Lyon 1, INSA-Lyon, CPE-Lyon, 43 Bd du 11 Novembre 1918, F-69622 Villeurbanne, France
| | - Kevin Carvalho
- Institut Curie, centre de recherche and CNRS UMR 168, 11 rue Pierre et Marie Curie, Paris, F-75248 cedex 5
| | - Catherine Picart
- CNRS UMR 5628 (LMGP), Grenoble Institute of Technology and CNRS, 3 parvis Louis Néel, F-38016 Grenoble Cedex, France
| |
Collapse
|
35
|
van der Kant R, Fish A, Janssen L, Janssen H, Krom S, Ho N, Brummelkamp T, Carette J, Rocha N, Neefjes J. Late endosomal transport and tethering are coupled processes controlled by RILP and the cholesterol sensor ORP1L. J Cell Sci 2013; 126:3462-74. [DOI: 10.1242/jcs.129270] [Citation(s) in RCA: 133] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Late endosomes and lysosomes are dynamic organelles that constantly move and fuse to acquire cargo from early endosomes, phagosomes and autophagosome. Defects in lysosomal dynamics cause severe neurodegenerative and developmental diseases such as Niemann-Pick Type C disease and ARC syndrome, yet little is know about regulation of late endosomal fusion in a mammalian system. Mammalian endosomes destined for fusion need to be transported over very long distances before they tether to initiate contact. Here we describe that lysosomal tethering and transport are combined processes co-regulated by one multi-protein complex; RAB7-RILP-ORP1L. We show that RILP directly and concomitantly binds the tethering HOPS complex and the p150glued subunit of the dynein motor. ORP1L then functions as a cholesterol-sensing switch controlling RILP-HOPS-p150Glued interactions. We show that RILP and ORP1L control Ebola virus infection, a process dependent on late endosomal fusion. By combining recruitment and regulation of both the dynein motor and HOPS complex into a single multiprotein complex, the RAB7-RILP-ORP1L complex efficiently couples and times microtubule minus-end transport and fusion, two major events in endosomal biology.
Collapse
|
36
|
Wei AH, Li W. Hermansky-Pudlak syndrome: pigmentary and non-pigmentary defects and their pathogenesis. Pigment Cell Melanoma Res 2012; 26:176-92. [DOI: 10.1111/pcmr.12051] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Accepted: 11/16/2012] [Indexed: 10/27/2022]
Affiliation(s)
| | - Wei Li
- State Key Laboratory of Molecular Developmental Biology; Institute of Genetics & Developmental Biology; Chinese Academy of Sciences; Beijing; China
| |
Collapse
|
37
|
Darmellah A, Rayah A, Auger R, Cuif MH, Prigent M, Arpin M, Alcover A, Delarasse C, Kanellopoulos JM. Ezrin/radixin/moesin are required for the purinergic P2X7 receptor (P2X7R)-dependent processing of the amyloid precursor protein. J Biol Chem 2012; 287:34583-95. [PMID: 22891241 DOI: 10.1074/jbc.m112.400010] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The amyloid precursor protein (APP) can be cleaved by α-secretases in neural cells to produce the soluble APP ectodomain (sAPPα), which is neuroprotective. We have shown previously that activation of the purinergic P2X7 receptor (P2X7R) triggers sAPPα shedding from neural cells. Here, we demonstrate that the activation of ezrin, radixin, and moesin (ERM) proteins is required for the P2X7R-dependent proteolytic processing of APP leading to sAPPα release. Indeed, the down-regulation of ERM by siRNA blocked the P2X7R-dependent shedding of sAPPα. We also show that P2X7R stimulation triggered the phosphorylation of ERM. Thus, ezrin translocates to the plasma membrane to interact with P2X7R. Using specific pharmacological inhibitors, we established the order in which several enzymes trigger the P2X7R-dependent release of sAPPα. Thus, a Rho kinase and the MAPK modules ERK1/2 and JNK act upstream of ERM, whereas a PI3K activity is triggered downstream. For the first time, this work identifies ERM as major partners in the regulated non-amyloidogenic processing of APP.
Collapse
Affiliation(s)
- Amaria Darmellah
- Institut de Biochimie et Biophysique Moléculaire et Cellulaire, CNRS UMR 8619, France
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Ishii A, Kamimori K, Hiyoshi M, Kido H, Ohta T, Konishi H. Inhibitory effect of SPE-39 due to tyrosine phosphorylation and ubiquitination on the function of Vps33B in the EGF-stimulated cells. FEBS Lett 2012; 586:2245-50. [PMID: 22677173 DOI: 10.1016/j.febslet.2012.05.051] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Revised: 05/22/2012] [Accepted: 05/23/2012] [Indexed: 11/18/2022]
Abstract
Although SPE-39 is a binding protein to Vps33B that is one of the subunit in the mammalian HOPS complex, the elements of SPE-39 function remain unknown. Here, we show that tyrosine phosphorylation of SPE-39 following EGF stimulation plays a role in the stability of SPE-39 itself. Ubiquitination of the C-terminal region of SPE-39 was also elevated in response to EGF stimulation, and this process was regulated by the phosphorylation of Tyr-11 in SPE-39. However, association of Vps33B with SPE-39 inhibited the elevation of ubiquitination of SPE-39 following EGF stimulation, which might be responsible for the stabilization of SPE-39. Furthermore, an opposing functional relationship between SPE-39 and Vps33B on the downregulation of the EGF receptor was observed in EGF-stimulated COS-7 cells.
Collapse
Affiliation(s)
- Ayumi Ishii
- Faculty of Life and Environmental Sciences, Prefectural University of Hiroshima, Shobara, Hiroshima 727-0023, Japan
| | | | | | | | | | | |
Collapse
|
39
|
Looyenga BD, Mackeigan JP. Characterization of differential protein tethering at the plasma membrane in response to epidermal growth factor signaling. J Proteome Res 2012; 11:3101-11. [PMID: 22559174 DOI: 10.1021/pr201077d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Physical tethering of membrane proteins to the cortical actin cytoskeleton provides functional organization to the plasma membrane and contributes to diverse cellular processes including cell signaling, vesicular trafficking, endocytosis, and migration. For these processes to occur, membrane protein tethering must be dynamically regulated in response to environmental cues. In this study, we describe a novel biochemical scheme for isolating the complement of plasma membrane proteins that are physically tethered to the actin cytoskeleton. We utilized this method in combination with tandem liquid chromatography/mass spectrometry (LC-MS/MS) to demonstrate that cytoskeletal tethering of membrane proteins is acutely regulated by epidermal growth factor (EGF) in normal human kidney (HK2) cells. Our results indicate that several proteins known to be involved in EGF signaling, as well as other proteins not traditionally associated with this pathway, are tethered to the cytoskeleton in dynamic fashion. Further analysis of one hit from our proteomic survey, the receptor phosphotyrosine phosphatase PTPRS, revealed a correlation between cytoskeletal tethering and endosomal trafficking in response to EGF. This finding parallels previous indications that PTPRS is involved in the desensitization of EGFR and provides a potential mechanism to coordinate localization of these two membrane proteins in the same compartment upon EGFR activation.
Collapse
Affiliation(s)
- Brendan D Looyenga
- Laboratory of Systems Biology, Van Andel Research Institute , Grand Rapids, Michigan 49503, United States
| | | |
Collapse
|
40
|
Ng EL, Gan BQ, Ng F, Tang BL. Rab GTPases regulating receptor trafficking at the late endosome-lysosome membranes. Cell Biochem Funct 2012; 30:515-23. [DOI: 10.1002/cbf.2827] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Revised: 02/07/2012] [Accepted: 03/09/2012] [Indexed: 02/05/2023]
Affiliation(s)
- Ee Ling Ng
- Department of Biochemistry; Yong Loo Lin School of Medicine; National University of Singapore; Singapore
| | - Bin Qi Gan
- Department of Biochemistry; Yong Loo Lin School of Medicine; National University of Singapore; Singapore
| | - Fanny Ng
- Department of Biochemistry; Yong Loo Lin School of Medicine; National University of Singapore; Singapore
| | - Bor Luen Tang
- Department of Biochemistry; Yong Loo Lin School of Medicine; National University of Singapore; Singapore
| |
Collapse
|
41
|
Bernadskaya YY, Patel FB, Hsu HT, Soto MC. Arp2/3 promotes junction formation and maintenance in the Caenorhabditis elegans intestine by regulating membrane association of apical proteins. Mol Biol Cell 2011; 22:2886-99. [PMID: 21697505 PMCID: PMC3154884 DOI: 10.1091/mbc.e10-10-0862] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
It has been proposed that Arp2/3, which promotes nucleation of branched actin, is needed for epithelial junction initiation but is less important as junctions mature. We focus here on how Arp2/3 contributes to the Caenorhabditis elegans intestinal epithelium and find important roles for Arp2/3 in the maturation and maintenance of junctions in embryos and adults. Electron microscope studies show that embryos depleted of Arp2/3 form apical actin-rich microvilli and electron-dense apical junctions. However, whereas apical/basal polarity initiates, apical maturation is defective, including decreased apical F-actin enrichment, aberrant lumen morphology, and reduced accumulation of some apical junctional proteins, including DLG-1. Depletion of Arp2/3 in adult animals leads to similar intestinal defects. The DLG-1/AJM-1 apical junction proteins, and the ezrin-radixin-moesin homologue ERM-1, a protein that connects F-actin to membranes, are required along with Arp2/3 for apical F-actin enrichment in embryos, whereas cadherin junction proteins are not. Arp2/3 affects the subcellular distribution of DLG-1 and ERM-1. Loss of Arp2/3 shifts both ERM-1 and DLG-1 from pellet fractions to supernatant fractions, suggesting a role for Arp2/3 in the distribution of membrane-associated proteins. Thus, Arp2/3 is required as junctions mature to maintain apical proteins associated with the correct membranes.
Collapse
Affiliation(s)
- Yelena Y Bernadskaya
- Department of Pathology and Laboratory Medicine, University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
| | | | | | | |
Collapse
|
42
|
Arpin M, Chirivino D, Naba A, Zwaenepoel I. Emerging role for ERM proteins in cell adhesion and migration. Cell Adh Migr 2011; 5:199-206. [PMID: 21343695 DOI: 10.4161/cam.5.2.15081] [Citation(s) in RCA: 177] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The highly related ERM (Ezrin, Radixin, Moesin) proteins provide a regulated linkage between the membrane and the underlying actin cytoskeleton. They also provide a platform for the transmission of signals in responses to extracellular cues. Studies in different model organisms and in cultured cells have highlighted the importance of ERM proteins in the generation and maintenance of specific domains of the plasma membrane. A central question is how do ERM proteins coordinate actin filament organization and membrane protein transport/stability with signal transduction pathways to build up complex structures? Through their interaction with numerous partners including membrane proteins, actin cytoskeleton and signaling molecules, ERM proteins have the ability to organize multiprotein complexes in specific cellular compartments. Likewise, ERM proteins participate in diverse functions including cell morphogenesis, endocytosis/exocytosis, adhesion and migration. This review focuses on aspects still poorly understood related to the function of ERM proteins in epithelial cell adhesion and migration.
Collapse
Affiliation(s)
- Monique Arpin
- UMR 144, Centre National de la Recherche Scientifique/Morphogenèse et Signalisation Cellulaires, Institut Curie, Paris, France.
| | | | | | | |
Collapse
|