1
|
He XL, Lyu WY, Li XY, Zhao H, Qi L, Lu JJ. Identification of glycogen phosphorylase L as a potential target for lung cancer. Med Oncol 2023; 40:211. [PMID: 37347364 DOI: 10.1007/s12032-023-02069-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 05/29/2023] [Indexed: 06/23/2023]
Abstract
Traditional Chinese medicine (TCM) has been widely used for cancer treatment. Identification of anti-cancer targets of TCM is the first and principal step in discovering molecular mechanisms of TCM as well as obtaining novel targets for cancer therapy. In this study, glycogen phosphorylase L (PYGL) was identified as one of the targeted proteins for several TCMs and was upregulated in various cancer types. The expression level of PYGL was positively correlated with the stage of lung cancer and the poor prognosis of patients. Meanwhile, knockdown of PYGL significantly inhibited proliferation and migration in lung cancer cells. In addition, PYGL was associated with spindle, kinetochore, and microtubule, the cellular components that are closely related to mitosis, in lung cancer. Moreover, PYGL was more susceptible to be upregulated by 144 mutated genes. Taken together, PYGL is a potential target for lung cancer treatment and its molecular mechanism probably influences the mitotic function of cells by regulating energy metabolism.
Collapse
Affiliation(s)
- Xin-Ling He
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Wen-Yu Lyu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Xin-Yuan Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Hong Zhao
- The First Affiliated Hospital of Zhejiang, Chinese Medical University, Hangzhou, 310006, China
| | - Lu Qi
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China.
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, No.1023 Shatai Road Baiyun District, Guangzhou, 510515, Guangdong, China.
| | - Jin-Jian Lu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China.
- Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Macao, China.
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, University of Macau, Macao, China.
| |
Collapse
|
2
|
Li R, Ren Y, Mo G, Swider Z, Mikoshiba K, Bement WM, Liu XJ. Inositol 1, 4, 5-trisphosphate receptor is required for spindle assembly in Xenopus oocytes. Mol Biol Cell 2022; 33:br27. [PMID: 36129775 PMCID: PMC9727787 DOI: 10.1091/mbc.e22-06-0218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The extent to which calcium signaling participates in specific events of animal cell meiosis or mitosis is a subject of enduring controversy. We have previously demonstrated that buffering intracellular calcium with 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA, a fast calcium chelator), but not ethylenebis(oxyethylenenitrilo)tetraacetic acid (EGTA, a slow calcium chelator), rapidly depolymerizes spindle microtubules in Xenopus oocytes, suggesting that spindle assembly and/or stability requires calcium nanodomains-calcium transients at extremely restricted spatial-temporal scales. In this study, we have investigated the function of inositol-1,4,5-trisphosphate receptor (IP3R), an endoplasmic reticulum (ER) calcium channel, in spindle assembly using Trim21-mediated depletion of IP3R. Oocytes depleted of IP3R underwent germinal vesicle breakdown but failed to emit the first polar body and failed to assemble proper meiotic spindles. Further, we developed a cell-free spindle assembly assay in which cytoplasm was aspirated from single oocytes. Spindles assembled in this cell-free system were encased in ER membranes, with IP3R enriched at the poles, while disruption of either ER organization or calcium signaling resulted in rapid spindle disassembly. As in intact oocytes, formation of spindles in cell-free oocyte extracts also required IP3R. We conclude that intracellular calcium signaling involving IP3R-mediated calcium release is required for meiotic spindle assembly in Xenopus oocytes.
Collapse
Affiliation(s)
- Ruizhen Li
- Ottawa Hospital Research Institute, The Ottawa Hospital—General Campus, Ottawa, ON K1H 8L6, Canada
| | - Yanping Ren
- Ottawa Hospital Research Institute, The Ottawa Hospital—General Campus, Ottawa, ON K1H 8L6, Canada,Department of Histology and Embryology, Zunyi Medical University, Zunyi, Guizhou 563003, China
| | - Guolong Mo
- Ottawa Hospital Research Institute, The Ottawa Hospital—General Campus, Ottawa, ON K1H 8L6, Canada,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Zackary Swider
- Graduate Program in Cellular and Molecular Biology, University of Wisconsin—Madison, Madison, WI 53706,Center for Quantitative Cell Imaging, University of Wisconsin—Madison, Madison, WI 53706
| | - Katsuhiko Mikoshiba
- SIAIS ShanghaiTech University, Middle Huaxia Road, Shanghai 201210, China,Faculty of Science, Toho University Miyama, Funabashi, Chiba, 247-8510 Japan
| | - William M. Bement
- Graduate Program in Cellular and Molecular Biology, University of Wisconsin—Madison, Madison, WI 53706,Center for Quantitative Cell Imaging, University of Wisconsin—Madison, Madison, WI 53706
| | - X. Johné Liu
- Ottawa Hospital Research Institute, The Ottawa Hospital—General Campus, Ottawa, ON K1H 8L6, Canada,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada,Department of Obstetrics and Gynaecology, University of Ottawa, Ottawa, ON K1H 8M5, Canada,*Address correspondence to: Johné Liu ()
| |
Collapse
|
3
|
Haase J, Chen R, Parker WM, Bonner MK, Jenkins LM, Kelly AE. The TFIIH complex is required to establish and maintain mitotic chromosome structure. eLife 2022; 11:e75475. [PMID: 35293859 PMCID: PMC8956287 DOI: 10.7554/elife.75475] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 03/15/2022] [Indexed: 11/13/2022] Open
Abstract
Condensins compact chromosomes to promote their equal segregation during mitosis, but the mechanism of condensin engagement with and action on chromatin is incompletely understood. Here, we show that the general transcription factor TFIIH complex is continuously required to establish and maintain a compacted chromosome structure in transcriptionally silent Xenopus egg extracts. Inhibiting the DNA-dependent ATPase activity of the TFIIH complex subunit XPB rapidly and reversibly induces a complete loss of chromosome structure and prevents the enrichment of condensins I and II, but not topoisomerase II, on chromatin. In addition, inhibiting TFIIH prevents condensation of both mouse and Xenopus nuclei in Xenopus egg extracts, which suggests an evolutionarily conserved mechanism of TFIIH action. Reducing nucleosome density through partial histone depletion restores chromosome structure and condensin enrichment in the absence of TFIIH activity. We propose that the TFIIH complex promotes mitotic chromosome condensation by dynamically altering the chromatin environment to facilitate condensin loading and condensin-dependent loop extrusion.
Collapse
Affiliation(s)
- Julian Haase
- Laboratory of Biochemistry & Molecular Biology, National Cancer Institute, NIHBethesdaUnited States
| | - Richard Chen
- Laboratory of Biochemistry & Molecular Biology, National Cancer Institute, NIHBethesdaUnited States
| | - Wesley M Parker
- Laboratory of Biochemistry & Molecular Biology, National Cancer Institute, NIHBethesdaUnited States
| | - Mary Kate Bonner
- Laboratory of Biochemistry & Molecular Biology, National Cancer Institute, NIHBethesdaUnited States
| | - Lisa M Jenkins
- Laboratory of Cell Biology, National Cancer Institute, NIHBethesdaUnited States
| | - Alexander E Kelly
- Laboratory of Biochemistry & Molecular Biology, National Cancer Institute, NIHBethesdaUnited States
| |
Collapse
|
4
|
Biswas A, Kim K, Cojoc G, Guck J, Reber S. The Xenopus spindle is as dense as the surrounding cytoplasm. Dev Cell 2021; 56:967-975.e5. [PMID: 33823135 DOI: 10.1016/j.devcel.2021.03.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/11/2021] [Accepted: 03/08/2021] [Indexed: 12/22/2022]
Abstract
The mitotic spindle is a self-organizing molecular machine, where hundreds of different molecules continuously interact to maintain a dynamic steady state. While our understanding of key molecular players in spindle assembly is significant, it is still largely unknown how the spindle's material properties emerge from molecular interactions. Here, we use correlative fluorescence imaging and label-free three-dimensional optical diffraction tomography (ODT) to measure the Xenopus spindle's mass density distribution. While the spindle has been commonly referred to as a denser phase of the cytoplasm, we find that it has the same density as its surrounding, which makes it neutrally buoyant. Molecular perturbations suggest that spindle mass density can be modulated by tuning microtubule nucleation and dynamics. Together, ODT provides direct, unbiased, and quantitative information of the spindle's emergent physical properties-essential to advance predictive frameworks of spindle assembly and function.
Collapse
Affiliation(s)
- Abin Biswas
- IRI Life Sciences, Humboldt-Universität zu Berlin, 10115 Berlin, Germany; Max-Planck-Institute for the Science of Light, 91058 Erlangen, Germany
| | - Kyoohyun Kim
- Max-Planck-Institute for the Science of Light, 91058 Erlangen, Germany; BIOTEC, Technische Universität Dresden, 01307 Dresden, Germany
| | - Gheorghe Cojoc
- BIOTEC, Technische Universität Dresden, 01307 Dresden, Germany
| | - Jochen Guck
- Max-Planck-Institute for the Science of Light, 91058 Erlangen, Germany; BIOTEC, Technische Universität Dresden, 01307 Dresden, Germany; Cluster of Excellence Physics of Life, Technische Universität Dresden, 01307 Dresden, Germany
| | - Simone Reber
- IRI Life Sciences, Humboldt-Universität zu Berlin, 10115 Berlin, Germany; University of Applied Sciences Berlin, 13353 Berlin, Germany.
| |
Collapse
|
5
|
Reusch S, Biswas A, Hirst WG, Reber S. Affinity Purification of Label-free Tubulins from Xenopus Egg Extracts. STAR Protoc 2020; 1:100151. [PMID: 33377045 PMCID: PMC7757314 DOI: 10.1016/j.xpro.2020.100151] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Cytoplasmic extracts from unfertilized Xenopus eggs have made important contributions to our understanding of microtubule dynamics, spindle assembly, and scaling. Until recently, these in vitro studies relied on the use of heterologous tubulin. This protocol allows for the purification of physiologically relevant Xenopus tubulins in milligram yield, which are a complex mixture of isoforms with various post-translational modifications. The protocol is applicable to any cell or tissue of interest. For complete details on the use and execution of this protocol, please refer to Hirst et al. (2020).
Collapse
Affiliation(s)
- Sebastian Reusch
- IRI Life Sciences, Humboldt-Universität zu Berlin, 10115 Berlin, Germany
- Marine Biological Laboratory, Woods Hole, MA 02543, USA
| | - Abin Biswas
- IRI Life Sciences, Humboldt-Universität zu Berlin, 10115 Berlin, Germany
- Max-Planck-Institute for the Physics of Light, 91058 Erlangen, Germany
- Marine Biological Laboratory, Woods Hole, MA 02543, USA
| | - William Graham Hirst
- IRI Life Sciences, Humboldt-Universität zu Berlin, 10115 Berlin, Germany
- Research School of Biology, The Australian National University, Canberra, ACT 2600, Australia
- Marine Biological Laboratory, Woods Hole, MA 02543, USA
| | - Simone Reber
- IRI Life Sciences, Humboldt-Universität zu Berlin, 10115 Berlin, Germany
- University of Applied Sciences Berlin, 13353 Berlin, Germany
- Marine Biological Laboratory, Woods Hole, MA 02543, USA
| |
Collapse
|
6
|
Guilloux G, Gibeaux R. Mechanisms of spindle assembly and size control. Biol Cell 2020; 112:369-382. [PMID: 32762076 DOI: 10.1111/boc.202000065] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 08/03/2020] [Accepted: 08/03/2020] [Indexed: 01/09/2023]
Abstract
The spindle is crucial for cell division by allowing the faithful segregation of replicated chromosomes to daughter cells. Proper segregation is ensured only if microtubules (MTs) and hundreds of other associated factors interact to assemble this complex structure with the appropriate architecture and size. In this review, we describe the latest view of spindle organisation as well as the molecular gradients and mechanisms underlying MT nucleation and spindle assembly. We then discuss the overlapping physical and molecular constraints that dictate spindle morphology, concluding with a focus on spindle size regulation.
Collapse
Affiliation(s)
- Gabriel Guilloux
- Univ Rennes, CNRS, IGDR [(Institute of Genetics and Development of Rennes)] - UMR 6290, F-35000 Rennes, France
| | - Romain Gibeaux
- Univ Rennes, CNRS, IGDR [(Institute of Genetics and Development of Rennes)] - UMR 6290, F-35000 Rennes, France
| |
Collapse
|
7
|
Cheng X, Ferrell JE. Spontaneous emergence of cell-like organization in Xenopus egg extracts. Science 2020; 366:631-637. [PMID: 31672897 DOI: 10.1126/science.aav7793] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 09/17/2019] [Indexed: 12/27/2022]
Abstract
Every daughter cell inherits two things from its mother: genetic information and a spatially organized complement of macromolecular complexes and organelles. The extent to which de novo self-organization, as opposed to inheritance of an already organized state, can suffice to yield functional cells is uncertain. We used Xenopus laevis egg extracts to show that homogenized interphase egg cytoplasm self-organizes over the course of ~30 minutes into compartments 300 to 400 micrometers in length that resemble cells. Formation of these cell-like compartments required adenosine triphosphate and microtubule polymerization but did not require added demembranated sperm nuclei with their accompanying centrosomes or actin polymerization. In cycling extracts with added sperm, the compartments underwent multiple cycles of division and reorganization, with mother compartments giving rise to two daughters at the end of each mitotic cycle. These results indicate that the cytoplasm can generate much of the spatial organization and cell cycle function of the early embryo.
Collapse
Affiliation(s)
- Xianrui Cheng
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305-5174, USA.
| | - James E Ferrell
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305-5174, USA. .,Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305-5307, USA
| |
Collapse
|
8
|
Letort G, Bennabi I, Dmitrieff S, Nedelec F, Verlhac MH, Terret ME. A computational model of the early stages of acentriolar meiotic spindle assembly. Mol Biol Cell 2019; 30:863-875. [PMID: 30650011 PMCID: PMC6589792 DOI: 10.1091/mbc.e18-10-0644] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 12/18/2018] [Accepted: 01/09/2019] [Indexed: 11/11/2022] Open
Abstract
The mitotic spindle is an ensemble of microtubules responsible for the repartition of the chromosomal content between the two daughter cells during division. In metazoans, spindle assembly is a gradual process involving dynamic microtubules and recruitment of numerous associated proteins and motors. During mitosis, centrosomes organize and nucleate the majority of spindle microtubules. In contrast, oocytes lack canonical centrosomes but are still able to form bipolar spindles, starting from an initial ball that self-organizes in several hours. Interfering with early steps of meiotic spindle assembly can lead to erroneous chromosome segregation. Although not fully elucidated, this process is known to rely on antagonistic activities of plus end- and minus end-directed motors. We developed a model of early meiotic spindle assembly in mouse oocytes, including key factors such as microtubule dynamics and chromosome movement. We explored how the balance between plus end- and minus end-directed motors, as well as the influence of microtubule nucleation, impacts spindle morphology. In a refined model, we added spatial regulation of microtubule stability and minus-end clustering. We could reproduce the features of early stages of spindle assembly from 12 different experimental perturbations and predict eight additional perturbations. With its ability to characterize and predict chromosome individualization, this model can help deepen our understanding of spindle assembly.
Collapse
Affiliation(s)
- Gaelle Letort
- CIRB, Collège de France, UMR7241/U1050, F-75005 Paris, France
| | - Isma Bennabi
- CIRB, Collège de France, UMR7241/U1050, F-75005 Paris, France
| | - Serge Dmitrieff
- Institut Jacques Monod, UMR7592 and Université Paris-Diderot, F-75205 Paris, France
| | - François Nedelec
- Centre de Recherche Interdisciplinaire, F-75004 Paris, France
- European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | | | | |
Collapse
|
9
|
Wheeler RJ, Hyman AA. Controlling compartmentalization by non-membrane-bound organelles. Philos Trans R Soc Lond B Biol Sci 2019; 373:rstb.2017.0193. [PMID: 29632271 PMCID: PMC5904305 DOI: 10.1098/rstb.2017.0193] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/30/2017] [Indexed: 12/31/2022] Open
Abstract
Compartmentalization is a characterizing feature of complexity in cells, used to organize their biochemistry. Membrane-bound organelles are most widely known, but non-membrane-bound liquid organelles also exist. These have recently been shown to form by phase separation of specific types of proteins known as scaffolds. This forms two phases: a condensate that is enriched in scaffold protein separated by a phase boundary from the cytoplasm or nucleoplasm with a low concentration of the scaffold protein. Phase separation is well known for synthetic polymers, but also appears important in cells. Here, we review the properties of proteins important for forming these non-membrane-bound organelles, focusing on the energetically favourable interactions that drive condensation. On this basis we make qualitative predictions about how cells may control compartmentalization by condensates; the partition of specific molecules to a condensate; the control of condensation and dissolution of condensates; and the regulation of condensate nucleation. There are emerging data supporting many of these predictions, although future results may prove incorrect. It appears that many molecules may have the ability to modulate condensate formation, making condensates a potential target for future therapeutics. The emerging properties of condensates are fundamentally unlike the properties of membrane-bound organelles. They have the capacity to rapidly integrate cellular events and act as a new class of sensors for internal and external environments. This article is part of the theme issue ‘Self-organization in cell biology’.
Collapse
Affiliation(s)
- Richard J Wheeler
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, Dresden, Germany
| | - Anthony A Hyman
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, Dresden, Germany
| |
Collapse
|
10
|
Rosas-Salvans M, Cavazza T, Espadas G, Sabido E, Vernos I. Proteomic Profiling of Microtubule Self-organization in M-phase. Mol Cell Proteomics 2018; 17:1991-2004. [PMID: 29970457 DOI: 10.1074/mcp.ra118.000745] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 06/11/2018] [Indexed: 01/08/2023] Open
Abstract
Microtubules (MTs) and associated proteins can self-organize into complex structures such as the bipolar spindle, a process in which RanGTP plays a major role. Addition of RanGTP to M-phase Xenopus egg extracts promotes the nucleation and self-organization of MTs into asters and bipolar-like structures in the absence of centrosomes or chromosomes. We show here that the complex proteome of these RanGTP-induced MT assemblies is similar to that of mitotic spindles. Using proteomic profiling we show that MT self-organization in the M-phase cytoplasm involves the non-linear and non-stoichiometric recruitment of proteins from specific functional groups. Our study provides for the first time a temporal understanding of the protein dynamics driving MT self-organization in M-phase.
Collapse
Affiliation(s)
- Miquel Rosas-Salvans
- From the ‡Cell and Developmental Biology Programme, Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Tommaso Cavazza
- From the ‡Cell and Developmental Biology Programme, Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Guadalupe Espadas
- **Proteomics Unit, Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain.,§Universitat Pompeu Fabra, Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Eduard Sabido
- **Proteomics Unit, Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain.,§Universitat Pompeu Fabra, Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Isabelle Vernos
- From the ‡Cell and Developmental Biology Programme, Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain; .,§Universitat Pompeu Fabra, Dr. Aiguader 88, 08003 Barcelona, Spain.,‡‡Institució Catalana de Recerca I Estudis Avançats (ICREA), Passeig de Lluis Companys 23, 08010 Barcelona, Spain
| |
Collapse
|
11
|
Rai A, Singh PK, Singh V, Kumar V, Mishra R, Thakur AK, Mahadevan A, Shankar SK, Jana NR, Ganesh S. Glycogen synthase protects neurons from cytotoxicity of mutant huntingtin by enhancing the autophagy flux. Cell Death Dis 2018; 9:201. [PMID: 29422655 PMCID: PMC5833817 DOI: 10.1038/s41419-017-0190-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 11/22/2017] [Accepted: 11/24/2017] [Indexed: 12/11/2022]
Abstract
Healthy neurons do not store glycogen while they do possess the machinery for the glycogen synthesis albeit at an inactive state. Neurons in the degenerating brain, however, are known to accumulate glycogen, although its significance was not well understood. Emerging reports present contrasting views on neuronal glycogen synthesis; a few reports demonstrate a neurotoxic effect of glycogen while a few others suggest glycogen to be neuroprotective. Thus, the specific role of glycogen and glycogen synthase in neuronal physiology is largely unexplored. Using cellular and animal models of Huntington's disease, we show here that the overexpression of cytotoxic mutant huntingtin protein induces glycogen synthesis in the neurons by activating glycogen synthase and the overexpressed glycogen synthase protected neurons from the cytotoxicity of the mutant huntingtin. Exposure of neuronal cells to proteasomal blockade and oxidative stress also activate glycogen synthase to induce glycogen synthesis and to protect against stress-induced neuronal death. We show that the glycogen synthase plays an essential and inductive role in the neuronal autophagic flux, and helps in clearing the cytotoxic huntingtin aggregate. We also show that the increased neuronal glycogen inhibits the aggregation of mutant huntingtin, and thus could directly contribute to its clearance. Finally, we demonstrate that excessive autophagy flux is the molecular basis of cell death caused by the activation of glycogen synthase in unstressed neurons. Taken together, our results thus provide a novel function for glycogen synthase in proteolytic processes and offer insight into the role of glycogen synthase and glycogen in both survival and death of the neurons.
Collapse
Affiliation(s)
- Anupama Rai
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, 208016, India
| | - Pankaj Kumar Singh
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, 208016, India
- Institut de Génétique et de Biologie Moléculaire et Cellulare (IGBMC), Illkirch, France
| | - Virender Singh
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, 208016, India
| | | | - Rohit Mishra
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, 208016, India
| | - Ashwani Kumar Thakur
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, 208016, India
| | - Anita Mahadevan
- Department of Neuropathology, National Institute of Mental Health and Neuroscience, Bengaluru, 560029, India
| | - Susarla Krishna Shankar
- Department of Neuropathology, National Institute of Mental Health and Neuroscience, Bengaluru, 560029, India
| | | | - Subramaniam Ganesh
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, 208016, India.
| |
Collapse
|
12
|
Hanley ML, Yoo TY, Sonnett M, Needleman DJ, Mitchison TJ. Chromosomal passenger complex hydrodynamics suggests chaperoning of the inactive state by nucleoplasmin/nucleophosmin. Mol Biol Cell 2017; 28:1444-1456. [PMID: 28404751 PMCID: PMC5449145 DOI: 10.1091/mbc.e16-12-0860] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 03/27/2017] [Accepted: 04/04/2017] [Indexed: 01/30/2023] Open
Abstract
The chromosomal passenger complex (CPC) is a conserved, essential regulator of cell division. As such, significant anti-cancer drug development efforts have been focused on targeting it, most notably by inhibiting its AURKB kinase subunit. The CPC is activated by AURKB-catalyzed autophosphorylation on multiple subunits, but how this regulates CPC interactions with other mitotic proteins remains unclear. We investigated the hydrodynamic behavior of the CPC in Xenopus laevis egg cytosol using sucrose gradient sedimentation and in HeLa cells using fluorescence correlation spectroscopy. We found that autophosphorylation of the CPC decreases its sedimentation coefficient in egg cytosol and increases its diffusion coefficient in live cells, indicating a decrease in mass. Using immunoprecipitation coupled with mass spectrometry and immunoblots, we discovered that inactive, unphosphorylated CPC interacts with nucleophosmin/nucleoplasmin proteins, which are known to oligomerize into pentamers and decamers. Autophosphorylation of the CPC causes it to dissociate from nucleophosmin/nucleoplasmin. We propose that nucleophosmin/nucleoplasmin complexes serve as chaperones that negatively regulate the CPC and/or stabilize its inactive form, preventing CPC autophosphorylation and recruitment to chromatin and microtubules in mitosis.
Collapse
Affiliation(s)
- Mariah L Hanley
- Department of Systems Biology, Harvard Medical School, Boston, MA 02114-5701.,Department of Chemistry, Harvard University, Cambridge, MA 02138-2902
| | - Tae Yeon Yoo
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138-2902
| | - Matthew Sonnett
- Department of Systems Biology, Harvard Medical School, Boston, MA 02114-5701
| | - Daniel J Needleman
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138-2902.,Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138-2902
| | - Timothy J Mitchison
- Department of Systems Biology, Harvard Medical School, Boston, MA 02114-5701
| |
Collapse
|
13
|
Coughlin M, Groen AC, Mitchison TJ. Electron microscopy of microtubule cytoskeleton assembly in vitro. Methods Mol Biol 2014; 1117:259-71. [PMID: 24357367 DOI: 10.1007/978-1-62703-776-1_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Cell-free cytoplasm isolated from meiotic Xenopus egg extracts reconstitutes microtubule phenomena in vitro. These crude extracts assemble bipolar meiotic spindles and are readily fractionated for biochemical assays, providing a good tool to dissect molecular mechanism. We developed techniques for immunoelectron microscopy of microtubule structures assembled in perfusion chambers and in solution.
Collapse
Affiliation(s)
- Margaret Coughlin
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | | | | |
Collapse
|
14
|
Mitchison TJ, Nguyen P, Coughlin M, Groen AC. Self-organization of stabilized microtubules by both spindle and midzone mechanisms in Xenopus egg cytosol. Mol Biol Cell 2013; 24:1559-73. [PMID: 23515222 PMCID: PMC3655816 DOI: 10.1091/mbc.e12-12-0850] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Pineapples, or self-organized, Taxol-stabilized microtubule assemblies, reveal the richness of self-organizing mechanisms that operate on assembled microtubules during cell division and provide a biochemically tractable system for investigating these mechanisms during meiosis and cytokinesis. Previous study of self-organization of Taxol-stabilized microtubules into asters in Xenopus meiotic extracts revealed motor-dependent organizational mechanisms in the spindle. We revisit this approach using clarified cytosol with glycogen added back to supply energy and reducing equivalents. We added probes for NUMA and Aurora B to reveal microtubule polarity. Taxol and dimethyl sulfoxide promote rapid polymerization of microtubules that slowly self-organize into assemblies with a characteristic morphology consisting of paired lines or open circles of parallel bundles. Minus ends align in NUMA-containing foci on the outside, and plus ends in Aurora B–containing foci on the inside. Assemblies have a well-defined width that depends on initial assembly conditions, but microtubules within them have a broad length distribution. Electron microscopy shows that plus-end foci are coated with electron-dense material and resemble similar foci in monopolar midzones in cells. Functional tests show that two key spindle assembly factors, dynein and kinesin-5, act during assembly as they do in spindles, whereas two key midzone assembly factors, Aurora B and Kif4, act as they do in midzones. These data reveal the richness of self-organizing mechanisms that operate on microtubules after they polymerize in meiotic cytoplasm and provide a biochemically tractable system for investigating plus-end organization in midzones.
Collapse
|
15
|
Interplay Between Spindle Architecture and Function. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2013; 306:83-125. [DOI: 10.1016/b978-0-12-407694-5.00003-1] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
16
|
Cassimeris L, Silva VC, Miller E, Ton Q, Molnar C, Fong J. Fueled by microtubules: Does tubulin dimer/polymer partitioning regulate intracellular metabolism? Cytoskeleton (Hoboken) 2012; 69:133-43. [DOI: 10.1002/cm.21008] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Accepted: 01/11/2012] [Indexed: 11/07/2022]
|