1
|
Cadmium Sulfide Quantum Dots Adversely Affect Gametogenesis in Saccharomyces cerevisiae. NANOMATERIALS 2022; 12:nano12132208. [PMID: 35808044 PMCID: PMC9268033 DOI: 10.3390/nano12132208] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/21/2022] [Accepted: 06/24/2022] [Indexed: 11/23/2022]
Abstract
In the last decades, nanotechnology-based tools have attracted attention in the scientific community, due to their potential applications in different areas from medicine to engineering, but several toxicological effects mediated by these advanced materials have been shown on the environment and human health. At present, the effects of engineered nanomaterials on gametogenesis have not yet been well understood. In the present study, we addressed this issue using the yeast Saccharomyces cerevisiae as a model eukaryote to evaluate the effects of cadmium sulfide quantum dots (CdS QDs) on sporulation, a process equivalent to gametogenesis in higher organisms. We have observed that CdS QDs cause a strong inhibition of spore development with the formation of aberrant, multinucleated cells. In line with these observations, treatment with CdS QDs down-regulates genes encoding crucial regulators of sporulation process, in particular, the transcription factor Ndt80 that coordinates different genes involved in progression through the meiosis and spore morphogenesis. Down-regulation of NDT80 mediated by CdS QDs causes a block of the meiotic cell cycle and a return to mitosis, leading to the formation of aberrant, multinucleated cells. These results indicate that CdS QDs inhibit gametogenesis in an irreversible manner, with adverse effects on cell-cycle progression.
Collapse
|
2
|
Soriano I, Vazquez E, De Leon N, Bertrand S, Heitzer E, Toumazou S, Bo Z, Palles C, Pai CC, Humphrey TC, Tomlinson I, Cotterill S, Kearsey SE. Expression of the cancer-associated DNA polymerase ε P286R in fission yeast leads to translesion synthesis polymerase dependent hypermutation and defective DNA replication. PLoS Genet 2021; 17:e1009526. [PMID: 34228709 PMCID: PMC8284607 DOI: 10.1371/journal.pgen.1009526] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 07/16/2021] [Accepted: 06/11/2021] [Indexed: 12/15/2022] Open
Abstract
Somatic and germline mutations in the proofreading domain of the replicative DNA polymerase ε (POLE-exonuclease domain mutations, POLE-EDMs) are frequently found in colorectal and endometrial cancers and, occasionally, in other tumours. POLE-associated cancers typically display hypermutation, and a unique mutational signature, with a predominance of C > A transversions in the context TCT and C > T transitions in the context TCG. To understand better the contribution of hypermutagenesis to tumour development, we have modelled the most recurrent POLE-EDM (POLE-P286R) in Schizosaccharomyces pombe. Whole-genome sequencing analysis revealed that the corresponding pol2-P287R allele also has a strong mutator effect in vivo, with a high frequency of base substitutions and relatively few indel mutations. The mutations are equally distributed across different genomic regions, but in the immediate vicinity there is an asymmetry in AT frequency. The most abundant base-pair changes are TCT > TAT transversions and, in contrast to human mutations, TCG > TTG transitions are not elevated, likely due to the absence of cytosine methylation in fission yeast. The pol2-P287R variant has an increased sensitivity to elevated dNTP levels and DNA damaging agents, and shows reduced viability on depletion of the Pfh1 helicase. In addition, S phase is aberrant and RPA foci are elevated, suggestive of ssDNA or DNA damage, and the pol2-P287R mutation is synthetically lethal with rad3 inactivation, indicative of checkpoint activation. Significantly, deletion of genes encoding some translesion synthesis polymerases, most notably Pol κ, partially suppresses pol2-P287R hypermutation, indicating that polymerase switching contributes to this phenotype.
Collapse
Affiliation(s)
- Ignacio Soriano
- ZRAB, University of Oxford, Oxford, United Kingdom
- Edinburgh Cancer Research Centre, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, Edinburgh, United Kingdom
| | - Enrique Vazquez
- Genomics Unit, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Nagore De Leon
- ZRAB, University of Oxford, Oxford, United Kingdom
- Edinburgh Cancer Research Centre, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, Edinburgh, United Kingdom
| | | | - Ellen Heitzer
- Institute of Human Genetics, Diagnostic & Research Center for Molecular BioMedicine, Medical University of Graz, Graz, Austria
| | - Sophia Toumazou
- ZRAB, University of Oxford, Oxford, United Kingdom
- MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Zhihan Bo
- ZRAB, University of Oxford, Oxford, United Kingdom
| | - Claire Palles
- Gastrointestinal Cancer Genetics Laboratory, Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Chen-Chun Pai
- MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Timothy C. Humphrey
- MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Ian Tomlinson
- Edinburgh Cancer Research Centre, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, Edinburgh, United Kingdom
| | - Sue Cotterill
- St. George’s, University of London, Cranmer Terrace, Tooting, London, United Kingdom
| | | |
Collapse
|
3
|
Huraiova B, Kanovits J, Polakova SB, Cipak L, Benko Z, Sevcovicova A, Anrather D, Ammerer G, Duncan CDS, Mata J, Gregan J. Proteomic analysis of meiosis and characterization of novel short open reading frames in the fission yeast Schizosaccharomyces pombe. Cell Cycle 2020; 19:1777-1785. [PMID: 32594847 PMCID: PMC7469465 DOI: 10.1080/15384101.2020.1779470] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/05/2020] [Accepted: 05/11/2020] [Indexed: 01/10/2023] Open
Abstract
Meiosis is the process by which haploid gametes are produced from diploid precursor cells. We used stable isotope labeling by amino acids in cell culture (SILAC) to characterize the meiotic proteome in the fission yeast Schizosaccharomyces pombe. We compared relative levels of proteins extracted from cells harvested around meiosis I with those of meiosis II, and proteins from premeiotic S phase with the interval between meiotic divisions, when S phase is absent. Our proteome datasets revealed peptides corresponding to short open reading frames (sORFs) that have been previously identified by ribosome profiling as new translated regions. We verified expression of selected sORFs by Western blotting and analyzed the phenotype of deletion mutants. Our data provide a resource for studying meiosis that may help understand differences between meiosis I and meiosis II and how S phase is suppressed between the two meiotic divisions.
Collapse
Affiliation(s)
- Barbora Huraiova
- Department of Genetics, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
| | - Judit Kanovits
- Department of Genetics, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
| | - Silvia Bagelova Polakova
- Department of Genetics, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
- Department of Membrane Biochemistry, Inst. Of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Lubos Cipak
- Department of Genetics, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Zsigmond Benko
- Department of Membrane Biochemistry, Inst. Of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Bratislava, Slovakia
- Department of Molecular Biotechnology and Microbiology, Institute of Biotechnology, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| | - Andrea Sevcovicova
- Department of Genetics, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
| | - Dorothea Anrather
- Mass Spectrometry Facility and Department of Biochemistry, Max Perutz Labs, University of Vienna, Vienna Biocenter, Austria
| | - Gustav Ammerer
- Mass Spectrometry Facility and Department of Biochemistry, Max Perutz Labs, University of Vienna, Vienna Biocenter, Austria
| | | | - Juan Mata
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Juraj Gregan
- Department of Chromosome Biology, Max Perutz Labs, Vienna Biocenter, University of Vienna, Vienna, Austria
- Advanced Microscopy Facility, Vienna Biocenter Core Facilities, Vienna, Austria
| |
Collapse
|
4
|
Pramanik A, Datta AK, Gupta S, Ghosh B, Das D, Kumbhakar DV. Cadmium Sulfide Nanoparticles and Gamma Irradiations Induced Desynapsis with Associated Phenotypic Marker Trait in Coriandrum sativum L. (Apiaceae). CYTOLOGIA 2018. [DOI: 10.1508/cytologia.83.307] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Ankita Pramanik
- Department of Botany, Cytogenetics, Genetics and Plant Breeding Section, University of Kalyani
| | - Animesh Kumar Datta
- Department of Botany, Cytogenetics, Genetics and Plant Breeding Section, University of Kalyani
| | - Sudha Gupta
- Department of Botany, Pteridology-Palaeobotany Section, University of Kalyani
| | - Bapi Ghosh
- Department of Botany, Cytogenetics, Genetics and Plant Breeding Section, University of Kalyani
| | - Debadrito Das
- Department of Botany, Cytogenetics, Genetics and Plant Breeding Section, University of Kalyani
| | | |
Collapse
|
5
|
Roles of CDK and DDK in Genome Duplication and Maintenance: Meiotic Singularities. Genes (Basel) 2017; 8:genes8030105. [PMID: 28335524 PMCID: PMC5368709 DOI: 10.3390/genes8030105] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 03/13/2017] [Accepted: 03/14/2017] [Indexed: 12/16/2022] Open
Abstract
Cells reproduce using two types of divisions: mitosis, which generates two daughter cells each with the same genomic content as the mother cell, and meiosis, which reduces the number of chromosomes of the parent cell by half and gives rise to four gametes. The mechanisms that promote the proper progression of the mitotic and meiotic cycles are highly conserved and controlled. They require the activities of two types of serine-threonine kinases, the cyclin-dependent kinases (CDKs) and the Dbf4-dependent kinase (DDK). CDK and DDK are essential for genome duplication and maintenance in both mitotic and meiotic divisions. In this review, we aim to highlight how these kinases cooperate to orchestrate diverse processes during cellular reproduction, focusing on meiosis-specific adaptions of their regulation and functions in DNA metabolism.
Collapse
|
6
|
Chaudhary N, Kumar G. Cytogenetical Study of Induced Desynaptic Variants in <i>Phaseolus vulgaris</i> L. CYTOLOGIA 2017. [DOI: 10.1508/cytologia.82.287] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Nitu Chaudhary
- Plant Genetics Laboratory, Department of Botany, University of Allahabad
| | - Girjesh Kumar
- Plant Genetics Laboratory, Department of Botany, University of Allahabad
| |
Collapse
|