1
|
Glauninger H, Bard JA, Wong Hickernell CJ, Airoldi EM, Li W, Singer RH, Paul S, Fei J, Sosnick TR, Wallace EWJ, Drummond DA. Transcriptome-wide mRNA condensation precedes stress granule formation and excludes stress-induced transcripts. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.15.589678. [PMID: 38659805 PMCID: PMC11042329 DOI: 10.1101/2024.04.15.589678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Stress-induced condensation of mRNA and proteins into stress granules is conserved across eukaryotes, yet the function, formation mechanisms, and relation to well-studied conserved transcriptional responses remain largely unresolved. Stress-induced exposure of ribosome-free mRNA following translational shutoff is thought to cause condensation by allowing new multivalent RNA-dependent interactions, with RNA length and associated interaction capacity driving increased condensation. Here we show that, in striking contrast, virtually all mRNA species condense in response to multiple unrelated stresses in budding yeast, length plays a minor role, and instead, stress-induced transcripts are preferentially excluded from condensates, enabling their selective translation. Using both endogenous genes and reporter constructs, we show that translation initiation blockade, rather than resulting ribosome-free RNA, causes condensation. These translation initiation-inhibited condensates (TIICs) are biochemically detectable even when stress granules, defined as microscopically visible foci, are absent or blocked. TIICs occur in unstressed yeast cells, and, during stress, grow before the appearance of visible stress granules. Stress-induced transcripts are excluded from TIICs primarily due to the timing of their expression, rather than their sequence features. Together, our results reveal a simple system by which cells redirect translational activity to newly synthesized transcripts during stress, with broad implications for cellular regulation in changing conditions.
Collapse
Affiliation(s)
- Hendrik Glauninger
- Graduate Program in Biophysical Sciences, The University of Chicago, Chicago, IL, USA
- Interdisciplinary Scientist Training Program, The University of Chicago, Chicago, IL, USA
| | - Jared A.M. Bard
- Department of Biology, Texas A&M University, College Station, TX, USA
| | | | - Edo M. Airoldi
- Fox School of Business and Management, Temple University, Philadelphia, PA, USA
| | - Weihan Li
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Robert H. Singer
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Sneha Paul
- Department of Biochemistry & Molecular Biology, The University of Chicago, Chicago, IL, USA
| | - Jingyi Fei
- Department of Biochemistry & Molecular Biology, The University of Chicago, Chicago, IL, USA
- Institute for Biophysical Dynamics, University of Chicago, Chicago, IL, USA
| | - Tobin R. Sosnick
- Department of Biochemistry & Molecular Biology, The University of Chicago, Chicago, IL, USA
- Institute for Biophysical Dynamics, University of Chicago, Chicago, IL, USA
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA
| | | | - D. Allan Drummond
- Department of Biochemistry & Molecular Biology, The University of Chicago, Chicago, IL, USA
- Institute for Biophysical Dynamics, University of Chicago, Chicago, IL, USA
- Department of Medicine, Section of Genetic Medicine, The University of Chicago, Chicago, IL, USA
| |
Collapse
|
2
|
Seoane R, Lama-Díaz T, Romero AM, El Motiam A, Martínez-Férriz A, Vidal S, Bouzaher YH, Blanquer M, Tolosa RM, Castillo Mewa J, Rodríguez MS, García-Sastre A, Xirodimas D, Sutherland JD, Barrio R, Alepuz P, Blanco MG, Farràs R, Rivas C. SUMOylation modulates eIF5A activities in both yeast and pancreatic ductal adenocarcinoma cells. Cell Mol Biol Lett 2024; 29:15. [PMID: 38229033 PMCID: PMC10790418 DOI: 10.1186/s11658-024-00533-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 01/04/2024] [Indexed: 01/18/2024] Open
Abstract
BACKGROUND The eukaryotic translation initiation protein eIF5A is a highly conserved and essential factor that plays a critical role in different physiological and pathological processes including stress response and cancer. Different proteomic studies suggest that eIF5A may be a small ubiquitin-like modifier (SUMO) substrate, but whether eIF5A is indeed SUMOylated and how relevant is this modification for eIF5A activities are still unknown. METHODS SUMOylation was evaluated using in vitro SUMOylation assays, Histidine-tagged proteins purification from His6-SUMO2 transfected cells, and isolation of endogenously SUMOylated proteins using SUMO-binding entities (SUBES). Mutants were engineered by site-directed mutagenesis. Protein stability was measured by a cycloheximide chase assay. Protein localization was determined using immunofluorescence and cellular fractionation assays. The ability of eIF5A1 constructs to complement the growth of Saccharomyces cerevisiae strains harboring thermosensitive mutants of a yeast EIF5A homolog gene (HYP2) was analyzed. The polysome profile and the formation of stress granules in cells expressing Pab1-GFP (a stress granule marker) by immunofluorescence were determined in yeast cells subjected to heat shock. Cell growth and migration of pancreatic ductal adenocarcinoma PANC-1 cells overexpressing different eIF5A1 constructs were evaluated using crystal violet staining and transwell inserts, respectively. Statistical analysis was performed with GraphPad Software, using unpaired Student's t-test, or one-way or two-way analysis of variance (ANOVA). RESULTS We found that eIF5A is modified by SUMO2 in vitro, in transfected cells and under endogenous conditions, revealing its physiological relevance. We identified several SUMO sites in eIF5A and found that SUMOylation modulates both the stability and the localization of eIF5A in mammalian cells. Interestingly, the SUMOylation of eIF5A responds to specific stresses, indicating that it is a regulated process. SUMOylation of eIF5A is conserved in yeast, the eIF5A SUMOylation mutants are unable to completely suppress the defects of HYP2 mutants, and SUMOylation of eIF5A is important for both stress granules formation and disassembly of polysomes induced by heat-shock. Moreover, mutation of the SUMOylation sites in eIF5A abolishes its promigratory and proproliferative activities in PANC-1 cells. CONCLUSIONS SUMO2 conjugation to eIF5A is a stress-induced response implicated in the adaptation of yeast cells to heat-shock stress and required to promote the growth and migration of pancreatic ductal adenocarcinoma cells.
Collapse
Affiliation(s)
- Rocío Seoane
- Centro de Investigación en Medicina Molecular (CIMUS), IDIS, Universidade de Santiago de Compostela, Avda Barcelona, 15706, Santiago de Compostela, Spain
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Tomás Lama-Díaz
- Centro de Investigación en Medicina Molecular (CIMUS), IDIS, Universidade de Santiago de Compostela, Avda Barcelona, 15706, Santiago de Compostela, Spain
- Departamento de Bioquímica e Bioloxía Molecular, Universidade de Santiago de Compostela, 15706, Santiago de Compostela, Spain
| | - Antonia María Romero
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universitat de València, Burjassot, 46100, Valencia, Spain
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), C/ Américo Vespucio 24, Edificio Cabimer, 41092, Seville, Spain
| | - Ahmed El Motiam
- Centro de Investigación en Medicina Molecular (CIMUS), IDIS, Universidade de Santiago de Compostela, Avda Barcelona, 15706, Santiago de Compostela, Spain
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, M5G 1X5, Canada
| | | | - Santiago Vidal
- Centro de Investigación en Medicina Molecular (CIMUS), IDIS, Universidade de Santiago de Compostela, Avda Barcelona, 15706, Santiago de Compostela, Spain
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yanis H Bouzaher
- Centro de Investigación en Medicina Molecular (CIMUS), IDIS, Universidade de Santiago de Compostela, Avda Barcelona, 15706, Santiago de Compostela, Spain
| | - María Blanquer
- Centro de Investigación en Medicina Molecular (CIMUS), IDIS, Universidade de Santiago de Compostela, Avda Barcelona, 15706, Santiago de Compostela, Spain
| | - Rocío M Tolosa
- Centro de Investigación en Medicina Molecular (CIMUS), IDIS, Universidade de Santiago de Compostela, Avda Barcelona, 15706, Santiago de Compostela, Spain
| | - Juan Castillo Mewa
- Research Department in Genomics and Proteomics, Instituto Conmemorativo Gorgas de Estudios de la Salud, 0816-02593, Panamá, Republic of Panama
| | - Manuel S Rodríguez
- Laboratoire de Chimie de Coordination LCC-UPR 8241-CNRS, 31400, Toulouse, France
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Dimitris Xirodimas
- Montpellier Cell Biology Research Center (CRBM), CNRS-UMR 5237 Université de Montpellier, Montpellier, France
| | - James D Sutherland
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160, Derio, Spain
| | - Rosa Barrio
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160, Derio, Spain
| | - Paula Alepuz
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universitat de València, Burjassot, 46100, Valencia, Spain
- Instituto Bio TecMed, Universitat de València, Burjassot, 46100, Valencia, Spain
| | - Miguel G Blanco
- Centro de Investigación en Medicina Molecular (CIMUS), IDIS, Universidade de Santiago de Compostela, Avda Barcelona, 15706, Santiago de Compostela, Spain
- Departamento de Bioquímica e Bioloxía Molecular, Universidade de Santiago de Compostela, 15706, Santiago de Compostela, Spain
| | - Rosa Farràs
- Centro de Investigación Príncipe Felipe, 46012, Valencia, Spain
| | - Carmen Rivas
- Centro de Investigación en Medicina Molecular (CIMUS), IDIS, Universidade de Santiago de Compostela, Avda Barcelona, 15706, Santiago de Compostela, Spain.
- Departamento de Biología Molecular y Celular, Centro Nacional de Biotecnología (CNB), CSIC, Darwin 3, 28049, Madrid, Spain.
| |
Collapse
|
3
|
Kataoka N. The Nuclear Cap-Binding Complex, a multitasking binding partner of RNA polymerase II transcripts. J Biochem 2023; 175:9-15. [PMID: 37830942 PMCID: PMC10771035 DOI: 10.1093/jb/mvad081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/26/2023] [Accepted: 10/03/2023] [Indexed: 10/14/2023] Open
Abstract
In eukaryotic cells, RNAs transcribed by RNA polymerase-II receive the modification at the 5' end. This structure is called the cap structure. The cap structure has a fundamental role for translation initiation by recruiting eukaryotic translation initiation factor 4F (eIF4F). The other important mediator of the cap structure is a nuclear cap-binding protein complex (CBC). CBC consists of two proteins, which are renamed as NCBP1 and NCBP2 (previously called as CBP80/NCBP and CBP20/NIP1, respectively). This review article discusses the multiple roles CBC mediates and co-ordinates in several gene expression steps in eukaryotes.
Collapse
Affiliation(s)
- Naoyuki Kataoka
- Laboratory of Cellular Biochemistry, Department of Animal Resource Sciences, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Agriculture Bldg. 7A, Room 703, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
4
|
Barba-Aliaga M, Bernal V, Rong C, Zid BM, Alepuz P. eIF5A controls mitoprotein import by relieving ribosome stalling at the TIM50 translocase mRNA. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.19.572290. [PMID: 38187585 PMCID: PMC10769225 DOI: 10.1101/2023.12.19.572290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
The efficient import of nuclear-encoded proteins into mitochondria is crucial for proper mitochondrial function. The conserved translation factor eIF5A is primarily known as an elongation factor which binds ribosomes to alleviate ribosome stalling at sequences encoding polyprolines or combinations of proline with glycine and charged amino acids. eIF5A is known to impact the mitochondrial function across a variety of species although the precise molecular mechanism underlying this impact remains unclear. We found that depletion of eIF5A in yeast drives reduced translation and levels of TCA cycle and oxidative phosphorylation proteins. We further found that loss of eIF5A leads to the accumulation of mitoprotein precursors in the cytosol as well as to the induction of a mitochondrial import stress response. Here we identify an essential polyproline-containing protein as a direct eIF5A target for translation: the mitochondrial inner membrane protein Tim50, which is the receptor subunit of the TIM23 translocase complex. We show how eIF5A directly controls mitochondrial protein import through the alleviation of ribosome stalling along TIM50 mRNA at the mitochondrial surface. Removal of the polyprolines from Tim50 rescues the mitochondrial import stress response, as well as the translation of oxidative phosphorylation reporter genes in an eIF5A loss of function. Overall, our findings elucidate how eIF5A impacts the mitochondrial function by reducing ribosome stalling and facilitating protein translation, thereby positively impacting the mitochondrial import process.
Collapse
Affiliation(s)
- Marina Barba-Aliaga
- Instituto de Biotecnología y Biomedicina (Biotecmed), Universitat de València, 46100 València, Spain
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universitat de València, 46100 València, Spain
| | - Vanessa Bernal
- Instituto de Biotecnología y Biomedicina (Biotecmed), Universitat de València, 46100 València, Spain
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universitat de València, 46100 València, Spain
| | - Cynthia Rong
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, United States
| | - Brian M Zid
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, United States
| | - Paula Alepuz
- Instituto de Biotecnología y Biomedicina (Biotecmed), Universitat de València, 46100 València, Spain
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universitat de València, 46100 València, Spain
| |
Collapse
|
5
|
Borden KL. Cancer cells hijack RNA processing to rewrite the message. Biochem Soc Trans 2022; 50:1447-1456. [PMID: 36282006 PMCID: PMC9704515 DOI: 10.1042/bst20220621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/01/2022] [Accepted: 10/04/2022] [Indexed: 11/17/2022]
Abstract
Typically, cancer is thought to arise due to DNA mutations, dysregulated transcription and/or aberrant signalling. Recently, it has become clear that dysregulated mRNA processing, mRNA export and translation also contribute to malignancy. RNA processing events result in major modifications to the physical nature of mRNAs such as the addition of the methyl-7-guanosine cap, the removal of introns and the addition of polyA tails. mRNA processing is a critical determinant for the protein-coding capacity of mRNAs since these physical changes impact the efficiency by which a given transcript can be exported to the cytoplasm and translated into protein. While many of these mRNA metabolism steps were considered constitutive housekeeping activities, they are now known to be highly regulated with combinatorial and multiplicative impacts i.e. one event will influence the capacity to undergo others. Furthermore, alternative splicing and/or cleavage and polyadenylation can produce transcripts with alternative messages and new functionalities. The coordinated processing of groups of functionally related RNAs can potently re-wire signalling pathways, modulate survival pathways and even re-structure the cell. As postulated by the RNA regulon model, combinatorial regulation of these groups is achieved by the presence of shared cis-acting elements (known as USER codes) which recruit machinery for processing, export or translation. In all, dysregulated RNA metabolism in cancer gives rise to an altered proteome that in turn elicits biological responses related to malignancy. Studies of these events in cancer revealed new mechanisms underpinning malignancies and unearthed novel therapeutic opportunities. In all, cancer cells coopt RNA processing, export and translation to support their oncogenic activity.
Collapse
Affiliation(s)
- Katherine L.B. Borden
- Institute for Research in Immunology and Cancer, Department of Pathology and Cell Biology, University of Montreal, Montreal, QC H3C 3J7, Canada
| |
Collapse
|
6
|
Romero AM, García-Martínez J, Pérez-Ortín JE, Martínez-Pastor MT, Puig S. Changes in mRNA stability play an important role in the adaptation of yeast cells to iron deprivation. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2022; 1865:194800. [PMID: 35218933 DOI: 10.1016/j.bbagrm.2022.194800] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/09/2022] [Accepted: 02/10/2022] [Indexed: 06/14/2023]
Abstract
Eukaryotic cells rely on iron as an indispensable cofactor for multiple biological functions including mitochondrial respiration and protein synthesis. The budding yeast Saccharomyces cerevisiae utilizes both transcriptional and posttranscriptional mechanisms to couple mRNA levels to the requirements of iron deprivation. Thus, in response to iron deficiency, transcription factors Aft1 and Aft2 activate the expression of genes implicated in iron acquisition and mobilization, whereas two mRNA-binding proteins, Cth1 and Cth2, posttranscriptionally control iron metabolism. By using a genome-wide approach, we describe here a global stabilization of mRNAs, including transcripts encoding ribosomal proteins (RPs), when iron bioavailability diminishes. mRNA decay assays indicate that the mRNA-binding protein Pub1 contributes to RP transcript stabilization during adaptation to iron limitation. In fact, Pub1 becomes critical for growth and translational repression in low-iron conditions. Remarkably, we observe that pub1Δ cells also exhibit an increase in the transcription of RP genes that evidences the crosstalk between transcription and degradation mechanisms to maintain the appropriate mRNA balance under iron deficiency conditions.
Collapse
Affiliation(s)
- Antonia María Romero
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Agustín Escardino 7, E-46980 Paterna, Valencia, Spain.
| | - José García-Martínez
- Departamento de Genética, Universitat de València, Ave. Doctor Moliner 50, E-46100 Burjassot, Valencia, Spain; Instituto de Biotecnología y Biomedicina (BIOTECMED), Universitat de València, Ave. Doctor Moliner 50, E-46100 Burjassot, Valencia, Spain
| | - José Enrique Pérez-Ortín
- Instituto de Biotecnología y Biomedicina (BIOTECMED), Universitat de València, Ave. Doctor Moliner 50, E-46100 Burjassot, Valencia, Spain; Departamento de Bioquímica y Biología Molecular, Universitat de València, Ave. Doctor Moliner 50, E-46100 Burjassot, Valencia, Spain
| | - María Teresa Martínez-Pastor
- Departamento de Bioquímica y Biología Molecular, Universitat de València, Ave. Doctor Moliner 50, E-46100 Burjassot, Valencia, Spain
| | - Sergi Puig
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Agustín Escardino 7, E-46980 Paterna, Valencia, Spain.
| |
Collapse
|
7
|
Mars JC, Ghram M, Culjkovic-Kraljacic B, Borden KLB. The Cap-Binding Complex CBC and the Eukaryotic Translation Factor eIF4E: Co-Conspirators in Cap-Dependent RNA Maturation and Translation. Cancers (Basel) 2021; 13:6185. [PMID: 34944805 PMCID: PMC8699206 DOI: 10.3390/cancers13246185] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/30/2021] [Accepted: 12/02/2021] [Indexed: 12/26/2022] Open
Abstract
The translation of RNA into protein is a dynamic process which is heavily regulated during normal cell physiology and can be dysregulated in human malignancies. Its dysregulation can impact selected groups of RNAs, modifying protein levels independently of transcription. Integral to their suitability for translation, RNAs undergo a series of maturation steps including the addition of the m7G cap on the 5' end of RNAs, splicing, as well as cleavage and polyadenylation (CPA). Importantly, each of these steps can be coopted to modify the transcript signal. Factors that bind the m7G cap escort these RNAs through different steps of maturation and thus govern the physical nature of the final transcript product presented to the translation machinery. Here, we describe these steps and how the major m7G cap-binding factors in mammalian cells, the cap binding complex (CBC) and the eukaryotic translation initiation factor eIF4E, are positioned to chaperone transcripts through RNA maturation, nuclear export, and translation in a transcript-specific manner. To conceptualize a framework for the flow and integration of this genetic information, we discuss RNA maturation models and how these integrate with translation. Finally, we discuss how these processes can be coopted by cancer cells and means to target these in malignancy.
Collapse
Affiliation(s)
- Jean-Clement Mars
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Pavillion Marcelle-Coutu, Chemin Polytechnique, Montreal, QC H3T 1J4, Canada
| | - Mehdi Ghram
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Pavillion Marcelle-Coutu, Chemin Polytechnique, Montreal, QC H3T 1J4, Canada
| | - Biljana Culjkovic-Kraljacic
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Pavillion Marcelle-Coutu, Chemin Polytechnique, Montreal, QC H3T 1J4, Canada
| | - Katherine L B Borden
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Pavillion Marcelle-Coutu, Chemin Polytechnique, Montreal, QC H3T 1J4, Canada
| |
Collapse
|
8
|
Wu R, Chen Y, Liu Y, Zhuang L, Chen W, Zeng B, Liao X, Guo G, Wang Y, Wang X. m6A methylation promotes white-to-beige fat transition by facilitating Hif1a translation. EMBO Rep 2021; 22:e52348. [PMID: 34569703 DOI: 10.15252/embr.202052348] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 08/02/2021] [Accepted: 09/02/2021] [Indexed: 12/12/2022] Open
Abstract
Obesity mainly results from a chronic energy imbalance. Promoting browning of white adipocytes is a promising strategy to enhance energy expenditure and combat obesity. N6-methyladenosine (m6A), the most abundant mRNA modification in eukaryotes, plays an important role in regulating adipogenesis. However, whether m6A regulates white adipocyte browning was unknown. Here, we report that adipose tissue-specific deletion of Fto, an m6A demethylase, predisposes mice to prevent high-fat diet (HFD)-induced obesity by enhancing energy expenditure. Additionally, deletion of FTO in vitro promotes thermogenesis and white-to-beige adipocyte transition. Mechanistically, FTO deficiency increases the m6A level of Hif1a mRNA, which is recognized by m6A-binding protein YTHDC2, facilitating mRNA translation and increasing HIF1A protein abundance. HIF1A activates the transcription of thermogenic genes, including Ppaggc1a, Prdm16, and Pparg, thereby promoting Ucp1 expression and the browning process. Collectively, these results unveil an epigenetic mechanism by which m6A-facilitated HIF1A expression controls browning of white adipocytes and thermogenesis, providing a potential target to counteract obesity and metabolic disease.
Collapse
Affiliation(s)
- Ruifan Wu
- College of Animal Sciences, Zhejiang University, Hangzhou, China.,Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China.,Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Animal Nutritional Regulation and National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Yushi Chen
- College of Animal Sciences, Zhejiang University, Hangzhou, China.,Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China
| | - Youhua Liu
- College of Animal Sciences, Zhejiang University, Hangzhou, China.,Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China
| | - Lenan Zhuang
- College of Animal Sciences, Zhejiang University, Hangzhou, China.,Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China
| | - Wei Chen
- College of Animal Sciences, Zhejiang University, Hangzhou, China.,Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China
| | - Botao Zeng
- College of Animal Sciences, Zhejiang University, Hangzhou, China.,Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China
| | - Xing Liao
- College of Animal Sciences, Zhejiang University, Hangzhou, China.,Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China
| | - Guanqun Guo
- College of Animal Sciences, Zhejiang University, Hangzhou, China.,Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China
| | - Yizhen Wang
- College of Animal Sciences, Zhejiang University, Hangzhou, China.,Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China
| | - Xinxia Wang
- College of Animal Sciences, Zhejiang University, Hangzhou, China.,Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China
| |
Collapse
|
9
|
Liu Y, Zhao Y, Wu R, Chen Y, Chen W, Liu Y, Luo Y, Huang C, Zeng B, Liao X, Guo G, Wang Y, Wang X. mRNA m5C controls adipogenesis by promoting CDKN1A mRNA export and translation. RNA Biol 2021; 18:711-721. [PMID: 34570675 DOI: 10.1080/15476286.2021.1980694] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
5-Methylcytosine (m5C) is a type of RNA modification that exists in tRNAs and rRNAs and was recently found in mRNA. Although mRNA m5C modification has been reported to regulate diverse biological process, its function in adipogenesis remains unknown. Here, we demonstrated that knockdown of NOL1/NOP2/Sun domain family member 2 (NSUN2), a m5C methyltransferase, increased lipid accumulation of 3T3-L1 preadipocytes through accelerating cell cycle progression during mitotic clonal expansion (MCE) at the early stage of adipogenesis. Mechanistically, we proved that NSUN2 directly targeted cyclin-dependent kinase inhibitor 1A (CDKN1A) mRNA, a key inhibitory regulator of cell cycle progression, and upregulated its protein expression in an m5C-dependent manner. Further study identified that CDKN1A was the target of Aly/REF export factor (ALYREF), a reader of m5C modified mRNA. Upon NSUN2 deficiency, the recognition of CDKN1A mRNA by ALYREF was suppressed, resulting in the decrease of CDKN1A mRNA shuttling from nucleus to cytoplasm. Thereby, the translation of CDKN1A was reduced, leading to the acceleration of cell cycle and the promotion of adipogenesis. Together, these findings unveiled an important function and mechanism of the m5C modification on adipogenesis by controlling cell cycle progression, providing a potential therapeutic target to prevent obesity.
Collapse
Affiliation(s)
- Youhua Liu
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China.,Key Laboratory of Animal Nutrition & Feed Sciences, Ministry of Agriculture, China.,Laboratory of Molecular Animal Nutrition, Zhejiang University, Ministry of Education, Hangzhou, Zhejiang, China
| | - Yuanling Zhao
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China.,Key Laboratory of Animal Nutrition & Feed Sciences, Ministry of Agriculture, China.,Laboratory of Molecular Animal Nutrition, Zhejiang University, Ministry of Education, Hangzhou, Zhejiang, China
| | - Ruifan Wu
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China.,Key Laboratory of Animal Nutrition & Feed Sciences, Ministry of Agriculture, China.,Laboratory of Molecular Animal Nutrition, Zhejiang University, Ministry of Education, Hangzhou, Zhejiang, China
| | - Yushi Chen
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China.,Key Laboratory of Animal Nutrition & Feed Sciences, Ministry of Agriculture, China.,Laboratory of Molecular Animal Nutrition, Zhejiang University, Ministry of Education, Hangzhou, Zhejiang, China
| | - Wei Chen
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China.,Key Laboratory of Animal Nutrition & Feed Sciences, Ministry of Agriculture, China.,Laboratory of Molecular Animal Nutrition, Zhejiang University, Ministry of Education, Hangzhou, Zhejiang, China
| | - Yuxi Liu
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China.,Key Laboratory of Animal Nutrition & Feed Sciences, Ministry of Agriculture, China.,Laboratory of Molecular Animal Nutrition, Zhejiang University, Ministry of Education, Hangzhou, Zhejiang, China
| | - Yaojun Luo
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China.,Key Laboratory of Animal Nutrition & Feed Sciences, Ministry of Agriculture, China.,Laboratory of Molecular Animal Nutrition, Zhejiang University, Ministry of Education, Hangzhou, Zhejiang, China
| | - Chaoqun Huang
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China.,Key Laboratory of Animal Nutrition & Feed Sciences, Ministry of Agriculture, China.,Laboratory of Molecular Animal Nutrition, Zhejiang University, Ministry of Education, Hangzhou, Zhejiang, China
| | - Botao Zeng
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China.,Key Laboratory of Animal Nutrition & Feed Sciences, Ministry of Agriculture, China.,Laboratory of Molecular Animal Nutrition, Zhejiang University, Ministry of Education, Hangzhou, Zhejiang, China
| | - Xing Liao
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China.,Key Laboratory of Animal Nutrition & Feed Sciences, Ministry of Agriculture, China.,Laboratory of Molecular Animal Nutrition, Zhejiang University, Ministry of Education, Hangzhou, Zhejiang, China
| | - Guanqun Guo
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China.,Key Laboratory of Animal Nutrition & Feed Sciences, Ministry of Agriculture, China.,Laboratory of Molecular Animal Nutrition, Zhejiang University, Ministry of Education, Hangzhou, Zhejiang, China
| | - Yizhen Wang
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China.,Key Laboratory of Animal Nutrition & Feed Sciences, Ministry of Agriculture, China.,Laboratory of Molecular Animal Nutrition, Zhejiang University, Ministry of Education, Hangzhou, Zhejiang, China
| | - Xinxia Wang
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China.,Key Laboratory of Animal Nutrition & Feed Sciences, Ministry of Agriculture, China.,Laboratory of Molecular Animal Nutrition, Zhejiang University, Ministry of Education, Hangzhou, Zhejiang, China
| |
Collapse
|
10
|
Barba-Aliaga M, Mena A, Espinoza V, Apostolova N, Costell M, Alepuz P. Hypusinated eIF5A is required for the translation of collagen. J Cell Sci 2021; 134:271973. [PMID: 34447991 DOI: 10.1242/jcs.258643] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 07/30/2021] [Indexed: 12/17/2022] Open
Abstract
Translation of mRNAs that encode peptide sequences with consecutive prolines (polyproline) requires the conserved and essential elongation factor eIF5A to facilitate the formation of peptide bonds. It has been shown that, upon eIF5A depletion, yeast ribosomes stall in polyproline motifs, but also in tripeptide sequences that combine proline with glycine and charged amino acids. Mammalian collagens are enriched in putative eIF5A-dependent Pro-Gly-containing tripeptides. Here, we show that depletion of active eIF5A in mouse fibroblasts reduced collagen type I α1 chain (Col1a1) content, which concentrated around the nuclei. Moreover, it provoked the upregulation of endoplasmic reticulum (ER) stress markers, suggesting retention of partially synthesized collagen 1 (Col1) in the ER. We confirmed that eIF5A is needed for heterologous collagen synthesis in yeast and, using a double luciferase reporter system, showed that eIF5A depletion interrupts translation at Pro-Gly collagenic motifs. A dramatically lower level of Col1a1 protein was also observed in functional eIF5A-depleted human hepatic stellate cells treated with the profibrotic cytokine TGF-β1. In sum, our results show that collagen expression requires eIF5A and imply its potential as a target for regulating collagen production in fibrotic diseases.
Collapse
Affiliation(s)
- Marina Barba-Aliaga
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universitat de València, C/ Dr. Moliner 50, E46100 Burjassot, Spain.,Instituto Biotecmed, Universitat de València, C/Dr. Moliner 50, E46100 Burjassot, Spain
| | - Adriana Mena
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universitat de València, C/ Dr. Moliner 50, E46100 Burjassot, Spain.,Instituto Biotecmed, Universitat de València, C/Dr. Moliner 50, E46100 Burjassot, Spain
| | - Vanessa Espinoza
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universitat de València, C/ Dr. Moliner 50, E46100 Burjassot, Spain.,Instituto Biotecmed, Universitat de València, C/Dr. Moliner 50, E46100 Burjassot, Spain
| | - Nadezda Apostolova
- Departamento de Farmacología, Facultad de Medicina, Universitat de València, E46010 Valencia, Spain.,Centro de Investigación Biomédica en Red: enfermedades hepáticas y digestivas (CIBERehd), Spain.,FISABIO, Hospital Universitario Dr. Peset, Valencia, Spain
| | - Mercedes Costell
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universitat de València, C/ Dr. Moliner 50, E46100 Burjassot, Spain.,Instituto Biotecmed, Universitat de València, C/Dr. Moliner 50, E46100 Burjassot, Spain
| | - Paula Alepuz
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universitat de València, C/ Dr. Moliner 50, E46100 Burjassot, Spain.,Instituto Biotecmed, Universitat de València, C/Dr. Moliner 50, E46100 Burjassot, Spain
| |
Collapse
|
11
|
García-Martínez J, Pérez-Martínez ME, Pérez-Ortín JE, Alepuz P. Recruitment of Xrn1 to stress-induced genes allows efficient transcription by controlling RNA polymerase II backtracking. RNA Biol 2020; 18:1458-1474. [PMID: 33258404 DOI: 10.1080/15476286.2020.1857521] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
A new paradigm has emerged proposing that the crosstalk between nuclear transcription and cytoplasmic mRNA stability keeps robust mRNA levels in cells under steady-state conditions. A key piece in this crosstalk is the highly conserved 5'-3' RNA exonuclease Xrn1, which degrades most cytoplasmic mRNAs but also associates with nuclear chromatin to activate transcription by not well-understood mechanisms. Here, we investigated the role of Xrn1 in the transcriptional response of Saccharomyces cerevisiae cells to osmotic stress. We show that a lack of Xrn1 results in much lower transcriptional induction of the upregulated genes but in similar high levels of their transcripts because of parallel mRNA stabilization. Unexpectedly, lower transcription in xrn1 occurs with a higher accumulation of RNA polymerase II (RNAPII) at stress-inducible genes, suggesting that this polymerase remains inactive backtracked. Xrn1 seems to be directly implicated in the formation of a competent elongation complex because Xrn1 is recruited to the osmotic stress-upregulated genes in parallel with the RNAPII complex, and both are dependent on the mitogen-activated protein kinase Hog1. Our findings extend the role of Xrn1 in preventing the accumulation of inactive RNAPII at highly induced genes to other situations of rapid and strong transcriptional upregulation.
Collapse
Affiliation(s)
- José García-Martínez
- ERI Biotecmed, Facultad De Ciencias Biológicas, Universitat De València, Burjassot, Spain.,Departamento De Genética, Facultad De Ciencias Biológicas, Universitat De València, Burjassot, Spain
| | - María E Pérez-Martínez
- ERI Biotecmed, Facultad De Ciencias Biológicas, Universitat De València, Burjassot, Spain.,Departamento De Bioquímica Y Biología Molecular, Facultad De Ciencias Biológicas, Universitat De València, Burjassot, Spain
| | - José E Pérez-Ortín
- ERI Biotecmed, Facultad De Ciencias Biológicas, Universitat De València, Burjassot, Spain.,Departamento De Bioquímica Y Biología Molecular, Facultad De Ciencias Biológicas, Universitat De València, Burjassot, Spain
| | - Paula Alepuz
- ERI Biotecmed, Facultad De Ciencias Biológicas, Universitat De València, Burjassot, Spain.,Departamento De Bioquímica Y Biología Molecular, Facultad De Ciencias Biológicas, Universitat De València, Burjassot, Spain
| |
Collapse
|
12
|
Borden KLB, Volpon L. The diversity, plasticity, and adaptability of cap-dependent translation initiation and the associated machinery. RNA Biol 2020; 17:1239-1251. [PMID: 32496897 PMCID: PMC7549709 DOI: 10.1080/15476286.2020.1766179] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Translation initiation is a critical facet of gene expression with important impacts that underlie cellular responses to stresses and environmental cues. Its dysregulation in many diseases position this process as an important area for the development of new therapeutics. The gateway translation factor eIF4E is typically considered responsible for ‘global’ or ‘canonical’ m7G cap-dependent translation. However, eIF4E impacts translation of specific transcripts rather than the entire translatome. There are many alternative cap-dependent translation mechanisms that also contribute to the translation capacity of the cell. We review the diversity of these, juxtaposing more recently identified mechanisms with eIF4E-dependent modalities. We also explore the multiplicity of functions played by translation factors, both within and outside protein synthesis, and discuss how these differentially contribute to their ultimate physiological impacts. For comparison, we discuss some modalities for cap-independent translation. In all, this review highlights the diverse mechanisms that engage and control translation in eukaryotes.
Collapse
Affiliation(s)
- Katherine L B Borden
- Institute of Research in Immunology and Cancer (IRIC), Department of Pathology and Cell Biology, Université de Montréal , Montreal, Québec, Canada
| | - Laurent Volpon
- Institute of Research in Immunology and Cancer (IRIC), Department of Pathology and Cell Biology, Université de Montréal , Montreal, Québec, Canada
| |
Collapse
|
13
|
Romero AM, Ramos-Alonso L, Alepuz P, Puig S, Martínez-Pastor MT. Global translational repression induced by iron deficiency in yeast depends on the Gcn2/eIF2α pathway. Sci Rep 2020; 10:233. [PMID: 31937829 PMCID: PMC6959253 DOI: 10.1038/s41598-019-57132-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 12/16/2019] [Indexed: 11/09/2022] Open
Abstract
Iron is an essential element for all eukaryotic organisms because it participates as a redox active cofactor in a wide range of biological processes, including protein synthesis. Translation is probably the most energy consuming process in cells. Therefore, one of the initial responses of eukaryotic cells to stress or nutrient limitation is the arrest of mRNA translation. In first instance, the budding yeast Saccharomyces cerevisiae responds to iron deficiency by activating iron acquisition and remodeling cellular metabolism in order to prioritize essential over non-essential iron-dependent processes. We have determined that, despite a global decrease in transcription, mRNA translation is actively maintained during a short-term exposure to iron scarcity. However, a more severe iron deficiency condition induces a global repression of translation. Our results indicate that the Gcn2-eIF2α pathway limits general translation at its initiation step during iron deficiency. This bulk translational inhibition depends on the uncharged tRNA sensing Gcn1-Gcn20 complex. The involvement of the Gcn2-eIF2α pathway in the response to iron deficiency highlights its central role in the eukaryotic response to stress or nutritional deprivation, which is conserved from yeast to mammals.
Collapse
Affiliation(s)
- Antonia María Romero
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Catedrático Agustín Escardino 7, E-46980, Paterna, Valencia, Spain
| | - Lucía Ramos-Alonso
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Catedrático Agustín Escardino 7, E-46980, Paterna, Valencia, Spain
| | - Paula Alepuz
- Departamento de Bioquímica y Biología Molecular, Universitat de València, Doctor Moliner 50, E-46100, Burjassot, Valencia, Spain.,ERI Biotecmed, Universitat de València, Doctor Moliner 50, E-46100, Burjassot, Valencia, Spain
| | - Sergi Puig
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Catedrático Agustín Escardino 7, E-46980, Paterna, Valencia, Spain.
| | - María Teresa Martínez-Pastor
- Departamento de Bioquímica y Biología Molecular, Universitat de València, Doctor Moliner 50, E-46100, Burjassot, Valencia, Spain.
| |
Collapse
|
14
|
Quilis I, Taberner FJ, Martínez-Garay CA, Alepuz P, Igual JC. Karyopherin Msn5 is involved in a novel mechanism controlling the cellular level of cell cycle regulators Cln2 and Swi5. Cell Cycle 2019; 18:580-595. [PMID: 30739521 PMCID: PMC6464581 DOI: 10.1080/15384101.2019.1578148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
The yeast β-karyopherin Msn5 controls the SBF cell-cycle transcription factor, responsible for the periodic expression of CLN2 cyclin gene at G1/S, and the nuclear export of Cln2 protein. Here we show that Msn5 regulates Cln2 by an additional mechanism. Inactivation of Msn5 causes a severe reduction in the cellular content of Cln2. This occurs by a post-transcriptional mechanism, since CLN2 mRNA level is not importantly affected in asynchronous cultures. Cln2 stability is not significantly altered in msn5 cells and inactivation of Msn5 causes a reduction in protein level even when Cln2 is stabilized. Therefore, the reduced amount of Cln2 in msn5 cells is mainly due not to a higher rate of protein degradation but to a defect in Cln2 synthesis. In fact, analysis of polysome profiles indicated that Msn5 inactivation causes a shift of CLN2 and SWI5 mRNAs from heavy-polysomal to light-polysomal and non-polysomal fractions, supporting a defect in Cln2 and Swi5 protein synthesis in the msn5 mutant. The analysis of truncated versions of Cln2 and of chimeric cyclins combining distinct domains from Cln2 and the related Cln1 cyclin identified an internal region in Cln2 from 181 to 225 residues that when fused to GFP is able to confer Msn5-dependent regulation of protein cellular content. Finally, we showed that a high level of Cln2 is toxic in the absence of Msn5. In summary, we described that Msn5 is required for the proper protein synthesis of specific proteins, introducing a new level of control of cell cycle regulators.
Collapse
Affiliation(s)
- Inma Quilis
- a Departament de Bioquímica i Biologia Molecular , Universitat de València , Valencia , Spain.,b Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED) , Universitat de València , Valencia , Spain
| | - Francisco J Taberner
- a Departament de Bioquímica i Biologia Molecular , Universitat de València , Valencia , Spain.,b Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED) , Universitat de València , Valencia , Spain
| | - Carlos A Martínez-Garay
- a Departament de Bioquímica i Biologia Molecular , Universitat de València , Valencia , Spain.,b Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED) , Universitat de València , Valencia , Spain
| | - Paula Alepuz
- a Departament de Bioquímica i Biologia Molecular , Universitat de València , Valencia , Spain.,b Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED) , Universitat de València , Valencia , Spain
| | - J Carlos Igual
- a Departament de Bioquímica i Biologia Molecular , Universitat de València , Valencia , Spain.,b Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED) , Universitat de València , Valencia , Spain
| |
Collapse
|
15
|
The Lsm1-7/Pat1 complex binds to stress-activated mRNAs and modulates the response to hyperosmotic shock. PLoS Genet 2018; 14:e1007563. [PMID: 30059503 PMCID: PMC6085073 DOI: 10.1371/journal.pgen.1007563] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 08/09/2018] [Accepted: 07/15/2018] [Indexed: 12/11/2022] Open
Abstract
RNA-binding proteins (RBPs) establish the cellular fate of a transcript, but an understanding of these processes has been limited by a lack of identified specific interactions between RNA and protein molecules. Using MS2 RNA tagging, we have purified proteins associated with individual mRNA species induced by osmotic stress, STL1 and GPD1. We found members of the Lsm1-7/Pat1 RBP complex to preferentially bind these mRNAs, relative to the non-stress induced mRNAs, HYP2 and ASH1. To assess the functional importance, we mutated components of the Lsm1-7/Pat1 RBP complex and analyzed the impact on expression of osmostress gene products. We observed a defect in global translation inhibition under osmotic stress in pat1 and lsm1 mutants, which correlated with an abnormally high association of both non-stress and stress-induced mRNAs to translationally active polysomes. Additionally, for stress-induced proteins normally triggered only by moderate or high osmostress, in the mutants the protein levels rose high already at weak hyperosmosis. Analysis of ribosome passage on mRNAs through co-translational decay from the 5’ end (5P-Seq) showed increased ribosome accumulation in lsm1 and pat1 mutants upstream of the start codon. This effect was particularly strong for mRNAs induced under osmostress. Thus, our results indicate that, in addition to its role in degradation, the Lsm1-7/Pat1 complex acts as a selective translational repressor, having stronger effect over the translation initiation of heavily expressed mRNAs. Binding of the Lsm1-7/Pat1p complex to osmostress-induced mRNAs mitigates their translation, suppressing it in conditions of weak or no stress, and avoiding a hyperresponse when triggered. When confronted with external physical or chemical stress, cells respond by increasing the mRNA output of a small number of genes required for stress survival, while shutting down the majority of other genes. Moreover, each mRNA is regulated under stress to either enhance or diminish its translation into proteins. The overall purpose is for the cell to optimize gene expression for survival and recovery during rapidly changing conditions. Much of this regulation is mediated by RNA-binding proteins. We have isolated proteins binding to specific mRNAs induced by stress, to investigate how they affect the stress response. We found members of one protein complex to be bound to stress-induced mRNAs. When mutants lacking these proteins were exposed to stress, ribosomes were more engaged with translating mRNAs than in the wild-type. In the mutants, it was also possible to trigger expression of stress proteins with only minimal stress levels. Tracing the passage of ribosomes over mRNAs, we saw that ribosomes accumulated around the start codon in the mutants. These findings indicate that the protein complex is required to moderate the stress response and prevent it from overreacting, which would be harmful for the cell.
Collapse
|
16
|
The 5' Untranslated Region of the EFG1 Transcript Promotes Its Translation To Regulate Hyphal Morphogenesis in Candida albicans. mSphere 2018; 3:3/4/e00280-18. [PMID: 29976646 PMCID: PMC6034079 DOI: 10.1128/msphere.00280-18] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Extensive 5' untranslated regions (UTR) are a hallmark of transcripts determining hyphal morphogenesis in Candida albicans The major transcripts of the EFG1 gene, which are responsible for cellular morphogenesis and metabolism, contain a 5' UTR of up to 1,170 nucleotides (nt). Deletion analyses of the 5' UTR revealed a 218-nt sequence that is required for production of the Efg1 protein and its functions in filamentation, without lowering the level and integrity of the EFG1 transcript. Polysomal analyses revealed that the 218-nt 5' UTR sequence is required for efficient translation of the Efg1 protein. Replacement of the EFG1 open reading frame (ORF) by the heterologous reporter gene CaCBGluc confirmed the positive regulatory importance of the identified 5' UTR sequence. In contrast to other reported transcripts containing extensive 5' UTR sequences, these results indicate the positive translational function of the 5' UTR sequence in the EFG1 transcript, which is observed in the context of the native EFG1 promoter. It is proposed that the 5' UTR recruits regulatory factors, possibly during emergence of the native transcript, which aid in translation of the EFG1 transcript.IMPORTANCE Many of the virulence traits that make Candida albicans an important human fungal pathogen are regulated on a transcriptional level. Here, we report an important regulatory contribution of translation, which is exerted by the extensive 5' untranslated regulatory sequence (5' UTR) of the transcript for the protein Efg1, which determines growth, metabolism, and filamentation in the fungus. The presence of the 5' UTR is required for efficient translation of Efg1, to promote filamentation. Because transcripts for many relevant regulators contain extensive 5' UTR sequences, it appears that the virulence of C. albicans depends on the combination of transcriptional and translational regulatory mechanisms.
Collapse
|
17
|
Ramos-Alonso L, Romero AM, Soler MÀ, Perea-García A, Alepuz P, Puig S, Martínez-Pastor MT. Yeast Cth2 protein represses the translation of ARE-containing mRNAs in response to iron deficiency. PLoS Genet 2018; 14:e1007476. [PMID: 29912874 PMCID: PMC6023232 DOI: 10.1371/journal.pgen.1007476] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 06/28/2018] [Accepted: 06/07/2018] [Indexed: 11/29/2022] Open
Abstract
In response to iron deficiency, the budding yeast Saccharomyces cerevisiae undergoes a metabolic remodeling in order to optimize iron utilization. The tandem zinc finger (TZF)-containing protein Cth2 plays a critical role in this adaptation by binding and promoting the degradation of multiple mRNAs that contain AU-rich elements (AREs). Here, we demonstrate that Cth2 also functions as a translational repressor of its target mRNAs. By complementary approaches, we demonstrate that Cth2 protein inhibits the translation of SDH4, which encodes a subunit of succinate dehydrogenase, and CTH2 mRNAs in response to iron depletion. Both the AREs within SDH4 and CTH2 transcripts, and the Cth2 TZF are essential for translational repression. We show that the role played by Cth2 as a negative translational regulator extends to other mRNA targets such as WTM1, CCP1 and HEM15. A structure-function analysis of Cth2 protein suggests that the Cth2 amino-terminal domain (NTD) is important for both mRNA turnover and translation inhibition, while its carboxy-terminal domain (CTD) only participates in the regulation of translation, but is dispensable for mRNA degradation. Finally, we demonstrate that the Cth2 CTD is physiologically relevant for adaptation to iron deficiency. Iron is essential for eukaryotes because it is required for many fundamental processes such as DNA replication, protein translation or respiration, but it is very insoluble and can, therefore, easily go scarce. For this reason, eukaryotic cells have developed adaptive responses to iron deficiency. Under iron limitation conditions, the yeast Saccharomyces cerevisiae induces the expression of Cth2, a protein with tandem zinc fingers that binds to adenine and uracil-rich sequences in the 3’-UTR of specific mRNAs related to iron metabolism, promoting their degradation. Here we show that Cth2 inhibits the translation of ARE-containing mRNAs, including SDH4, WTM1, HEM15 and CCP1, which encode proteins that contain iron or participate in iron-dependent pathways, and CTH2 itself, which is subjected to an autoregulatory loop that controls its expression. We also dissected different domains of Cth2 that are differentially involved in mRNA decay and translational inhibition. The involvement of Cth2 in translational control reinforces the importance of this ARE-binding protein as a post-transcriptional regulator of the iron response in yeast. By acting at different steps in the life of specific mRNA targets, Cth2 action ensures yeast cells a proper distribution of iron by optimizing its utilization in essential processes.
Collapse
Affiliation(s)
- Lucía Ramos-Alonso
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Paterna, Valencia, Spain
| | - Antonia María Romero
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Paterna, Valencia, Spain
| | - Maria Àngel Soler
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Paterna, Valencia, Spain
- Departamento de Bioquímica y Biología Molecular, Universitat de València, Valencia, Spain
| | - Ana Perea-García
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Paterna, Valencia, Spain
| | - Paula Alepuz
- Departamento de Bioquímica y Biología Molecular, Universitat de València, Valencia, Spain
- ERI Biotecmed, Universitat de València, Burjassot, Valencia, Spain
| | - Sergi Puig
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Paterna, Valencia, Spain
- * E-mail: (MTMP); (SP)
| | | |
Collapse
|
18
|
Costello JL, Kershaw CJ, Castelli LM, Talavera D, Rowe W, Sims PFG, Ashe MP, Grant CM, Hubbard SJ, Pavitt GD. Dynamic changes in eIF4F-mRNA interactions revealed by global analyses of environmental stress responses. Genome Biol 2017; 18:201. [PMID: 29078784 PMCID: PMC5660459 DOI: 10.1186/s13059-017-1338-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 10/13/2017] [Indexed: 11/29/2022] Open
Abstract
Background Translation factors eIF4E and eIF4G form eIF4F, which interacts with the messenger RNA (mRNA) 5′ cap to promote ribosome recruitment and translation initiation. Variations in the association of eIF4F with individual mRNAs likely contribute to differences in translation initiation frequencies between mRNAs. As translation initiation is globally reprogrammed by environmental stresses, we were interested in determining whether eIF4F interactions with individual mRNAs are reprogrammed and how this may contribute to global environmental stress responses. Results Using a tagged-factor protein capture and RNA-sequencing (RNA-seq) approach, we have assessed how mRNA associations with eIF4E, eIF4G1 and eIF4G2 change globally in response to three defined stresses that each cause a rapid attenuation of protein synthesis: oxidative stress induced by hydrogen peroxide and nutrient stresses caused by amino acid or glucose withdrawal. We find that acute stress leads to dynamic and unexpected changes in eIF4F–mRNA interactions that are shared among each factor and across the stresses imposed. eIF4F–mRNA interactions stabilised by stress are predominantly associated with translational repression, while more actively initiating mRNAs become relatively depleted for eIF4F. Simultaneously, other mRNAs are insulated from these stress-induced changes in eIF4F association. Conclusion Dynamic eIF4F–mRNA interaction changes are part of a coordinated early translational control response shared across environmental stresses. Our data are compatible with a model where multiple mRNA closed-loop complexes form with differing stability. Hence, unexpectedly, in the absence of other stabilising factors, rapid translation initiation on mRNAs correlates with less stable eIF4F interactions. Electronic supplementary material The online version of this article (doi:10.1186/s13059-017-1338-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Joseph L Costello
- Division of Molecular and Cellular Function, School of Biological Sciences, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, M13 9PT, UK.,Present address: Biosciences, College of Life and Environmental Sciences, Geoffrey Pope Building, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK
| | - Christopher J Kershaw
- Division of Molecular and Cellular Function, School of Biological Sciences, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, M13 9PT, UK
| | - Lydia M Castelli
- Division of Molecular and Cellular Function, School of Biological Sciences, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, M13 9PT, UK.,Present address: Sheffield Institute for Translational Neuroscience, The University of Sheffield, 385a Glossop Road, Sheffield, S10 2HQ, UK
| | - David Talavera
- Division of Cardiovascular Sciences, School of Medicine, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, M13 9PT, UK
| | - William Rowe
- Division of Molecular and Cellular Function, School of Biological Sciences, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, M13 9PT, UK.,Present address: Department of Chemistry, Loughborough University, Epinal Way, Loughborough, Leicestershire, LE11 3TU, UK
| | - Paul F G Sims
- Manchester Institute of Biotechnology (MIB), The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Mark P Ashe
- Division of Molecular and Cellular Function, School of Biological Sciences, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, M13 9PT, UK
| | - Christopher M Grant
- Division of Molecular and Cellular Function, School of Biological Sciences, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, M13 9PT, UK
| | - Simon J Hubbard
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, M13 9PT, UK
| | - Graham D Pavitt
- Division of Molecular and Cellular Function, School of Biological Sciences, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, M13 9PT, UK.
| |
Collapse
|
19
|
Pelechano V, Alepuz P. eIF5A facilitates translation termination globally and promotes the elongation of many non polyproline-specific tripeptide sequences. Nucleic Acids Res 2017; 45:7326-7338. [PMID: 28549188 PMCID: PMC5499558 DOI: 10.1093/nar/gkx479] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 05/05/2017] [Accepted: 05/16/2017] [Indexed: 12/21/2022] Open
Abstract
eIF5A is an essential protein involved in protein synthesis, cell proliferation and animal development. High eIF5A expression is observed in many tumor types and has been linked to cancer metastasis. Recent studies have shown that eIF5A facilitates the translation elongation of stretches of consecutive prolines. Activated eIF5A binds to the empty E-site of stalled ribosomes, where it is thought to interact with the peptidyl-tRNA situated at the P-site. Here, we report a genome-wide analysis of ribosome stalling in Saccharomyces cerevisiae eIF5A depleted cells using 5Pseq. We confirm that, in the absence of eIF5A, ribosomes stall at proline stretches, and extend previous studies by identifying eIF5A-dependent ribosome pauses at termination and at >200 tripeptide motifs. We show that presence of proline, glycine and charged amino acids at the peptidyl transferase center and at the beginning of the peptide exit tunnel arrest ribosomes in eIF5A-depleted cells. Lack of eIF5A also renders ribosome accumulation at the stop codons. Our data indicate specific protein functional groups under the control of eIF5A, including ER-coupled translation and GTPases in yeast and cytoskeleton organization, collagen metabolism and cell differentiation in humans. Our results support a broad mRNA-specific role of eIF5A in translation and identify the conserved motifs that affect translation elongation from yeast to humans.
Collapse
Affiliation(s)
- Vicent Pelechano
- SciLifeLab, Department of Microbiology, Tumor and Cell Biology. Karolinska Institutet, P‐Box 1031. 171 21 Solna, Sweden
| | - Paula Alepuz
- Departamento de Bioquímica y Biología Molecular, Facultad de Biológicas, Universitat de València, C/ Dr. Moliner 50, E46100 Burjassot, Spain
- ERI-BioteMed, Facultad de Biológicas, Universitat de València, C/ Dr. Moliner 50, E46100 Burjassot, Spain
| |
Collapse
|
20
|
Benet M, Miguel A, Carrasco F, Li T, Planells J, Alepuz P, Tordera V, Pérez-Ortín JE. Modulation of protein synthesis and degradation maintains proteostasis during yeast growth at different temperatures. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2017; 1860:794-802. [PMID: 28461260 DOI: 10.1016/j.bbagrm.2017.04.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 04/07/2017] [Accepted: 04/18/2017] [Indexed: 02/03/2023]
Abstract
To understand how cells regulate each step in the flow of gene expression is one of the most fundamental goals in molecular biology. In this work, we have investigated several protein turnover-related steps in the context of gene expression regulation in response to changes in external temperature in model yeast Saccharomyces cerevisiae. We have found that the regulation of protein homeostasis is stricter than mRNA homeostasis. Although global translation and protein degradation rates are found to increase with temperature, the increase of the catalytic activity of ribosomes is higher than the global translation rate suggesting that yeast cells adapt the amount of translational machinery to the constraints imposed by kinetics in order to minimize energy costs. Even though the transcriptional machinery is subjected to the same constraints, we observed interesting differences between transcription and translation, which may be related to the different energy costs of the two processes as well as the differential functions of mRNAs and proteins.
Collapse
Affiliation(s)
- Marta Benet
- Departamento de Bioquímica y Biología Molecular and ERI Biotecmed, Facultad de Biológicas, Universitat de València, C/ Dr. Moliner 50, E46100 Burjassot, Spain
| | - Ana Miguel
- Departamento de Bioquímica y Biología Molecular and ERI Biotecmed, Facultad de Biológicas, Universitat de València, C/ Dr. Moliner 50, E46100 Burjassot, Spain
| | - Fany Carrasco
- Departamento de Bioquímica y Biología Molecular and ERI Biotecmed, Facultad de Biológicas, Universitat de València, C/ Dr. Moliner 50, E46100 Burjassot, Spain
| | - Tianlu Li
- Departamento de Bioquímica y Biología Molecular and ERI Biotecmed, Facultad de Biológicas, Universitat de València, C/ Dr. Moliner 50, E46100 Burjassot, Spain
| | - Jordi Planells
- Departamento de Bioquímica y Biología Molecular and ERI Biotecmed, Facultad de Biológicas, Universitat de València, C/ Dr. Moliner 50, E46100 Burjassot, Spain
| | - Paula Alepuz
- Departamento de Bioquímica y Biología Molecular and ERI Biotecmed, Facultad de Biológicas, Universitat de València, C/ Dr. Moliner 50, E46100 Burjassot, Spain
| | - Vicente Tordera
- Departamento de Bioquímica y Biología Molecular and ERI Biotecmed, Facultad de Biológicas, Universitat de València, C/ Dr. Moliner 50, E46100 Burjassot, Spain
| | - José E Pérez-Ortín
- Departamento de Bioquímica y Biología Molecular and ERI Biotecmed, Facultad de Biológicas, Universitat de València, C/ Dr. Moliner 50, E46100 Burjassot, Spain.
| |
Collapse
|
21
|
An mRNA decapping mutant deficient in P body assembly limits mRNA stabilization in response to osmotic stress. Sci Rep 2017; 7:44395. [PMID: 28290514 PMCID: PMC5349606 DOI: 10.1038/srep44395] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 02/07/2017] [Indexed: 01/19/2023] Open
Abstract
Yeast is exposed to changing environmental conditions and must adapt its genetic program to provide a homeostatic intracellular environment. An important stress for yeast in the wild is high osmolarity. A key response to this stress is increased mRNA stability primarily by the inhibition of deadenylation. We previously demonstrated that mutations in decapping activators (edc3∆ lsm4∆C), which result in defects in P body assembly, can destabilize mRNA under unstressed conditions. We wished to examine whether mRNA would be destabilized in the edc3∆ lsm4∆C mutant as compared to the wild-type in response to osmotic stress, when P bodies are intense and numerous. Our results show that the edc3∆ lsm4∆C mutant limits the mRNA stability in response to osmotic stress, while the magnitude of stabilization was similar as compared to the wild-type. The reduced mRNA stability in the edc3∆ lsm4∆C mutant was correlated with a shorter PGK1 poly(A) tail. Similarly, the MFA2 mRNA was more rapidly deadenylated as well as significantly stabilized in the ccr4∆ deadenylation mutant in the edc3∆ lsm4∆C background. These results suggest a role for these decapping factors in stabilizing mRNA and may implicate P bodies as sites of reduced mRNA degradation.
Collapse
|
22
|
Cartwright SP, Darby RAJ, Sarkar D, Bonander N, Gross SR, Ashe MP, Bill RM. Constitutively-stressed yeast strains are high-yielding for recombinant Fps1: implications for the translational regulation of an aquaporin. Microb Cell Fact 2017; 16:41. [PMID: 28279185 PMCID: PMC5345182 DOI: 10.1186/s12934-017-0656-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 03/03/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND We previously selected four strains of Saccharomyces cerevisiae for their ability to produce the aquaporin Fps1 in sufficient yield for further study. Yields from the yeast strains spt3Δ, srb5Δ, gcn5Δ and yTHCBMS1 (supplemented with 0.5 μg/mL doxycycline) that had been transformed with an expression plasmid containing 249 base pairs of 5' untranslated region (UTR) in addition to the primary FPS1 open reading frame (ORF) were 10-80 times higher than yields from wild-type cells expressing the same plasmid. One of the strains increased recombinant yields of the G protein-coupled receptor adenosine receptor 2a (A2aR) and soluble green fluorescent protein (GFP). The specific molecular mechanisms underpinning a high-yielding Fps1 phenotype remained incompletely described. RESULTS Polysome profiling experiments were used to analyze the translational state of spt3Δ, srb5Δ, gcn5Δ and yTHCBMS1 (supplemented with 0.5 μg/mL doxycycline); all but gcn5Δ were found to exhibit a clear block in translation initiation. Four additional strains with known initiation blocks (rpl31aΔ, rpl22aΔ, ssf1Δ and nop1Δ) also improved the yield of recombinant Fps1 compared to wild-type. Expression of the eukaryotic transcriptional activator GCN4 was increased in spt3Δ, srb5Δ, gcn5Δ and yTHCBMS1 (supplemented with 0.5 μg/mL doxycycline); these four strains also exhibited constitutive phosphorylation of the eukaryotic initiation factor, eIF2α. Both responses are indicative of a constitutively-stressed phenotype. Investigation of the 5'UTR of FPS1 in the expression construct revealed two untranslated ORFs (uORF1 and uORF2) upstream of the primary ORF. Deletion of either uORF1 or uORF1 and uORF2 further improved recombinant yields in our four strains; the highest yields of the uORF deletions were obtained from wild-type cells. Frame-shifting the stop codon of the native uORF (uORF2) so that it extended into the FPS1 ORF did not substantially alter Fps1 yields in spt3Δ or wild-type cells, suggesting that high-yielding strains are able to bypass 5'uORFs in the FPS1 gene via leaky scanning, which is a known stress-response mechanism. Yields of recombinant A2aR, GFP and horseradish peroxidase could be improved in one or more of the yeast strains suggesting that a stressed phenotype may also be important in high-yielding cell factories. CONCLUSIONS Regulation of Fps1 levels in yeast by translational control may be functionally important; the presence of a native uORF (uORF2) may be required to maintain low levels of Fps1 under normal conditions, but higher levels as part of a stress response. Constitutively-stressed yeast strains may be useful high-yielding microbial cell factories for recombinant protein production.
Collapse
Affiliation(s)
- Stephanie P Cartwright
- School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham, B4 7ET, UK
| | - Richard A J Darby
- School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham, B4 7ET, UK.,Thistle Scientific Ltd, Glasgow, G71 6NZ, UK
| | - Debasmita Sarkar
- School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham, B4 7ET, UK
| | - Nicklas Bonander
- School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham, B4 7ET, UK.,Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, 41296, Sweden
| | - Stephane R Gross
- School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham, B4 7ET, UK
| | - Mark P Ashe
- Faculty of Life Sciences, University of Manchester, Manchester, M13 9PT, UK
| | - Roslyn M Bill
- School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham, B4 7ET, UK.
| |
Collapse
|
23
|
Ariyachet C, Beißel C, Li X, Lorrey S, Mackenzie O, Martin PM, O'Brien K, Pholcharee T, Sim S, Krebber H, McBride AE. Post-translational modification directs nuclear and hyphal tip localization of Candida albicans mRNA-binding protein Slr1. Mol Microbiol 2017; 104:499-519. [PMID: 28187496 PMCID: PMC5405739 DOI: 10.1111/mmi.13643] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/06/2017] [Indexed: 12/21/2022]
Abstract
The morphological transition of the opportunistic fungal pathogen Candida albicans from budding to hyphal growth has been implicated in its ability to cause disease in animal models. Absence of SR‐like RNA‐binding protein Slr1 slows hyphal formation and decreases virulence in a systemic candidiasis model, suggesting a role for post‐transcriptional regulation in these processes. SR (serine–arginine)‐rich proteins influence multiple steps in mRNA metabolism and their localization and function are frequently controlled by modification. We now demonstrate that Slr1 binds to polyadenylated RNA and that its intracellular localization is modulated by phosphorylation and methylation. Wildtype Slr1‐GFP is predominantly nuclear, but also co‐fractionates with translating ribosomes. The non‐phosphorylatable slr1‐6SA‐GFP protein, in which six serines in SR/RS clusters are substituted with alanines, primarily localizes to the cytoplasm in budding cells. Intriguingly, hyphal cells display a slr1‐6SA‐GFP focus at the tip near the Spitzenkörper, a vesicular structure involved in molecular trafficking to the tip. The presence of slr1‐6SA‐GFP hyphal tip foci is reduced in the absence of the mRNA‐transport protein She3, suggesting that unphosphorylated Slr1 associates with mRNA–protein complexes transported to the tip. The impact of SLR1 deletion on hyphal formation and function thus may be partially due to a role in hyphal mRNA transport.
Collapse
Affiliation(s)
| | - Christian Beißel
- Abteilung für Molekulare Genetik, Institut für Mikrobiologie und Genetik, Göttinger Zentrum für Molekulare Biowissenschaften, Georg-August Universität Göttingen, Göttingen, Germany
| | - Xiang Li
- Biology Department, Bowdoin College, Brunswick, ME, 04011, USA
| | - Selena Lorrey
- Biology Department, Bowdoin College, Brunswick, ME, 04011, USA
| | | | | | | | | | - Sue Sim
- Biology Department, Bowdoin College, Brunswick, ME, 04011, USA
| | - Heike Krebber
- Abteilung für Molekulare Genetik, Institut für Mikrobiologie und Genetik, Göttinger Zentrum für Molekulare Biowissenschaften, Georg-August Universität Göttingen, Göttingen, Germany
| | - Anne E McBride
- Biology Department, Bowdoin College, Brunswick, ME, 04011, USA
| |
Collapse
|
24
|
Mechanism and Regulation of Protein Synthesis in Saccharomyces cerevisiae. Genetics 2017; 203:65-107. [PMID: 27183566 DOI: 10.1534/genetics.115.186221] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 02/24/2016] [Indexed: 12/18/2022] Open
Abstract
In this review, we provide an overview of protein synthesis in the yeast Saccharomyces cerevisiae The mechanism of protein synthesis is well conserved between yeast and other eukaryotes, and molecular genetic studies in budding yeast have provided critical insights into the fundamental process of translation as well as its regulation. The review focuses on the initiation and elongation phases of protein synthesis with descriptions of the roles of translation initiation and elongation factors that assist the ribosome in binding the messenger RNA (mRNA), selecting the start codon, and synthesizing the polypeptide. We also examine mechanisms of translational control highlighting the mRNA cap-binding proteins and the regulation of GCN4 and CPA1 mRNAs.
Collapse
|
25
|
Ballester-Tomás L, Prieto JA, Alepuz P, González A, Garre E, Randez-Gil F. Inappropriate translation inhibition and P-body formation cause cold-sensitivity in tryptophan-auxotroph yeast mutants. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1864:314-323. [PMID: 27864078 DOI: 10.1016/j.bbamcr.2016.11.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 10/28/2016] [Accepted: 11/14/2016] [Indexed: 11/18/2022]
Abstract
In response to different adverse conditions, most eukaryotic organisms, including Saccharomyces cerevisiae, downregulate protein synthesis through the phosphorylation of eIF2α (eukaryotic initiation factor 2α) by Gcn2, a highly conserved protein kinase. Gcn2 also controls the translation of Gcn4, a transcription factor involved in the induction of amino acid biosynthesis enzymes. Here, we have studied the functional role of Gcn2 and Gcn2-regulating proteins, in controlling translation during temperature downshifts of TRP1 and trp1 yeast cells. Our results suggest that neither cold-instigated amino acid limitation nor Gcn2 are involved in the translation suppression at low temperature. However, loss of TRP1 causes increased eIF2α phosphorylation, Gcn2-dependent polysome disassembly and overactivity of Gcn4, which result in cold-sensitivity. Indeed, knock-out of GCN2 improves cold growth of trp1 cells. Likewise, mutation of several Gcn2-regulators and effectors results in cold-growth effects. Remarkably, we found that Hog1, the osmoresponsive MAPK, plays a role in the regulatory mechanism of Gcn2-eIF2α. Finally, we demonstrated that P-body formation responds to a downshift in temperature in a TRP1-dependent manner and is required for cold tolerance.
Collapse
Affiliation(s)
- Lidia Ballester-Tomás
- Department of Biotechnology, Instituto de Agroquímica y Tecnología de los Alimentos, Consejo Superior de Investigaciones Científicas, Avda. Agustín Escardino, 7, 46980-Paterna, Valencia, Spain
| | - Jose A Prieto
- Department of Biotechnology, Instituto de Agroquímica y Tecnología de los Alimentos, Consejo Superior de Investigaciones Científicas, Avda. Agustín Escardino, 7, 46980-Paterna, Valencia, Spain
| | - Paula Alepuz
- Departament of Biochemistry and Molecular Biology, ERI Biotecmed, Universitat de València, Dr. Moliner 50, Burjassot 46100, Spain
| | | | - Elena Garre
- Department of Biotechnology, Instituto de Agroquímica y Tecnología de los Alimentos, Consejo Superior de Investigaciones Científicas, Avda. Agustín Escardino, 7, 46980-Paterna, Valencia, Spain
| | - Francisca Randez-Gil
- Department of Biotechnology, Instituto de Agroquímica y Tecnología de los Alimentos, Consejo Superior de Investigaciones Científicas, Avda. Agustín Escardino, 7, 46980-Paterna, Valencia, Spain.
| |
Collapse
|
26
|
van Wijlick L, Geissen R, Hilbig JS, Lagadec Q, Cantero PD, Pfeifer E, Juchimiuk M, Kluge S, Wickert S, Alepuz P, Ernst JF. Dom34 Links Translation to Protein O-mannosylation. PLoS Genet 2016; 12:e1006395. [PMID: 27768707 PMCID: PMC5074521 DOI: 10.1371/journal.pgen.1006395] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 09/29/2016] [Indexed: 11/25/2022] Open
Abstract
In eukaryotes, Dom34 upregulates translation by securing levels of activatable ribosomal subunits. We found that in the yeast Saccharomyces cerevisiae and the human fungal pathogen Candida albicans, Dom34 interacts genetically with Pmt1, a major isoform of protein O-mannosyltransferase. In C. albicans, lack of Dom34 exacerbated defective phenotypes of pmt1 mutants, while they were ameliorated by Dom34 overproduction that enhanced Pmt1 protein but not PMT1 transcript levels. Translational effects of Dom34 required the 5′-UTR of the PMT1 transcript, which bound recombinant Dom34 directly at a CA/AC-rich sequence and regulated in vitro translation. Polysomal profiling revealed that Dom34 stimulates general translation moderately, but that it is especially required for translation of transcripts encoding Pmt isoforms 1, 4 and 6. Because defective protein N- or O-glycosylation upregulates transcription of PMT genes, it appears that Dom34-mediated specific translational upregulation of the PMT transcripts optimizes cellular responses to glycostress. Its translational function as an RNA binding protein acting at the 5′-UTR of specific transcripts adds another facet to the known ribosome-releasing functions of Dom34 at the 3′-UTR of transcripts. Fungi respond to damages of their glycostructures in their cell wall by transcriptional upregulation of genes that specify compensatory activities. Upon block of protein N-glycosylation, the human fungal pathogen Candida albicans increases transcription of PMT1 encoding a major isoform of protein O-mannosyltransferase. Here we demonstrate that the Dom34 protein aids in glycostress responses by upregulating the translation of several PMT isoform transcripts. Dom34 has previously been implicated in mechanisms to secure high levels of ribosomal subunits that promote translation in general, e. g. by no-go decay at the 3′-UTR of transcripts. By binding to the 5′-UTR and activating translational initiation of PMT transcripts we add a novel mode of action and suggest a preferred class of targets for the translational activities of the Dom34 protein. The combination of transcriptional and Dom34-mediated translational upregulation of PMT genes optimizes effective recovery and survival of fungal cells upon glycostress.
Collapse
Affiliation(s)
- Lasse van Wijlick
- Department Biologie, Molekulare Mykologie, Heinrich-Heine-Universität, Düsseldorf, Germany
- Manchot Graduate School Molecules of Infection, Heinrich-Heine-Universität, Düsseldorf, Germany
| | - René Geissen
- Department Biologie, Molekulare Mykologie, Heinrich-Heine-Universität, Düsseldorf, Germany
| | - Jessica S. Hilbig
- Department Biologie, Molekulare Mykologie, Heinrich-Heine-Universität, Düsseldorf, Germany
| | - Quentin Lagadec
- Department Biologie, Molekulare Mykologie, Heinrich-Heine-Universität, Düsseldorf, Germany
| | - Pilar D. Cantero
- Department Biologie, Molekulare Mykologie, Heinrich-Heine-Universität, Düsseldorf, Germany
| | - Eugen Pfeifer
- Department Biologie, Molekulare Mykologie, Heinrich-Heine-Universität, Düsseldorf, Germany
| | - Mateusz Juchimiuk
- Department Biologie, Molekulare Mykologie, Heinrich-Heine-Universität, Düsseldorf, Germany
| | - Sven Kluge
- Department Biologie, Molekulare Mykologie, Heinrich-Heine-Universität, Düsseldorf, Germany
| | - Stephan Wickert
- Department Biologie, Molekulare Mykologie, Heinrich-Heine-Universität, Düsseldorf, Germany
| | - Paula Alepuz
- Departamento de Bioquímica y Biología Molecular, Universitat de València, Burjassot Spain
- ERI Biotecmed. Universitat de València, Burjassot Spain
| | - Joachim F. Ernst
- Department Biologie, Molekulare Mykologie, Heinrich-Heine-Universität, Düsseldorf, Germany
- Manchot Graduate School Molecules of Infection, Heinrich-Heine-Universität, Düsseldorf, Germany
- * E-mail:
| |
Collapse
|
27
|
Borden KLB. The eukaryotic translation initiation factor eIF4E wears a "cap" for many occasions. ACTA ACUST UNITED AC 2016; 4:e1220899. [PMID: 28090419 PMCID: PMC5173310 DOI: 10.1080/21690731.2016.1220899] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 07/12/2016] [Accepted: 08/02/2016] [Indexed: 01/11/2023]
Abstract
The eukaryotic translation initiation factor eIF4E plays important roles in controlling the composition of the proteome. Indeed, dysregulation of eIF4E is associated with poor prognosis cancers. The traditional view has been that eIF4E acts solely in translation. However, over the last ∼25 years, eIF4E was found in the nucleus where it acts in mRNA export and in the last ∼10 years, eIF4E was found in cytoplasmic processing bodies (P-bodies) where it functions in mRNA sequestration and stability. The common biochemical thread for these activities is the ability of eIF4E to bind the 7-methylguanosine cap on the 5′ end of mRNAs. Recently, the possibility that eIF4E directly binds some mRNA elements independently of the cap has also been raised. Importantly, the effects of eIF4E are not genome-wide with a subset of transcripts targeted depending on the presence of specific mRNA elements and context-dependent regulatory factors. Indeed, eIF4E governs RNA regulons through co-regulating the expression of groups of transcripts acting in the same biochemical pathways. In addition, studies over the past ∼15 years indicate that there are multiple strategies that regulatory factors employ to modulate eIF4E activities in context-dependent manners. This perspective focuses on these new findings and incorporates them into a broader model for eIF4E function.
Collapse
Affiliation(s)
- Katherine L B Borden
- Department of Pathology and Cell Biology, Institute of Research in Immunology and Cancer (IRIC), Université de Montréal , Montreal, Québec, Canada
| |
Collapse
|
28
|
Neumann B, Wu H, Hackmann A, Krebber H. Nuclear Export of Pre-Ribosomal Subunits Requires Dbp5, but Not as an RNA-Helicase as for mRNA Export. PLoS One 2016; 11:e0149571. [PMID: 26872259 PMCID: PMC4752221 DOI: 10.1371/journal.pone.0149571] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 02/01/2016] [Indexed: 11/28/2022] Open
Abstract
The DEAD-box RNA-helicase Dbp5/Rat8 is known for its function in nuclear mRNA export, where it displaces the export receptor Mex67 from the mRNA at the cytoplasmic side of the nuclear pore complex (NPC). Here we show that Dbp5 is also required for the nuclear export of both pre-ribosomal subunits. Yeast temperature-sensitive dbp5 mutants accumulate both ribosomal particles in their nuclei. Furthermore, Dbp5 genetically and physically interacts with known ribosomal transport factors such as Nmd3. Similar to mRNA export we show that also for ribosomal transport Dbp5 is required at the cytoplasmic side of the NPC. However, unlike its role in mRNA export, Dbp5 does not seem to undergo its ATPase cycle for this function, as ATPase-deficient dbp5 mutants that selectively inhibit mRNA export do not affect ribosomal transport. Furthermore, mutants of GLE1, the ATPase stimulating factor of Dbp5, show no major ribosomal export defects. Consequently, while Dbp5 uses its ATPase cycle to displace the export receptor Mex67 from the translocated mRNAs, Mex67 remains bound to ribosomal subunits upon transit to the cytoplasm, where it is detectable on translating ribosomes. Therefore, we propose a model, in which Dbp5 supports ribosomal transport by capturing ribosomal subunits upon their cytoplasmic appearance at the NPC, possibly by binding export factors such as Mex67. Thus, our findings reveal that although different ribonucleoparticles, mRNAs and pre-ribosomal subunits, use shared export factors, they utilize different transport mechanisms.
Collapse
Affiliation(s)
- Bettina Neumann
- Abteilung für Molekulare Genetik, Institut für Mikrobiologie und Genetik, Göttinger Zentrum für Molekulare Biowissenschaften (GZMB), Georg-August Universität Göttingen, Germany
| | - Haijia Wu
- Abteilung für Molekulare Genetik, Institut für Mikrobiologie und Genetik, Göttinger Zentrum für Molekulare Biowissenschaften (GZMB), Georg-August Universität Göttingen, Germany
| | - Alexandra Hackmann
- Abteilung für Molekulare Genetik, Institut für Mikrobiologie und Genetik, Göttinger Zentrum für Molekulare Biowissenschaften (GZMB), Georg-August Universität Göttingen, Germany
| | - Heike Krebber
- Abteilung für Molekulare Genetik, Institut für Mikrobiologie und Genetik, Göttinger Zentrum für Molekulare Biowissenschaften (GZMB), Georg-August Universität Göttingen, Germany
- * E-mail:
| |
Collapse
|
29
|
The mRNA cap-binding protein Cbc1 is required for high and timely expression of genes by promoting the accumulation of gene-specific activators at promoters. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1859:405-19. [PMID: 26775127 DOI: 10.1016/j.bbagrm.2016.01.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 01/08/2016] [Accepted: 01/12/2016] [Indexed: 12/15/2022]
Abstract
The highly conserved Saccharomyces cerevisiae cap-binding protein Cbc1/Sto1 binds mRNA co-transcriptionally and acts as a key coordinator of mRNA fate. Recently, Cbc1 has also been implicated in transcription elongation and pre-initiation complex (PIC) formation. Previously, we described Cbc1 to be required for cell growth under osmotic stress and to mediate osmostress-induced translation reprogramming. Here, we observe delayed global transcription kinetics in cbc1Δ during osmotic stress that correlates with delayed recruitment of TBP and RNA polymerase II to osmo-induced promoters. Interestingly, we detect an interaction between Cbc1 and the MAPK Hog1, which controls most gene expression changes during osmostress, and observe that deletion of CBC1 delays the accumulation of the activator complex Hot1-Hog1 at osmostress promoters. Additionally, CBC1 deletion specifically reduces transcription rates of highly transcribed genes under non-stress conditions, such as ribosomal protein (RP) genes, while having low impact on transcription of weakly expressed genes. For RP genes, we show that recruitment of the specific activator Rap1, and subsequently TBP, to promoters is Cbc1-dependent. Altogether, our results indicate that binding of Cbc1 to the capped mRNAs is necessary for the accumulation of specific activators as well as PIC components at the promoters of genes whose expression requires high and rapid transcription.
Collapse
|
30
|
de Nadal E, Posas F. Osmostress-induced gene expression--a model to understand how stress-activated protein kinases (SAPKs) regulate transcription. FEBS J 2015; 282:3275-85. [PMID: 25996081 PMCID: PMC4744689 DOI: 10.1111/febs.13323] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 04/27/2015] [Accepted: 05/18/2015] [Indexed: 01/18/2023]
Abstract
Adaptation is essential for maximizing cell survival and for cell fitness in response to sudden changes in the environment. Several aspects of cell physiology change during adaptation. Major changes in gene expression are associated with cell exposure to environmental changes, and several aspects of mRNA biogenesis appear to be targeted by signaling pathways upon stress. Exhaustive reviews have been written regarding adaptation to stress and regulation of gene expression. In this review, using osmostress in yeast as a prototypical case study, we highlight those aspects of regulation of gene induction that are general to various environmental stresses as well as mechanistic aspects that are potentially conserved from yeast to mammals.
Collapse
Affiliation(s)
- Eulàlia de Nadal
- Cell Signaling Unit, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain
| | - Francesc Posas
- Cell Signaling Unit, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain
| |
Collapse
|
31
|
Msb2 is a Ste11 membrane concentrator required for full activation of the HOG pathway. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2015; 1849:722-30. [PMID: 25689021 DOI: 10.1016/j.bbagrm.2015.02.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 02/02/2015] [Accepted: 02/09/2015] [Indexed: 01/05/2023]
Abstract
The high osmolarity glycerol (HOG) pathway, composed of membrane-associated osmosensors, adaptor proteins and core signaling kinases, is essential for the survival of yeast cells under hyper-osmotic stress. Here, we studied how the MAPKKK Ste11 might change its protein interaction profile during acute stress exposure, with an emphasis on the sensory system of the so-called Sho1/Msb2 signaling branch. To characterize the transience of protein-protein interactions we utilized a recently described enzymatic in vivo protein proximity assay (M-track). Accordingly, interaction signals between Ste11 and many of its signaling partners can already be detected even under basal conditions. In most cases these signals increase after stress induction. All the interactions are completely dependent on the function of the Ste11-adaptor protein Ste50. Moreover, the presence of either Msb2 or Hkr1 is necessary for observing the interaction between Ste11 and scaffolding factors such as Sho1 and Pbs2. Additional assays suggest that Msb2 is not only in close proximity to Ste11 but might function as an individual Ste11 concentrator at the plasma membrane. Our results confirm the existence of negative feedback systems targeting the protein levels of Ste11 and Msb2 and also hint at changes in the dissociation rates of intermediate signaling complexes.
Collapse
|
32
|
Yang X, Shen Y, Garre E, Hao X, Krumlinde D, Cvijović M, Arens C, Nyström T, Liu B, Sunnerhagen P. Stress granule-defective mutants deregulate stress responsive transcripts. PLoS Genet 2014; 10:e1004763. [PMID: 25375155 PMCID: PMC4222700 DOI: 10.1371/journal.pgen.1004763] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 09/18/2014] [Indexed: 01/28/2023] Open
Abstract
To reduce expression of gene products not required under stress conditions, eukaryotic cells form large and complex cytoplasmic aggregates of RNA and proteins (stress granules; SGs), where transcripts are kept translationally inert. The overall composition of SGs, as well as their assembly requirements and regulation through stress-activated signaling pathways remain largely unknown. We have performed a genome-wide screen of S. cerevisiae gene deletion mutants for defects in SG formation upon glucose starvation stress. The screen revealed numerous genes not previously implicated in SG formation. Most mutants with strong phenotypes are equally SG defective when challenged with other stresses, but a considerable fraction is stress-specific. Proteins associated with SG defects are enriched in low-complexity regions, indicating that multiple weak macromolecule interactions are responsible for the structural integrity of SGs. Certain SG-defective mutants, but not all, display an enhanced heat-induced mutation rate. We found several mutations affecting the Ran GTPase, regulating nucleocytoplasmic transport of RNA and proteins, to confer SG defects. Unexpectedly, we found stress-regulated transcripts to reach more extreme levels in mutants unable to form SGs: stress-induced mRNAs accumulate to higher levels than in the wild-type, whereas stress-repressed mRNAs are reduced further in such mutants. Our findings are consistent with the view that, not only are SGs being regulated by stress signaling pathways, but SGs also modulate the extent of stress responses. We speculate that nucleocytoplasmic shuttling of RNA-binding proteins is required for gene expression regulation during stress, and that SGs modulate this traffic. The absence of SGs thus leads the cell to excessive, and potentially deleterious, reactions to stress. When cells encounter harsh conditions, they face an energy crisis since the stress will reduce their energy production, and at the same time cause extra demands on energy expenditure. To tackle this dilemma, cells under stress form giant agglomerates of RNA and protein, called stress granules. In these, mRNA molecules are kept silent, preventing waste of energy on producing proteins not needed under these conditions. A few mRNAs, encoding proteins required for the cell to survive, stay outside of stress granules and escape this silencing. This mechanism can protect plants and microbes against cold spells or heat shocks, and human cells exposed to oxidative damage or toxic drugs. We have investigated which genes are necessary to form stress granules, and their impact on the stress response. We discovered that mutant cells unable to form stress granules overreacted to stress, in that they produced much higher levels of the induced mRNAs. We think this means that gene regulatory proteins are sequestered inside stress granules, inhibiting their action. Stress granules may thus function as moderators that dampen the stress response, safeguarding the cell against excessive reactions.
Collapse
Affiliation(s)
- Xiaoxue Yang
- School of Life Science and Engineering, Harbin Institute of Technology, Harbin, China
| | - Yi Shen
- School of Life Science and Engineering, Harbin Institute of Technology, Harbin, China
| | - Elena Garre
- Department of Chemistry and Molecular Biology, Lundberg Laboratory, University of Gothenburg, Göteborg, Sweden
| | - Xinxin Hao
- Department of Chemistry and Molecular Biology, Lundberg Laboratory, University of Gothenburg, Göteborg, Sweden
| | - Daniel Krumlinde
- Department of Chemistry and Molecular Biology, Lundberg Laboratory, University of Gothenburg, Göteborg, Sweden
| | - Marija Cvijović
- Department of Mathematical Sciences, Chalmers University of Technology, Göteborg, Sweden
- Department of Mathematical Sciences, University of Gothenburg, Göteborg, Sweden
| | - Christina Arens
- Department of Chemistry and Molecular Biology, Lundberg Laboratory, University of Gothenburg, Göteborg, Sweden
| | - Thomas Nyström
- Department of Chemistry and Molecular Biology, Lundberg Laboratory, University of Gothenburg, Göteborg, Sweden
| | - Beidong Liu
- School of Life Science and Engineering, Harbin Institute of Technology, Harbin, China
- Department of Chemistry and Molecular Biology, Lundberg Laboratory, University of Gothenburg, Göteborg, Sweden
- * E-mail: (BL); (PS)
| | - Per Sunnerhagen
- Department of Chemistry and Molecular Biology, Lundberg Laboratory, University of Gothenburg, Göteborg, Sweden
- * E-mail: (BL); (PS)
| |
Collapse
|
33
|
Li T, Belda-Palazón B, Ferrando A, Alepuz P. Fertility and polarized cell growth depends on eIF5A for translation of polyproline-rich formins in Saccharomyces cerevisiae. Genetics 2014; 197:1191-200. [PMID: 24923804 PMCID: PMC4125393 DOI: 10.1534/genetics.114.166926] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 06/05/2014] [Indexed: 01/15/2023] Open
Abstract
eIF5A is an essential and evolutionary conserved translation elongation factor, which has recently been proposed to be required for the translation of proteins with consecutive prolines. The binding of eIF5A to ribosomes occurs upon its activation by hypusination, a modification that requires spermidine, an essential factor for mammalian fertility that also promotes yeast mating. We show that in response to pheromone, hypusinated eIF5A is required for shmoo formation, localization of polarisome components, induction of cell fusion proteins, and actin assembly in yeast. We also show that eIF5A is required for the translation of Bni1, a proline-rich formin involved in polarized growth during shmoo formation. Our data indicate that translation of the polyproline motifs in Bni1 is eIF5A dependent and this translation dependency is lost upon deletion of the polyprolines. Moreover, an exogenous increase in Bni1 protein levels partially restores the defect in shmoo formation seen in eIF5A mutants. Overall, our results identify eIF5A as a novel and essential regulator of yeast mating through formin translation. Since eIF5A and polyproline formins are conserved across species, our results also suggest that eIF5A-dependent translation of formins could regulate polarized growth in such processes as fertility and cancer in higher eukaryotes.
Collapse
Affiliation(s)
- Tianlu Li
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universitat de València, E-46100 Burjassot, Valencia, Spain
| | - Borja Belda-Palazón
- Instituto de Biología Molecular y Celular de Plantas, Centro Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, 46022 Valencia, Spain
| | - Alejandro Ferrando
- Instituto de Biología Molecular y Celular de Plantas, Centro Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, 46022 Valencia, Spain
| | - Paula Alepuz
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universitat de València, E-46100 Burjassot, Valencia, Spain
| |
Collapse
|
34
|
Merrill AE, Hebert AS, MacGilvray ME, Rose CM, Bailey DJ, Bradley JC, Wood WW, El Masri M, Westphall MS, Gasch AP, Coon JJ. NeuCode labels for relative protein quantification. Mol Cell Proteomics 2014; 13:2503-12. [PMID: 24938287 DOI: 10.1074/mcp.m114.040287] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
We describe a synthesis strategy for the preparation of lysine isotopologues that differ in mass by as little as 6 mDa. We demonstrate that incorporation of these molecules into the proteomes of actively growing cells does not affect cellular proliferation, and we discuss how to use the embedded mass signatures (neutron encoding (NeuCode)) for multiplexed proteome quantification by means of high-resolution mass spectrometry. NeuCode SILAC amalgamates the quantitative accuracy of SILAC with the multiplexing of isobaric tags and, in doing so, offers up new opportunities for biological investigation. We applied NeuCode SILAC to examine the relationship between transcript and protein levels in yeast cells responding to environmental stress. Finally, we monitored the time-resolved responses of five signaling mutants in a single 18-plex experiment.
Collapse
Affiliation(s)
- Anna E Merrill
- From the ‡Genome Center of Wisconsin, University of Wisconsin, Madison, Wisconsin 53706; §Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706
| | - Alexander S Hebert
- From the ‡Genome Center of Wisconsin, University of Wisconsin, Madison, Wisconsin 53706
| | | | - Christopher M Rose
- From the ‡Genome Center of Wisconsin, University of Wisconsin, Madison, Wisconsin 53706; §Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706
| | - Derek J Bailey
- From the ‡Genome Center of Wisconsin, University of Wisconsin, Madison, Wisconsin 53706
| | - Joel C Bradley
- ‖Cambridge Isotope Laboratories, Andover, Massachusetts 01810
| | - William W Wood
- ‖Cambridge Isotope Laboratories, Andover, Massachusetts 01810
| | - Marwan El Masri
- ‖Cambridge Isotope Laboratories, Andover, Massachusetts 01810
| | - Michael S Westphall
- From the ‡Genome Center of Wisconsin, University of Wisconsin, Madison, Wisconsin 53706
| | - Audrey P Gasch
- From the ‡Genome Center of Wisconsin, University of Wisconsin, Madison, Wisconsin 53706; ¶Laboratory of Genetics, University of Wisconsin, Madison, Wisconsin 53706
| | - Joshua J Coon
- From the ‡Genome Center of Wisconsin, University of Wisconsin, Madison, Wisconsin 53706; §Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706; **Department of Biomolecular Chemistry, University of Wisconsin, Madison, Wisconsin 53706
| |
Collapse
|
35
|
Abstract
The 7mG (7-methylguanosine cap) formed on mRNA is fundamental to eukaryotic gene expression. Protein complexes recruited to 7mG mediate key processing events throughout the lifetime of the transcript. One of the most important mediators of 7mG functions is CBC (cap-binding complex). CBC has a key role in several gene expression mechanisms, including transcription, splicing, transcript export and translation. Gene expression can be regulated by signalling pathways which influence CBC function. The aim of the present review is to discuss the mechanisms by which CBC mediates and co-ordinates multiple gene expression events.
Collapse
|
36
|
Shatsky IN, Dmitriev SE, Andreev DE, Terenin IM. Transcriptome-wide studies uncover the diversity of modes of mRNA recruitment to eukaryotic ribosomes. Crit Rev Biochem Mol Biol 2014; 49:164-77. [PMID: 24520918 DOI: 10.3109/10409238.2014.887051] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The conventional paradigm of translation initiation in eukaryotes states that the cap-binding protein complex eIF4F (consisting of eIF4E, eIF4G and eIF4A) plays a central role in the recruitment of capped mRNAs to ribosomes. However, a growing body of evidence indicates that this paradigm should be revised. This review summarizes the data which have been mostly accumulated in a post-genomic era owing to revolutionary techniques of transcriptome-wide analysis. Unexpectedly, these techniques have uncovered remarkable diversity in the recruitment of cellular mRNAs to eukaryotic ribosomes. These data enable a preliminary classification of mRNAs into several groups based on their requirement for particular components of eIF4F. They challenge the widely accepted concept which relates eIF4E-dependence to the extent of secondary structure in the 5' untranslated regions of mRNAs. Moreover, some mRNA species presumably recruit ribosomes to their 5' ends without the involvement of either the 5' m(7)G-cap or eIF4F but instead utilize eIF4G or eIF4G-like auxiliary factors. The long-standing concept of internal ribosome entry site (IRES)-elements in cellular mRNAs is also discussed.
Collapse
Affiliation(s)
- Ivan N Shatsky
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University , Moscow , Russia and
| | | | | | | |
Collapse
|
37
|
Gonatopoulos-Pournatzis T, Cowling VH. Cap-binding complex (CBC). Biochem J 2014. [PMID: 24354960 DOI: 10.1042/bj2013121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The 7mG (7-methylguanosine cap) formed on mRNA is fundamental to eukaryotic gene expression. Protein complexes recruited to 7mG mediate key processing events throughout the lifetime of the transcript. One of the most important mediators of 7mG functions is CBC (cap-binding complex). CBC has a key role in several gene expression mechanisms, including transcription, splicing, transcript export and translation. Gene expression can be regulated by signalling pathways which influence CBC function. The aim of the present review is to discuss the mechanisms by which CBC mediates and co-ordinates multiple gene expression events.
Collapse
Affiliation(s)
| | - Victoria H Cowling
- *MRC Protein Phosphorylation Unit, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, U.K
| |
Collapse
|
38
|
Garre E, Romero-Santacreu L, Barneo-Muñoz M, Miguel A, Pérez-Ortín JE, Alepuz P. Nonsense-mediated mRNA decay controls the changes in yeast ribosomal protein pre-mRNAs levels upon osmotic stress. PLoS One 2013; 8:e61240. [PMID: 23620734 PMCID: PMC3631235 DOI: 10.1371/journal.pone.0061240] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Accepted: 03/07/2013] [Indexed: 11/19/2022] Open
Abstract
The expression of ribosomal protein (RP) genes requires a substantial part of cellular transcription, processing and translation resources. Thus, the RP expression must be tightly regulated in response to conditions that compromise cell survival. In Saccharomyces cerevisiae cells, regulation of the RP gene expression at the transcriptional, mature mRNA stability and translational levels during the response to osmotic stress has been reported. Reprogramming global protein synthesis upon osmotic shock includes the movement of ribosomes from RP transcripts to stress-induced mRNAs. Using tiling arrays, we show that osmotic stress yields a drop in the levels of RP pre-mRNAs in S. cerevisiae cells. An analysis of the tiling array data, together with transcription rates data, shows a poor correlation, indicating that the drop in the RP pre-mRNA levels is not merely a result of the lowered RP transcription rates. A kinetic study using quantitative RT-PCR confirmed the decrease in the levels of several RP-unspliced transcripts during the first 15 minutes of osmotic stress, which seems independent of MAP kinase Hog1. Moreover, we found that the mutations in the components of the nonsense-mediated mRNA decay (NMD), Upf1, Upf2, Upf3 or in exonuclease Xrn1, eliminate the osmotic stress-induced drop in RP pre-mRNAs. Altogether, our results indicate that the degradation of yeast RP unspliced transcripts by NMD increases during osmotic stress, and suggest that this might be another mechanism to control RP synthesis during the stress response.
Collapse
Affiliation(s)
- Elena Garre
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas Universitat de València, Valencia, Spain
| | - Lorena Romero-Santacreu
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas Universitat de València, Valencia, Spain
| | - Manuela Barneo-Muñoz
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas Universitat de València, Valencia, Spain
| | - Ana Miguel
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas Universitat de València, Valencia, Spain
| | - José E. Pérez-Ortín
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas Universitat de València, Valencia, Spain
| | - Paula Alepuz
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas Universitat de València, Valencia, Spain
- * E-mail:
| |
Collapse
|
39
|
Carroll M, Borden KLB. The oncogene eIF4E: using biochemical insights to target cancer. J Interferon Cytokine Res 2013; 33:227-38. [PMID: 23472659 DOI: 10.1089/jir.2012.0142] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The eukaryotic translation initiation factor eIF4E is overexpressed in many human malignancies where it is typically a harbinger of poor prognosis. eIF4E is positioned as a nexus in post-transcriptional gene expression. To carry out these functions, eIF4E needs to bind the m(7)G cap moiety on mRNAs. It plays critical roles in mRNA translation, mRNA export, and most likely in mRNA stability as well. Through these activities, eIF4E coordinately modulates the expression of many transcripts involved in proliferation and survival. eIF4E function is controlled by interactions with protein cofactors in concert with many signaling pathways, including Ras, Mnk, Erk, MAPK, PI3K, mTOR, and Akt. This review describes the eIF4E activity and provides several examples of cellular control mechanisms. Further, we describe some therapeutic strategies in preclinical and clinical development.
Collapse
Affiliation(s)
- Martin Carroll
- Division of Hematology and Oncology, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | | |
Collapse
|
40
|
Gomar-Alba M, Jiménez-Martí E, del Olmo M. The Saccharomyces cerevisiae Hot1p regulated gene YHR087W (HGI1) has a role in translation upon high glucose concentration stress. BMC Mol Biol 2012; 13:19. [PMID: 22720784 PMCID: PMC3441895 DOI: 10.1186/1471-2199-13-19] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Accepted: 05/29/2012] [Indexed: 02/04/2023] Open
Abstract
Background While growing in natural environments yeasts can be affected by osmotic stress provoked by high glucose concentrations. The response to this adverse condition requires the HOG pathway and involves transcriptional and posttranscriptional mechanisms initiated by the phosphorylation of this protein, its translocation to the nucleus and activation of transcription factors. One of the genes induced to respond to this injury is YHR087W. It encodes for a protein structurally similar to the N-terminal region of human SBDS whose expression is also induced under other forms of stress and whose deletion determines growth defects at high glucose concentrations. Results In this work we show that YHR087W expression is regulated by several transcription factors depending on the particular stress condition, and Hot1p is particularly relevant for the induction at high glucose concentrations. In this situation, Hot1p, together to Sko1p, binds to YHR087W promoter in a Hog1p-dependent manner. Several evidences obtained indicate Yhr087wp’s role in translation. Firstly, and according to TAP purification experiments, it interacts with proteins involved in translation initiation. Besides, its deletion mutant shows growth defects in the presence of translation inhibitors and displays a slightly slower translation recovery after applying high glucose stress than the wild type strain. Analyses of the association of mRNAs to polysome fractions reveals a lower translation in the mutant strain of the mRNAs corresponding to genes GPD1, HSP78 and HSP104. Conclusions The data demonstrates that expression of Yhr087wp under high glucose concentration is controlled by Hot1p and Sko1p transcription factors, which bind to its promoter. Yhr087wp has a role in translation, maybe in the control of the synthesis of several stress response proteins, which could explain the lower levels of some of these proteins found in previous proteomic analyses and the growth defects of the deletion strain.
Collapse
Affiliation(s)
- M Gomar-Alba
- Departament de Bioquímica i Biologia Molecular, Facultat de Ciències Biològiques, Universitat de València, Dr, Moliner, 50, E-46100, Burjassot, Valencia, Spain
| | | | | |
Collapse
|