1
|
Zhao M, Xie L, Huang W, Li M, Gu X, Zhang W, Wei J, Zhang N. Combined Effects of Cadmium and Lead on Growth Performance and Kidney Function in Broiler Chicken. Biol Trace Elem Res 2025; 203:358-373. [PMID: 38589681 DOI: 10.1007/s12011-024-04173-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 04/02/2024] [Indexed: 04/10/2024]
Abstract
Cadmium (Cd) and lead (Pb) are heavy metals prevalent in the environment and feed, and they reduce production performance of domestic animals, as well as they result in residue in animal tissues. The kidney is the target tissue for Cd and Pb. And the kidney is crucial for the reabsorption of calcium (Ca), which consequently influences bone strength. However, there are relatively few studies related to the effects of Cd and Pb exposure on performance, bone strength and kidney damage in livestock. The purpose of this experiment was to explore the combined effect of Cd and Pb on growth performance and renal impairment and the possible underlying mechanism. For this, 168 1-day-old Ross 308 broilers were randomly divided into four groups of six birds each, with seven replicates in each group: control group, 50 mg Cd/kg body weight group, 200 mg Pb/kg body weight group and 50 mg Cd/kg body weight + 200 mg Pb/kg body weight group. Feed intake was recorded daily and body weight was recorded weekly. The results show that at the end of the 3rd and 6th week, one broiler from each replicate was randomly selected for sampling. Boilers co-exposed to Cd and Pb for 3 weeks and 6 weeks had significantly decreased average daily feed intake (ADFI) and average daily body weight gain (ADG) than the control group, and the ratio of feed-to-weight gain (F/G) significantly increased after 6 weeks of co-exposure to Cd and Pb. Microscopic picture and ultrastructure analyses of the kidneys showed that Cd and Pb caused kidney damage to broiler chickens, and the damage was more serious in the Cd + Pb group, which was manifested by increased renal tubular epithelial degeneration and increased interstitial stasis points. Dietary exposure to Cd and Pb impaired production performance and induced renal oxidative damage in broilers. The combined effects of Cd and Pb on the kidneys are greater than their effects alone. The PERK-ATF4 pathway mediated endoplasmic reticulum stress participates the renal oxidative damage during chronic Cd and Pb exposure.
Collapse
Affiliation(s)
- Man Zhao
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, China
| | - Longqiang Xie
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, China
| | - Wenbin Huang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, China
| | - Meiling Li
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, China
| | - Xin Gu
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, China
| | - Wei Zhang
- Institute of Animal Husbandry and Veterinary Medicine, Hubei Academy of Agricultural Sciences, Wuhan, Hubei Province, China
| | - Jintao Wei
- Institute of Animal Husbandry and Veterinary Medicine, Hubei Academy of Agricultural Sciences, Wuhan, Hubei Province, China
| | - Niya Zhang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, China.
| |
Collapse
|
2
|
Li C, Huynh NPT, Schanz SJ, Windrem MS, Goldman SA. JC virus spread is potentiated by glial replication and demyelination-linked glial proliferation. Brain 2024; 147:4131-4146. [PMID: 39133566 DOI: 10.1093/brain/awae252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 06/02/2024] [Accepted: 06/29/2024] [Indexed: 11/14/2024] Open
Abstract
Progressive multifocal leukoencephalopathy is a demyelinating infection of the immunosuppressed brain, mediated by the gliotropic polyomavirus JCV. JCV replicates in human glial progenitor cells and astrocytes, which undergo viral T-antigen-triggered mitosis, enabling viral replication. We asked whether JCV spread might therefore be accelerated by glial proliferation. Using both in vitro analysis and a human glial chimeric mouse model of JCV infection, we found that dividing human astrocytes supported JCV propagation to a substantially greater degree than did mitotically quiescent cells. Accordingly, bulk and single-cell RNA-sequence analysis revealed that JCV-infected glia differentially manifested cell cycle-linked disruption of both DNA damage response and transcriptional regulatory pathways. In vivo, JCV infection of humanized glial chimeras was greatly accentuated by cuprizone-induced demyelination and its associated mobilization of glial progenitor cells. Importantly, in vivo infection triggered the death of both uninfected and infected glia, reflecting significant bystander death. Together, these data suggest that JCV propagation in progressive multifocal leukoencephalopathy might be accelerated by glial cell division. As such, the accentuated glial proliferation attending disease-associated demyelination might provide an especially favourable environment for JCV propagation, thus potentiating oligodendrocytic bystander death and further accelerating demyelination in susceptible hosts.
Collapse
Affiliation(s)
- Cui Li
- Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai 200072, China
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester NY 14604, USA
| | - Nguyen P T Huynh
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester NY 14604, USA
- Center for Translational Neuromedicine, University of Copenhagen Faculty of Health and Medical Sciences, Copenhagen 1017, Denmark
- Sana Biotechnology, Cambridge, MA 02139, USA
| | - Steven J Schanz
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester NY 14604, USA
| | - Martha S Windrem
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester NY 14604, USA
| | - Steven A Goldman
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester NY 14604, USA
- Center for Translational Neuromedicine, University of Copenhagen Faculty of Health and Medical Sciences, Copenhagen 1017, Denmark
- Sana Biotechnology, Cambridge, MA 02139, USA
| |
Collapse
|
3
|
Qureshi S, Lee S, Ritzer L, Kim SY, Steidl W, Krest GJ, Kasi A, Kumar V. ATF4 regulates mitochondrial dysfunction, mitophagy, and autophagy, contributing to corneal endothelial apoptosis under chronic ER stress in Fuchs' dystrophy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.14.623646. [PMID: 39569143 PMCID: PMC11577245 DOI: 10.1101/2024.11.14.623646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
Purpose Endoplasmic reticulum (ER) stress, mitochondrial dysfunction, mitophagy/autophagy are known to contribute independently to corneal endothelial (CE) apoptosis in Fuchs' endothelial corneal dystrophy (FECD). However, the role of a well-studied specific ER stress pathway (PERK-ATF4-CHOP) in regulating mitochondrial dysfunction, mitophagy/autophagy, and apoptosis is unknown. The purpose of this study is to explore the role of ATF4 in regulating mitochondrial dysfunction and mitophagy/autophagy, leading to CEnC apoptosis in FECD. Methods Human corneal endothelial cell line (HCEnC-21T), Fuchs' corneal endothelial cell line (F35T), and primary human corneal endothelial cells were treated with ER stressor tunicamycin (0.01, 0.1, 1, 10 μg/mL) for 24 and/or 48 hours. ATF4 siRNA was used to knock down ATF4 in 21T cell line and primary corneal endothelial cells. Cell viability was measured using an MTT assay (10 μg/mL tunicamycin for 24 hours). Mitochondrial bioenergetics was analyzed by measuring mitochondria membrane potential (MMP) loss using TMRE assay and ATP production using mitochondrial complex V assay kit at 48 hours post tunicamycin. Mitochondrial-mediated intrinsic apoptotic pathway proteins, mitophagy, and autophagy marker proteins were analyzed using Western blotting (10 μg/mL tunicamycin for 24 hours). ATF4 +/- and ATF4 +/+ mice were irradiated with UVA to assess pro-apoptotic ER stress and corneal endothelial cell death in vivo . Results F35T cell line had a significantly increased expression of ER stress pathway molecules (eIF2α, ATF4, CHOP) and mitochondrial-mediated intrinsic apoptotic molecules (cleaved PARP, caspase 9, caspase 3) along with mitochondrial fragmentation compared to 21T cells at the baseline, which further increased after treatment with tunicamycin. Mitochondrial membrane potential also significantly decreased in F35T compared to 21T after tunicamycin. ATF4 knockdown after tunicamycin significantly attenuated pro-apoptotic ER and mitochondrial stress molecules, rescued MMP loss, and reduced mitochondrial fragmentation in the 21T cell line and primary corneal endothelial cells. ATF4 knockdown post tunicamycin treatment also downregulated altered/excessive Parkin-mediated mitophagy and Akt/mTOR-mediated autophagy pathway with reduction of caspases, leading to increased cellular viability. ATF4+/-mice had significantly increased CE numbers with improved cellular morphology and decreased CHOP expression compared to ATF4+/+ post-UVA. Conclusions Pro-apoptotic ATF4 induction under tunicamycin-induced ER stress disrupts mitochondrial bioenergetics and dynamics, leading to activation of excessive autophagy/mitophagy. ATF4-induced activation of CHOP plays a key role in switching excessive autophagy to CEnC apoptosis. This study highlights the importance of ATF4 in ER-mitochondrial crosstalk and its contribution to CEnC apoptosis in FECD.
Collapse
|
4
|
de Almeida Chuffa LG, Seiva FRF, Silveira HS, Cesário RC, da Silva Tonon K, Simão VA, Zuccari DAPC, Reiter RJ. Melatonin regulates endoplasmic reticulum stress in diverse pathophysiological contexts: A comprehensive mechanistic review. J Cell Physiol 2024; 239:e31383. [PMID: 39039752 DOI: 10.1002/jcp.31383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/13/2024] [Accepted: 07/05/2024] [Indexed: 07/24/2024]
Abstract
The endoplasmic reticulum (ER) is crucial for protein quality control, and disruptions in its function can lead to various diseases. ER stress triggers an adaptive response called the unfolded protein response (UPR), which can either restore cellular homeostasis or induce cell death. Melatonin, a safe and multifunctional compound, shows promise in controlling ER stress and could be a valuable therapeutic agent for managing the UPR. By regulating ER and mitochondrial functions, melatonin helps maintain cellular homeostasis via reduction of oxidative stress, inflammation, and apoptosis. Melatonin can directly or indirectly interfere with ER-associated sensors and downstream targets of the UPR, impacting cell death, autophagy, inflammation, molecular repair, among others. Crucially, this review explores the mechanistic role of melatonin on ER stress in various diseases including liver damage, neurodegeneration, reproductive disorders, pulmonary disease, cardiomyopathy, insulin resistance, renal dysfunction, and cancer. Interestingly, while it alleviates the burden of ER stress in most pathological contexts, it can paradoxically stimulate ER stress in cancer cells, highlighting its intricate involvement in cellular homeostasis. With numerous successful studies using in vivo and in vitro models, the continuation of clinical trials is imperative to fully explore melatonin's therapeutic potential in these conditions.
Collapse
Affiliation(s)
- Luiz Gustavo de Almeida Chuffa
- Department of Structural and Functional Biology, Institute of Bioscences, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Fábio Rodrigues Ferreira Seiva
- Department of Chemical and Biological Sciences, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Henrique S Silveira
- Department of Structural and Functional Biology, Institute of Bioscences, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Roberta Carvalho Cesário
- Department of Structural and Functional Biology, Institute of Bioscences, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Karolina da Silva Tonon
- Department of Structural and Functional Biology, Institute of Bioscences, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Vinicius Augusto Simão
- Department of Structural and Functional Biology, Institute of Bioscences, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Debora Aparecida P C Zuccari
- Department of Molecular Biology, Faculty of Medicine of São José do Rio Preto (FAMERP), São José do Rio Preto, São Paulo, Brazil
| | - Russel J Reiter
- Department of Cellular and Structural Biology, UTHealth, San Antonio, Texas, USA
| |
Collapse
|
5
|
Song L, Qiu Q, Ju F, Zheng C. Mechanisms of doxorubicin-induced cardiac inflammation and fibrosis; therapeutic targets and approaches. Arch Biochem Biophys 2024; 761:110140. [PMID: 39243924 DOI: 10.1016/j.abb.2024.110140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 08/28/2024] [Accepted: 09/04/2024] [Indexed: 09/09/2024]
Abstract
Doxorubicin plays a pivotal role in the treatment of various malignancies. Despite its efficacy, the cardiotoxicity associated with doxorubicin limits its clinical utility. The cardiotoxic nature of doxorubicin is attributed to several mechanisms, including its interference with mitochondrial function, the generation of reactive oxygen species (ROS), and the subsequent damage to cardiomyocyte DNA, proteins, and lipids. Furthermore, doxorubicin disrupts the homeostasis of cardiac-specific transcription factors and signaling pathways, exacerbating cardiac dysfunction. Oxidative stress, cell death, and other severe changes, such as mitochondrial dysfunction, activation of pro-oxidant enzymes, the renin-angiotensin system (RAS), endoplasmic reticulum (ER) stress, and infiltration of immune cells in the heart after treatment with doxorubicin, may cause inflammatory and fibrotic responses. Fibrosis and inflammation can lead to a range of disorders in the heart, resulting in potential cardiac dysfunction and disease. Various adjuvants have shown potential in preclinical studies to mitigate these challenges associated with cardiac inflammation and fibrosis. Antioxidants, plant-based products, specific inhibitors, and cardioprotective drugs may be recommended to alleviate cardiotoxicity. This review explores the complex mechanisms of doxorubicin-induced heart inflammation and fibrosis, identifies possible cellular and molecular targets, and investigates potential substances that could help reduce these harmful effects.
Collapse
Affiliation(s)
- Linghua Song
- Department of Pharmacy, Yantai Mountain Hospital, Yantai City, Shandong Province, 264001, China
| | - Qingzhuo Qiu
- Medical Imaging Department of Qingdao Women and Children's Hospital, 266000, China
| | - Fei Ju
- Department of Critical Care, Medicine East Hospital of Qingdao Municipal Hospital, 266000, China
| | - Chunyan Zheng
- Cadre Health Office of Zibo Central Hospital in Shandong Province, 255000, China.
| |
Collapse
|
6
|
Kim J, Huang K, Vo PTT, Miao T, Correia J, Kumar A, Simons MJP, Bai H. Peroxisomal import stress activates integrated stress response and inhibits ribosome biogenesis. PNAS NEXUS 2024; 3:pgae429. [PMID: 39398621 PMCID: PMC11470064 DOI: 10.1093/pnasnexus/pgae429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 09/18/2024] [Indexed: 10/15/2024]
Abstract
Impaired organelle-specific protein import triggers a variety of cellular stress responses, including adaptive pathways to balance protein homeostasis. Most of the previous studies focus on the cellular stress response triggered by misfolded proteins or defective protein import in the endoplasmic reticulum or mitochondria. However, little is known about the cellular stress response to impaired protein import in the peroxisome, an understudied organelle that has recently emerged as a key signaling hub for cellular and metabolic homeostasis. To uncover evolutionarily conserved cellular responses upon defective peroxisomal import, we carried out a comparative transcriptomic analysis on fruit flies with tissue-specific peroxin knockdown and human HEK293 cells expressing dominant-negative PEX5C11A. Our RNA-seq results reveal that defective peroxisomal import upregulates integrated stress response (ISR) and downregulates ribosome biogenesis in both flies and human cells. Functional analyses confirm that impaired peroxisomal import induces eIF2α phosphorylation and ATF4 expression. Loss of ATF4 exaggerates cellular damage upon peroxisomal import defects, suggesting that ATF4 activation serves as a cellular cytoprotective mechanism upon peroxisomal import stress. Intriguingly, we show that peroxisomal import stress decreases the expression of rRNA processing genes and inhibits early pre-rRNA processing, which leads to the accumulation of 47S precursor rRNA and reduction of downstream rRNA intermediates. Taken together, we identify ISR activation and ribosome biogenesis inhibition as conserved adaptive stress responses to defective peroxisomal import and uncover a novel link between peroxisomal dysfunction and rRNA processing.
Collapse
Affiliation(s)
- Jinoh Kim
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA 50011, USA
| | - Kerui Huang
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA 50011, USA
| | - Pham Thuy Tien Vo
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA 50011, USA
| | - Ting Miao
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA 50011, USA
| | - Jacinta Correia
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA 50011, USA
| | - Ankur Kumar
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA 50011, USA
| | - Mirre J P Simons
- Department of Animal and Plant Sciences and Bateson Centre, The University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Hua Bai
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
7
|
Offer S, Di Bucchianico S, Czech H, Pardo M, Pantzke J, Bisig C, Schneider E, Bauer S, Zimmermann EJ, Oeder S, Hartner E, Gröger T, Alsaleh R, Kersch C, Ziehm T, Hohaus T, Rüger CP, Schmitz-Spanke S, Schnelle-Kreis J, Sklorz M, Kiendler-Scharr A, Rudich Y, Zimmermann R. The chemical composition of secondary organic aerosols regulates transcriptomic and metabolomic signaling in an epithelial-endothelial in vitro coculture. Part Fibre Toxicol 2024; 21:38. [PMID: 39300536 DOI: 10.1186/s12989-024-00600-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 09/10/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND The formation of secondary organic aerosols (SOA) by atmospheric oxidation reactions substantially contributes to the burden of fine particulate matter (PM2.5), which has been associated with adverse health effects (e.g., cardiovascular diseases). However, the molecular and cellular effects of atmospheric aging on aerosol toxicity have not been fully elucidated, especially in model systems that enable cell-to-cell signaling. METHODS In this study, we aimed to elucidate the complexity of atmospheric aerosol toxicology by exposing a coculture model system consisting of an alveolar (A549) and an endothelial (EA.hy926) cell line seeded in a 3D orientation at the air‒liquid interface for 4 h to model aerosols. Simulation of atmospheric aging was performed on volatile biogenic (β-pinene) or anthropogenic (naphthalene) precursors of SOA condensing on soot particles. The similar physical properties for both SOA, but distinct differences in chemical composition (e.g., aromatic compounds, oxidation state, unsaturated carbonyls) enabled to determine specifically induced toxic effects of SOA. RESULTS In A549 cells, exposure to naphthalene-derived SOA induced stress-related airway remodeling and an early type I immune response to a greater extent. Transcriptomic analysis of EA.hy926 cells not directly exposed to aerosol and integration with metabolome data indicated generalized systemic effects resulting from the activation of early response genes and the involvement of cardiovascular disease (CVD) -related pathways, such as the intracellular signal transduction pathway (PI3K/AKT) and pathways associated with endothelial dysfunction (iNOS; PDGF). Greater induction following anthropogenic SOA exposure might be causative for the observed secondary genotoxicity. CONCLUSION Our findings revealed that the specific effects of SOA on directly exposed epithelial cells are highly dependent on the chemical identity, whereas non directly exposed endothelial cells exhibit more generalized systemic effects with the activation of early stress response genes and the involvement of CVD-related pathways. However, a greater correlation was made between the exposure to the anthropogenic SOA compared to the biogenic SOA. In summary, our study highlights the importance of chemical aerosol composition and the use of cell systems with cell-to-cell interplay on toxicological outcomes.
Collapse
Affiliation(s)
- Svenja Offer
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstr. 1, D-85764, Neuherberg, Germany
- Joint Mass Spectrometry Center (JMSC) at Analytical Chemistry, Institute of Chemistry, University of Rostock, Albert-Einstein-Str. 27, D-18059, Rostock, Germany
| | - Sebastiano Di Bucchianico
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstr. 1, D-85764, Neuherberg, Germany.
- Joint Mass Spectrometry Center (JMSC) at Analytical Chemistry, Institute of Chemistry, University of Rostock, Albert-Einstein-Str. 27, D-18059, Rostock, Germany.
- Department Life, Light & Matter (LLM), University of Rostock, D-18051, Rostock, Germany.
| | - Hendryk Czech
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstr. 1, D-85764, Neuherberg, Germany
- Joint Mass Spectrometry Center (JMSC) at Analytical Chemistry, Institute of Chemistry, University of Rostock, Albert-Einstein-Str. 27, D-18059, Rostock, Germany
| | - Michal Pardo
- Department of Earth and Planetary Sciences, Faculty of Chemistry, Weizmann Institute of Science, 234 Herzl Street, POB 26, Rehovot, ISR-7610001, Israel
| | - Jana Pantzke
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstr. 1, D-85764, Neuherberg, Germany
- Joint Mass Spectrometry Center (JMSC) at Analytical Chemistry, Institute of Chemistry, University of Rostock, Albert-Einstein-Str. 27, D-18059, Rostock, Germany
| | - Christoph Bisig
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstr. 1, D-85764, Neuherberg, Germany
| | - Eric Schneider
- Joint Mass Spectrometry Center (JMSC) at Analytical Chemistry, Institute of Chemistry, University of Rostock, Albert-Einstein-Str. 27, D-18059, Rostock, Germany
- Department Life, Light & Matter (LLM), University of Rostock, D-18051, Rostock, Germany
| | - Stefanie Bauer
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstr. 1, D-85764, Neuherberg, Germany
| | - Elias J Zimmermann
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstr. 1, D-85764, Neuherberg, Germany
- Joint Mass Spectrometry Center (JMSC) at Analytical Chemistry, Institute of Chemistry, University of Rostock, Albert-Einstein-Str. 27, D-18059, Rostock, Germany
| | - Sebastian Oeder
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstr. 1, D-85764, Neuherberg, Germany
| | - Elena Hartner
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstr. 1, D-85764, Neuherberg, Germany
- Joint Mass Spectrometry Center (JMSC) at Analytical Chemistry, Institute of Chemistry, University of Rostock, Albert-Einstein-Str. 27, D-18059, Rostock, Germany
| | - Thomas Gröger
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstr. 1, D-85764, Neuherberg, Germany
- Joint Mass Spectrometry Center (JMSC) at Analytical Chemistry, Institute of Chemistry, University of Rostock, Albert-Einstein-Str. 27, D-18059, Rostock, Germany
| | - Rasha Alsaleh
- Institute and Outpatient Clinic of Occupational, Social and Environmental Medicine, Friedrich-Alexander University of Erlangen-Nuremberg, Henkestr. 9-11, D-91054, Erlangen, Germany
| | - Christian Kersch
- Institute and Outpatient Clinic of Occupational, Social and Environmental Medicine, Friedrich-Alexander University of Erlangen-Nuremberg, Henkestr. 9-11, D-91054, Erlangen, Germany
| | - Till Ziehm
- Institute of Energy and Climate Research, Forschungszentrum Jülich GmbH, Troposphere (IEK-8), Wilhelm- Johen-Str, D-52428, Jülich, Germany
| | - Thorsten Hohaus
- Institute of Energy and Climate Research, Forschungszentrum Jülich GmbH, Troposphere (IEK-8), Wilhelm- Johen-Str, D-52428, Jülich, Germany
| | - Christopher P Rüger
- Joint Mass Spectrometry Center (JMSC) at Analytical Chemistry, Institute of Chemistry, University of Rostock, Albert-Einstein-Str. 27, D-18059, Rostock, Germany
- Department Life, Light & Matter (LLM), University of Rostock, D-18051, Rostock, Germany
| | - Simone Schmitz-Spanke
- Institute and Outpatient Clinic of Occupational, Social and Environmental Medicine, Friedrich-Alexander University of Erlangen-Nuremberg, Henkestr. 9-11, D-91054, Erlangen, Germany
| | - Jürgen Schnelle-Kreis
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstr. 1, D-85764, Neuherberg, Germany
| | - Martin Sklorz
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstr. 1, D-85764, Neuherberg, Germany
| | - Astrid Kiendler-Scharr
- Institute of Energy and Climate Research, Forschungszentrum Jülich GmbH, Troposphere (IEK-8), Wilhelm- Johen-Str, D-52428, Jülich, Germany
| | - Yinon Rudich
- Department of Earth and Planetary Sciences, Faculty of Chemistry, Weizmann Institute of Science, 234 Herzl Street, POB 26, Rehovot, ISR-7610001, Israel
| | - Ralf Zimmermann
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstr. 1, D-85764, Neuherberg, Germany
- Joint Mass Spectrometry Center (JMSC) at Analytical Chemistry, Institute of Chemistry, University of Rostock, Albert-Einstein-Str. 27, D-18059, Rostock, Germany
- Department Life, Light & Matter (LLM), University of Rostock, D-18051, Rostock, Germany
| |
Collapse
|
8
|
Ren QL, Li XL, Tian T, Li S, Shi RY, Wang Q, Zhu Y, Wang M, Hu H, Liu JG. Application of Natural Medicinal Plants Active Ingredients in Oral Squamous Cell Carcinoma. Chin J Integr Med 2024; 30:852-864. [PMID: 38607612 DOI: 10.1007/s11655-024-3804-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/18/2023] [Indexed: 04/13/2024]
Abstract
Oral squamous cell carcinoma (OSCC) is the most common malignant cancer of the head and neck, with high morbidity and mortality, ranking as the sixth most common cancer in the world. The treatment of OSCC is mainly radiotherapy, chemotherapy and surgery, however, the prognosis of patients is still poor and the recurrence rate is high. This paper reviews the range of effects of natural medicinal plant active ingredients (NMPAIs) on OSCC cancer, including the types of NMPAIs, anti-cancer mechanisms, involved signaling pathways, and clinical trials. The NMPAIs include terpenoids, phenols, flavonoids, glycosides, alkaloids, coumarins, and volatile oils. These active ingredients inhibit proliferation, induce apoptosis and autophagy, inhibit migration and invasion of OSCC cells, and regulate cancer immunity to exert anti-cancer effects. The mechanism involves signaling pathways such as mitogen-activated protein kinase, phosphatidylinositol 3 kinase/protein kinase B, nuclear factor kappa B, miR-22/WNT1/β-catenin and Nrf2/Keap1. Clinically, NMPAIs can inhibit the growth of OSCC, and the combined drug is more effective. Natural medicinal plants are promising candidates for the treatment of OSCC.
Collapse
Affiliation(s)
- Qun-Li Ren
- School of Stomatology, Zunyi Medical University, Zunyi, Guizhou Province, 563000, China
- Microbial Resources and Drug Development Key Laboratory of Guizhou Tertiary Institution, Zunyi Medical University, Zunyi, Guizhou Province, 563000, China
| | - Xiao-Lan Li
- School of Stomatology, Zunyi Medical University, Zunyi, Guizhou Province, 563000, China
- Microbial Resources and Drug Development Key Laboratory of Guizhou Tertiary Institution, Zunyi Medical University, Zunyi, Guizhou Province, 563000, China
| | - Tian Tian
- School of Basic Medicine, Zunyi Medical University, Zunyi, Guizhou Province, 563000, China
| | - Shuang Li
- School of Basic Medicine, Zunyi Medical University, Zunyi, Guizhou Province, 563000, China
| | - Rong-Yi Shi
- School of Basic Medicine, Zunyi Medical University, Zunyi, Guizhou Province, 563000, China
| | - Qian Wang
- School of Stomatology, Zunyi Medical University, Zunyi, Guizhou Province, 563000, China
- Microbial Resources and Drug Development Key Laboratory of Guizhou Tertiary Institution, Zunyi Medical University, Zunyi, Guizhou Province, 563000, China
| | - Yuan Zhu
- School of Basic Medicine, Zunyi Medical University, Zunyi, Guizhou Province, 563000, China
| | - Miao Wang
- School of Stomatology, Zunyi Medical University, Zunyi, Guizhou Province, 563000, China
- Microbial Resources and Drug Development Key Laboratory of Guizhou Tertiary Institution, Zunyi Medical University, Zunyi, Guizhou Province, 563000, China
| | - Huan Hu
- School of Stomatology, Zunyi Medical University, Zunyi, Guizhou Province, 563000, China
- Microbial Resources and Drug Development Key Laboratory of Guizhou Tertiary Institution, Zunyi Medical University, Zunyi, Guizhou Province, 563000, China
| | - Jian-Guo Liu
- School of Stomatology, Zunyi Medical University, Zunyi, Guizhou Province, 563000, China.
| |
Collapse
|
9
|
Mashayekhi-Sardoo H, Rezaee R, Yarmohammadi F, Karimi G. Targeting Endoplasmic Reticulum Stress by Natural and Chemical Compounds Ameliorates Cisplatin-Induced Nephrotoxicity: A Review. Biol Trace Elem Res 2024:10.1007/s12011-024-04351-w. [PMID: 39212819 DOI: 10.1007/s12011-024-04351-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 08/18/2024] [Indexed: 09/04/2024]
Abstract
Cisplatin is a chemotherapeutic that dose-dependently causes renal complications such as decreased kidney function and acute kidney injury. The endoplasmic reticulum (ER) is responsible for calcium homeostasis and protein folding and plays a major part in cisplatin's nephrotoxicity. The current article reviews how chemical and natural compounds modulate cisplatin-induced apoptosis, autophagy, and inflammation by inhibiting ER stress signaling pathways. The available evidence indicates that natural compounds (Achyranthes aspera water-soluble extract, morin hydrate, fucoidan, isoliquiritigenin, leonurine, epigallocatechin-3-gallate, grape seed proanthocyanidin, and ginseng polysaccharide) and chemicals (Sal003, NSC228155, TUG891, dorsomorphin (compound C), HC-030031, dexmedetomidine, and recombinant human erythropoietin (rHuEpo)) can alleviate cisplatin nephrotoxicity by suppression of ER stress signaling pathways including IRE1α/ASK1/JNK, PERK-eIF2α-ATF4, and ATF6, as well as PI3K/AKT signaling pathway. Since ER and related signaling pathways are important in cisplatin nephrotoxicity, agents that can inhibit the abovementioned signaling pathways may hold promise in alleviating this untoward adverse effect.
Collapse
Affiliation(s)
- Habibeh Mashayekhi-Sardoo
- Bio Environmental Health Hazards Research Center, Jiroft University of Medical Sciences, Jiroft, Iran
- Student Research Committee, Jiroft University of Medical Sciences, Jiroft, Iran
| | - Ramin Rezaee
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Yarmohammadi
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Gholamreza Karimi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
- Pharmaceutical Research Center, Institute of Pharmaceutical Technology, Mashhad University of Medical, P. O. Box, Sciences, Mashhad, 1365-91775, Iran.
| |
Collapse
|
10
|
Tian X, Srinivasan PR, Tajiknia V, Sanchez Sevilla Uruchurtu AF, Seyhan AA, Carneiro BA, De La Cruz A, Pinho-Schwermann M, George A, Zhao S, Strandberg J, Di Cristofano F, Zhang S, Zhou L, Raufi AG, Navaraj A, Zhang Y, Verovkina N, Ghandali M, Ryspayeva D, El-Deiry WS. Targeting apoptotic pathways for cancer therapy. J Clin Invest 2024; 134:e179570. [PMID: 39007268 PMCID: PMC11245162 DOI: 10.1172/jci179570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024] Open
Abstract
Apoptosis is a form of programmed cell death that is mediated by intrinsic and extrinsic pathways. Dysregulation of and resistance to cell death are hallmarks of cancer. For over three decades, the development of therapies to promote treatment of cancer by inducing various cell death modalities, including apoptosis, has been a main goal of clinical oncology. Apoptosis pathways also interact with other signaling mechanisms, such as the p53 signaling pathway and the integrated stress response (ISR) pathway. In addition to agents directly targeting the intrinsic and extrinsic pathway components, anticancer drugs that target the p53 and ISR signaling pathways are actively being developed. In this Review, we discuss selected and promising anticancer therapies in various stages of development, including drug targets, mechanisms, and resistance to related treatments, focusing especially on B cell lymphoma 2 (BCL-2) inhibitors, TRAIL analogues, DR5 antibodies, and strategies that target p53, mutant p53, and the ISR.
Collapse
Affiliation(s)
- Xiaobing Tian
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics and
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, Rhode Island, USA
- Legorreta Cancer Center at Brown University, Providence, Rhode Island, USA
| | - Praveen R. Srinivasan
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics and
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, Rhode Island, USA
- Legorreta Cancer Center at Brown University, Providence, Rhode Island, USA
| | - Vida Tajiknia
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics and
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, Rhode Island, USA
- Legorreta Cancer Center at Brown University, Providence, Rhode Island, USA
| | - Ashley F. Sanchez Sevilla Uruchurtu
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics and
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, Rhode Island, USA
- Legorreta Cancer Center at Brown University, Providence, Rhode Island, USA
- Pathobiology Graduate Program, Brown University, Providence, Rhode Island, USA
| | - Attila A. Seyhan
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics and
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, Rhode Island, USA
- Legorreta Cancer Center at Brown University, Providence, Rhode Island, USA
| | - Benedito A. Carneiro
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics and
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, Rhode Island, USA
- Legorreta Cancer Center at Brown University, Providence, Rhode Island, USA
- Hematology/Oncology Division, Department of Medicine, Lifespan Health System and Brown University, Providence, Rhode Island, USA
| | - Arielle De La Cruz
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics and
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, Rhode Island, USA
- Legorreta Cancer Center at Brown University, Providence, Rhode Island, USA
| | - Maximilian Pinho-Schwermann
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics and
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, Rhode Island, USA
- Legorreta Cancer Center at Brown University, Providence, Rhode Island, USA
- Hematology/Oncology Division, Department of Medicine, Lifespan Health System and Brown University, Providence, Rhode Island, USA
| | - Andrew George
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics and
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, Rhode Island, USA
- Legorreta Cancer Center at Brown University, Providence, Rhode Island, USA
| | - Shuai Zhao
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics and
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, Rhode Island, USA
- Legorreta Cancer Center at Brown University, Providence, Rhode Island, USA
| | - Jillian Strandberg
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics and
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, Rhode Island, USA
- Legorreta Cancer Center at Brown University, Providence, Rhode Island, USA
| | - Francesca Di Cristofano
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics and
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, Rhode Island, USA
- Legorreta Cancer Center at Brown University, Providence, Rhode Island, USA
| | - Shengliang Zhang
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics and
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, Rhode Island, USA
- Legorreta Cancer Center at Brown University, Providence, Rhode Island, USA
| | - Lanlan Zhou
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics and
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, Rhode Island, USA
- Legorreta Cancer Center at Brown University, Providence, Rhode Island, USA
| | - Alexander G. Raufi
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics and
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, Rhode Island, USA
- Legorreta Cancer Center at Brown University, Providence, Rhode Island, USA
- Hematology/Oncology Division, Department of Medicine, Lifespan Health System and Brown University, Providence, Rhode Island, USA
| | - Arunasalam Navaraj
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics and
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, Rhode Island, USA
- Legorreta Cancer Center at Brown University, Providence, Rhode Island, USA
| | - Yiqun Zhang
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics and
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, Rhode Island, USA
- Legorreta Cancer Center at Brown University, Providence, Rhode Island, USA
| | - Nataliia Verovkina
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics and
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, Rhode Island, USA
- Legorreta Cancer Center at Brown University, Providence, Rhode Island, USA
| | - Maryam Ghandali
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics and
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, Rhode Island, USA
- Legorreta Cancer Center at Brown University, Providence, Rhode Island, USA
| | - Dinara Ryspayeva
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics and
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, Rhode Island, USA
- Legorreta Cancer Center at Brown University, Providence, Rhode Island, USA
| | - Wafik S. El-Deiry
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics and
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, Rhode Island, USA
- Legorreta Cancer Center at Brown University, Providence, Rhode Island, USA
- Pathobiology Graduate Program, Brown University, Providence, Rhode Island, USA
- Hematology/Oncology Division, Department of Medicine, Lifespan Health System and Brown University, Providence, Rhode Island, USA
| |
Collapse
|
11
|
Zhang N, Nao J, Zhang S, Dong X. Novel insights into the activating transcription factor 4 in Alzheimer's disease and associated aging-related diseases: Mechanisms and therapeutic implications. Front Neuroendocrinol 2024; 74:101144. [PMID: 38797197 DOI: 10.1016/j.yfrne.2024.101144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/16/2024] [Accepted: 05/22/2024] [Indexed: 05/29/2024]
Abstract
Ageing is inherent to all human beings, most mechanistic explanations of ageing results from the combined effects of various physiological and pathological processes. Additionally, aging pivotally contributes to several chronic diseases. Activating transcription factor 4 (ATF4), a member of the ATF/cAMP response element-binding protein family, has recently emerged as a pivotal player owing to its indispensable role in the pathophysiological processes of Alzheimer's disease and aging-related diseases. Moreover, ATF4 is integral to numerous biological processes. Therefore, this article aims to comprehensively review relevant research on the role of ATF4 in the onset and progression of aging-related diseases, elucidating its potential mechanisms and therapeutic approaches. Our objective is to furnish scientific evidence for the early identification of risk factors in aging-related diseases and pave the way for new research directions for their treatment. By elucidating the signaling pathway network of ATF4 in aging-related diseases, we aspire to gain a profound understanding of the molecular and cellular mechanisms, offering novel strategies for addressing aging and developing related therapeutics.
Collapse
Affiliation(s)
- Nan Zhang
- Department of Neurology, the Seventh Clinical College of China Medical University, No. 24 Central Street, Xinfu District, Fushun 113000, Liaoning, China.
| | - Jianfei Nao
- Department of Neurology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang 110000, Liaoning, China.
| | - Shun Zhang
- Department of Neurology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang 110000, Liaoning, China.
| | - Xiaoyu Dong
- Department of Neurology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang 110000, Liaoning, China.
| |
Collapse
|
12
|
Gu X, Li F, Che X, Wei X, Li P. HDAC4 represses ER stress induced chondrocyte apoptosis by inhibiting ATF4 and attenuates cartilage degeneration in an osteoarthritis rat model. BMC Musculoskelet Disord 2024; 25:467. [PMID: 38879481 PMCID: PMC11179397 DOI: 10.1186/s12891-024-07578-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 06/07/2024] [Indexed: 06/19/2024] Open
Abstract
BACKGROUND The present study evaluated whether the lack of histone deacetylase 4 (HDAC4) increases endoplasmic reticulum stress-induced chondrocyte apoptosis by releasing activating transcription factor 4 (ATF4) in human osteoarthritis (OA) cartilage degeneration. METHODS Articular cartilage from the tibial plateau was obtained from patients with OA during total knee replacement. Cartilage extracted from severely damaged regions was classified as degraded cartilage, and cartilage extracted from a relatively smooth region was classified as preserved cartilage. Terminal deoxynucleotidyl transferase dUTP nick end labeling staining was used to detect chondrocyte apoptosis. HDAC4, ATF4, and C/EBP homologous protein (CHOP) expression levels were measured using immunohistochemistry staining and real-time quantitative PCR. Chondrocytes were transfected with HDAC4 or HDAC4 siRNA for 24 h and stimulated with 300 µM H2O2 for 12 h. The chondrocyte apoptosis was measured using flow cytometry. ATF4, CHOP, and caspase 12 expression levels were measured using real-time quantitative PCR and western blotting. Male Sprague-Dawley rats (n = 15) were randomly divided into three groups and transduced with different vectors: ACLT + Ad-GFP, ACLT + Ad-HDAC4-GFP, and sham + Ad-GFP. All rats received intra-articular injections 48 h after the operation and every three weeks thereafter. Cartilage damage was assessed using Safranin O staining and quantified using the Osteoarthritis Research Society International score. ATF4, CHOP, and collagen II expression were detected using immunohistochemistry, and chondrocyte apoptosis was detected using terminal deoxynucleotidyl transferase dUTP nick end labeling staining. RESULTS The chondrocyte apoptosis was higher in degraded cartilage than in preserved cartilage. HDAC4 expression was lower in degraded cartilage than in preserved cartilage. ATF4 and CHOP expression was increased in degraded cartilage. Upregulation of HDAC4 in chondrocytes decreased the expression of ATF4, while the expression of ATF4 was increased after downregulation of HDAC4. Upregulation of HDAC4 decreased the chondrocyte apoptosis under endoplasmic reticulum stress, and chondrocyte apoptosis was increased after downregulation of HDAC4. In a rat anterior cruciate ligament transection OA model, adenovirus-mediated transduction of HDAC4 was administered by intra-articular injection. We detected a stronger Safranin O staining with lower Osteoarthritis Research Society International scores, lower ATF4 and CHOP production, stronger collagen II expression, and lower chondrocyte apoptosis in rats treated with Ad-HDAC4. CONCLUSION The lack of HDAC4 expression partially contributes to increased ATF4, CHOP, and endoplasmic reticulum stress-induced chondrocyte apoptosis in OA pathogenesis. HDAC4 attenuates cartilage damage by repressing ATF4-CHOP signaling-induced chondrocyte apoptosis in a rat model of OA.
Collapse
Affiliation(s)
- Xiaodong Gu
- Department of Orthopaedics, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences,Third Hospital of Shanxi Medical University, Tongji Shanxi Hospital, Taiyuan, Shanxi Province, 030032, People's Republic of China
- Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Taiyuan, Shanxi Province, 030001, People's Republic of China
| | - Fei Li
- Department of Orthopaedics, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, 030001, People's Republic of China
- Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Taiyuan, Shanxi Province, 030001, People's Republic of China
| | - Xianda Che
- Department of Orthopaedics, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, 030001, People's Republic of China
- Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Taiyuan, Shanxi Province, 030001, People's Republic of China
| | - Xiaochun Wei
- Department of Orthopaedics, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, 030001, People's Republic of China
- Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Taiyuan, Shanxi Province, 030001, People's Republic of China
| | - Pengcui Li
- Department of Orthopaedics, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, 030001, People's Republic of China.
- Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Taiyuan, Shanxi Province, 030001, People's Republic of China.
| |
Collapse
|
13
|
Corne A, Adolphe F, Estaquier J, Gaumer S, Corsi JM. ATF4 Signaling in HIV-1 Infection: Viral Subversion of a Stress Response Transcription Factor. BIOLOGY 2024; 13:146. [PMID: 38534416 PMCID: PMC10968437 DOI: 10.3390/biology13030146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 02/13/2024] [Accepted: 02/20/2024] [Indexed: 03/28/2024]
Abstract
Cellular integrated stress response (ISR), the mitochondrial unfolded protein response (UPRmt), and IFN signaling are associated with viral infections. Activating transcription factor 4 (ATF4) plays a pivotal role in these pathways and controls the expression of many genes involved in redox processes, amino acid metabolism, protein misfolding, autophagy, and apoptosis. The precise role of ATF4 during viral infection is unclear and depends on cell hosts, viral agents, and models. Furthermore, ATF4 signaling can be hijacked by pathogens to favor viral infection and replication. In this review, we summarize the ATF4-mediated signaling pathways in response to viral infections, focusing on human immunodeficiency virus 1 (HIV-1). We examine the consequences of ATF4 activation for HIV-1 replication and reactivation. The role of ATF4 in autophagy and apoptosis is explored as in the context of HIV-1 infection programmed cell deaths contribute to the depletion of CD4 T cells. Furthermore, ATF4 can also participate in the establishment of innate and adaptive immunity that is essential for the host to control viral infections. We finally discuss the putative role of the ATF4 paralogue, named ATF5, in HIV-1 infection. This review underlines the role of ATF4 at the crossroads of multiple processes reflecting host-pathogen interactions.
Collapse
Affiliation(s)
- Adrien Corne
- Laboratoire de Génétique et Biologie Cellulaire, Université Versailles-Saint-Quentin-en-Yvelines, Université Paris-Saclay, 78000 Versailles, France; (A.C.); (F.A.); (S.G.)
- CHU de Québec Research Center, Laval University, Quebec City, QC G1V 4G2, Canada
| | - Florine Adolphe
- Laboratoire de Génétique et Biologie Cellulaire, Université Versailles-Saint-Quentin-en-Yvelines, Université Paris-Saclay, 78000 Versailles, France; (A.C.); (F.A.); (S.G.)
| | - Jérôme Estaquier
- CHU de Québec Research Center, Laval University, Quebec City, QC G1V 4G2, Canada
- INSERM U1124, Université Paris Cité, 75006 Paris, France
| | - Sébastien Gaumer
- Laboratoire de Génétique et Biologie Cellulaire, Université Versailles-Saint-Quentin-en-Yvelines, Université Paris-Saclay, 78000 Versailles, France; (A.C.); (F.A.); (S.G.)
| | - Jean-Marc Corsi
- Laboratoire de Génétique et Biologie Cellulaire, Université Versailles-Saint-Quentin-en-Yvelines, Université Paris-Saclay, 78000 Versailles, France; (A.C.); (F.A.); (S.G.)
| |
Collapse
|
14
|
Zhang SX, Wang JJ, Starr CR, Lee EJ, Park KS, Zhylkibayev A, Medina A, Lin JH, Gorbatyuk M. The endoplasmic reticulum: Homeostasis and crosstalk in retinal health and disease. Prog Retin Eye Res 2024; 98:101231. [PMID: 38092262 PMCID: PMC11056313 DOI: 10.1016/j.preteyeres.2023.101231] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 12/05/2023] [Accepted: 12/06/2023] [Indexed: 12/19/2023]
Abstract
The endoplasmic reticulum (ER) is the largest intracellular organelle carrying out a broad range of important cellular functions including protein biosynthesis, folding, and trafficking, lipid and sterol biosynthesis, carbohydrate metabolism, and calcium storage and gated release. In addition, the ER makes close contact with multiple intracellular organelles such as mitochondria and the plasma membrane to actively regulate the biogenesis, remodeling, and function of these organelles. Therefore, maintaining a homeostatic and functional ER is critical for the survival and function of cells. This vital process is implemented through well-orchestrated signaling pathways of the unfolded protein response (UPR). The UPR is activated when misfolded or unfolded proteins accumulate in the ER, a condition known as ER stress, and functions to restore ER homeostasis thus promoting cell survival. However, prolonged activation or dysregulation of the UPR can lead to cell death and other detrimental events such as inflammation and oxidative stress; these processes are implicated in the pathogenesis of many human diseases including retinal disorders. In this review manuscript, we discuss the unique features of the ER and ER stress signaling in the retina and retinal neurons and describe recent advances in the research to uncover the role of ER stress signaling in neurodegenerative retinal diseases including age-related macular degeneration, inherited retinal degeneration, achromatopsia and cone diseases, and diabetic retinopathy. In some chapters, we highlight the complex interactions between the ER and other intracellular organelles focusing on mitochondria and illustrate how ER stress signaling regulates common cellular stress pathways such as autophagy. We also touch upon the integrated stress response in retinal degeneration and diabetic retinopathy. Finally, we provide an update on the current development of pharmacological agents targeting the UPR response and discuss some unresolved questions and knowledge gaps to be addressed by future research.
Collapse
Affiliation(s)
- Sarah X Zhang
- Department of Ophthalmology and Ross Eye Institute, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, United States; Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, United States.
| | - Josh J Wang
- Department of Ophthalmology and Ross Eye Institute, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, United States
| | - Christopher R Starr
- Department of Optometry and Vision Science, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Eun-Jin Lee
- Department of Ophthalmology and Byers Eye Institute, Stanford University, Stanford, CA, United States; VA Palo Alto Healthcare System, Palo Alto, CA, United States; Department of Pathology, Stanford University, Stanford, CA, United States
| | - Karen Sophia Park
- Department of Ophthalmology and Ross Eye Institute, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, United States
| | - Assylbek Zhylkibayev
- Department of Optometry and Vision Science, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Andy Medina
- Department of Ophthalmology and Ross Eye Institute, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, United States
| | - Jonathan H Lin
- Department of Ophthalmology and Byers Eye Institute, Stanford University, Stanford, CA, United States; VA Palo Alto Healthcare System, Palo Alto, CA, United States; Department of Pathology, Stanford University, Stanford, CA, United States
| | - Marina Gorbatyuk
- Department of Optometry and Vision Science, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
15
|
Li S, Zhao J, Han G, Zhang X, Li N, Zhang Z. Silicon dioxide-induced endoplasmic reticulum stress of alveolar macrophages and its role on the formation of silicosis fibrosis: a review article. Toxicol Res (Camb) 2023; 12:1024-1033. [PMID: 38145097 PMCID: PMC10734631 DOI: 10.1093/toxres/tfad099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 09/01/2023] [Accepted: 10/07/2023] [Indexed: 12/26/2023] Open
Abstract
Silicosis is a chronic lung inflammatory disease induced by long-term inhalation of high concentrations of silicon dioxide (SiO2), characterized by pulmonary fibrosis. Inhalation of silica invades alveolar macrophages (AMs) and changes the micro-environment of the cell, resulting in abnormal morphology and dysfunction of the endoplasmic reticulum (ER). Once beyond the range of cell regulation, the endoplasmic reticulum stress (ERS) will occur, which will lead to cell damage, necrosis, and apoptosis, eventually causing silicosis fibrosis through various mechanisms. This is a complex and delicate process accompanied by various macrophage-derived cytokines. Unfortunately, the details have not been systematically summarized yet. In this review, we systematically introduce the basic two processes: the process of inducing ERS by inhaling SiO2 and the process of inducing pulmonary fibrosis by ERS. Moreover, the underlying mechanism of the above two sequential events is also be discussed. We conclude that the ERS of alveolar macrophages caused by silica dust are involved deeply in the pathogenesis of silicosis. Therefore, changing the states of SiO2-induced ERS of macrophage may be an attractive therapeutic target for silicosis fibrosis.
Collapse
Affiliation(s)
- Shuang Li
- Department of Public Health and Management, Binzhou Medical University, Guanhai Road 346, Yantai 264003, Shandong Province, China
- Department of Public Health, Jining Medical University, Jianshe South Road 45, Jining 272067, Shandong Province, China
| | - Jiahui Zhao
- Department of Public Health, Jining Medical University, Jianshe South Road 45, Jining 272067, Shandong Province, China
- Department of Public Health, Weifang Medical University, Baotong west Street 7166, Weifang 261053, Shandong Province, China
| | - Guizhi Han
- Department of Public Health, Jining Medical University, Jianshe South Road 45, Jining 272067, Shandong Province, China
| | - Xin Zhang
- Department of Public Health and Management, Binzhou Medical University, Guanhai Road 346, Yantai 264003, Shandong Province, China
| | - Ning Li
- Department of Public Health and Management, Binzhou Medical University, Guanhai Road 346, Yantai 264003, Shandong Province, China
| | - Zhaoqiang Zhang
- Department of Public Health and Management, Binzhou Medical University, Guanhai Road 346, Yantai 264003, Shandong Province, China
- Department of Public Health, Jining Medical University, Jianshe South Road 45, Jining 272067, Shandong Province, China
| |
Collapse
|
16
|
Schwarzer A, Oliveira M, Kleppa MJ, Slattery SD, Anantha A, Cooper A, Hannink M, Schambach A, Dörrie A, Kotlyarov A, Gaestel M, Hembrough T, Levine J, Luther M, Stocum M, Stiles L, Weinstock DM, Liesa M, Kostura MJ. Targeting Aggressive B-cell Lymphomas through Pharmacological Activation of the Mitochondrial Protease OMA1. Mol Cancer Ther 2023; 22:1290-1303. [PMID: 37643767 PMCID: PMC10723637 DOI: 10.1158/1535-7163.mct-22-0718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 07/02/2023] [Accepted: 08/25/2023] [Indexed: 08/31/2023]
Abstract
DLBCL are aggressive, rapidly proliferating tumors that critically depend on the ATF4-mediated integrated stress response (ISR) to adapt to stress caused by uncontrolled growth, such as hypoxia, amino acid deprivation, and accumulation of misfolded proteins. Here, we show that ISR hyperactivation is a targetable liability in DLBCL. We describe a novel class of compounds represented by BTM-3528 and BTM-3566, which activate the ISR through the mitochondrial protease OMA1. Treatment of tumor cells with compound leads to OMA1-dependent cleavage of DELE1 and OPA1, mitochondrial fragmentation, activation of the eIF2α-kinase HRI, cell growth arrest, and apoptosis. Activation of OMA1 by BTM-3528 and BTM-3566 is mechanistically distinct from inhibitors of mitochondrial electron transport, as the compounds induce OMA1 activity in the absence of acute changes in respiration. We further identify the mitochondrial protein FAM210B as a negative regulator of BTM-3528 and BTM-3566 activity. Overexpression of FAM210B prevents both OMA1 activation and apoptosis. Notably, FAM210B expression is nearly absent in healthy germinal center B-lymphocytes and in derived B-cell malignancies, revealing a fundamental molecular vulnerability which is targeted by BTM compounds. Both compounds induce rapid apoptosis across diverse DLBCL lines derived from activated B-cell, germinal center B-cell, and MYC-rearranged lymphomas. Once-daily oral dosing of BTM-3566 resulted in complete regression of xenografted human DLBCL SU-DHL-10 cells and complete regression in 6 of 9 DLBCL patient-derived xenografts. BTM-3566 represents a first-of-its kind approach of selectively hyperactivating the mitochondrial ISR for treating DLBCL.
Collapse
Affiliation(s)
- Adrian Schwarzer
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
- Department of Hematology, Hemostaseology, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Matheus Oliveira
- Department of Medicine, Endocrinology, UCLA, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Marc-Jens Kleppa
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | | | - Andy Anantha
- Bantam Pharmaceutical, Research Triangle Park, North Carolina
| | - Alan Cooper
- Bantam Pharmaceutical, Research Triangle Park, North Carolina
| | - Mark Hannink
- Biochemistry Department, Life Sciences Center and Ellis Fischel Cancer Center, University of Missouri, Columbia, Missouri
| | - Axel Schambach
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Anneke Dörrie
- Department of Cell Biochemistry, Hannover Medical School, Hannover, Germany
| | - Alexey Kotlyarov
- Department of Cell Biochemistry, Hannover Medical School, Hannover, Germany
| | - Matthias Gaestel
- Department of Cell Biochemistry, Hannover Medical School, Hannover, Germany
| | - Todd Hembrough
- Bantam Pharmaceutical, Research Triangle Park, North Carolina
| | - Jedd Levine
- Bantam Pharmaceutical, Research Triangle Park, North Carolina
| | - Michael Luther
- Bantam Pharmaceutical, Research Triangle Park, North Carolina
| | - Michael Stocum
- Bantam Pharmaceutical, Research Triangle Park, North Carolina
| | - Linsey Stiles
- Department of Medicine, Endocrinology, UCLA, David Geffen School of Medicine at UCLA, Los Angeles, California
| | | | - Marc Liesa
- Department of Medicine, Endocrinology, UCLA, David Geffen School of Medicine at UCLA, Los Angeles, California
- Institut de Biologia Molecular de Barcelona (IBMB-CSIC), Barcelona, Catalonia, Spain
| | | |
Collapse
|
17
|
Li Z, Liu X, Zhang K, Zhao H, Luo P, Li D, Liu Z, Yuan H, Zhang B, Xie X, Shen C. Role and Mechanism of Endoplasmic Reticulum Stress in Mice Pancreatic Islet Dysfunction After Severe Burns. J Burn Care Res 2023; 44:1231-1240. [PMID: 36869805 DOI: 10.1093/jbcr/irad029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Indexed: 03/05/2023]
Abstract
This study attempted to investigate the role and mechanism of endoplasmic reticulum (ER) stress in the islet dysfunction in mice after severe burns. C57BL/6 mice were randomly divided into the sham group, burn group, and burn+4-phenylbutyric acid (4-PBA) group. Mice were burned with full thickness of 30% total surface area (TBSA), and 4-PBA solution was intraperitoneally injected into mice in burn+4-PBA group. Glucose-stimulated insulin secretion (GSIS), Fasting blood glucose (FBG) and glucose tolerance were detected 24 hours post severe burns. The ER stress-related pathway markers immunoglobulin binding protein (BIP), X-box binding protein 1 (XBP1), phosphorylation-PKR-like ER kinase (p-PERK), phosphorylation-eukaryotic translation initiation factor 2α (p-eIF2α), CHOP, activating transcription factor 6 (ATF6), apoptosis-related protein Cleaved-Caspase 3, and islet cell apoptosis were measured. Mice were characterized with elevated FBG, decreased glucose tolerance and GSIS levels post severe burns. The expression of BIP, XBP1, p-PERK, p-eIF2α, CHOP, ATF6, Cleaved-Caspase 3, and islet cell apoptosis were increased significantly after severe burns. 4-PBA treatment contributed to decreased FBG, improved glucose tolerance, increased GSIS, inhibited islet ER stress, and reduced pancreatic islet cell apoptosis in mice post severe burns. ER stress occurs in islets of severely burned mice, which leads to increased apoptosis of islet cells, thus resulting in islet dysfunction.
Collapse
Affiliation(s)
- Zhisheng Li
- Jinzhou Medical University, Jinzhou, China
- Department of Burns and Plastic Surgery, the Fourth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Xinzhu Liu
- Department of Burns and Plastic Surgery, the Fourth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Kun Zhang
- Jinzhou Medical University, Jinzhou, China
- Department of Burns and Plastic Surgery, the Fourth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Hongqing Zhao
- Jinzhou Medical University, Jinzhou, China
- Department of Burns and Plastic Surgery, the Fourth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Peng Luo
- Department of Burns and Plastic Surgery, the Fourth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Dawei Li
- Department of Burns and Plastic Surgery, the Fourth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Zhaoxing Liu
- Department of Burns and Plastic Surgery, the Fourth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Huageng Yuan
- Department of Burns and Plastic Surgery, the Fourth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Bohan Zhang
- Department of Burns and Plastic Surgery, the Fourth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Xiaoye Xie
- Department of Burns and Plastic Surgery, the Fourth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Chuan'an Shen
- Department of Burns and Plastic Surgery, the Fourth Medical Center, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
18
|
Peng H, Zhou Q, Liu J, Wang Y, Mu K, Zhang L. Endoplasmic reticulum stress: a vital process and potential therapeutic target in chronic obstructive pulmonary disease. Inflamm Res 2023; 72:1761-1772. [PMID: 37695356 DOI: 10.1007/s00011-023-01786-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/14/2023] [Accepted: 05/16/2023] [Indexed: 09/12/2023] Open
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD), a chronic and progressive disease characterized by persistent respiratory symptoms and progressive airflow obstruction, has attracted extensive attention due to its high morbidity and mortality. Although the understanding of the pathogenesis of COPD has gradually increased because of increasing evidence, many questions regarding the mechanisms involved in COPD progression and its deleterious effects remain unanswered. Recent advances have shown the potential functions of endoplasmic reticulum (ER) stress in causing airway inflammation, emphasizing the vital role of unfolded protein response (UPR) pathways in the development of COPD. METHODS A comprehensive search of major databases including PubMed, Scopus, and Web of Science was conducted to retrieve original research articles and reviews related to ER stress, UPR, and COPD. RESULTS The common causes of COPD, namely cigarette smoke (CS) and air pollutants, induce ER stress through the generation of reactive oxygen species (ROS). UPR promotes mucus secretion and further plays a dual role in the cell apoptosis-autophagy axis in the development of COPD. Existing drug research has indicated the potential of UPR as a therapeutic target for COPD. CONCLUSIONS ER stress and UPR activation play significant roles in the etiology, pathogenesis, and treatment of COPD and discuss whether related genes can be used as biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Hao Peng
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Qing Zhou
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Jing Liu
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Yi Wang
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Ketao Mu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jie Fang Avenue 1095, Wuhan, 430030, China.
| | - Lei Zhang
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China.
| |
Collapse
|
19
|
Xiao F, Chen Y, Qi J, Yao Q, Xie J, Jiang X. Multi-Targeted Peptide-Modified Gold Nanoclusters for Treating Solid Tumors in the Liver. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2210412. [PMID: 36863998 DOI: 10.1002/adma.202210412] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 02/05/2023] [Indexed: 05/19/2023]
Abstract
Apoptosis and autophagy determine the fate of cancer cells. However, simply promoting apoptosis of tumor cells is limited in the treatment of unresectable solid liver tumors. Generally, autophagy is considered the anti-apoptotic "guardian". But the pro-apoptotic effects of autophagy can be activated by excessive endoplasmic reticulum (ER) stress. Here, amphiphilic peptide-modified glutathione (GSH)-gold nanocluster aggregates (AP1 P2 -PEG NCs) were designed with the enrichment of solid liver tumors and the prolonged stress in the ER, which can achieve the mutual promotion of autophagy and apoptosis in liver tumor cells. In this study, orthotopic and subcutaneous liver tumor models show the anti-tumor effectiveness of AP1 P2 -PEG NCs, with a better antitumor effect than sorafenib, biosafety (Lethal Dose, 50% (LD50 ) of 827.3 mg kg-1 ), wide therapeutic window (non-toxic in 20 times of therapeutic concentration) and high stability (blood half-life of 4 h). These findings identify an effective strategy to develop peptide-modified gold nanocluster aggregates with low toxicity, high potency, and selectivity for solid liver tumors treatment.
Collapse
Affiliation(s)
- Feng Xiao
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Guangdong, 518055, P. R. China
| | - Yao Chen
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Guangdong, 518055, P. R. China
| | - Jie Qi
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Guangdong, 518055, P. R. China
| | - Qiaofeng Yao
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Kent Ridge, Singapore, 117585, Singapore
| | - Jianping Xie
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Kent Ridge, Singapore, 117585, Singapore
| | - Xingyu Jiang
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Guangdong, 518055, P. R. China
| |
Collapse
|
20
|
Wang G, Fan F, Sun C, Hu Y. Looking into Endoplasmic Reticulum Stress: The Key to Drug-Resistance of Multiple Myeloma? Cancers (Basel) 2022; 14:5340. [PMID: 36358759 PMCID: PMC9654020 DOI: 10.3390/cancers14215340] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/21/2022] [Accepted: 10/27/2022] [Indexed: 09/22/2023] Open
Abstract
Multiple myeloma (MM) is the second most common hematologic malignancy, resulting from the clonal proliferation of malignant plasma cells within the bone marrow. Despite significant advances that have been made with novel drugs over the past two decades, MM patients often develop therapy resistance, especially to bortezomib, the first-in-class proteasome inhibitor that was approved for treatment of MM. As highly secretory monoclonal protein-producing cells, MM cells are characterized by uploaded endoplasmic reticulum stress (ERS), and rely heavily on the ERS response for survival. Great efforts have been made to illustrate how MM cells adapt to therapeutic stresses through modulating the ERS response. In this review, we summarize current knowledge on the mechanisms by which ERS response pathways influence MM cell fate and response to treatment. Moreover, based on promising results obtained in preclinical studies, we discuss the prospect of applying ERS modulators to overcome drug resistance in MM.
Collapse
Affiliation(s)
- Guangqi Wang
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1277, Wuhan 430022, China
| | - Fengjuan Fan
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1277, Wuhan 430022, China
| | - Chunyan Sun
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1277, Wuhan 430022, China
- Collaborative Innovation Center of Hematology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yu Hu
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1277, Wuhan 430022, China
- Collaborative Innovation Center of Hematology, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
21
|
Li X, Ge M, Zhu W, Wang P, Wang J, Tai T, Wang Y, Sun J, Shi G. Protective Effects of Astilbin Against Cadmium-Induced Apoptosis in Chicken Kidneys via Endoplasmic Reticulum Stress Signaling Pathway. Biol Trace Elem Res 2022; 200:4430-4443. [PMID: 34799836 DOI: 10.1007/s12011-021-03029-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 11/10/2021] [Indexed: 12/11/2022]
Abstract
Cadmium (Cd) can cause endoplasmic reticulum stress (ERS) and apoptosis in animals. The kidney is an organ seriously affected by Cd because it can accumulate metal ions. Astilbin (ASB) is a dihydroflavonol rhamnoside, which has an anti-renal injury effect. This study aimed to evaluate the protective effect of ASB on Cd-induced ERS and apoptosis in the chicken kidney. In this study, a total of 120 1-day-old chickens were randomly divided into 4 groups. Chickens were fed with a basic diet (Con group), ASB 40 mg/kg (ASB group), CdCl2 150 mg/kg + ASB 40 mg/kg (ASB/Cd group), and CdCl2 150 mg/kg (Cd group) for 90 days. The results showed that Cd exposure induced pathological and ultrastructural damages and apoptosis in chicken kidneys. Compared with the Con group, metallothionein (MT1/MT2) level, nitric oxide (NO) content, inducible nitric oxide synthase (iNOS) activity, ERS-related genes 78-kDa glucose-regulated protein (Grp78), protein kinase PKR-like endoplasmic reticulum kinase (Perk), activating transcription factor 4 (Atf4) and CAAT/enhancer-binding protein (C/EBP) homologous protein (Chop), and pro-apoptotic gene B-cell lymphoma 2 (Bcl-2)-associated X (Bax), caspase-12, caspase-9, caspase-3 expression levels, and apoptotic rate were significantly increased in the Cd group. The expression level of Bcl-2 was significantly decreased in the Cd group. ASB/Cd combined treatment significantly improves the damage of chicken kidneys by ameliorating Cd-induced kidney ERS and apoptosis. Cd can cause the disorder of the GRP78 signal axis, activate the PERK-ATF4-CHOP pathway, aggravate the structural damage and dysfunction of ER, and promote the apoptosis of chicken kidneys, while the above changes were significantly alleviated in the ASB/Cd group. The results showed that ASB antagonizes the negative effects of Cd and against Cd-induced apoptosis in chicken kidneys via ERS signaling pathway.
Collapse
Affiliation(s)
- Xiuyu Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Harbin, People's Republic of China
| | - Ming Ge
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Harbin, People's Republic of China
| | - Weifeng Zhu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Harbin, People's Republic of China
| | - Panpan Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Harbin, People's Republic of China
| | - Jiangfeng Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Harbin, People's Republic of China
| | - Tiange Tai
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Harbin, People's Republic of China
| | - Yuxi Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Harbin, People's Republic of China
| | - Jianxu Sun
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Harbin, People's Republic of China
| | - Guangliang Shi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Harbin, People's Republic of China.
| |
Collapse
|
22
|
Rufo N, Yang Y, De Vleeschouwer S, Agostinis P. The "Yin and Yang" of Unfolded Protein Response in Cancer and Immunogenic Cell Death. Cells 2022; 11:2899. [PMID: 36139473 PMCID: PMC9497201 DOI: 10.3390/cells11182899] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 11/23/2022] Open
Abstract
Physiological and pathological burdens that perturb endoplasmic reticulum homeostasis activate the unfolded protein response (UPR), a conserved cytosol-to-nucleus signaling pathway that aims to reinstate the vital biosynthetic and secretory capacity of the ER. Disrupted ER homeostasis, causing maladaptive UPR signaling, is an emerging trait of cancer cells. Maladaptive UPR sustains oncogene-driven reprogramming of proteostasis and metabolism and fosters proinflammatory pathways promoting tissue repair and protumorigenic immune responses. However, when cancer cells are exposed to conditions causing irreparable ER homeostasis, such as those elicited by anticancer therapies, the UPR switches from a survival to a cell death program. This lethal ER stress response can elicit immunogenic cell death (ICD), a form of cell death with proinflammatory traits favoring antitumor immune responses. How UPR-driven pathways transit from a protective to a killing modality with favorable immunogenic and proinflammatory output remains unresolved. Here, we discuss key aspects of the functional dichotomy of UPR in cancer cells and how this signal can be harnessed for therapeutic benefit in the context of ICD, especially from the aspect of inflammation aroused by the UPR.
Collapse
Affiliation(s)
- Nicole Rufo
- Laboratory of Cell Death Research & Therapy, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium
- VIB Center for Cancer Biology Research, 3000 Leuven, Belgium
| | - Yihan Yang
- Laboratory of Cell Death Research & Therapy, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium
- VIB Center for Cancer Biology Research, 3000 Leuven, Belgium
- Research Group Experimental Neurosurgery and Neuroanatomy, Department of Neurosciences, KU Leuven, 3000 Leuven, Belgium
| | - Steven De Vleeschouwer
- Research Group Experimental Neurosurgery and Neuroanatomy, Department of Neurosciences, KU Leuven, 3000 Leuven, Belgium
- Department of Neurosurgery, University Hospitals Leuven, 3000 Leuven, Belgium
- Leuven Brain Institute (LBI), KU Leuven, 3000 Leuven, Belgium
| | - Patrizia Agostinis
- Laboratory of Cell Death Research & Therapy, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium
- VIB Center for Cancer Biology Research, 3000 Leuven, Belgium
| |
Collapse
|
23
|
|
24
|
Wang X, He MJ, Chen XJ, Bai YT, Zhou G. Glaucocalyxin A impairs tumor growth via amplification of the ATF4/CHOP/CHAC1 cascade in human oral squamous cell carcinoma. JOURNAL OF ETHNOPHARMACOLOGY 2022; 290:115100. [PMID: 35151835 DOI: 10.1016/j.jep.2022.115100] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/31/2022] [Accepted: 02/08/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The natural extract glaucocalyxin A (GLA), purified from the aboveground sections of the Chinese traditional medicinal herb Rabdosia japonica (Burm. f.) Hara var. glaucocalyx (Maxim.) Hara, has various pharmacological benefits, such as anti-bacterial, anti-coagulative, anti-neoplastic, and anti-inflammatory activities. Although GLA has shown anti-tumor activity against various cancers, the therapeutic potential and biological mechanisms of GLA remain to be further explored in oral squamous cell carcinoma (OSCC). AIM OF THE STUDY This study aimed to elucidate the therapeutic potential and regulatory mechanisms of GLA in OSCC. MATERIALS AND METHODS The cell proliferation and apoptosis effects of GLA were analyzed by CCK-8, clone formation, Annexin V/PI staining, and apoptotic protein expression in vitro. An OSCC xenograft model was applied to confirm the anti-neoplastic effect in vivo. Furthermore, the changes of reactive oxygen species (ROS) were determined by DCFH-DA probe and GSH/GSSG assay, and inhibited by the pan-caspase inhibitor Z-VAD(OMe)-FMK and the ROS scavenger N-acetylcysteine (NAC). The modulation of GLA on mitochondria and ER-dependent apoptosis pathways was analyzed by JC-1 probe, quantitative real-time PCR, and Western blot. Finally, public databases, clinical samples, and transfection cells were analyzed to explore the importance of GLA's indirect targeting molecule CHAC1 in OSCC. RESULTS GLA significantly inhibited cell proliferation and induced apoptosis in vitro and in vivo. GLA perturbed the redox homeostasis, and cell apoptosis was totally rescued by Z-VAD(OMe)-FMK and NAC. Furthermore, GLA activated the mitochondrial apoptosis pathway. Simultaneously, the overexpression and knockdown of CHAC1 dramatically affected GLA-mediated apoptosis. The endoplasmic reticulum stress-associated ATF4/CHOP signal was identified to participate in GLA-upregulated CHAC1 expression. Finally, we found that CHAC1 expression was lower in OSCC compared with normal tissues and positively correlated with 4-Hydroxynonenal (4-HNE) level. High CHAC1 expression also indicated better overall survival. Moreover, CHAC1 selectively regulated the viability of oral cancer cells. CONCLUSION GLA is a promising therapeutic agent that activates the ROS-mediated ATF4/CHOP/CHAC1 axis in OSCC patients.
Collapse
Affiliation(s)
- Xin Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, China
| | - Ming-Jing He
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, China; Department of Oral Medicine, School and Hospital of Stomatology, Wuhan University, China
| | - Xiao-Jie Chen
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, China; Department of Oral Medicine, School and Hospital of Stomatology, Wuhan University, China
| | - Yu-Ting Bai
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, China
| | - Gang Zhou
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, China; Department of Oral Medicine, School and Hospital of Stomatology, Wuhan University, China.
| |
Collapse
|
25
|
Cetraro P, Plaza-Diaz J, MacKenzie A, Abadía-Molina F. A Review of the Current Impact of Inhibitors of Apoptosis Proteins and Their Repression in Cancer. Cancers (Basel) 2022; 14:1671. [PMID: 35406442 PMCID: PMC8996962 DOI: 10.3390/cancers14071671] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/19/2022] [Accepted: 03/23/2022] [Indexed: 02/04/2023] Open
Abstract
The Inhibitor of Apoptosis (IAP) family possesses the ability to inhibit programmed cell death through different mechanisms; additionally, some of its members have emerged as important regulators of the immune response. Both direct and indirect activity on caspases or the modulation of survival pathways, such as nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), have been implicated in mediating its effects. As a result, abnormal expression of inhibitor apoptosis proteins (IAPs) can lead to dysregulated apoptosis promoting the development of different pathologies. In several cancer types IAPs are overexpressed, while their natural antagonist, the second mitochondrial-derived activator of caspases (Smac), appears to be downregulated, potentially contributing to the acquisition of resistance to traditional therapy. Recently developed Smac mimetics counteract IAP activity and show promise in the re-sensitization to apoptosis in cancer cells. Given the modest impact of Smac mimetics when used as a monotherapy, pairing of these compounds with other treatment modalities is increasingly being explored. Modulation of molecules such as tumor necrosis factor-α (TNF-α) present in the tumor microenvironment have been suggested to contribute to putative therapeutic efficacy of IAP inhibition, although published results do not show this consistently underlining the complex interaction between IAPs and cancer.
Collapse
Affiliation(s)
- Pierina Cetraro
- Research and Advances in Molecular and Cellular Immunology, Center of Biomedical Research, University of Granada, Armilla, 18016 Granada, Spain;
| | - Julio Plaza-Diaz
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071 Granada, Spain
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada;
- Instituto de Investigación Biosanitaria IBS.GRANADA, Complejo Hospitalario Universitario de Granada, 18014 Granada, Spain
| | - Alex MacKenzie
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada;
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Francisco Abadía-Molina
- Institute of Nutrition and Food Technology “José Mataix”, Biomedical Research Center, University of Granada, Armilla, 18016 Granada, Spain
- Department of Cell Biology, School of Sciences, University of Granada, 18071 Granada, Spain
| |
Collapse
|
26
|
Korneeva NL. Integrated Stress Response in Neuronal Pathology and in Health. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:S111-S127. [PMID: 35501991 DOI: 10.1134/s0006297922140103] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 10/29/2021] [Accepted: 11/02/2021] [Indexed: 06/14/2023]
Abstract
Neurodegeneration involves progressive pathological loss of a specific population of neurons, glial activation, and dysfunction of myelinating oligodendrocytes leading to cognitive impairment and altered movement, breathing, and senses. Neuronal degeneration is a hallmark of aging, stroke, drug abuse, toxic chemical exposure, viral infection, chronic inflammation, and a variety of neurological diseases. Accumulation of intra- and extracellular protein aggregates is a common characteristic of cell pathologies. Excessive production of reactive oxygen species and nitric oxide, induction of endoplasmic reticulum stress, and accumulation of misfolded protein aggregates have been shown to trigger a defensive mechanism called integrated stress response (ISR). Activation of ISR is important for synaptic plasticity in learning and memory formation. However, sustaining of ISR may lead to the development of neuronal pathologies and altered patterns in behavior and perception.
Collapse
Affiliation(s)
- Nadejda L Korneeva
- Louisiana State University Health Science Center, Shreveport, LA 71103, USA.
| |
Collapse
|
27
|
Gupta R, Ambasta RK, Pravir Kumar. Autophagy and apoptosis cascade: which is more prominent in neuronal death? Cell Mol Life Sci 2021; 78:8001-8047. [PMID: 34741624 PMCID: PMC11072037 DOI: 10.1007/s00018-021-04004-4] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 10/16/2021] [Accepted: 10/20/2021] [Indexed: 02/06/2023]
Abstract
Autophagy and apoptosis are two crucial self-destructive processes that maintain cellular homeostasis, which are characterized by their morphology and regulated through signal transduction mechanisms. These pathways determine the fate of cellular organelle and protein involved in human health and disease such as neurodegeneration, cancer, and cardiovascular disease. Cell death pathways share common molecular mechanisms, such as mitochondrial dysfunction, oxidative stress, calcium ion concentration, reactive oxygen species, and endoplasmic reticulum stress. Some key signaling molecules such as p53 and VEGF mediated angiogenic pathway exhibit cellular and molecular responses resulting in the triggering of apoptotic and autophagic pathways. Herein, based on previous studies, we describe the intricate relation between cell death pathways through their common genes and the role of various stress-causing agents. Further, extensive research on autophagy and apoptotic machinery excavates the implementation of selective biomarkers, for instance, mTOR, Bcl-2, BH3 family members, caspases, AMPK, PI3K/Akt/GSK3β, and p38/JNK/MAPK, in the pathogenesis and progression of neurodegenerative diseases. This molecular phenomenon will lead to the discovery of possible therapeutic biomolecules as a pharmacological intervention that are involved in the modulation of apoptosis and autophagy pathways. Moreover, we describe the potential role of micro-RNAs, long non-coding RNAs, and biomolecules as therapeutic agents that regulate cell death machinery to treat neurodegenerative diseases. Mounting evidence demonstrated that under stress conditions, such as calcium efflux, endoplasmic reticulum stress, the ubiquitin-proteasome system, and oxidative stress intermediate molecules, namely p53 and VEGF, activate and cause cell death. Further, activation of p53 and VEGF cause alteration in gene expression and dysregulated signaling pathways through the involvement of signaling molecules, namely mTOR, Bcl-2, BH3, AMPK, MAPK, JNK, and PI3K/Akt, and caspases. Alteration in gene expression and signaling cascades cause neurotoxicity and misfolded protein aggregates, which are characteristics features of neurodegenerative diseases. Excessive neurotoxicity and misfolded protein aggregates lead to neuronal cell death by activating death pathways like autophagy and apoptosis. However, autophagy has a dual role in the apoptosis pathways, i.e., activation and inhibition of the apoptosis signaling. Further, micro-RNAs and LncRNAs act as pharmacological regulators of autophagy and apoptosis cascade, whereas, natural compounds and chemical compounds act as pharmacological inhibitors that rescue neuronal cell death through inhibition of apoptosis and autophagic cell death.
Collapse
Affiliation(s)
- Rohan Gupta
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Mechanical Engineering Building, Delhi Technological University (Formerly Delhi College of Engineering), Room# FW4TF3, Shahbad Daulatpur, Bawana Road, Delhi, 110042, India
| | - Rashmi K Ambasta
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Mechanical Engineering Building, Delhi Technological University (Formerly Delhi College of Engineering), Room# FW4TF3, Shahbad Daulatpur, Bawana Road, Delhi, 110042, India
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Mechanical Engineering Building, Delhi Technological University (Formerly Delhi College of Engineering), Room# FW4TF3, Shahbad Daulatpur, Bawana Road, Delhi, 110042, India.
- , Delhi, India.
| |
Collapse
|
28
|
Wang J, Wang Q, Chen P, Li Q, Li Z, Xu M, Zeng K, Li C. Podophyllotoxin-combined 5-aminolevulinic acid photodynamic therapy significantly promotes HR-HPV-infected cell death. PHOTODERMATOLOGY PHOTOIMMUNOLOGY & PHOTOMEDICINE 2021; 38:343-353. [PMID: 34779024 DOI: 10.1111/phpp.12754] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 10/25/2021] [Accepted: 11/11/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND Human papillomavirus (HPV) infection and related diseases are difficult clinical challenges. The efficacy of 5-aminolevulinic acid photodynamic therapy (ALA-PDT) in treating condyloma acuminata is remarkable, with high virus clearance and low recurrence rates. Podophyllotoxin (POD) is the first-line drug with a significant therapeutic effect on condyloma acuminata. However, no studies have determined whether POD-combined ALA-PDT improves high-risk (HR)-HPV-infected cell killing. We aimed to investigate whether POD-combined ALA-PDT could promote HPV-infected cell death more effectively than the single treatment and explore the underlying mechanism. METHODS In HeLa and SiHa cells, flow cytometry, EdU assay and LDH release test were used to detect apoptosis, cell proliferation change and necrosis, respectively. To investigate whether the combined therapy might activate apoptosis and induce endoplasmic reticulum (ER) stress, flow cytometry was used to determine intracellular levels of ROS and calcium, and Western blotting was used to determine the expression of related proteins. Mitochondrial membrane depolarization was detected by JC-1 assay. Immunofluorescence staining and Western blotting were used to detect the activation of autophagy. RESULTS Podophyllotoxin -combined ALA-PDT inhibited the proliferation and promoted apoptosis and necrosis more effectively than the single treatment at the same intensity and concentration. The activation of the caspase-dependent apoptosis pathway, ER stress and autophagy was more substantial in POD-combined ALA-PDT than with single treatments. CONCLUSION Podophyllotoxin -combined ALA-PDT effectively promoted cell death through several pathways in HeLa and SiHa cells. This combination might be a promising therapeutic strategy for the HR-HPV infection.
Collapse
Affiliation(s)
- Jingying Wang
- Department of Dermatology and Venereology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Dermatology and Venereology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qi Wang
- Department of Dermatology and Venereology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Pingjiao Chen
- Department of Dermatology and Venereology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qian Li
- Department of Dermatology and Venereology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhijia Li
- Department of Dermatology and Venereology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Meinian Xu
- Department of Dermatology and Venereology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Kang Zeng
- Department of Dermatology and Venereology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Changxing Li
- Department of Dermatology and Venereology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
29
|
Qiao D, Zhang Z, Zhang Y, Chen Q, Chen Y, Tang Y, Sun X, Tang Z, Dai Y. Regulation of Endoplasmic Reticulum Stress-Autophagy: A Potential Therapeutic Target for Ulcerative Colitis. Front Pharmacol 2021; 12:697360. [PMID: 34588980 PMCID: PMC8473789 DOI: 10.3389/fphar.2021.697360] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 09/01/2021] [Indexed: 12/22/2022] Open
Abstract
Ulcerative colitis (UC) is a chronic nonspecific inflammation that mainly affects the mucosa and submucosa of the rectum and colon. Numerous studies have shown that endoplasmic reticulum stress (ERS)-induced autophagy plays a vital role in the pathogenesis of UC. ERS is the imbalance of internal balance caused by misfolded or unfolded proteins accumulated in the endoplasmic reticulum (ER).Excessive ERS triggers the unfolded protein response (UPR), an increase in inositol-requiring enzyme 1, and a Ca2+ overload, which activates the autophagy pathway. Autophagy is an evolutionarily conserved method of cellular self-degradation. Dysregulated autophagy causes inflammation, disruption of the intestinal barrier, and imbalance of intestinal homeostasis, therefore increasing the risk of colonic diseases. This review summarizes the pathogenesis of ERS, UPR, and ERS-related autophagy in UC, providing potential new targets and more effective treatment options for UC.
Collapse
Affiliation(s)
- Dan Qiao
- Department of Gastroenterology, Shanghai Traditional Chinese Medicine-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ziwei Zhang
- Institute of Digestive Diseases, LongHua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yali Zhang
- Institute of Digestive Diseases, LongHua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qian Chen
- Institute of Digestive Diseases, LongHua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yujun Chen
- Institute of Digestive Diseases, LongHua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yingjue Tang
- Institute of Digestive Diseases, LongHua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiong Sun
- Department of Gastroenterology, Shanghai PuTuo District People's Hospital Affiliated to Tongji University, Tongji University School of Medicine, Shanghai, China
| | - Zhipeng Tang
- Institute of Digestive Diseases, LongHua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yancheng Dai
- Department of Gastroenterology, Shanghai Traditional Chinese Medicine-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
30
|
Kroeger H, Grandjean JMD, Chiang WCJ, Bindels DD, Mastey R, Okalova J, Nguyen A, Powers ET, Kelly JW, Grimsey NJ, Michaelides M, Carroll J, Wiseman RL, Lin JH. ATF6 is essential for human cone photoreceptor development. Proc Natl Acad Sci U S A 2021; 118:e2103196118. [PMID: 34561305 PMCID: PMC8488632 DOI: 10.1073/pnas.2103196118] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/03/2021] [Indexed: 12/29/2022] Open
Abstract
Endoplasmic reticulum (ER) stress and Unfolded Protein Response (UPR) signaling promote the pathology of many human diseases. Loss-of-function variants of the UPR regulator Activating Transcription Factor 6 (ATF6) cause severe congenital vision loss diseases such as achromatopsia by unclear pathomechanisms. To investigate this, we generated retinal organoids from achromatopsia patient induced pluripotent stem cells carrying ATF6 disease variants and from gene-edited ATF6 null hESCs. We found that achromatopsia patient and ATF6 null retinal organoids failed to form cone structures concomitant with loss of cone phototransduction gene expression, while rod photoreceptors developed normally. Adaptive optics retinal imaging of achromatopsia patients carrying ATF6 variants also showed absence of cone inner/outer segment structures but preserved rod structures, mirroring the defect in cone formation observed in our retinal organoids. These results establish that ATF6 is essential for human cone development. Interestingly, we find that a selective small molecule ATF6 signaling agonist restores the transcriptional activity of some ATF6 disease-causing variants and stimulates cone growth and gene expression in patient retinal organoids carrying these variants. These findings support that pharmacologic targeting of the ATF6 pathway can promote human cone development and should be further explored for blinding retinal diseases.
Collapse
Affiliation(s)
- Heike Kroeger
- Department of Cellular Biology, Franklin College of Arts and Sciences, University of Georgia, Athens, GA 30601;
| | - Julia M D Grandjean
- Department of Molecular Medicine, Scripps Research Institute, La Jolla, CA 92037
| | - Wei-Chieh Jerry Chiang
- Developmental Neurobiology Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa 904-0495, Japan
| | - Daphne D Bindels
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093
| | - Rebecca Mastey
- Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin, Milwaukee, WI 53226
| | - Jennifer Okalova
- College of Pharmacy, Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, GA 30601
| | - Amanda Nguyen
- Department of Pathology, Stanford University, Stanford, CA 94305
| | - Evan T Powers
- Department of Chemistry, Scripps Research Institute, La Jolla, CA 92037
| | - Jeffery W Kelly
- Department of Chemistry, Scripps Research Institute, La Jolla, CA 92037
- Skaggs Institute for Chemical Biology, Scripps Research Institute, La Jolla, CA 92037
| | - Neil J Grimsey
- College of Pharmacy, Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, GA 30601
| | - Michel Michaelides
- UCL Institute of Ophthalmology, University College London, London EC1V 9EL, United Kingdom
- Moorfields Eye Hospital, London EC1V 2PD, United Kingdom
| | - Joseph Carroll
- Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin, Milwaukee, WI 53226
| | - R Luke Wiseman
- Department of Molecular Medicine, Scripps Research Institute, La Jolla, CA 92037
| | - Jonathan H Lin
- Department of Pathology, Stanford University, Stanford, CA 94305;
- Department of Ophthalmology, Stanford University, Palo Alto, CA 94303
- Veterans Affairs Palo Alto Healthcare System, Palo Alto, CA 94304
| |
Collapse
|
31
|
Detection of Unfolded Protein Response by Polymerase Chain Reaction. Methods Mol Biol 2021. [PMID: 34033090 DOI: 10.1007/978-1-0716-1162-3_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
The unfolded protein response is a cellular adaptive mechanism localized in the endoplasmic reticulum. It involves three phases: the detection of increased presence of unfolded proteins as a result of cellular stressors; the execution of an adaptive cascade of events aimed at the enhancement of proper protein folding and degradation of improperly folded proteins; and finally, when stress is not alleviated, the execution of programmed cell death. The main effectors of the UPR are transcription factors involved in the upregulation of either chaperone proteins or proapoptotic proteins. Two of these transcription factors are CHOP and the spliced variant of XBP-1 (XBP1s). In this chapter, we describe a quantitative PCR method to detect the upregulation of CHOP and XBP1s mRNA during Tunicamycin-induced UPR.
Collapse
|
32
|
Delgado-Benito V, Berruezo-Llacuna M, Altwasser R, Winkler W, Sundaravinayagam D, Balasubramanian S, Caganova M, Graf R, Rahjouei A, Henke MT, Driesner M, Keller L, Prigione A, Janz M, Akalin A, Di Virgilio M. PDGFA-associated protein 1 protects mature B lymphocytes from stress-induced cell death and promotes antibody gene diversification. J Exp Med 2021; 217:151913. [PMID: 32609329 PMCID: PMC7537392 DOI: 10.1084/jem.20200137] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 04/20/2020] [Accepted: 05/19/2020] [Indexed: 12/13/2022] Open
Abstract
The establishment of protective humoral immunity is dependent on the ability of mature B cells to undergo antibody gene diversification while adjusting to the physiological stressors induced by activation with the antigen. Mature B cells diversify their antibody genes by class switch recombination (CSR) and somatic hypermutation (SHM), which are both dependent on efficient induction of activation-induced cytidine deaminase (AID). Here, we identified PDGFA-associated protein 1 (Pdap1) as an essential regulator of cellular homeostasis in mature B cells. Pdap1 deficiency leads to sustained expression of the integrated stress response (ISR) effector activating transcription factor 4 (Atf4) and induction of the ISR transcriptional program, increased cell death, and defective AID expression. As a consequence, loss of Pdap1 reduces germinal center B cell formation and impairs CSR and SHM. Thus, Pdap1 protects mature B cells against chronic ISR activation and ensures efficient antibody diversification by promoting their survival and optimal function.
Collapse
Affiliation(s)
- Verónica Delgado-Benito
- Laboratory of Genome Diversification and Integrity, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Maria Berruezo-Llacuna
- Laboratory of Genome Diversification and Integrity, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Robert Altwasser
- Laboratory of Genome Diversification and Integrity, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,Bioinformatics and Omics Data Science Technology Platform, Berlin Institute of Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Wiebke Winkler
- Laboratory of Immune Regulation and Cancer, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,Laboratory of Biology of Malignant Lymphomas, Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité, University Medicine, Berlin, Germany
| | - Devakumar Sundaravinayagam
- Laboratory of Genome Diversification and Integrity, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Sandhya Balasubramanian
- Laboratory of Genome Diversification and Integrity, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Marieta Caganova
- Laboratory of Immune Regulation and Cancer, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Robin Graf
- Laboratory of Immune Regulation and Cancer, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Ali Rahjouei
- Laboratory of Genome Diversification and Integrity, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Marie-Thérèse Henke
- Laboratory of Mitochondria and Cell Fate Reprogramming, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Madlen Driesner
- Laboratory of Genome Diversification and Integrity, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Lisa Keller
- Laboratory of Genome Diversification and Integrity, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Alessandro Prigione
- Laboratory of Mitochondria and Cell Fate Reprogramming, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,Department of General Pediatrics, Neonatology and Pediatric Cardiology, University Children's Hospital, Heinrich Heine University, Düsseldorf, Germany
| | - Martin Janz
- Laboratory of Biology of Malignant Lymphomas, Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité, University Medicine, Berlin, Germany
| | - Altuna Akalin
- Bioinformatics and Omics Data Science Technology Platform, Berlin Institute of Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Michela Di Virgilio
- Laboratory of Genome Diversification and Integrity, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,Charité-Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
33
|
Naranjo-Gómez JS, Uribe-García HF, Herrera-Sánchez MP, Lozano-Villegas KJ, Rodríguez-Hernández R, Rondón-Barragán IS. Heat stress on cattle embryo: gene regulation and adaptation. Heliyon 2021; 7:e06570. [PMID: 33869831 PMCID: PMC8035499 DOI: 10.1016/j.heliyon.2021.e06570] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/29/2021] [Accepted: 03/18/2021] [Indexed: 12/26/2022] Open
Abstract
Global warming has been affecting animal husbandry and farming production worldwide via changes in organisms and their habitats. In the tropics, these conditions are adverse for agriculture and animal production in some areas, due to high temperatures and relative humidity, affecting competitiveness related to economic activities. These environments have deteriorated livestock production, due to periods of drought, reduction in forage quality and heat stress, eliciting negative effects on reproduction, weight gain, and reduced meat and milk production. However, the use of animals adapted to tropics such as breeds derived from subspecies Bos primigenius indicus and native breeds from tropical countries or their crossings, is an alternative to improve production under high-temperature conditions. Therefore, physiological adaptation including gene expression induced by heat stress have been studied to understand the response of animals and to improve cross-breeding between cattle breeds to maintain high productivity in adverse weather conditions. Heat stress has been associated with lower reproductive performance in cows, due to the impact on blastocyst production, decreased implantation and increased embryonic death. Thus, for decades, in vitro fertilization and embryo transfer techniques have focused on studying the optimal conditions for production of high-quality embryos to transfer. The aim of this review is to discuss the effects of heat stress in bovine embryos, and their physiological and genetic modulation, focusing on the genes that are related with major adaptability to heat stress conditions and their relationship with different embryonic stages.
Collapse
Affiliation(s)
- Juan Sebastian Naranjo-Gómez
- Research Group in Immunobiology and Pathogenesis, Faculty of Veterinary Medicine and Zootechnics, University of Tolima, Altos of Santa Helena, A.A 546, Ibagué, Colombia
| | - Heinner Fabián Uribe-García
- Research Group in Immunobiology and Pathogenesis, Faculty of Veterinary Medicine and Zootechnics, University of Tolima, Altos of Santa Helena, A.A 546, Ibagué, Colombia
| | - María Paula Herrera-Sánchez
- Research Group in Immunobiology and Pathogenesis, Faculty of Veterinary Medicine and Zootechnics, University of Tolima, Altos of Santa Helena, A.A 546, Ibagué, Colombia
| | - Kelly Johanna Lozano-Villegas
- Research Group in Immunobiology and Pathogenesis, Faculty of Veterinary Medicine and Zootechnics, University of Tolima, Altos of Santa Helena, A.A 546, Ibagué, Colombia
| | - Roy Rodríguez-Hernández
- Poultry Research Group, Faculty of Veterinary Medicine and Zootechnics, University of Tolima, Altos of Santa Helena, A.A 546, Ibagué, Colombia
| | - Iang Schroniltgen Rondón-Barragán
- Research Group in Immunobiology and Pathogenesis, Faculty of Veterinary Medicine and Zootechnics, University of Tolima, Altos of Santa Helena, A.A 546, Ibagué, Colombia
- Poultry Research Group, Faculty of Veterinary Medicine and Zootechnics, University of Tolima, Altos of Santa Helena, A.A 546, Ibagué, Colombia
| |
Collapse
|
34
|
Grandjean JMD, Wiseman RL. Small molecule strategies to harness the unfolded protein response: where do we go from here? J Biol Chem 2020; 295:15692-15711. [PMID: 32887796 PMCID: PMC7667976 DOI: 10.1074/jbc.rev120.010218] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/02/2020] [Indexed: 12/31/2022] Open
Abstract
The unfolded protein response (UPR) plays a central role in regulating endoplasmic reticulum (ER) and global cellular physiology in response to pathologic ER stress. The UPR is comprised of three signaling pathways activated downstream of the ER membrane proteins IRE1, ATF6, and PERK. Once activated, these proteins initiate transcriptional and translational signaling that functions to alleviate ER stress, adapt cellular physiology, and dictate cell fate. Imbalances in UPR signaling are implicated in the pathogenesis of numerous, etiologically-diverse diseases, including many neurodegenerative diseases, protein misfolding diseases, diabetes, ischemic disorders, and cancer. This has led to significant interest in establishing pharmacologic strategies to selectively modulate IRE1, ATF6, or PERK signaling to both ameliorate pathologic imbalances in UPR signaling implicated in these different diseases and define the importance of the UPR in diverse cellular and organismal contexts. Recently, there has been significant progress in the identification and characterization of UPR modulating compounds, providing new opportunities to probe the pathologic and potentially therapeutic implications of UPR signaling in human disease. Here, we describe currently available UPR modulating compounds, specifically highlighting the strategies used for their discovery and specific advantages and disadvantages in their application for probing UPR function. Furthermore, we discuss lessons learned from the application of these compounds in cellular and in vivo models to identify favorable compound properties that can help drive the further translational development of selective UPR modulators for human disease.
Collapse
Affiliation(s)
- Julia M D Grandjean
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA
| | - R Luke Wiseman
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA.
| |
Collapse
|
35
|
Bhardwaj M, Leli NM, Koumenis C, Amaravadi RK. Regulation of autophagy by canonical and non-canonical ER stress responses. Semin Cancer Biol 2020; 66:116-128. [PMID: 31838023 PMCID: PMC7325862 DOI: 10.1016/j.semcancer.2019.11.007] [Citation(s) in RCA: 137] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 11/05/2019] [Accepted: 11/26/2019] [Indexed: 12/12/2022]
Abstract
Cancer cells encounter numerous stresses that pose a threat to their survival. Tumor microenviroment stresses that perturb protein homeostasis can produce endoplasmic reticulum (ER) stress, which can be counterbalanced by triggering the unfolded protein response (UPR) which is considered the canonical ER stress response. The UPR is characterized by three major proteins that lead to specific changes in transcriptional and translational programs in stressed cells. Activation of the UPR can induce apoptosis, but also can induce cytoprotective programs such as autophagy. There is increasing appreciation for the role that UPR-induced autophagy plays in supporting tumorigenesis and cancer therapy resistance. More recently several new pathways that connect cell stresses, components of the UPR and autophagy have been reported, which together can be viewed as non-canonical ER stress responses. Here we review recent findings on the molecular mechanisms by which canonical and non-canonical ER stress responses can activate cytoprotective autophagy and contribute to tumor growth and therapy resistance. Autophagy has been identified as a druggable pathway, however the components of autophagy (ATG genes) have proven difficult to drug. It may be the case that targeting the UPR or non-canonical ER stress programs can more effectively block cytoprotective autophagy to enhance cancer therapy. A deeper understanding of these pathways could provide new therapeutic targets in cancer.
Collapse
Affiliation(s)
- Monika Bhardwaj
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Nektaria Maria Leli
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Constantinos Koumenis
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, 19104, USA; Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Ravi K Amaravadi
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA; Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
36
|
Mukherjee D, Bercz LS, Torok MA, Mace TA. Regulation of cellular immunity by activating transcription factor 4. Immunol Lett 2020; 228:24-34. [PMID: 33002512 DOI: 10.1016/j.imlet.2020.09.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/10/2020] [Accepted: 09/22/2020] [Indexed: 02/06/2023]
Abstract
Activating transcription factor 4 (ATF4) is a DNA binding transcription factor belonging to the family of basic Leucine zipper proteins. ATF4 can be activated in response to multiple cellular stress signals including endoplasmic reticulum stress in the event of improper protein folding or oxidative stress because of mitochondrial dysfunction as well as hypoxia. There are multiple downstream targets of ATF4 that can coordinate the regulation between survival and apoptosis of a cell based on time and exposure to stress. ATF4, therefore, has a broad range of control that results in the modulation of immune cells of the innate and adaptive responses leading to regulation of the cellular immunity. Studies provide evidence that ATF4 can regulate immune cells such as macrophages, T cells, B cells, NK cells and dendritic cells contributing to progression of disease. Immune cells can be exposed to stressed environment in the event of a pathogen attack, infection, inflammation, or in the tumor microenvironment leading to increased ATF4 activity to regulate these responses. ATF4 can further control differentiation and maturation of different immune cell types becoming a determinant of effective immune regulation. Additionally, ATF4 has been heavily implicated in rendering effector immune cells dysfunctional that are used to target tumorigenesis. Therefore, there is a need to evaluate where the literature stands in understanding the overall role of ATF4 in regulating cellular immunity to identify therapeutic targets and generalized mechanisms for different disease progressions.
Collapse
Affiliation(s)
- Debasmita Mukherjee
- The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| | - Lena S Bercz
- The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| | - Molly A Torok
- The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| | - Thomas A Mace
- The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States; Department of Internal Medicine, Division of Gastroenterology, Hepatology and Nutrition, The Ohio State University, Columbus, OH, United States.
| |
Collapse
|
37
|
Kwon HJ, Yoon K, Jung JY, Ryu MH, Kim SH, Yoo ES, Choi SY, Yang IH, Hong SD, Shin JA, Cho SD. Targeting X chromosome-linked inhibitor of apoptosis protein in mucoepidermoid carcinoma of the head and neck: A novel therapeutic strategy using nitidine chloride. J Mol Med (Berl) 2020; 98:1591-1602. [PMID: 32901343 DOI: 10.1007/s00109-020-01977-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 08/23/2020] [Accepted: 09/03/2020] [Indexed: 10/23/2022]
Abstract
Nitidine chloride (NC) was recently reported to exhibit a wide range of pharmacological properties for several diseases, including cancer. Here we report for the first time that NC is a potential therapeutic agent for mucoepidermoid carcinoma (MEC) occurring in the head and neck because it suppresses X chromosome-linked inhibitor of apoptosis protein (XIAP) in human MEC in vitro and in vivo. The antitumor effects of NC were evaluated by trypan blue exclusion assay, western blotting, live/dead assay, 4',6-diamidino-2-phenylindole (DAPI) staining, human apoptosis antibody array, immunofluorescence staining, immunohistochemistry, small interfering RNA assay, transient transfection of XIAP overexpression vector, terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay, and histopathological examination of organs. NC inhibited cell viability and induced caspase-dependent apoptosis in vitro. A human apoptosis antibody array assay showed that XIAP is suppressed by NC treatment. XIAP was overexpressed in oral squamous cell carcinoma (OSCC) tissues that arose from the head and neck, and high XIAP expression was correlated with poor prognosis in OSCC patients. XIAP depletion significantly increased apoptosis, and ectopic XIAP overexpression attenuated the apoptosis induced by NC treatment. NC suppressed tumor growth in vivo at a dosage of 5 mg/kg/day. The number of TUNEL-positive cells increased and the protein expression of XIAP was consistently downregulated in NC-treated tumor tissues. In addition, NC caused no histopathological changes in the liver or kidney. These findings provide new insights into the mechanism of action underlying the anticancer effects of NC and demonstrate that NC is a promising therapeutic agent for the treatment of human MEC of the head and neck. KEY MESSAGES: • Nitidine chloride induces caspase-dependent apoptosis in MEC of the head and neck. • High XIAP expression correlates with poor prognosis of OSCC patients. • Nitidine chloride suppresses tumor growth in vivo without any systemic toxicities. • Targeting XIAP is a novel chemotherapeutic strategy for MEC of the head and neck.
Collapse
Affiliation(s)
- Hye-Jeong Kwon
- Department of Oral Pathology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, 03080, Republic of Korea
| | - Kyungsil Yoon
- Comparative Biomedicine Research Branch, Division of Translational Science, National Cancer Center, Goyang, 10408, Republic of Korea
| | - Ji-Youn Jung
- Department of Companion and Laboratory Animal Science, Kongju National University, Yesan, 32439, Republic of Korea
| | - Mi Heon Ryu
- Department of Oral Pathology, School of Dentistry, Yangsan Campus of Pusan National University, Yangsan, 50612, Republic of Korea
| | - Sung-Hyun Kim
- Department of Companion and Laboratory Animal Science, Kongju National University, Yesan, 32439, Republic of Korea
| | - Eun-Seon Yoo
- Department of Companion and Laboratory Animal Science, Kongju National University, Yesan, 32439, Republic of Korea
| | - So-Young Choi
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Kyungpook National University, Daegu, 41940, Republic of Korea
| | - In-Hyoung Yang
- Department of Oral Pathology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, 03080, Republic of Korea
| | - Seong Doo Hong
- Department of Oral Pathology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, 03080, Republic of Korea
| | - Ji-Ae Shin
- Department of Oral Pathology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, 03080, Republic of Korea.
| | - Sung-Dae Cho
- Department of Oral Pathology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, 03080, Republic of Korea.
| |
Collapse
|
38
|
Zadorozhnii PV, Kiselev VV, Kharchenko AV. In silico toxicity evaluation of Salubrinal and its analogues. Eur J Pharm Sci 2020; 155:105538. [PMID: 32889087 DOI: 10.1016/j.ejps.2020.105538] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/14/2020] [Accepted: 08/30/2020] [Indexed: 02/06/2023]
Abstract
This paper reports on a comprehensive in silico toxicity assessment of Salubrinal and its analogues containing a cinnamic acid residue or quinoline ring using the online servers admetSAR, ADMETlab, ProTox, ADVERPred, Pred-hERG and Vienna LiverTox. Apart from rare exceptions, in all 55 studied structures, mild or practical absence of acute toxicity was predicted for rats (III or IV toxicity class). Cardiotoxic, hepatotoxic and immunotoxic effects were predicted for Salubrinal and its analogues. We constructed models of the main predicted anti-targets hERG, BSEP, MRP3, MRP4 and AhR using the principle of homologous modeling. Molecular docking studies were carried out with the obtained models. We carried out molecular docking for all targets using AutoDock Vina, implemented in the PyRx 0.8 software package. According to the results of molecular docking, the compounds analyzed are potential moderate or weak hERG blockers. Induction of cholestasis and, as a consequence, liver damage by these drugs, directly related to inhibition of BSEP, MRP3 and MRP4, most likely will not be observed. Interaction with AhR for the studied compounds is impossible for steric reasons and, as a consequence, toxic effects on the immune and other organ systems associated with the activation of the AhR signaling pathway are excluded.
Collapse
Affiliation(s)
- Pavlo V Zadorozhnii
- Department of pharmacy and technology of organic substances, Ukrainian State University of Chemical Technology, Gagarin Ave., 8, Dnipro 49005, Ukraine.
| | - Vadym V Kiselev
- Department of pharmacy and technology of organic substances, Ukrainian State University of Chemical Technology, Gagarin Ave., 8, Dnipro 49005, Ukraine
| | - Aleksandr V Kharchenko
- Department of pharmacy and technology of organic substances, Ukrainian State University of Chemical Technology, Gagarin Ave., 8, Dnipro 49005, Ukraine
| |
Collapse
|
39
|
Proteotoxic Stress and Cell Death in Cancer Cells. Cancers (Basel) 2020; 12:cancers12092385. [PMID: 32842524 PMCID: PMC7563887 DOI: 10.3390/cancers12092385] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/19/2020] [Accepted: 08/20/2020] [Indexed: 02/06/2023] Open
Abstract
To maintain proteostasis, cells must integrate information and activities that supervise protein synthesis, protein folding, conformational stability, and also protein degradation. Extrinsic and intrinsic conditions can both impact normal proteostasis, causing the appearance of proteotoxic stress. Initially, proteotoxic stress elicits adaptive responses aimed at restoring proteostasis, allowing cells to survive the stress condition. However, if the proteostasis restoration fails, a permanent and sustained proteotoxic stress can be deleterious, and cell death ensues. Many cancer cells convive with high levels of proteotoxic stress, and this condition could be exploited from a therapeutic perspective. Understanding the cell death pathways engaged by proteotoxic stress is instrumental to better hijack the proliferative fate of cancer cells.
Collapse
|
40
|
Signatures of cell stress and altered bioenergetics in skin fibroblasts from patients with multiple sclerosis. Aging (Albany NY) 2020; 12:15134-15156. [PMID: 32640422 PMCID: PMC7425440 DOI: 10.18632/aging.103612] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 06/05/2020] [Indexed: 12/14/2022]
Abstract
Multiple sclerosis (MS) is a central nervous system inflammatory demyelinating disease and the most common cause of non-traumatic disability in young adults. Despite progress in the treatment of the active relapsing disease, therapeutic options targeting irreversible progressive decline remain limited. Studies using skin fibroblasts derived from patients with neurodegenerative disorders demonstrate that cell stress pathways and bioenergetics are altered when compared to healthy individuals. However, findings in MS skin fibroblasts are limited. Here, we collected skin fibroblasts from 24 healthy control individuals, 30 patients with MS, and ten with amyotrophic lateral sclerosis (ALS) to investigate altered cell stress profiles. We observed endoplasmic reticulum swelling in MS skin fibroblasts, and increased gene expression of cell stress markers including BIP, ATF4, CHOP, GRP94, P53, and P21. When challenged against hydrogen peroxide, MS skin fibroblasts had reduced resiliency compared to ALS and controls. Mitochondrial and glycolytic functions were perturbed in MS skin fibroblasts while exhibiting a significant increase in lactate production over ALS and controls. Our results suggest that MS skin fibroblasts have an underlying stress phenotype, which may be disease specific. Interrogating MS skin fibroblasts may provide patient specific molecular insights and aid in prognosis, diagnosis, and therapeutic testing enhancing individualized medicine.
Collapse
|
41
|
Yao RQ, Ren C, Xia ZF, Yao YM. Organelle-specific autophagy in inflammatory diseases: a potential therapeutic target underlying the quality control of multiple organelles. Autophagy 2020; 17:385-401. [PMID: 32048886 PMCID: PMC8007140 DOI: 10.1080/15548627.2020.1725377] [Citation(s) in RCA: 228] [Impact Index Per Article: 45.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The structural integrity and functional stability of organelles are prerequisites for the viability and responsiveness of cells. Dysfunction of multiple organelles is critically involved in the pathogenesis and progression of various diseases, such as chronic obstructive pulmonary disease, cardiovascular diseases, infection, and neurodegenerative diseases. In fact, those organelles synchronously present with evident structural derangement and aberrant function under exposure to different stimuli, which might accelerate the corruption of cells. Therefore, the quality control of multiple organelles is of great importance in maintaining the survival and function of cells and could be a potential therapeutic target for human diseases. Organelle-specific autophagy is one of the major subtypes of autophagy, selectively targeting different organelles for quality control. This type of autophagy includes mitophagy, pexophagy, reticulophagy (endoplasmic reticulum), ribophagy, lysophagy, and nucleophagy. These kinds of organelle-specific autophagy are reported to be beneficial for inflammatory disorders by eliminating damaged organelles and maintaining homeostasis. In this review, we summarized the recent findings and mechanisms covering different kinds of organelle-specific autophagy, as well as their involvement in various diseases, aiming to arouse concern about the significance of the quality control of multiple organelles in the treatment of inflammatory diseases.Abbreviations: ABCD3: ATP binding cassette subfamily D member 3; AD: Alzheimer disease; ALS: amyotrophic lateral sclerosis; AMBRA1: autophagy and beclin 1 regulator 1; AMPK: AMP-activated protein kinase; ARIH1: ariadne RBR E3 ubiquitin protein ligase 1; ATF: activating transcription factor; ATG: autophagy related; ATM: ATM serine/threonine kinase; BCL2: BCL2 apoptosis regulator; BCL2L11/BIM: BCL2 like 11; BCL2L13: BCL2 like 13; BECN1: beclin 1; BNIP3: BCL2 interacting protein 3; BNIP3L/NIX: BCL2 interacting protein 3 like; CALCOCO2/NDP52: calcium binding and coiled-coil domain 2; CANX: calnexin; CAT: catalase; CCPG1: cell cycle progression 1; CHDH: choline dehydrogenase; COPD: chronic obstructive pulmonary disease; CSE: cigarette smoke exposure; CTSD: cathepsin D; DDIT3/CHOP: DNA-damage inducible transcript 3; DISC1: DISC1 scaffold protein; DNM1L/DRP1: dynamin 1 like; EIF2AK3/PERK: eukaryotic translation initiation factor 2 alpha kinase 3; EIF2S1/eIF2α: eukaryotic translation initiation factor 2 alpha kinase 3; EMD: emerin; EPAS1/HIF-2α: endothelial PAS domain protein 1; ER: endoplasmic reticulum; ERAD: ER-associated degradation; ERN1/IRE1α: endoplasmic reticulum to nucleus signaling 1; FBXO27: F-box protein 27; FKBP8: FKBP prolyl isomerase 8; FTD: frontotemporal dementia; FUNDC1: FUN14 domain containing 1; G3BP1: G3BP stress granule assembly factor 1; GBA: glucocerebrosidase beta; HIF1A/HIF1: hypoxia inducible factor 1 subunit alpha; IMM: inner mitochondrial membrane; LCLAT1/ALCAT1: lysocardiolipin acyltransferase 1; LGALS3/Gal3: galectin 3; LIR: LC3-interacting region; LMNA: lamin A/C; LMNB1: lamin B1; LPS: lipopolysaccharide; MAPK8/JNK: mitogen-activated protein kinase 8; MAMs: mitochondria-associated membranes; MAP1LC3B/LC3B: microtubule-associated protein 1 light chain 3 beta; MFN1: mitofusin 1; MOD: multiple organelles dysfunction; MTPAP: mitochondrial poly(A) polymerase; MUL1: mitochondrial E3 ubiquitin protein ligase 1; NBR1: NBR1 autophagy cargo receptor; NLRP3: NLR family pyrin domain containing 3; NUFIP1: nuclear FMR1 interacting protein 1; OMM: outer mitochondrial membrane; OPTN: optineurin; PD: Parkinson disease; PARL: presenilin associated rhomboid like; PEX3: peroxisomal biogenesis factor 3; PGAM5: PGAM family member 5; PHB2: prohibitin 2; PINK1: PTEN induced putative kinase 1; PRKN: parkin RBR E3 ubiquitin protein ligase; RB1CC1/FIP200: RB1 inducible coiled-coil 1; RETREG1/FAM134B: reticulophagy regulator 1; RHOT1/MIRO1: ras homolog family member T1; RIPK3/RIP3: receptor interacting serine/threonine kinase 3; ROS: reactive oxygen species; RTN3: reticulon 3; SEC62: SEC62 homolog, preprotein translocation factor; SESN2: sestrin2; SIAH1: siah E3 ubiquitin protein ligase 1; SNCA: synuclein alpha; SNCAIP: synuclein alpha interacting protein; SQSTM1/p62: sequestosome 1; STING1: stimulator of interferon response cGAMP interactor 1; TAX1BP1: Tax1 binding protein 1; TBK1: TANK binding kinase 1; TFEB: transcription factor EB; TICAM1/TRIF: toll-like receptor adaptor molecule 1; TIMM23: translocase of inner mitochondrial membrane 23; TNKS: tankyrase; TOMM: translocase of the outer mitochondrial membrane; TRIM: tripartite motif containing; UCP2: uncoupling protein 2; ULK1: unc-51 like autophagy activating kinase; UPR: unfolded protein response; USP10: ubiquitin specific peptidase 10; VCP/p97: valosin containing protein; VDAC: voltage dependent anion channels; XIAP: X-linked inhibitor of apoptosis; ZNHIT3: zinc finger HIT-type containing 3.
Collapse
Affiliation(s)
- Ren-Qi Yao
- Trauma Research Center, Fourth Medical Center of the Chinese PLA General Hospital, Beijing, People's Republic of China.,Department of Burn Surgery, Changhai Hospital, Navy Medical University, Shanghai, People's Republic of China
| | - Chao Ren
- Trauma Research Center, Fourth Medical Center of the Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Zhao-Fan Xia
- Department of Burn Surgery, Changhai Hospital, Navy Medical University, Shanghai, People's Republic of China
| | - Yong-Ming Yao
- Trauma Research Center, Fourth Medical Center of the Chinese PLA General Hospital, Beijing, People's Republic of China
| |
Collapse
|
42
|
Zhao R, Yu Q, Hou L, Dong X, Zhang H, Chen X, Zhou Z, Ma J, Huang S, Chen L. Cadmium induces mitochondrial ROS inactivation of XIAP pathway leading to apoptosis in neuronal cells. Int J Biochem Cell Biol 2020; 121:105715. [PMID: 32035180 DOI: 10.1016/j.biocel.2020.105715] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 02/03/2020] [Accepted: 02/04/2020] [Indexed: 12/21/2022]
Abstract
Cadmium (Cd), a heavy metal pollutant, contributes to neurodegenerative disorders. Recently, we have demonstrated that Cd induction of reactive oxygen species (ROS) causes apoptosis in neuronal cells. Whether X-linked inhibitor of apoptosis protein (XIAP) is involved in Cd-induced ROS-dependent neuronal apoptosis remains unclear. Here, we show that Cd-induced ROS reduced the expression of XIAP, which resulted in up-regulation of murine double minute 2 homolog (MDM2) and down-regulation of p53, leading to apoptosis in PC12 cells and primary neurons. Inhibition of MDM2 with Nutlin-3a reversed Cd-induced reduction of p53 and substantially rescued cells from excess ROS-dependent death. Overexpression of XIAP protected against Cd induction of ROS-dependent neuronal apoptosis. Inhibition of XIAP by Embelin strengthened Cd-induced ROS and apoptosis in the cells. Furthermore, we found that Cd inactivation of XIAP pathway was attributed to Cd induction of mitochondrial ROS, as evidenced by using a mitochondrial superoxide indicator MitoSOX and a mitochondria-targeted antioxidant Mito-TEMPO. Taken together, these results indicate that Cd induces mitochondrial ROS inactivation of XIAP-MDM2-p53 pathway leading to apoptosis in neuronal cells. Our findings suggest that activators of XIAP or modulation of XIAP-MDM2-p53 pathway by antioxidants may be exploited for the prevention of Cd-induced oxidative stress and neurodegenerative diseases.
Collapse
Affiliation(s)
- Rui Zhao
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, PR China
| | - Qianyun Yu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, PR China
| | - Long Hou
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, PR China
| | - Xiaoqing Dong
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, PR China
| | - Hai Zhang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, PR China
| | - Xiaoling Chen
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, PR China
| | - Zhihan Zhou
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, PR China
| | - Jing Ma
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, PR China
| | - Shile Huang
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA, 71130-3932, USA; Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, LA, 71130-3932, USA.
| | - Long Chen
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, PR China.
| |
Collapse
|
43
|
Hiramatsu N, Chiang K, Aivati C, Rodvold JJ, Lee JM, Han J, Chea L, Zanetti M, Koo EH, Lin JH. PERK-mediated induction of microRNA-483 disrupts cellular ATP homeostasis during the unfolded protein response. J Biol Chem 2020; 295:237-249. [PMID: 31792031 PMCID: PMC6952592 DOI: 10.1074/jbc.ra119.008336] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 11/26/2019] [Indexed: 01/08/2023] Open
Abstract
Endoplasmic reticulum (ER) stress activates the unfolded protein response (UPR), which reduces levels of misfolded proteins. However, if ER homeostasis is not restored and the UPR remains chronically activated, cells undergo apoptosis. The UPR regulator, PKR-like endoplasmic reticulum kinase (PERK), plays an important role in promoting cell death when persistently activated; however, the underlying mechanisms are poorly understood. Here, we profiled the microRNA (miRNA) transcriptome in human cells exposed to ER stress and identified miRNAs that are selectively induced by PERK signaling. We found that expression of a PERK-induced miRNA, miR-483, promotes apoptosis in human cells. miR-483 induction was mediated by a transcription factor downstream of PERK, activating transcription factor 4 (ATF4), but not by the CHOP transcription factor. We identified the creatine kinase brain-type (CKB) gene, encoding an enzyme that maintains cellular ATP reserves through phosphocreatine production, as being repressed during the UPR and targeted by miR-483. We found that ER stress, selective PERK activation, and CKB knockdown all decrease cellular ATP levels, leading to increased vulnerability to ER stress-induced cell death. Our findings identify miR-483 as a downstream target of the PERK branch of the UPR. We propose that disruption of cellular ATP homeostasis through miR-483-mediated CKB silencing promotes ER stress-induced apoptosis.
Collapse
Affiliation(s)
- Nobuhiko Hiramatsu
- Department of Pathology, University of California San Diego, La Jolla, California 92093-0612
| | - Karen Chiang
- Department of Pathology, University of California San Diego, La Jolla, California 92093-0612; Department of Neurosciences, University of California San Diego, La Jolla, California 92093-0612
| | - Cathrine Aivati
- Department of Pathology, University of California San Diego, La Jolla, California 92093-0612
| | - Jeffrey J Rodvold
- Moores Cancer Center, University of California San Diego, La Jolla, California 92093-0612
| | - Ji-Min Lee
- Soonchunhyang Institute of Med-bio Science, Soonchunhyang University, Asan 31151, Korea
| | - Jaeseok Han
- Soonchunhyang Institute of Med-bio Science, Soonchunhyang University, Asan 31151, Korea
| | - Leon Chea
- Department of Pathology, Stanford University, Stanford, California 94304
| | - Maurizio Zanetti
- Moores Cancer Center, University of California San Diego, La Jolla, California 92093-0612
| | - Edward H Koo
- Department of Neurosciences, University of California San Diego, La Jolla, California 92093-0612; Departments of Medicine and Physiology, Yong Loo Lin School of Medicine, National University of Singapore, 117549 Singapore
| | - Jonathan H Lin
- Department of Pathology, University of California San Diego, La Jolla, California 92093-0612; Department of Pathology, Stanford University, Stanford, California 94304; Veterans Affairs Palo Alto Healthcare System, Palo Alto, California 94304.
| |
Collapse
|
44
|
Lee D, Hokinson D, Park S, Elvira R, Kusuma F, Lee JM, Yun M, Lee SG, Han J. ER Stress Induces Cell Cycle Arrest at the G2/M Phase Through eIF2α Phosphorylation and GADD45α. Int J Mol Sci 2019; 20:E6309. [PMID: 31847234 PMCID: PMC6940793 DOI: 10.3390/ijms20246309] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 12/06/2019] [Accepted: 12/11/2019] [Indexed: 01/04/2023] Open
Abstract
Endoplasmic reticulum (ER) stress is known to influence various cellular functions, including cell cycle progression. Although it is well known how ER stress inhibits cell cycle progression at the G1 phase, the molecular mechanism underlying how ER stress induces G2/M cell cycle arrest remains largely unknown. In this study, we found that ER stress and subsequent induction of the UPR led to cell cycle arrest at the G2/M phase by reducing the amount of cyclin B1. Pharmacological inhibition of the IRE1α or ATF6α signaling did not affect ER stress-induced cell cycle arrest at the G2/M phase. However, when the alpha subunit of eukaryotic translation initiation factor 2 (eIF2α) phosphorylation was genetically abrogated, the cell cycle progressed without arresting at the G2/M phase after ER stress. GEO database analysis showed that growth arrest and DNA-damage-inducible protein α (Gadd45α) were induced in an eIF2a phosphorylation-dependent manner, which was confirmed in this study. Knockdown of GADD45α abrogated cell cycle arrest at the G2/M phase upon ER stress. Finally, the cell death caused by ER stress significantly reduced when GADD45α expression was knocked down. In conclusion, GADD45α is a key mediator of ER stress-induced growth arrest via regulation of the G2/M transition and cell death through the eIF2α signaling pathway.
Collapse
Affiliation(s)
- Duckgue Lee
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan-si, Chungcheongnam-do 31151, Korea; (D.L.); (D.H.); (S.P.); (R.E.); (F.K.); (J.-M.L.)
| | - Daniel Hokinson
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan-si, Chungcheongnam-do 31151, Korea; (D.L.); (D.H.); (S.P.); (R.E.); (F.K.); (J.-M.L.)
| | - Soyoung Park
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan-si, Chungcheongnam-do 31151, Korea; (D.L.); (D.H.); (S.P.); (R.E.); (F.K.); (J.-M.L.)
| | - Rosalie Elvira
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan-si, Chungcheongnam-do 31151, Korea; (D.L.); (D.H.); (S.P.); (R.E.); (F.K.); (J.-M.L.)
| | - Fedho Kusuma
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan-si, Chungcheongnam-do 31151, Korea; (D.L.); (D.H.); (S.P.); (R.E.); (F.K.); (J.-M.L.)
| | - Ji-Min Lee
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan-si, Chungcheongnam-do 31151, Korea; (D.L.); (D.H.); (S.P.); (R.E.); (F.K.); (J.-M.L.)
| | - Miyong Yun
- Department of Bioindustry and Bioresource Engineering, College of Life Sciences, Sejong University, Seoul 02447, Korea;
| | - Seok-Geun Lee
- KHU-KIST Department of Converging Science & Technology, Department of Science in Korean Medicine, and Bionanocomposite Research Center, Kyung Hee Univerisity, 26 Kyungheedae-ro, Seoul 02447, Korea;
| | - Jaeseok Han
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan-si, Chungcheongnam-do 31151, Korea; (D.L.); (D.H.); (S.P.); (R.E.); (F.K.); (J.-M.L.)
| |
Collapse
|
45
|
Chen J, Zhang L, Liu L, Yang X, Wu F, Gan X, Zhang R, He Y, Lv Q, Fu H, Zhou L, Zhang J, Liu A, Liu X, Miao L. Acupuncture Treatment Reverses Retinal Gene Expression Induced by Optic Nerve Injury via RNA Sequencing Analysis. Front Integr Neurosci 2019; 13:59. [PMID: 31680887 PMCID: PMC6808026 DOI: 10.3389/fnint.2019.00059] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 09/24/2019] [Indexed: 12/02/2022] Open
Abstract
Glaucoma and traumatic optic nerve crush (ONC) injury result in progressive loss of retinal ganglion cells (RGCs) and defects in visual function. In clinical trials of Traditional Chinese Medicine, acupuncture has been widely used for the treatment of ocular diseases. However, the molecular mechanisms of acupuncture treatment are still unclear. In this study, we used technique of RNA sequencing (RNA-seq) to study the effects of acupuncture treatment on retinal transcriptome after axotomy injury. RNA-seq results revealed that 436 genes including 31 transcription factors (TFs) were changed after injury, among them were many well-known neural degeneration related TFs such as Jun, Ddit3, Atf3, and Atf4. Interestingly, acupuncture treatment at acupoint GB20 (Fengchi) significantly reversed a series of differential expressed genes (DEGs) induced by optic nerve injury. While treatments at BL1 (Jingming) or GB20 sham control acupoint-GV16 (Fengfu), led to limited DEG reversal. In contrast, treatments at these two sites further enhanced the trend of DEG expression induced by axotomy injury. At last, retina immunostaining results revealed that only GB20 acupoint treatment increased RGC survival, in consistent with RNA-seq results. Therefore, our study first reported that acupuncture treatment regulated retinal transcriptome and reversed the gene expression induced by axotomy injury, and GB20 acupoint treatment increased RGC survival, which will provide novel therapeutic targets for treatment of ocular diseases.
Collapse
Affiliation(s)
- Jie Chen
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Li Zhang
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Lanying Liu
- The Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Xueqin Yang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Fengzhi Wu
- Journal Center, Beijing University of Chinese Medicine, Beijing, China
| | - Xiulun Gan
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Rong Zhang
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Yinjia He
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Qiuyi Lv
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Haonan Fu
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Ling Zhou
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Jiaxi Zhang
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Anming Liu
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaodong Liu
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Linqing Miao
- Beijing Advanced Innovation Center for Intelligent Robots and Systems, Beijing Institute of Technology, Beijing, China
| |
Collapse
|
46
|
Sanchez M, Lin Y, Yang CC, McQuary P, Rosa Campos A, Aza Blanc P, Wolf DA. Cross Talk between eIF2α and eEF2 Phosphorylation Pathways Optimizes Translational Arrest in Response to Oxidative Stress. iScience 2019; 20:466-480. [PMID: 31627132 PMCID: PMC6823656 DOI: 10.1016/j.isci.2019.09.031] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 06/14/2019] [Accepted: 09/23/2019] [Indexed: 01/26/2023] Open
Abstract
The cellular stress response triggers a cascade of events leading to transcriptional reprogramming and a transient inhibition of global protein synthesis, which is thought to be mediated by phosphorylation of eukaryotic initiation factor-2α (eIF2α). Using mouse embryonic fibroblasts (MEFs) and the fission yeast S. pombe, we report that rapid translational arrest and cell survival in response to hydrogen peroxide-induced oxidative stress do not rely on eIF2α kinases and eIF2α phosphorylation. Rather, H2O2 induces a block in elongation through phosphorylation of eukaryotic elongation factor 2 (eEF2). Kinetic and dose-response analyses uncovered cross talk between the eIF2α and eEF2 phosphorylation pathways, indicating that, in MEFs, eEF2 phosphorylation initiates the acute shutdown in translation, which is maintained by eIF2α phosphorylation. Our results challenge the common conception that eIF2α phosphorylation is the primary trigger of translational arrest in response to oxidative stress and point to integrated control that may facilitate the survival of cancer cells. Oxidative stress-induced translation arrest is independent of eIF2α phosphorylation Oxidative stress blocks translation elongation Oxidative stress triggers eEF2 kinase activation eEF2K KO cells are hypersensitive to oxidative stress
Collapse
Affiliation(s)
- Marisa Sanchez
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA.
| | - Yingying Lin
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research and Center for Stress Signaling Networks, Xiamen University, Xiamen 361102, China
| | - Chih-Cheng Yang
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Philip McQuary
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | | | - Pedro Aza Blanc
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Dieter A Wolf
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA; School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research and Center for Stress Signaling Networks, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
47
|
Chen Y, Mi Y, Zhang X, Ma Q, Song Y, Zhang L, Wang D, Xing J, Hou B, Li H, Jin H, Du W, Zou Z. Dihydroartemisinin-induced unfolded protein response feedback attenuates ferroptosis via PERK/ATF4/HSPA5 pathway in glioma cells. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:402. [PMID: 31519193 PMCID: PMC6743121 DOI: 10.1186/s13046-019-1413-7] [Citation(s) in RCA: 192] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 09/05/2019] [Indexed: 02/07/2023]
Abstract
Background Dihydroartemisinin (DHA) has been shown to exert anticancer activity through iron-dependent reactive oxygen species (ROS) generation, which is similar to ferroptosis, a novel form of cell death. However, whether DHA causes ferroptosis in glioma cells and the potential regulatory mechanisms remain unclear. Methods Effects of DHA on the proliferation, cell death, ROS and lipid ROS generation as well as reduced gluthione consumption were assessed in glioma cells with or without ferroptosis inhibitor. The biological mechanisms by which glioma cells attenuate the pro-ferroptotic effects of DHA were assessed using molecular methods. Results DHA induced ferroptosis in glioma cells, as characterized by iron-dependent cell death accompanied with ROS generation and lipid peroxidation. However, DHA treatment simultaneously activated a feedback pathway of ferroptosis by increasing the expression of heat shock protein family A (Hsp70) member 5 (HSPA5). Mechanistically, DHA caused endoplasmic reticulum (ER) stress in glioma cells, which resulted in the induction of HSPA5 expression by protein kinase R-like ER kinase (PERK)-upregulated activating transcription factor 4 (ATF4). Subsequent HSPA5 upregulation increased the expression and activity of glutathione peroxidase 4 (GPX4), which neutralized DHA-induced lipid peroxidation and thus protected glioma cells from ferroptosis. Inhibition of the PERK-ATF4-HSPA5-GPX4 pathway using siRNA or small molecules increased DHA sensitivity of glioma cells by increasing ferroptosis both in vitro and in vivo. Conclusions Collectively, these data suggested that ferroptosis might be a novel anticancer mechanism of DHA in glioma and HSPA5 may serve as a negative regulator of DHA-induced ferroptosis. Therefore, inhibiting the negative feedback pathway would be a promising therapeutic strategy to strengthen the anti-glioma activity of DHA.
Collapse
Affiliation(s)
- Yibing Chen
- Genetic and Prenatal Diagnosis Center, Department of Gynecology and Obstetrics, First Affiliated Hospital, Zhengzhou University, Zhengzhou, 450052, China
| | - Yanjun Mi
- Department of Medical Oncology, Xiamen Cancer Hospital, First Affiliated Hospital of Xiamen University, Xiamen, 361003, China
| | - Xiaofei Zhang
- Department of Medical Oncology, First Affiliated Hospital, Zhengzhou University, Zhengzhou, 450052, China
| | - Qian Ma
- Genetic and Prenatal Diagnosis Center, Department of Gynecology and Obstetrics, First Affiliated Hospital, Zhengzhou University, Zhengzhou, 450052, China
| | - Yucen Song
- Genetic and Prenatal Diagnosis Center, Department of Gynecology and Obstetrics, First Affiliated Hospital, Zhengzhou University, Zhengzhou, 450052, China
| | - Liwei Zhang
- Department of Neurosurgery, First Affiliated Hospital, Zhengzhou University, Zhengzhou, 450052, China
| | - Dandan Wang
- Shandong Medicinal Biotechnology Centre, Key Laboratory for Rare & Uncommon Diseases of Shandong Province, Back and Neck Pain Hospital of Shandong Academy of Medical Sciences, Shandong Academy of Medical Sciences, Jinan, 250062, China
| | - Jinliang Xing
- State Key Laboratory of Cancer Biology & Experimental Teaching Center of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Benxin Hou
- Department of General Surgery, Hainan Province Nongken Sanya Hospital, Sanya, 572000, China
| | - Haolong Li
- MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, Guangdong, China
| | - Huan Jin
- MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, Guangdong, China
| | - Wei Du
- Department of Neurosurgery, First Affiliated Hospital, Zhengzhou University, Zhengzhou, 450052, China.
| | - Zhengzhi Zou
- MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, Guangdong, China.
| |
Collapse
|
48
|
Wu H, Zhang R, Fan X, Lian Z, Hu Y. FoxOs could play an important role during influenza A viruses infection via microarray analysis based on GEO database. INFECTION GENETICS AND EVOLUTION 2019; 75:104009. [PMID: 31437558 DOI: 10.1016/j.meegid.2019.104009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 05/25/2019] [Accepted: 08/18/2019] [Indexed: 01/02/2023]
Abstract
Influenza is a highly contagious respiratory illness caused by influenza A viruses (IAVs). The response and reaction from the host vary due to different subtypes. In this study, we identified the global transcriptomics of HUVEC (human umbilical vein endothelial cells) and macrophage cells after infection of H5N1 and H1N1 strains using microarray data from Gene Expression Omnibus (GEO), respectively. Our data showed that influenza A viruses (IAVs) could induce more global profound transcriptomics in HUVEC than macrophage cells. H5N1 infection led to much more rigorous apoptosis than H1N1 did in macrophage cells. Our data is consistent with the idea that by maintaining normal levels of FoxO1 could be maintained, the pro-apoptotic effects of IAV virus infection could be reduced. Anti-inflammatory and anti-apoptosis responses could be manipulated via FoxOs in response to IAVs infection, indicating that FoxOs could function as candidate target for the treatment of IAVs infection. Our result thus provides new insight for the future strategy of anti-IAVs therapy.
Collapse
Affiliation(s)
- Hongping Wu
- Beijing Key Laboratory of Animal Genetic Improvement, Beijing Key Laboratory of Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, No.2 Yuanmingyuan West Rd, Haidian, Beijing 100193, PR China.
| | - Rui Zhang
- Beijing Key Laboratory of Animal Genetic Improvement, Beijing Key Laboratory of Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, No.2 Yuanmingyuan West Rd, Haidian, Beijing 100193, PR China.
| | - Xiaoxu Fan
- National Surveillance and Research Center for Exotic Animal Diseases, China Animal Health and Epidemiology Center, No. 369 Nanjing Rd, Shibei, Qingdao 266032, Shandong, PR China.
| | - Zhengxing Lian
- Beijing Key Laboratory of Animal Genetic Improvement, Beijing Key Laboratory of Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, No.2 Yuanmingyuan West Rd, Haidian, Beijing 100193, PR China.
| | - Yanxin Hu
- Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, No.2 Yuanmingyuan West Rd, Haidian, Beijing 100193, PR China.
| |
Collapse
|
49
|
Sea Cucumber ( Stichopus japonicas) F2 Enhanced TRAIL-Induced Apoptosis via XIAP Ubiquitination and ER Stress in Colorectal Cancer Cells. Nutrients 2019; 11:nu11051061. [PMID: 31083595 PMCID: PMC6567290 DOI: 10.3390/nu11051061] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 05/08/2019] [Indexed: 01/16/2023] Open
Abstract
Natural products have shown great promise in sensitizing cells to TNF-related apoptosis-inducing ligand (TRAIL) therapy. Sea cucumber (SC) extracts possess antitumor activity, and hence their potential to sensitize colorectal cancer (CRC) cells to TRAIL therapy was evaluated. This study used Western blotting to evaluate the combination effects of SC and TRAIL in CRC, and determined the molecular mechanism underlying these effects. SC fractions and TRAIL alone did not affect apoptosis; however, combined treatment dramatically induced the apoptosis of CRC cells, but not of normal colon cells. Combined treatment induced the expression of apoptotic proteins (poly (ADP-ribose) polymerase (PARP), caspase 3, and 8), and this effect was markedly inhibited by the ubiquitination of X-linked inhibitor of apoptosis protein (XIAP). SC did not affect the mRNA levels, but it increased proteasomal degradation and ubiquitination of the XIAP protein. Furthermore, SC induced reactive oxygen species (ROS) production, thereby activating c-Jun N-terminal kinase (JNK) and endoplasmic reticulum (ER) stress-related apoptotic pathways in CRC. Altogether, our results demonstrate that the SC F2 fraction may sensitize CRC cells to TRAIL-induced apoptosis through XIAP ubiquitination and ER stress.
Collapse
|
50
|
Harris IS, Endress JE, Coloff JL, Selfors LM, McBrayer SK, Rosenbluth JM, Takahashi N, Dhakal S, Koduri V, Oser MG, Schauer NJ, Doherty LM, Hong AL, Kang YP, Younger ST, Doench JG, Hahn WC, Buhrlage SJ, DeNicola GM, Kaelin WG, Brugge JS. Deubiquitinases Maintain Protein Homeostasis and Survival of Cancer Cells upon Glutathione Depletion. Cell Metab 2019; 29:1166-1181.e6. [PMID: 30799286 PMCID: PMC6506399 DOI: 10.1016/j.cmet.2019.01.020] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 11/30/2018] [Accepted: 01/23/2019] [Indexed: 12/22/2022]
Abstract
Cells are subjected to oxidative stress during the initiation and progression of tumors, and this imposes selective pressure for cancer cells to adapt mechanisms to tolerate these conditions. Here, we examined the dependency of cancer cells on glutathione (GSH), the most abundant cellular antioxidant. While cancer cell lines displayed a broad range of sensitivities to inhibition of GSH synthesis, the majority were resistant to GSH depletion. To identify cellular pathways required for this resistance, we carried out genetic and pharmacologic screens. Both approaches revealed that inhibition of deubiquitinating enzymes (DUBs) sensitizes cancer cells to GSH depletion. Inhibition of GSH synthesis, in combination with DUB inhibition, led to an accumulation of polyubiquitinated proteins, induction of proteotoxic stress, and cell death. These results indicate that depletion of GSH renders cancer cells dependent on DUB activity to maintain protein homeostasis and cell viability and reveal a potentially exploitable vulnerability for cancer therapy.
Collapse
Affiliation(s)
- Isaac S Harris
- Ludwig Cancer Center, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Jennifer E Endress
- Ludwig Cancer Center, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Jonathan L Coloff
- Ludwig Cancer Center, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA
| | | | | | - Jennifer M Rosenbluth
- Ludwig Cancer Center, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA; Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Nobuaki Takahashi
- Ludwig Cancer Center, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | - Andrew L Hong
- Dana-Farber Cancer Institute, Boston, MA 02115, USA; Boston Children's Hospital, Boston, MA 02115, USA; Broad Institute of Harvard and MIT, 415 Main Street, Cambridge, MA 02142, USA
| | - Yun Pyo Kang
- Department of Cancer Physiology, Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Scott T Younger
- Broad Institute of Harvard and MIT, 415 Main Street, Cambridge, MA 02142, USA
| | - John G Doench
- Broad Institute of Harvard and MIT, 415 Main Street, Cambridge, MA 02142, USA
| | - William C Hahn
- Dana-Farber Cancer Institute, Boston, MA 02115, USA; Broad Institute of Harvard and MIT, 415 Main Street, Cambridge, MA 02142, USA; Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Sara J Buhrlage
- Harvard Medical School, Boston, MA 02115, USA; Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Gina M DeNicola
- Department of Cancer Physiology, Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | | | - Joan S Brugge
- Ludwig Cancer Center, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|