1
|
Anjum AA, Lin MJ, Jin L, Li GQ. A critical role for the nuclear protein Akirin in larval development in Henosepilachna vigintioctopunctata. INSECT MOLECULAR BIOLOGY 2024; 33:650-661. [PMID: 38783592 DOI: 10.1111/imb.12929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 05/04/2024] [Indexed: 05/25/2024]
Abstract
Akirin is a nuclear protein that controls development in vertebrates and invertebrates. The function of Akirin has not been assessed in any Coleopteran insects. We found that high levels of akirin transcripts in Henosepilachna vigintioctopunctata, a serious Coleopteran potato defoliator (hereafter Hvakirin), were present at prepupal, pupal and adult stages, especially in larval foregut and fat body. RNA interference (RNAi) targeting Hvakirin impaired larval development. The Hvakirin RNAi larvae arrested development at the final larval instar stage. They remained as stunted larvae, gradually blackened and finally died. Moreover, the remodelling of gut and fat body was inhibited in the Hvakirin depleted larvae. Two layers of cuticles, old and newly formed, were noted in the dsegfp-injected animals. In contrast, only a layer of cuticle was found in the dsakirin-injected beetles, indicating the arrest of larval development. Furthermore, the expression of three transforming growth factor-β cascade genes (Hvsmox, Hvmyo and Hvbabo), a 20-hydroxyecdysone (20E) receptor gene (HvEcR) and six 20E response genes (HvHR3, HvHR4, HvE75, HvBrC, HvE93 and Hvftz-f1) was significantly repressed, consistent with decreased 20E signalling. Conversely, the transcription of a juvenile hormone (JH) biosynthesis gene (Hvjhamt), a JH receptor gene (HvMet) and two JH response genes (HvKr-h1 and HvHairy) was greatly enhanced. Our findings suggest a critical role of Akirin in larval development in H. vigintioctopunctata.
Collapse
Affiliation(s)
- Ahmad Ali Anjum
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests/State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Meng-Jiao Lin
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests/State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Lin Jin
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests/State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Guo-Qing Li
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests/State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
2
|
Pispa J, Mikkonen E, Arpalahti L, Jin C, Martínez-Fernández C, Cerón J, Holmberg CI. AKIR-1 regulates proteasome subcellular function in Caenorhabditis elegans. iScience 2023; 26:107886. [PMID: 37767001 PMCID: PMC10520889 DOI: 10.1016/j.isci.2023.107886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 07/07/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Polyubiquitinated proteins are primarily degraded by the ubiquitin-proteasome system (UPS). Proteasomes are present both in the cytoplasm and nucleus. Here, we investigated mechanisms coordinating proteasome subcellular localization and activity in a multicellular organism. We identified the nuclear protein-encoding gene akir-1 as a proteasome regulator in a genome-wide Caenorhabditis elegans RNAi screen. We demonstrate that depletion of akir-1 causes nuclear accumulation of endogenous polyubiquitinated proteins in intestinal cells, concomitant with slower in vivo proteasomal degradation in this subcellular compartment. Remarkably, akir-1 is essential for nuclear localization of proteasomes both in oocytes and intestinal cells but affects differentially the subcellular distribution of polyubiquitinated proteins. We further reveal that importin ima-3 genetically interacts with akir-1 and influences nuclear localization of a polyubiquitin-binding reporter. Our study shows that the conserved AKIR-1 is an important regulator of the subcellular function of proteasomes in a multicellular organism, suggesting a role for AKIR-1 in proteostasis maintenance.
Collapse
Affiliation(s)
- Johanna Pispa
- Department of Biochemistry and Developmental Biology, Medicum, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland
| | - Elisa Mikkonen
- Department of Biochemistry and Developmental Biology, Medicum, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland
| | - Leena Arpalahti
- Department of Biochemistry and Developmental Biology, Medicum, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland
| | - Congyu Jin
- Department of Anatomy, Medicum, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland
| | - Carmen Martínez-Fernández
- Modeling Human Diseases in C. elegans Group, Genes, Diseases, and Therapies Program, Institut d'Investigació Biomèdica de Bellvitge - IDIBELL, L'Hospitalet de Llobregat, 08908 Barcelona, Spain
| | - Julián Cerón
- Modeling Human Diseases in C. elegans Group, Genes, Diseases, and Therapies Program, Institut d'Investigació Biomèdica de Bellvitge - IDIBELL, L'Hospitalet de Llobregat, 08908 Barcelona, Spain
| | - Carina I. Holmberg
- Department of Biochemistry and Developmental Biology, Medicum, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland
| |
Collapse
|
3
|
Horton HH, Divekar NS, Wignall SM. Newfound features of meiotic chromosome organization that promote efficient congression and segregation in Caenorhabditis elegans oocytes. Mol Biol Cell 2022; 33:br25. [PMID: 36222840 PMCID: PMC9727786 DOI: 10.1091/mbc.e22-07-0297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Although end-on microtubule-kinetochore attachments typically drive chromosome alignment, Caenorhabditis elegans oocytes do not form these connections. Instead, microtubule bundles run laterally alongside chromosomes and a ring-shaped protein complex facilitates congression (the "ring complex", RC). Here, we report new aspects of RC and chromosome structure that are required for congression and segregation. First, we found that in addition to encircling the outside of each homologous chromosome pair (bivalent), the RC also forms internal subloops that wrap around the domains where cohesion is lost during the first meiotic division; cohesin removal could therefore disengage these subloops in anaphase, enabling RC removal from chromosomes. Additionally, we discovered new features of chromosome organization that facilitate congression. Analysis of a mutant that forms bivalents with a fragile, unresolved homolog interface revealed that these bivalents are usually able to biorient on the spindle, with lateral microtubule bundles running alongside them and constraining the chromosome arms so that the two homologs are pointed to opposite spindle poles. This biorientation facilitates congression, as monooriented bivalents exhibited reduced polar ejection forces that resulted in congression defects. Thus, despite not forming end-on attachments, chromosome biorientation promotes congression in C. elegans oocytes. Our work therefore reveals novel features of chromosome organization in oocytes and highlights the importance of proper chromosome structure for faithful segregation during meiotic divisions.
Collapse
Affiliation(s)
- Hannah H. Horton
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208
| | - Nikita S. Divekar
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208
| | - Sarah M. Wignall
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208,*Address correspondence to: Sarah M. Wignall ()
| |
Collapse
|
4
|
Feijão T, Marques B, Silva RD, Carvalho C, Sobral D, Matos R, Tan T, Pereira A, Morais-de-Sá E, Maiato H, DeLuca SZ, Martinho RG. Polycomb group (PcG) proteins prevent the assembly of abnormal synaptonemal complex structures during meiosis. Proc Natl Acad Sci U S A 2022; 119:e2204701119. [PMID: 36215502 PMCID: PMC9586294 DOI: 10.1073/pnas.2204701119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 07/18/2022] [Indexed: 11/18/2022] Open
Abstract
The synaptonemal complex (SC) is a proteinaceous scaffold that is assembled between paired homologous chromosomes during the onset of meiosis. Timely expression of SC coding genes is essential for SC assembly and successful meiosis. However, SC components have an intrinsic tendency to self-organize into abnormal repetitive structures, which are not assembled between the paired homologs and whose formation is potentially deleterious for meiosis and gametogenesis. This creates an interesting conundrum, where SC genes need to be robustly expressed during meiosis, but their expression must be carefully regulated to prevent the formation of anomalous SC structures. In this manuscript, we show that the Polycomb group protein Sfmbt, the Drosophila ortholog of human MBTD1 and L3MBTL2, is required to avoid excessive expression of SC genes during prophase I. Although SC assembly is normal after Sfmbt depletion, SC disassembly is abnormal with the formation of multiple synaptonemal complexes (polycomplexes) within the oocyte. Overexpression of the SC gene corona and depletion of other Polycomb group proteins are similarly associated with polycomplex formation during SC disassembly. These polycomplexes are highly dynamic and have a well-defined periodic structure. Further confirming the importance of Sfmbt, germ line depletion of this protein is associated with significant metaphase I defects and a reduction in female fertility. Since transcription of SC genes mostly occurs during early prophase I, our results suggest a role of Sfmbt and other Polycomb group proteins in downregulating the expression of these and other early prophase I genes during later stages of meiosis.
Collapse
Affiliation(s)
- Tália Feijão
- Algarve Biomedical Center Research Institute, Universidade do Algarve, 8005-139 Faro, Portugal
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, 4200-135 Portugal
- Department of Medical Sciences and Institute for Biomedicine, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Bruno Marques
- Algarve Biomedical Center Research Institute, Universidade do Algarve, 8005-139 Faro, Portugal
| | - Rui D. Silva
- Algarve Biomedical Center Research Institute, Universidade do Algarve, 8005-139 Faro, Portugal
- Faculty of Medicine and Biomedical Sciences, Universidade do Algarve, 8005-139 Faro, Portugal
| | - Célia Carvalho
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Daniel Sobral
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
- Applied Molecular Biosciences Unit (UCIBIO), Department of Life Sciences, School of Science and Technology, NOVA University Lisbon, Caparica, 2819-516 Portugal
| | - Ricardo Matos
- Algarve Biomedical Center Research Institute, Universidade do Algarve, 8005-139 Faro, Portugal
| | - Tian Tan
- Department of Biology, Brandeis University, Waltham, MA 02453
| | - António Pereira
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, 4200-135 Portugal
| | - Eurico Morais-de-Sá
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, 4200-135 Portugal
| | - Hélder Maiato
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, 4200-135 Portugal
| | | | - Rui Gonçalo Martinho
- Algarve Biomedical Center Research Institute, Universidade do Algarve, 8005-139 Faro, Portugal
- Department of Medical Sciences and Institute for Biomedicine, Universidade de Aveiro, 3810-193 Aveiro, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| |
Collapse
|
5
|
Loss, Gain, and Retention: Mechanisms Driving Late Prophase I Chromosome Remodeling for Accurate Meiotic Chromosome Segregation. Genes (Basel) 2022; 13:genes13030546. [PMID: 35328099 PMCID: PMC8949218 DOI: 10.3390/genes13030546] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/14/2022] [Accepted: 03/16/2022] [Indexed: 02/01/2023] Open
Abstract
To generate gametes, sexually reproducing organisms need to achieve a reduction in ploidy, via meiosis. Several mechanisms are set in place to ensure proper reductional chromosome segregation at the first meiotic division (MI), including chromosome remodeling during late prophase I. Chromosome remodeling after crossover formation involves changes in chromosome condensation and restructuring, resulting in a compact bivalent, with sister kinetochores oriented to opposite poles, whose structure is crucial for localized loss of cohesion and accurate chromosome segregation. Here, we review the general processes involved in late prophase I chromosome remodeling, their regulation, and the strategies devised by different organisms to produce bivalents with configurations that promote accurate segregation.
Collapse
|
6
|
Liu Y, Zhao Q, Nie H, Zhang F, Fu T, Zhang Z, Qi F, Wang R, Zhou J, Gao J. SYP-5 regulates meiotic thermotolerance in Caenorhabditis elegans. J Mol Cell Biol 2021; 13:662-675. [PMID: 34081106 PMCID: PMC8648394 DOI: 10.1093/jmcb/mjab035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 03/27/2021] [Accepted: 03/29/2021] [Indexed: 11/13/2022] Open
Abstract
Meiosis produces the haploid gametes required by all sexually reproducing organisms, occurring in specific temperature ranges in different organisms. However, how meiotic thermotolerance is regulated remains largely unknown. Using the model organism Caenorhabditis elegans, here, we identified the synaptonemal complex (SC) protein SYP-5 as a critical regulator of meiotic thermotolerance. syp-5-null mutants maintained a high percentage of viable progeny at 20°C but produced significantly fewer viable progeny at 25°C, a permissive temperature in wild-type worms. Cytological analysis of meiotic events in the mutants revealed that while SC assembly and disassembly, as well as DNA double-strand break repair kinetics, were not affected by the elevated temperature, crossover designation, and bivalent formation were significantly affected. More severe homolog segregation errors were also observed at elevated temperature. A temperature switching assay revealed that late meiotic prophase events were not temperature-sensitive and that meiotic defects during pachytene stage were responsible for the reduced viability of syp-5 mutants at the elevated temperature. Moreover, SC polycomplex formation and hexanediol sensitivity analysis suggested that SYP-5 was required for the normal properties of the SC, and charge-interacting elements in SC components were involved in regulating meiotic thermotolerance. Together, these findings provide a novel molecular mechanism for meiotic thermotolerance regulation.
Collapse
Affiliation(s)
- Yuanyuan Liu
- Institute of Biomedical Sciences, College of Life Sciences, Key Laboratory of Animal Resistance Biology of Shandong Province, Shandong Normal University, Jinan 250014, China
| | - Qiuchen Zhao
- Institute of Biomedical Sciences, College of Life Sciences, Key Laboratory of Animal Resistance Biology of Shandong Province, Shandong Normal University, Jinan 250014, China
| | - Hui Nie
- Institute of Biomedical Sciences, College of Life Sciences, Key Laboratory of Animal Resistance Biology of Shandong Province, Shandong Normal University, Jinan 250014, China
| | - Fengguo Zhang
- Institute of Biomedical Sciences, College of Life Sciences, Key Laboratory of Animal Resistance Biology of Shandong Province, Shandong Normal University, Jinan 250014, China
| | - Tingting Fu
- Institute of Biomedical Sciences, College of Life Sciences, Key Laboratory of Animal Resistance Biology of Shandong Province, Shandong Normal University, Jinan 250014, China
| | - Zhenguo Zhang
- Institute of Biomedical Sciences, College of Life Sciences, Key Laboratory of Animal Resistance Biology of Shandong Province, Shandong Normal University, Jinan 250014, China
| | - Feifei Qi
- Institute of Biomedical Sciences, College of Life Sciences, Key Laboratory of Animal Resistance Biology of Shandong Province, Shandong Normal University, Jinan 250014, China
| | - Ruoxi Wang
- Institute of Biomedical Sciences, College of Life Sciences, Key Laboratory of Animal Resistance Biology of Shandong Province, Shandong Normal University, Jinan 250014, China
| | - Jun Zhou
- Institute of Biomedical Sciences, College of Life Sciences, Key Laboratory of Animal Resistance Biology of Shandong Province, Shandong Normal University, Jinan 250014, China
| | - Jinmin Gao
- Institute of Biomedical Sciences, College of Life Sciences, Key Laboratory of Animal Resistance Biology of Shandong Province, Shandong Normal University, Jinan 250014, China
| |
Collapse
|
7
|
Wellard SR, Schindler K, Jordan PW. Aurora B and C kinases regulate chromosome desynapsis and segregation during mouse and human spermatogenesis. J Cell Sci 2020; 133:jcs248831. [PMID: 33172986 PMCID: PMC7725601 DOI: 10.1242/jcs.248831] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 10/29/2020] [Indexed: 12/27/2022] Open
Abstract
Precise control of chromosome dynamics during meiosis is critical for fertility. A gametocyte undergoing meiosis coordinates formation of the synaptonemal complex (SC) to promote efficient homologous chromosome recombination. Subsequent disassembly of the SC occurs prior to segregation of homologous chromosomes during meiosis I. We examined the requirements of the mammalian Aurora kinases (AURKA, AURKB and AURKC) during SC disassembly and chromosome segregation using a combination of chemical inhibition and gene deletion approaches. We find that both mouse and human spermatocytes fail to disassemble SC lateral elements when the kinase activity of AURKB and AURKC are chemically inhibited. Interestingly, both Aurkb conditional knockout and Aurkc knockout mouse spermatocytes successfully progress through meiosis, and the mice are fertile. In contrast, Aurkb, Aurkc double knockout spermatocytes fail to coordinate disassembly of SC lateral elements with chromosome condensation and segregation, resulting in delayed meiotic progression. In addition, deletion of Aurkb and Aurkc leads to an accumulation of metaphase spermatocytes, chromosome missegregation and aberrant cytokinesis. Collectively, our data demonstrate that AURKB and AURKC functionally compensate for one another ensuring successful mammalian spermatogenesis.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Stephen R Wellard
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Karen Schindler
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Philip W Jordan
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205, USA
| |
Collapse
|
8
|
Sato-Carlton A, Nakamura-Tabuchi C, Li X, Boog H, Lehmer MK, Rosenberg SC, Barroso C, Martinez-Perez E, Corbett KD, Carlton PM. Phosphoregulation of HORMA domain protein HIM-3 promotes asymmetric synaptonemal complex disassembly in meiotic prophase in Caenorhabditis elegans. PLoS Genet 2020; 16:e1008968. [PMID: 33175901 PMCID: PMC7717579 DOI: 10.1371/journal.pgen.1008968] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 12/04/2020] [Accepted: 10/17/2020] [Indexed: 11/27/2022] Open
Abstract
In the two cell divisions of meiosis, diploid genomes are reduced into complementary haploid sets through the discrete, two-step removal of chromosome cohesion, a task carried out in most eukaryotes by protecting cohesion at the centromere until the second division. In eukaryotes without defined centromeres, however, alternative strategies have been innovated. The best-understood of these is found in the nematode Caenorhabditis elegans: after the single off-center crossover divides the chromosome into two segments, or arms, several chromosome-associated proteins or post-translational modifications become specifically partitioned to either the shorter or longer arm, where they promote the correct timing of cohesion loss through as-yet unknown mechanisms. Here, we investigate the meiotic axis HORMA-domain protein HIM-3 and show that it becomes phosphorylated at its C-terminus, within the conserved “closure motif” region bound by the related HORMA-domain proteins HTP-1 and HTP-2. Binding of HTP-2 is abrogated by phosphorylation of the closure motif in in vitro assays, strongly suggesting that in vivo phosphorylation of HIM-3 likely modulates the hierarchical structure of the chromosome axis. Phosphorylation of HIM-3 only occurs on synapsed chromosomes, and similarly to other previously-described phosphorylated proteins of the synaptonemal complex, becomes restricted to the short arm after designation of crossover sites. Regulation of HIM-3 phosphorylation status is required for timely disassembly of synaptonemal complex central elements from the long arm, and is also required for proper timing of HTP-1 and HTP-2 dissociation from the short arm. Phosphorylation of HIM-3 thus plays a role in establishing the identity of short and long arms, thereby contributing to the robustness of the two-step chromosome segregation. To segregate properly in meiosis, cohesion between replicated chromosomes must remain after the first meiotic cell division, so chromosomes can be held together until they finally separate in the second division. While the majority of organisms use centromeres to protect chromosome cohesion in the first division, the nematode worm C. elegans, which lacks single centromeres, instead protects cohesion only on a segment of the chromosome known as the “long arm”. The long arm (and its complement, the short arm) are known to accumulate specific proteins and protein modifications, but it is not known how the short and long arms are first distinguished, nor how their separate functions are carried out. We report here that the chromosome axis protein HIM-3 and its modification by phosphorylation is important for ensuring the robust establishment of short and long arm functions. We show that phosphorylated HIM-3 partitions to the short arms after crossover recombination sites are designated, and HIM-3 mutants that mimic constitutive phosphorylation delay the normal establishment of the two complementary arm domains. Our findings reveal another layer of regulation to an outstanding mystery in chromosome biology.
Collapse
Affiliation(s)
| | | | - Xuan Li
- Kyoto University, Graduate School of Biostudies, Japan
| | - Hendrik Boog
- Kyoto University, Graduate School of Biostudies, Japan
| | - Madison K. Lehmer
- Department of Chemistry and Biochemistry, University of California, San Diego, United States of America
| | - Scott C. Rosenberg
- Department of Chemistry and Biochemistry, University of California, San Diego, United States of America
| | - Consuelo Barroso
- MRC London Institute of Medical Sciences, Imperial College, London
| | | | - Kevin D. Corbett
- Department of Chemistry and Biochemistry, University of California, San Diego, United States of America
- Department of Cellular and Molecular Medicine, University of California, San Diego, United States of America
- Ludwig Institute for Cancer Research, San Diego Branch, United States of America
| | - Peter Mark Carlton
- Kyoto University, Graduate School of Biostudies, Japan
- Kyoto University, Radiation Biology Center, Japan
- Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Japan
- * E-mail:
| |
Collapse
|
9
|
Bosch PJ, Peek SL, Smolikove S, Weiner JA. Akirin proteins in development and disease: critical roles and mechanisms of action. Cell Mol Life Sci 2020; 77:4237-4254. [PMID: 32361777 PMCID: PMC7606436 DOI: 10.1007/s00018-020-03531-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 04/05/2020] [Accepted: 04/15/2020] [Indexed: 12/15/2022]
Abstract
The Akirin genes, which encode small, nuclear proteins, were first characterized in 2008 in Drosophila and rodents. Early studies demonstrated important roles in immune responses and tumorigenesis, which subsequent work found to be highly conserved. More recently, a multiplicity of Akirin functions, and the associated molecular mechanisms involved, have been uncovered. Here, we comprehensively review what is known about invertebrate Akirin and its two vertebrate homologues Akirin1 and Akirin2, highlighting their role in regulating gene expression changes across a number of biological systems. We detail essential roles for Akirin family proteins in the development of the brain, limb, and muscle, in meiosis, and in tumorigenesis, emphasizing associated signaling pathways. We describe data supporting the hypothesis that Akirins act as a "bridge" between a variety of transcription factors and major chromatin remodeling complexes, and discuss several important questions remaining to be addressed. In little more than a decade, Akirin proteins have gone from being completely unknown to being increasingly recognized as evolutionarily conserved mediators of gene expression programs essential for the formation and function of animals.
Collapse
Affiliation(s)
- Peter J Bosch
- Department of Biology and Iowa Neuroscience Institute, University of Iowa, 143 Biology Building, Iowa City, IA, 52242, USA
| | - Stacey L Peek
- Interdisciplinary Graduate Program in Neuroscience, Department of Biology and Iowa Neuroscience Institute, University of Iowa, 143 Biology Building, Iowa City, IA, 52242, USA
| | - Sarit Smolikove
- Department of Biology, University of Iowa, 143 Biology Building, Iowa City, IA, 52242, USA
| | - Joshua A Weiner
- Department of Biology and Iowa Neuroscience Institute, University of Iowa, 143 Biology Building, Iowa City, IA, 52242, USA.
| |
Collapse
|
10
|
Howard AM, Milner H, Hupp M, Willett C, Palermino K, Nowak SJ. Akirin is critical for early tinman induction and subsequent formation of the heart in Drosophila melanogaster. Dev Biol 2020; 469:1-11. [PMID: 32950464 DOI: 10.1016/j.ydbio.2020.09.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 08/27/2020] [Accepted: 09/03/2020] [Indexed: 11/30/2022]
Abstract
The regulation of formation of the Drosophila heart by the Nkx 2.5 homologue Tinman is a key event during embryonic development. In this study, we identify the highly conserved transcription cofactor Akirin as a key factor in the earliest induction of tinman by the Twist transcription cofactor. akirin mutant embryos display a variety of morphological defects in the heart, including abnormal spacing between rows of aortic cells and abnormal patterning of the aortic outflow tract. akirin mutant embryos have a greatly reduced level of tinman transcripts, together with a reduction of Tinman protein in the earliest stages of cardiac patterning. Further, akirin mutants have reduced numbers of Tinman-positive cardiomyoblasts, concomitant with disrupted patterning and organization of the heart. Finally, despite the apparent formation of the heart in akirin mutants, these mutant hearts exhibit fewer coordinated contractions in akirin mutants compared with wild-type hearts. These results indicate that Akirin is crucial for the first induction of tinman by the Twist transcription factor, and that the success of the cardiac patterning program is highly dependent upon establishing the proper level of tinman at the earliest steps of the cardiac developmental pathway.
Collapse
Affiliation(s)
- Austin M Howard
- Master of Science in Integrative Biology Program, Kennesaw State University, USA; Department of Molecular and Cellular Biology, Kennesaw State University, Kennesaw, GA, 30144, USA
| | - Hayley Milner
- Department of Molecular and Cellular Biology, Kennesaw State University, Kennesaw, GA, 30144, USA
| | - Madison Hupp
- Department of Molecular and Cellular Biology, Kennesaw State University, Kennesaw, GA, 30144, USA
| | - Courtney Willett
- Department of Molecular and Cellular Biology, Kennesaw State University, Kennesaw, GA, 30144, USA
| | - Kristina Palermino
- Master of Science in Integrative Biology Program, Kennesaw State University, USA; Department of Molecular and Cellular Biology, Kennesaw State University, Kennesaw, GA, 30144, USA
| | - Scott J Nowak
- Master of Science in Integrative Biology Program, Kennesaw State University, USA; Department of Molecular and Cellular Biology, Kennesaw State University, Kennesaw, GA, 30144, USA.
| |
Collapse
|
11
|
Cuenca L, Shin N, Lascarez-Lagunas LI, Martinez-Garcia M, Nadarajan S, Karthikraj R, Kannan K, Colaiácovo MP. Environmentally-relevant exposure to diethylhexyl phthalate (DEHP) alters regulation of double-strand break formation and crossover designation leading to germline dysfunction in Caenorhabditis elegans. PLoS Genet 2020; 16:e1008529. [PMID: 31917788 PMCID: PMC6952080 DOI: 10.1371/journal.pgen.1008529] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 11/19/2019] [Indexed: 11/18/2022] Open
Abstract
Exposure to diethylhexyl phthalate (DEHP), the most abundant plasticizer used in the production of polyvinyl-containing plastics, has been associated to adverse reproductive health outcomes in both males and females. While the effects of DEHP on reproductive health have been widely investigated, the molecular mechanisms by which exposure to environmentally-relevant levels of DEHP and its metabolites impact the female germline in the context of a multicellular organism have remained elusive. Using the Caenorhabditis elegans germline as a model for studying reprotoxicity, we show that exposure to environmentally-relevant levels of DEHP and its metabolites results in increased meiotic double-strand breaks (DSBs), altered DSB repair progression, activation of p53/CEP-1-dependent germ cell apoptosis, defects in chromosome remodeling at late prophase I, aberrant chromosome morphology in diakinesis oocytes, increased chromosome non-disjunction and defects during early embryogenesis. Exposure to DEHP results in a subset of nuclei held in a DSB permissive state in mid to late pachytene that exhibit defects in crossover (CO) designation/formation. In addition, these nuclei show reduced Polo-like kinase-1/2 (PLK-1/2)-dependent phosphorylation of SYP-4, a synaptonemal complex (SC) protein. Moreover, DEHP exposure leads to germline-specific change in the expression of prmt-5, which encodes for an arginine methyltransferase, and both increased SC length and altered CO designation levels on the X chromosome. Taken together, our data suggest a model by which impairment of a PLK-1/2-dependent negative feedback loop set in place to shut down meiotic DSBs, together with alterations in chromosome structure, contribute to the formation of an excess number of DSBs and altered CO designation levels, leading to genomic instability. Faithful chromosome segregation during meiosis, the specialized cell division program that produces haploid gametes (i.e. eggs and sperm) from a diploid organism, is key for successful sexual reproduction. Diethylhexyl phthalate (DEHP), a commonly used plasticizer found in personal care and household products, has emerged as an endocrine disruptor that exerts reprotoxicity in mammals. In this study, we provide mechanistic insight into the modes of action by which environmentally-relevant levels of DEHP and its metabolites impair female meiosis in the C. elegans germline. Exposure to DEHP leads to defects in late prophase I chromosome remodeling, altered chromosome morphology in oocytes at diakinesis, errors in chromosome segregation, and impaired embryogenesis. Underlying these defects are higher levels of DSBs, altered DSB repair, defects in crossover (CO) designation/formation, germline-specific change in prmt-5 gene expression and altered chromosome structure. We propose that DEHP exposure induces an excess number of DSBs by interfering with mechanisms set in place to turn off DSBs once CO designation is accomplished and by altering chromosome structure resulting in increased chromatin accessibility to the DSB machinery.
Collapse
Affiliation(s)
- Luciann Cuenca
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Nara Shin
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Laura I. Lascarez-Lagunas
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Marina Martinez-Garcia
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Saravanapriah Nadarajan
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Rajendiran Karthikraj
- Wadsworth Center, New York State Department of Health, Empire State Plaza, Albany, New York, United States of America
| | - Kurunthachalam Kannan
- Wadsworth Center, New York State Department of Health, Empire State Plaza, Albany, New York, United States of America
- Department of Pediatrics, New York University School of Medicine, New York City, New York, United States of America
| | - Mónica P. Colaiácovo
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
12
|
Akirin Is Required for Muscle Function and Acts Through the TGF-β Sma/Mab Signaling Pathway in Caenorhabditis elegans Development. G3-GENES GENOMES GENETICS 2020; 10:387-400. [PMID: 31767636 PMCID: PMC6945016 DOI: 10.1534/g3.119.400377] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Akirin, a conserved metazoan protein, functions in muscle development in flies and mice. However, this was only tested in the rodent and fly model systems. Akirin was shown to act with chromatin remodeling complexes in transcription and was established as a downstream target of the NFκB pathway. Here we show a role for Caenorhabditis elegans Akirin/AKIR-1 in the muscle and body length regulation through a different pathway. Akirin localizes to somatic tissues throughout the body of C. elegans, including muscle nuclei. In agreement with its role in other model systems, Akirin loss of function mutants exhibit defects in muscle development in the embryo, as well as defects in movement and maintenance of muscle integrity in the C. elegans adult. We also have determined that Akirin acts downstream of the TGF-β Sma/Mab signaling pathway in controlling body size. Moreover, we found that the loss of Akirin resulted in an increase in autophagy markers, similar to mutants in the TGF-β Sma/Mab signaling pathway. In contrast to what is known in rodent and fly models, C. elegans Akirin does not act with the SWI/SNF chromatin-remodeling complex, and is instead involved with the NuRD chromatin remodeling complex in both movement and regulation of body size. Our studies define a novel developmental role (body size) and a new pathway (TGF-β Sma/Mab) for Akirin function, and confirmed its evolutionarily conserved function in muscle development in a new organism.
Collapse
|
13
|
Tissue-Specific Split sfGFP System for Streamlined Expression of GFP Tagged Proteins in the Caenorhabditis elegans Germline. G3-GENES GENOMES GENETICS 2019; 9:1933-1943. [PMID: 30992318 PMCID: PMC6553534 DOI: 10.1534/g3.119.400162] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Identifying protein localization is a useful tool in analyzing protein function. Using GFP-fusion tags, researchers can study the function of endogenous proteins in living tissue. However, these tags are considerably large, making them difficult to insert, and they can potentially affect the normal function of these proteins. To improve on these drawbacks, we have adopted the split sfGFP system for studying the localization of proteins in the Caenorhabditis elegans germline. This system divides the “super folder” GFP into 2 fragments, allowing researchers to use CRISPR/Cas9 to tag proteins more easily with the smaller subunit, while constitutively expressing the larger subunit from another locus. These two parts are able to stably interact, producing a functional GFP when both fragments are in the same cellular compartment. Our data demonstrate that the split sfGFP system can be adapted for use in C. elegans to tag endogenous proteins with relative ease. Strains containing the tags are homozygous viable and fertile. These small subunit tags produce fluorescent signals that matched the localization patterns of the wild-type protein in the gonad. Thus, our study shows that this approach could be used for tissue-specific GFP expression from an endogenous locus.
Collapse
|
14
|
Bosch PJ, Fuller LC, Weiner JA. A critical role for the nuclear protein Akirin2 in the formation of mammalian muscle in vivo. Genesis 2019; 57:e23286. [PMID: 30801883 DOI: 10.1002/dvg.23286] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 02/13/2019] [Accepted: 02/20/2019] [Indexed: 12/19/2022]
Abstract
Evolutionarily conserved Akirin nuclear proteins interact with chromatin remodeling complexes at gene enhancers and promoters, and have been reported to regulate cell proliferation and differentiation. Of the two mouse Akirin genes, Akirin2 is essential during embryonic development, with known in vivo roles in immune system function and the formation of the cerebral cortex. Here we demonstrate that Akirin2 is critical for mouse myogenesis, a tightly regulated developmental process through which myoblast precursors fuse to form mature skeletal muscle fibers. Loss of Akirin2 in somitic muscle precursor cells via Sim1-Cre-mediated excision of a conditional Akirin2 allele results in neonatal lethality. Mutant embryos exhibit a complete lack of forelimb, intercostal, and diaphragm muscles due to extensive apoptosis and loss of Pax3-positive myoblasts. Severe skeletal defects, including craniofacial abnormalities, disrupted ossification, and rib fusions are also observed, attributable to lack of skeletal muscles as well as patchy Sim1-Cre activity in the embryonic sclerotome. We further show that Akirin2 levels are tightly regulated during muscle cell differentiation in vitro, and that Akirin2 is required for the proper expression of muscle differentiation factors myogenin and myosin heavy chain. Our results implicate Akirin2 as a major regulator of mammalian muscle formation in vivo.
Collapse
Affiliation(s)
- Peter J Bosch
- Department of Biology and Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa
| | - Leah C Fuller
- Department of Biology and Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa
| | - Joshua A Weiner
- Department of Biology and Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa
| |
Collapse
|
15
|
A Novel Role for α-Importins and Akirin in Establishment of Meiotic Sister Chromatid Cohesion in Caenorhabditis elegans. Genetics 2018; 211:617-635. [PMID: 30563860 DOI: 10.1534/genetics.118.301458] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 12/05/2018] [Indexed: 01/20/2023] Open
Abstract
During meiotic prophase I, sister chromatid cohesion is established in a way that supports the assembly of the synaptonemal complex (SC). The SC connects homologous chromosomes, directing meiotic recombination to create crossovers. In this paper, we identify two proteins that cooperate to import and load meiotic cohesins, thus indirectly promoting SC assembly. AKIR-1 is a protein with a previously identified meiotic role in SC disassembly. akir-1 mutants have no obvious defects in sister chromatid cohesion. We identified ima-2, a gene encoding for an α-importin nuclear transport protein, as a gene interacting with akir-1 Analysis of akir-1;ima-2 double mutants reveals a decrease in the number of germline nuclei and the formation of polycomplexes (PCs) (an SC protein aggregate). These PCs contain proteins that are part of the two main substructures of the SC: the central region and the lateral element. Unlike typical PCs, they also contain sister chromatid cohesion proteins. In akir-1;ima-2 double mutants, PCs are located in both the nucleus and the cytoplasm. This suggests that the defects observed in the double mutants are both in nuclear import and in the assembly of sister chromatid cohesion. PC formation is also associated with recombination defects leading to reduced numbers of crossovers. Similarly to cohesion mutants, the pairing center protein HIM-8 is mislocalized in akir-1;ima-2 double mutants, forming multiple foci. We propose that AKIR-1 and IMA-2 operate in parallel pathways to import and load chromosomally associated cohesin complex proteins in meiotic nuclei, a novel finding for both of these conserved proteins.
Collapse
|
16
|
Artigas-Jerónimo S, Villar M, Cabezas-Cruz A, Valdés JJ, Estrada-Peña A, Alberdi P, de la Fuente J. Functional Evolution of Subolesin/Akirin. Front Physiol 2018; 9:1612. [PMID: 30542290 PMCID: PMC6277881 DOI: 10.3389/fphys.2018.01612] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 10/25/2018] [Indexed: 01/18/2023] Open
Abstract
The Subolesin/Akirin constitutes a good model for the study of functional evolution because these proteins have been conserved throughout the metazoan and play a role in the regulation of different biological processes. Here, we investigated the evolutionary history of Subolesin/Akirin with recent results on their structure, protein-protein interactions and function in different species to provide insights into the functional evolution of these regulatory proteins, and their potential as vaccine antigens for the control of ectoparasite infestations and pathogen infection. The results suggest that Subolesin/Akirin evolved conserving not only its sequence and structure, but also its function and role in cell interactome and regulome in response to pathogen infection and other biological processes. This functional conservation provides a platform for further characterization of the function of these regulatory proteins, and how their evolution can meet species-specific demands. Furthermore, the conserved functional evolution of Subolesin/Akirin correlates with the protective capacity shown by these proteins in vaccine formulations for the control of different arthropod and pathogen species. These results encourage further research to characterize the structure and function of these proteins, and to develop new vaccine formulations by combining Subolesin/Akirin with interacting proteins for the control of multiple ectoparasite infestations and pathogen infection.
Collapse
Affiliation(s)
- Sara Artigas-Jerónimo
- SaBio, Instituto de Investigación en Recursos Cinegéticos (IREC), CSIC, Universidad de Castilla-La Mancha (UCLM), Junta de Comunidades de Castilla – La Mancha (JCCM), Ciudad Real, Spain
| | - Margarita Villar
- SaBio, Instituto de Investigación en Recursos Cinegéticos (IREC), CSIC, Universidad de Castilla-La Mancha (UCLM), Junta de Comunidades de Castilla – La Mancha (JCCM), Ciudad Real, Spain
| | - Alejandro Cabezas-Cruz
- UMR BIPAR, INRA, ANSES, Ecole Nationale Vétérinaire d’Alfort, Université Paris-Est, Paris, France
| | - James J. Valdés
- Faculty of Science, University of South Bohemia, České Budějovice, Czechia
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czechia
- Department of Virology, Veterinary Research Institute, Brno, Czechia
| | | | - Pilar Alberdi
- SaBio, Instituto de Investigación en Recursos Cinegéticos (IREC), CSIC, Universidad de Castilla-La Mancha (UCLM), Junta de Comunidades de Castilla – La Mancha (JCCM), Ciudad Real, Spain
| | - José de la Fuente
- SaBio, Instituto de Investigación en Recursos Cinegéticos (IREC), CSIC, Universidad de Castilla-La Mancha (UCLM), Junta de Comunidades de Castilla – La Mancha (JCCM), Ciudad Real, Spain
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, United States
| |
Collapse
|
17
|
BRCA1-BARD1 associate with the synaptonemal complex and pro-crossover factors and influence RAD-51 dynamics during Caenorhabditis elegans meiosis. PLoS Genet 2018; 14:e1007653. [PMID: 30383754 PMCID: PMC6211622 DOI: 10.1371/journal.pgen.1007653] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Accepted: 08/23/2018] [Indexed: 11/19/2022] Open
Abstract
During meiosis, the maternal and paternal homologous chromosomes must align along their entire length and recombine to achieve faithful segregation in the gametes. Meiotic recombination is accomplished through the formation of DNA double-strand breaks, a subset of which can mature into crossovers to link the parental homologous chromosomes and promote their segregation. Breast and ovarian cancer susceptibility protein BRCA1 and its heterodimeric partner BARD1 play a pivotal role in DNA repair in mitotic cells; however, their functions in gametogenesis are less well understood. Here we show that localization of BRC-1 and BRD-1 (Caenorhabditis elegans orthologues of BRCA1 and BARD1) is dynamic during meiotic prophase I; they ultimately becoming concentrated at regions surrounding the presumptive crossover sites, co-localizing with the pro-crossover factors COSA-1, MSH-5 and ZHP-3. The synaptonemal complex and PLK-2 activity are essential for recruitment of BRC-1 to chromosomes and its subsequent redistribution towards the short arm of the bivalent. BRC-1 and BRD-1 form in vivo complexes with the synaptonemal complex component SYP-3 and the crossover-promoting factor MSH-5. Furthermore, BRC-1 is essential for efficient stage-specific recruitment/stabilization of the RAD-51 recombinase to DNA damage sites when synapsis is impaired and upon induction of exogenous damage. Taken together, our data provide new insights into the localization and meiotic function of the BRC-1-BRD-1 complex and highlight its essential role in DNA double-strand break repair during gametogenesis.
Collapse
|
18
|
Bosch PJ, Fuller LC, Weiner JA. An essential role for the nuclear protein Akirin2 in mouse limb interdigital tissue regression. Sci Rep 2018; 8:12240. [PMID: 30116001 PMCID: PMC6095873 DOI: 10.1038/s41598-018-30801-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 07/30/2018] [Indexed: 01/08/2023] Open
Abstract
The regulation of interdigital tissue regression requires the interplay of multiple spatiotemporally-controlled morphogen gradients to ensure proper limb formation and release of individual digits. Disruption to this process can lead to a number of limb abnormalities, including syndactyly. Akirins are highly conserved nuclear proteins that are known to interact with chromatin remodelling machinery at gene enhancers. In mammals, the analogue Akirin2 is essential for embryonic development and critical for a wide variety of roles in immune function, meiosis, myogenesis and brain development. Here we report a critical role for Akirin2 in the regulation of interdigital tissue regression in the mouse limb. Knockout of Akirin2 in limb epithelium leads to a loss of interdigital cell death and an increase in cell proliferation, resulting in retention of the interdigital web and soft-tissue syndactyly. This is associated with perdurance of Fgf8 expression in the ectoderm overlying the interdigital space. Our study supports a mechanism whereby Akirin2 is required for the downregulation of Fgf8 from the apical ectodermal ridge (AER) during limb development, and implies its requirement in signalling between interdigital mesenchymal cells and the AER.
Collapse
Affiliation(s)
- Peter J Bosch
- Department of Biology and Iowa Neuroscience Institute, The University of Iowa, Iowa City, IA, USA
| | - Leah C Fuller
- Department of Biology and Iowa Neuroscience Institute, The University of Iowa, Iowa City, IA, USA
| | - Joshua A Weiner
- Department of Biology and Iowa Neuroscience Institute, The University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
19
|
Polanowska J, Chen JX, Soulé J, Omi S, Belougne J, Taffoni C, Pujol N, Selbach M, Zugasti O, Ewbank JJ. Evolutionary plasticity in the innate immune function of Akirin. PLoS Genet 2018; 14:e1007494. [PMID: 30036395 PMCID: PMC6072134 DOI: 10.1371/journal.pgen.1007494] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 08/02/2018] [Accepted: 06/16/2018] [Indexed: 12/22/2022] Open
Abstract
Eukaryotic gene expression requires the coordinated action of transcription factors, chromatin remodelling complexes and RNA polymerase. The conserved nuclear protein Akirin plays a central role in immune gene expression in insects and mammals, linking the SWI/SNF chromatin-remodelling complex with the transcription factor NFκB. Although nematodes lack NFκB, Akirin is also indispensable for the expression of defence genes in the epidermis of Caenorhabditis elegans following natural fungal infection. Through a combination of reverse genetics and biochemistry, we discovered that in C. elegans Akirin has conserved its role of bridging chromatin-remodellers and transcription factors, but that the identity of its functional partners is different since it forms a physical complex with NuRD proteins and the POU-class transcription factor CEH-18. In addition to providing a substantial step forward in our understanding of innate immune gene regulation in C. elegans, our results give insight into the molecular evolution of lineage-specific signalling pathways.
Collapse
Affiliation(s)
| | - Jia-Xuan Chen
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Julien Soulé
- Aix Marseille Univ, CNRS, INSERM, CIML, Marseille, France
| | - Shizue Omi
- Aix Marseille Univ, CNRS, INSERM, CIML, Marseille, France
| | | | - Clara Taffoni
- Aix Marseille Univ, CNRS, INSERM, CIML, Marseille, France
| | - Nathalie Pujol
- Aix Marseille Univ, CNRS, INSERM, CIML, Marseille, France
| | - Matthias Selbach
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
- Charité-Universitätsmedizin Berlin, Berlin, Germany
| | | | | |
Collapse
|
20
|
Regulating the construction and demolition of the synaptonemal complex. Nat Struct Mol Biol 2017; 23:369-77. [PMID: 27142324 DOI: 10.1038/nsmb.3208] [Citation(s) in RCA: 161] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 03/18/2016] [Indexed: 01/11/2023]
Abstract
The synaptonemal complex (SC) is a meiosis-specific scaffold that links homologous chromosomes from end to end during meiotic prophase and is required for the formation of meiotic crossovers. Assembly of SC components is regulated by a combination of associated nonstructural proteins and post-translational modifications, such as SUMOylation, which together coordinate the timing between homologous chromosome pairing, double-strand-break formation and recombination. In addition, transcriptional and translational control mechanisms ensure the timely disassembly of the SC after crossover resolution and before chromosome segregation at anaphase I.
Collapse
|
21
|
Alleva B, Balukoff N, Peiper A, Smolikove S. Regulating chromosomal movement by the cochaperone FKB-6 ensures timely pairing and synapsis. J Cell Biol 2017; 216:393-408. [PMID: 28077446 PMCID: PMC5294783 DOI: 10.1083/jcb.201606126] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 11/07/2016] [Accepted: 12/29/2016] [Indexed: 11/30/2022] Open
Abstract
Dynein-mediated movement of microtubules is required for chromosome movement; its absence leads to aberrant segregation. Alleva et al. show that FKB-6, a cochaperone of Hsp-90, is required for proper chromosome movement through down-regulation of resting time between movements. In meiotic prophase I, homologous chromosome pairing is promoted through chromosome movement mediated by nuclear envelope proteins, microtubules, and dynein. After proper homologue pairing has been established, the synaptonemal complex (SC) assembles along the paired homologues, stabilizing their interaction and allowing for crossing over to occur. Previous studies have shown that perturbing chromosome movement leads to pairing defects and SC polycomplex formation. We show that FKB-6 plays a role in SC assembly and is required for timely pairing and proper double-strand break repair kinetics. FKB-6 localizes outside the nucleus, and in its absence, the microtubule network is altered. FKB-6 is required for proper movement of dynein, increasing resting time between movements. Attenuating chromosomal movement in fkb-6 mutants partially restores the defects in synapsis, in agreement with FKB-6 acting by decreasing chromosomal movement. Therefore, we suggest that FKB-6 plays a role in regulating dynein movement by preventing excess chromosome movement, which is essential for proper SC assembly and homologous chromosome pairing.
Collapse
Affiliation(s)
- Benjamin Alleva
- Department of Biology, University of Iowa, Iowa City, IA 52242
| | - Nathan Balukoff
- Department of Biology, University of Iowa, Iowa City, IA 52242
| | - Amy Peiper
- Department of Biology, University of Iowa, Iowa City, IA 52242
| | - Sarit Smolikove
- Department of Biology, University of Iowa, Iowa City, IA 52242
| |
Collapse
|
22
|
Bosch PJ, Fuller LC, Sleeth CM, Weiner JA. Akirin2 is essential for the formation of the cerebral cortex. Neural Dev 2016; 11:21. [PMID: 27871306 PMCID: PMC5117564 DOI: 10.1186/s13064-016-0076-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 11/10/2016] [Indexed: 12/22/2022] Open
Abstract
Background The proper spatial and temporal regulation of dorsal telencephalic progenitor behavior is a prerequisite for the formation of the highly-organized, six-layered cerebral cortex. Premature differentiation of cells, disruption of cell cycle timing, excessive apoptosis, and/or incorrect neuronal migration signals can have devastating effects, resulting in a number of neurodevelopmental disorders involving microcephaly and/or lissencephaly. Though genes encoding many key players in cortical development have been identified, our understanding remains incomplete. We show that the gene encoding Akirin2, a small nuclear protein, is expressed in the embryonic telencephalon. Converging evidence indicates that Akirin2 acts as a bridge between transcription factors (including Twist and NF-κB proteins) and the BAF (SWI/SNF) chromatin remodeling machinery to regulate patterns of gene expression. Constitutive knockout of Akirin2 is early embryonic lethal in mice, while restricted loss in B cells led to disrupted proliferation and cell survival. Methods We generated cortex-restricted Akirin2 knockouts by crossing mice harboring a floxed Akirin2 allele with the Emx1-Cre transgenic line and assessed the resulting embryos using in situ hybridization, EdU labeling, and immunohistochemistry. Results The vast majority of Akirin2 mutants do not survive past birth, and exhibit extreme microcephaly, with little dorsal telencephalic tissue and no recognizable cortex. This is primarily due to massive cell death of early cortical progenitors, which begins at embryonic day (E)10, shortly after Emx1-Cre is active. Immunostaining and cell cycle analysis using EdU labeling indicate that Akirin2-null progenitors fail to proliferate normally, produce fewer neurons, and undergo extensive apoptosis. All of the neurons that are generated in Akirin2 mutants also undergo apoptosis by E12. In situ hybridization for Wnt3a and Wnt-responsive genes suggest defective formation and/or function of the cortical hem in Akirin2 null mice. Furthermore, the apical ventricular surface becomes disrupted, and Sox2-positive progenitors are found to “spill” into the lateral ventricle. Conclusions Our data demonstrate a previously-unsuspected role for Akirin2 in early cortical development and, given its known nuclear roles, suggest that it may act to regulate gene expression patterns critical for early progenitor cell behavior and cortical neuron production. Electronic supplementary material The online version of this article (doi:10.1186/s13064-016-0076-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Peter J Bosch
- Department of Biology, The University of Iowa, Iowa City, IA, USA
| | - Leah C Fuller
- Department of Biology, The University of Iowa, Iowa City, IA, USA
| | - Carolyn M Sleeth
- Department of Biology, The University of Iowa, Iowa City, IA, USA
| | - Joshua A Weiner
- Department of Biology and Department of Psychiatry, The University of Iowa, 143 Biology Building, Iowa City, IA, 52242, USA.
| |
Collapse
|
23
|
Nadarajan S, Mohideen F, Tzur YB, Ferrandiz N, Crawley O, Montoya A, Faull P, Snijders AP, Cutillas PR, Jambhekar A, Blower MD, Martinez-Perez E, Harper JW, Colaiacovo MP. The MAP kinase pathway coordinates crossover designation with disassembly of synaptonemal complex proteins during meiosis. eLife 2016; 5:e12039. [PMID: 26920220 PMCID: PMC4805554 DOI: 10.7554/elife.12039] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 02/26/2016] [Indexed: 11/21/2022] Open
Abstract
Asymmetric disassembly of the synaptonemal complex (SC) is crucial for proper meiotic chromosome segregation. However, the signaling mechanisms that directly regulate this process are poorly understood. Here we show that the mammalian Rho GEF homolog, ECT-2, functions through the conserved RAS/ERK MAP kinase signaling pathway in the C. elegans germline to regulate the disassembly of SC proteins. We find that SYP-2, a SC central region component, is a potential target for MPK-1-mediated phosphorylation and that constitutively phosphorylated SYP-2 impairs the disassembly of SC proteins from chromosomal domains referred to as the long arms of the bivalents. Inactivation of MAP kinase at late pachytene is critical for timely disassembly of the SC proteins from the long arms, and is dependent on the crossover (CO) promoting factors ZHP-3/RNF212/Zip3 and COSA-1/CNTD1. We propose that the conserved MAP kinase pathway coordinates CO designation with the disassembly of SC proteins to ensure accurate chromosome segregation. DOI:http://dx.doi.org/10.7554/eLife.12039.001 Most plants and animals, including humans, have cells that contain two copies of every chromosome, with one set inherited from each parent. However, reproductive cells (such as eggs and sperm) contain just one copy of every chromosome so that when they fuse together at fertilization, the resulting cell will have the usual two copies of each chromosome. Embryos that have incorrect numbers of chromosome copies either fail to survive or develop disorders such as Down syndrome. Therefore, it is important that when cells divide to form new reproductive cells, their chromosomes are correctly segregated. To end up with one copy of each chromosome, reproductive cells undergo a form of cell division called meiosis. During meiosis, pairs of chromosomes are held together by a zipper-like structure called the synaptonemal complex. While held together like this, each chromosome in the pair exchanges DNA with the other by forming junctions called crossovers. Once DNA exchange is completed, the synaptonemal complex disappears from certain regions of the chromosome. Using a range of genetic, biochemical and cell biological approaches, Nadarajan et al. have now investigated how crossover formation and the disassembly of the synaptonemal complex are coordinated in the reproductive cells of a roundworm called Caenorhabditis elegans. This revealed that a signaling pathway called the MAP kinase pathway regulates the removal of synaptonemal complex proteins from particular sites between the paired chromosomes. Turning off this pathway’s activity is required for the timely disassembly of this complex, and depends on proteins that are involved in crossover formation. This regulatory mechanism likely ensures that the synaptonemal complex starts to disassemble only after the physical attachments between the paired chromosomes are “locked in”, thus ensuring that reproductive cells receive the correct number of chromosomes. Given that the MAP kinase pathway regulates cell processes in many different organisms, a future challenge is to determine whether this pathway regulates the synaptonemal complex in other species as well. DOI:http://dx.doi.org/10.7554/eLife.12039.002
Collapse
Affiliation(s)
| | - Firaz Mohideen
- Department of Cell Biology, Harvard Medical School, Boston, United States
| | - Yonatan B Tzur
- Department of Genetics, Harvard Medical School, Boston, United States
| | - Nuria Ferrandiz
- MRC Clinical Sciences Centre, Imperial College London, London, United Kingdom
| | - Oliver Crawley
- MRC Clinical Sciences Centre, Imperial College London, London, United Kingdom
| | - Alex Montoya
- Proteomics facility, MRC Clinical Sciences Centre, Imperial College London, London, United Kingdom
| | - Peter Faull
- Proteomics facility, MRC Clinical Sciences Centre, Imperial College London, London, United Kingdom
| | - Ambrosius P Snijders
- Proteomics facility, MRC Clinical Sciences Centre, Imperial College London, London, United Kingdom
| | - Pedro R Cutillas
- Proteomics facility, MRC Clinical Sciences Centre, Imperial College London, London, United Kingdom
| | - Ashwini Jambhekar
- Department of Genetics, Harvard Medical School, Boston, United States.,Department of Molecular Biology, Massachusetts General Hospital, Boston, United States
| | - Michael D Blower
- Department of Genetics, Harvard Medical School, Boston, United States.,Department of Molecular Biology, Massachusetts General Hospital, Boston, United States
| | | | - J Wade Harper
- Department of Cell Biology, Harvard Medical School, Boston, United States
| | | |
Collapse
|
24
|
Liu N, Wang XW, Sun JJ, Wang L, Zhang HW, Zhao XF, Wang JX. Akirin interacts with Bap60 and 14-3-3 proteins to regulate the expression of antimicrobial peptides in the kuruma shrimp (Marsupenaeus japonicus). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 55:80-89. [PMID: 26493016 DOI: 10.1016/j.dci.2015.10.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 10/16/2015] [Accepted: 10/16/2015] [Indexed: 06/05/2023]
Abstract
Akirin is a recently discovered nuclear factor that plays important roles in innate immune responses. Akirin is a positive regulator of the NF-κB factor of the Drosophila immune deficiency (IMD) pathway, which shares extensive similarities with the mammalian tumor necrosis factor receptor (TNFR) signaling pathway. However, some studies found that the NF-κB transcriptional targets were also strongly repressed in akirin2 knockout mice following TLR, IL-1β and TNFα treatment. Therefore, the function of Akirin in the immune response requires further clarification. In this study, an Akirin homolog in the kuruma shrimp (Marsupenaeus japonicus) was identified. It was mainly expressed in hemocytes, heart and intestines. The expression of Akirin was upregulated by challenge with the Gram-negative bacterium Vibrio anguillarum, but was not significantly influenced by challenge with the Gram-positive bacterium Staphylococcus aureus. Knockdown of Akirin suppressed the expression of several IMD-Relish target effectors (antimicrobial peptides, AMPs). The limited regulating spectrum of Akirin might be associated with Bap60, a component of the Brahma (SWI/SNF) ATP-dependent chromatin-remodeling complex. In addition, Akirin also interacts with 14-3-3, which inhibited the expression of Akirin-target AMPs. The results suggested that Akirin is involved in the IMD-Relish pathway by interacting with Relish. The interaction of Akirin with Bap60 positively regulated the Akirin-Relish function, and its interaction with 14-3-3 negatively regulated the Akirin-Relish function.
Collapse
Affiliation(s)
- Ning Liu
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong, 250100, China
| | - Xian-Wei Wang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong, 250100, China.
| | - Jie-Jie Sun
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong, 250100, China
| | - Lei Wang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong, 250100, China
| | - Hong-Wei Zhang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong, 250100, China
| | - Xiao-Fan Zhao
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong, 250100, China
| | - Jin-Xing Wang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong, 250100, China.
| |
Collapse
|
25
|
Parodi DA, Sjarif J, Chen Y, Allard P. Reproductive toxicity and meiotic dysfunction following exposure to the pesticides Maneb, Diazinon and Fenarimol. Toxicol Res (Camb) 2015; 4:645-654. [PMID: 25984295 PMCID: PMC4433152 DOI: 10.1039/c4tx00141a] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The comprehensive identification and mechanistic analysis of reproductive toxicants constitutes one of the major hurdles in the toxicological assessment of chemicals originating from the large number of chemicals to be tested and the difficulty in examining germ cells at various stages of their development. We previously described the development of an assay in the roundworm Caenorhabditis elegans that allows the detection of chemicals bearing aneugenic activity and that could be used for the detection of germline toxicity. We present here new evidence for the reproductive toxicity of three pesticides identified in our germline toxicity assay: Maneb, Diazinon and Fenarimol. We show that all three pesticides cause an acute germline nuclear loss in exposed nematodes in a dose-dependent fashion. The loss of germline nuclei coincides with the meiotic stage of pachytene during Prophase I and is dependent on the germline apoptotic machinery suggesting activation of a meiotic checkpoint. Further investigation revealed a profound dysregulation of the meiotic program revealed by (1) an alteration of the kinetics of double strand repair, (2) the disruption of the process of chromosome morphogenesis at the end of Prophase I and (3) the reorganization of the meiotic differentiation gradient inherent to the C. elegans germline following exposure to Maneb and Diazinon. These defects correlate with a significant increase in embryonic lethality and a corresponding decrease in the number of progeny. These results therefore provide strong evidence for the reproductive toxicity of Maneb, Diazinon and Fenarimol rooted in the alteration of early steps of germ cell differentiation.
Collapse
Affiliation(s)
- Daniela A Parodi
- Institute for Society and Genetics, University of California, Los Angeles, Los Angeles, USA
| | - Jasmine Sjarif
- Department of Environmental Health Sciences, University of California, Los Angeles, Los Angeles, USA
| | - Yichang Chen
- Department of Environmental Health Sciences, University of California, Los Angeles, Los Angeles, USA ; Molecular Toxicology Inter-Departmental Program, University of California, Los Angeles, Los Angeles, USA
| | - Patrick Allard
- Institute for Society and Genetics, University of California, Los Angeles, Los Angeles, USA ; Department of Environmental Health Sciences, University of California, Los Angeles, Los Angeles, USA ; Molecular Toxicology Inter-Departmental Program, University of California, Los Angeles, Los Angeles, USA
| |
Collapse
|
26
|
The CSN/COP9 signalosome regulates synaptonemal complex assembly during meiotic prophase I of Caenorhabditis elegans. PLoS Genet 2014; 10:e1004757. [PMID: 25375142 PMCID: PMC4222726 DOI: 10.1371/journal.pgen.1004757] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2014] [Accepted: 09/15/2014] [Indexed: 11/22/2022] Open
Abstract
The synaptonemal complex (SC) is a conserved protein structure that holds homologous chromosome pairs together throughout much of meiotic prophase I. It is essential for the formation of crossovers, which are required for the proper segregation of chromosomes into gametes. The assembly of the SC is likely to be regulated by post-translational modifications. The CSN/COP9 signalosome has been shown to act in many pathways, mainly via the ubiquitin degradation/proteasome pathway. Here we examine the role of the CSN/COP9 signalosome in SC assembly in the model organism C. elegans. Our work shows that mutants in three subunits of the CSN/COP9 signalosome fail to properly assemble the SC. In these mutants, SC proteins aggregate, leading to a decrease in proper pairing between homologous chromosomes. The reduction in homolog pairing also results in an accumulation of recombination intermediates and defects in repair of meiotic DSBs to form the designated crossovers. The effect of the CSN/COP9 signalosome mutants on synapsis and crossover formation is due to increased neddylation, as reducing neddylation in these mutants can partially suppress their phenotypes. We also find a marked increase in apoptosis in csn mutants that specifically eliminates nuclei with aggregated SC proteins. csn mutants exhibit defects in germline proliferation, and an almost complete pachytene arrest due to an inability to activate the MAPK pathway. The work described here supports a previously unknown role for the CSN/COP9 signalosome in chromosome behavior during meiotic prophase I. Meiosis is a cellular division required for the formation of gametes, and therefore sexual reproduction. Accurate chromosome segregation is dependent on the formation of crossovers, the exchange of DNA between homologous chromosomes. A key process in the formation of crossovers is the assembly of the synaptonemal complex (SC) between homologs during prophase I. How functional SC structure forms is still not well understood. Here we identify CSN/COP9 signalosome complex as having a clear role in chromosome synapsis. In CSN/COP9 mutants, SC proteins aggregate and fail to properly assemble on homologous chromosomes. This leads to defects in homolog pairing, repair of meiotic DNA damage and crossover formation. The data in this paper suggest that the role of the CSN/COP9 signalosome is to prevent the aggregation of central region proteins during SC assembly.
Collapse
|
27
|
Alternative meiotic chromatid segregation in the holocentric plant Luzula elegans. Nat Commun 2014; 5:4979. [PMID: 25296379 PMCID: PMC4214429 DOI: 10.1038/ncomms5979] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 08/12/2014] [Indexed: 11/08/2022] Open
Abstract
Holocentric chromosomes occur in a number of independent eukaryotic lineages. They form holokinetic kinetochores along the entire poleward chromatid surfaces, and owing to this alternative chromosome structure, species with holocentric chromosomes cannot use the two-step loss of cohesion during meiosis typical for monocentric chromosomes. Here we show that the plant Luzula elegans maintains a holocentric chromosome architecture and behaviour throughout meiosis, and in contrast to monopolar sister centromere orientation, the unfused holokinetic sister centromeres behave as two distinct functional units during meiosis I, resulting in sister chromatid separation. Homologous non-sister chromatids remain terminally linked after metaphase I, by satellite DNA-enriched chromatin threads, until metaphase II. They then separate at anaphase II. Thus, an inverted sequence of meiotic sister chromatid segregation occurs. This alternative meiotic process is most likely one possible adaptation to handle a holocentric chromosome architecture and behaviour during meiosis.
Collapse
|
28
|
Xue X, Wang L, Chen Y, Zhang X, Luo H, Li Z, Zhao H, Yao B. Identification and molecular characterization of an Akirin2 homolog in Chinese loach (Paramisgurnus dabryanus). FISH & SHELLFISH IMMUNOLOGY 2014; 36:435-443. [PMID: 24389387 DOI: 10.1016/j.fsi.2013.12.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 12/21/2013] [Accepted: 12/23/2013] [Indexed: 06/03/2023]
Abstract
Akirin is a nuclear factor involved in innate immune responses of arthropods and mammals. In this study we have cloned an Akirin2 gene, pdakirin2, from freshwater Chinese loach (Paramisgurnus dabryanus) and characterized its biological functions. Phylogenetic analysis revealed deduced PdAkirin2 had high sequence identities to Akirin2 homologs from fish and mammals (70-91%), it contained two conserved nuclear localization signals (NLSs) with verified sub-cellular localization. Quantitative real-time (qRT)-PCR analysis indicated that PdAkirin2 was present in a wide range of loach tissues and showed up-regulation with challenges of Aeromonas hydrophila NJ-1, LPS and poly I:C. PdAkirin2 as an immune factor had significant effects on the expression of cytokines (TNFα, IFN-α, IFN-γ, IL-4 and IL-1β) and transcription factor NF-κB. This study provides insights into the potential role of PdAkirin2 in the innate immune system.
Collapse
Affiliation(s)
- Xianli Xue
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, No. 12, Zhongguancun South Street, Beijing 100081, PR China
| | - Liwen Wang
- National Animal Husbandry Extension Service, Beijing 100125, PR China
| | - Yeyu Chen
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, No. 12, Zhongguancun South Street, Beijing 100081, PR China
| | - Xinshang Zhang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, No. 12, Zhongguancun South Street, Beijing 100081, PR China
| | - Huiying Luo
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, No. 12, Zhongguancun South Street, Beijing 100081, PR China
| | - Zhongyuan Li
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, No. 12, Zhongguancun South Street, Beijing 100081, PR China
| | - Heng Zhao
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, No. 12, Zhongguancun South Street, Beijing 100081, PR China.
| | - Bin Yao
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, No. 12, Zhongguancun South Street, Beijing 100081, PR China.
| |
Collapse
|
29
|
Kleino A, Silverman N. The Drosophila IMD pathway in the activation of the humoral immune response. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 42:25-35. [PMID: 23721820 PMCID: PMC3808521 DOI: 10.1016/j.dci.2013.05.014] [Citation(s) in RCA: 236] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2013] [Revised: 05/17/2013] [Accepted: 05/17/2013] [Indexed: 05/08/2023]
Abstract
The IMD pathway signaling plays a pivotal role in the Drosophila defense against bacteria. During the last two decades, significant progress has been made in identifying the components and deciphering the molecular mechanisms underlying this pathway, including the means of bacterial sensing and signal transduction. While these findings have contributed to the understanding of the immune signaling in insects, they have also provided new insights in studying the mammalian NF-κB signaling pathways. Here, we summarize the current view of the IMD pathway focusing on how it regulates the humoral immune response of Drosophila.
Collapse
Affiliation(s)
- Anni Kleino
- Division of Infectious Diseases, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| | | |
Collapse
|