1
|
Zsok J, Simon F, Bayrak G, Isaki L, Kerff N, Kicheva Y, Wolstenholme A, Weiss LE, Dultz E. Nuclear basket proteins regulate the distribution and mobility of nuclear pore complexes in budding yeast. Mol Biol Cell 2024; 35:ar143. [PMID: 39320946 DOI: 10.1091/mbc.e24-08-0371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024] Open
Abstract
Nuclear pore complexes (NPCs) mediate all traffic between the nucleus and the cytoplasm and are among the most stable protein assemblies in cells. Budding yeast cells carry two variants of NPCs which differ in the presence or absence of the nuclear basket proteins Mlp1, Mlp2, and Pml39. The binding of these basket proteins occurs very late in NPC assembly and Mlp-positive NPCs are excluded from the region of the nuclear envelope that borders the nucleolus. Here, we use recombination-induced tag exchange to investigate the stability of all the NPC subcomplexes within individual NPCs. We show that the nuclear basket proteins Mlp1, Mlp2, and Pml39 remain stably associated with NPCs through multiple cell-division cycles, and that Mlp1/2 are responsible for the exclusion of NPCs from the nucleolar territory. In addition, we demonstrate that binding of the FG-nucleoporins Nup1 and Nup2 depletes also Mlp-negative NPCs from this region by an independent pathway. We develop a method for single NPC tracking in budding yeast and observe that NPCs exhibit increased mobility in the absence of nuclear basket components. Our data suggest that the distribution of NPCs on the nucleus is governed by multiple interaction of nuclear basket proteins with the nuclear interior.
Collapse
Affiliation(s)
- Janka Zsok
- Institute of Biochemistry, ETH Zurich, Zurich 8092, Switzerland
| | - Francois Simon
- Department of Engineering Physics, Polytechnique Montréal, Montréal, Québec H3T 1J4, Canada
| | - Göksu Bayrak
- Institute of Biochemistry, ETH Zurich, Zurich 8092, Switzerland
| | - Luljeta Isaki
- Institute of Biochemistry, ETH Zurich, Zurich 8092, Switzerland
| | - Nina Kerff
- Department of Engineering Physics, Polytechnique Montréal, Montréal, Québec H3T 1J4, Canada
| | - Yoana Kicheva
- Institute of Biochemistry, ETH Zurich, Zurich 8092, Switzerland
| | | | - Lucien E Weiss
- Department of Engineering Physics, Polytechnique Montréal, Montréal, Québec H3T 1J4, Canada
| | - Elisa Dultz
- Institute of Biochemistry, ETH Zurich, Zurich 8092, Switzerland
| |
Collapse
|
2
|
Wang Y, Zhang C, Zhao X, Qiu Y, Wang X, Zhao C, Qi Y, Wan Q, Chen L. The nuclear pore protein Nup2 is essential for growth and development, stress response, pathogenicity and deoxynivalenol biosynthesis in Fusarium graminearum. PEST MANAGEMENT SCIENCE 2024. [PMID: 39253892 DOI: 10.1002/ps.8404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 05/16/2024] [Accepted: 08/23/2024] [Indexed: 09/11/2024]
Abstract
BACKGROUND Wheat is an important grain crop that has been under serious threat from Fusarium graminearum. Nup2, a member of the nuclear pore complex, plays an important role in regulating eukaryotic nuclear protein transport and participates in gene regulation. Dissecting the function of nuclear pore proteins in pathogenic fungi may provide effective targets for novel fungicides. RESULTS Mutants exhibited nutritional growth defects, asexual/sexual developmental abnormalities. Deficiency of FgNup2 resulted in increased resistance of Fusarium graminearum to cell wall disruptors and increased sensitivity to metal ions. Pathogenicity analyses showed that the mutant was significantly less virulent on flowering wheat ears, consistent with the observed decrease in deoxynivalenol (DON) production. Furthermore, we showed that FgNup2 interacts synergistically with FgTri6, a transcription factor of the TRI family, to regulate the expression of toxin-producing genes, which, in turn, affects the biosynthesis of DON and related toxins. CONCLUSION This study revealed that FgNup2 plays important roles in the growth and development, cell wall integrity, stress response, pathogenicity, and DON synthesis of F. graminearum. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yaxuan Wang
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Chengqi Zhang
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Xiaozhen Zhao
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Yuxin Qiu
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Xiaoyan Wang
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Chenzhong Zhao
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Yongxia Qi
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Qiong Wan
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Li Chen
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, School of Plant Protection, Anhui Agricultural University, Hefei, China
| |
Collapse
|
3
|
Zhang J, Qiu R, Bieger BD, Oakley CE, Oakley BR, Egan MJ, Xiang X. Aspergillus SUMOylation mutants exhibit chromosome segregation defects including chromatin bridges. Genetics 2023; 225:iyad169. [PMID: 37724751 PMCID: PMC10697819 DOI: 10.1093/genetics/iyad169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/29/2023] [Accepted: 09/07/2023] [Indexed: 09/21/2023] Open
Abstract
Functions of protein SUMOylation remain incompletely understood in different cell types. Via forward genetics, here we identified ubaBQ247*, a loss-of-function mutation in a SUMO activation enzyme UbaB in the filamentous fungus Aspergillus nidulans. The ubaBQ247*, ΔubaB, and ΔsumO mutants all produce abnormal chromatin bridges, indicating the importance of SUMOylation in the completion of chromosome segregation. The bridges are enclosed by nuclear membrane containing peripheral nuclear pore complex proteins that normally get dispersed during mitosis, and the bridges are also surrounded by cytoplasmic microtubules typical of interphase cells. Time-lapse sequences further indicate that most bridges persist through interphase prior to the next mitosis, and anaphase chromosome segregation can produce new bridges that persist into the next interphase. When the first mitosis happens at a higher temperature of 42°C, SUMOylation deficiency produces not only chromatin bridges but also many abnormally shaped single nuclei that fail to divide. UbaB-GFP localizes to interphase nuclei just like the previously studied SumO-GFP, but the nuclear signals disappear during mitosis when the nuclear pores are partially open, and the signals reappear after mitosis. The nuclear localization is consistent with many SUMO targets being nuclear proteins. Finally, although the budding yeast SUMOylation machinery interacts with LIS1, a protein critical for dynein activation, loss of SUMOylation does not cause any obvious defect in dynein-mediated transport of nuclei and early endosomes, indicating that SUMOylation is unnecessary for dynein activation in A. nidulans.
Collapse
Affiliation(s)
- Jun Zhang
- Department of Biochemistry and Molecular Biology, The Uniformed Services University of the Health Sciences-F. Edward Hébert School of Medicine, Bethesda, MD 20814, USA
| | - Rongde Qiu
- Department of Biochemistry and Molecular Biology, The Uniformed Services University of the Health Sciences-F. Edward Hébert School of Medicine, Bethesda, MD 20814, USA
| | - Baronger D Bieger
- Department of Entomology and Plant Pathology, University of Arkansas Systems Division of Agriculture, Fayetteville, AR 72701, USA
| | - C Elizabeth Oakley
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045, USA
| | - Berl R Oakley
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045, USA
| | - Martin J Egan
- Department of Entomology and Plant Pathology, University of Arkansas Systems Division of Agriculture, Fayetteville, AR 72701, USA
| | - Xin Xiang
- Department of Biochemistry and Molecular Biology, The Uniformed Services University of the Health Sciences-F. Edward Hébert School of Medicine, Bethesda, MD 20814, USA
| |
Collapse
|
4
|
Zhao S, Martin-Vicente A, Colabardini AC, Pereira Silva L, Rinker DC, Fortwendel JR, Goldman GH, Gibbons JG. Genomic and Molecular Identification of Genes Contributing to the Caspofungin Paradoxical Effect in Aspergillus fumigatus. Microbiol Spectr 2022; 10:e0051922. [PMID: 36094204 PMCID: PMC9603777 DOI: 10.1128/spectrum.00519-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 08/17/2022] [Indexed: 11/25/2022] Open
Abstract
Aspergillus fumigatus is a deadly opportunistic fungal pathogen responsible for ~100,000 annual deaths. Azoles are the first line antifungal agent used against A. fumigatus, but azole resistance has rapidly evolved making treatment challenging. Caspofungin is an important second-line therapy against invasive pulmonary aspergillosis, a severe A. fumigatus infection. Caspofungin functions by inhibiting β-1,3-glucan synthesis, a primary and essential component of the fungal cell wall. A phenomenon termed the caspofungin paradoxical effect (CPE) has been observed in several fungal species where at higher concentrations of caspofungin, chitin replaces β-1,3-glucan, morphology returns to normal, and growth rate increases. CPE appears to occur in vivo, and it is therefore clinically important to better understand the genetic contributors to CPE. We applied genomewide association (GWA) analysis and molecular genetics to identify and validate candidate genes involved in CPE. We quantified CPE across 67 clinical isolates and conducted three independent GWA analyses to identify genetic variants associated with CPE. We identified 48 single nucleotide polymorphisms (SNPs) associated with CPE. We used a CRISPR/Cas9 approach to generate gene deletion mutants for seven genes harboring candidate SNPs. Two null mutants, ΔAfu3g13230 and ΔAfu4g07080 (dscP), resulted in reduced basal growth rate and a loss of CPE. We further characterized the dscP phosphatase-null mutant and observed a significant reduction in conidia production and extremely high sensitivity to caspofungin at both low and high concentrations. Collectively, our work reveals the contribution of Afu3g13230 and dscP in CPE and sheds new light on the complex genetic interactions governing this phenotype. IMPORTANCE This is one of the first studies to apply genomewide association (GWA) analysis to identify genes involved in an Aspergillus fumigatus phenotype. A. fumigatus is an opportunistic fungal pathogen that causes hundreds of thousands of infections and ~100,000 deaths each year, and antifungal resistance has rapidly evolved in this species. A phenomenon called the caspofungin paradoxical effect (CPE) occurs in some isolates, where high concentrations of the drug lead to increased growth rate. There is clinical relevance in understanding the genetic basis of this phenotype, since caspofungin concentrations could lead to unintended adverse clinical outcomes in certain cases. Using GWA analysis, we identified several interesting candidate polymorphisms and genes and then generated gene deletion mutants to determine whether these genes were important for CPE. Two of these mutant strains (ΔAfu3g13230 and ΔAfu4g07080/ΔdscP) displayed a loss of the CPE. This study sheds light on the genes involved in clinically important phenotype CPE.
Collapse
Affiliation(s)
- Shu Zhao
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, Massachusetts, USA
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA
| | - Adela Martin-Vicente
- Department of Clinical Pharmacy and Translational Science, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Ana Cristina Colabardini
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Lilian Pereira Silva
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - David C. Rinker
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA
| | - Jarrod R. Fortwendel
- Department of Clinical Pharmacy and Translational Science, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Gustavo Henrique Goldman
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - John G. Gibbons
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, Massachusetts, USA
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA
- Organismic and Evolutionary Biology Graduate Program, University of Massachusetts, Amherst, Massachusetts, USA
| |
Collapse
|
5
|
Komachi K, Burgess SM. The Nup2 meiotic-autonomous region relieves inhibition of Nup60 to promote progression of meiosis and sporulation in Saccharomyces cerevisiae. Genetics 2022; 221:6550504. [PMID: 35302609 PMCID: PMC9071577 DOI: 10.1093/genetics/iyac045] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 03/10/2022] [Indexed: 11/22/2022] Open
Abstract
During meiosis, chromosomes undergo dramatic changes in structural organization, nuclear positioning, and motion. Although the nuclear pore complex has been shown to affect genome organization and function in vegetative cells, its role in meiotic chromosome dynamics has remained largely unexplored. Recent work in the budding yeast Saccharomyces cerevisiae demonstrated that the mobile nucleoporin Nup2 is required for normal progression through meiosis I prophase and sporulation in strains where telomere-led chromosome movement has been compromised. The meiotic-autonomous region, a short fragment of Nup2 responsible for its role in meiosis, was shown to localize to the nuclear envelope via Nup60 and to bind to meiotic chromosomes. To understand the relative contribution these 2 activities have on meiotic-autonomous region function, we first carried out a screen for meiotic-autonomous region mutants defective in sporulation and found that all the mutations disrupt interaction with both Nup60 and meiotic chromosomes. Moreover, nup60 mutants phenocopy nup2 mutants, exhibiting similar nuclear division kinetics, sporulation efficiencies, and genetic interactions with mutations that affect the telomere bouquet. Although full-length Nup60 requires Nup2 for function, removal of Nup60's C-terminus allows Nup60 to bind meiotic chromosomes and promotes sporulation without Nup2. In contrast, binding of the meiotic-autonomous region to meiotic chromosomes is completely dependent on Nup60. Our findings uncover an inhibitory function for the Nup60 C-terminus and suggest that Nup60 mediates recruitment of meiotic chromosomes to the nuclear envelope, while Nup2 plays a secondary role counteracting the inhibitory function in Nup60's C-terminus.
Collapse
Affiliation(s)
- Kelly Komachi
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616, USA
| | - Sean M Burgess
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616, USA,Corresponding author: Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616, USA.
| |
Collapse
|
6
|
Suresh S, Osmani SA. Protein Retargeting in Aspergillus nidulans to Study the Function of Nuclear Pore Complex Proteins. Methods Mol Biol 2022; 2502:183-201. [PMID: 35412239 DOI: 10.1007/978-1-0716-2337-4_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Targeting a protein of interest to a subcellular location by linking it to another protein is a commonly used approach to help determine function in many model systems. Such targeting strategies rely on the creation of functional protein-protein fusions followed by microscopic examination if one or both proteins have fluorescent tags. In this paper, using the model filamentous fungus Aspergillus nidulans, we describe methods to link GFP-tagged proteins to other proteins in the cell by fusing the latter with a GFP-Binding Protein (GBP) that has a high affinity for GFP. This method enables rapid generation of strains with linked proteins in filamentous fungi by sexual crossing or transformations. Additionally, if these two linked proteins stably associate with subcellular structures, it is possible to link the structures using this approach. For example, we used this method to link Nuclear Pore Complexes (NPCs) with mitotic chromatin in A. nidulans. This was done to show that the NPC protein Nup2, that uniquely transitions from NPC onto mitotic chromatin, couples NPC segregation with chromatin segregation by bridging these two structures. In the absence of Nup2, we used the described approach to show that an artificial NPC-chromatin bridge was sufficient for faithful NPC segregation.
Collapse
Affiliation(s)
- Subbulakshmi Suresh
- The Department of Molecular Genetics, The Ohio State University, Columbus, OH, USA.
| | - Stephen A Osmani
- The Department of Molecular Genetics, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
7
|
Holzer G, De Magistris P, Gramminger C, Sachdev R, Magalska A, Schooley A, Scheufen A, Lennartz B, Tatarek‐Nossol M, Lue H, Linder MI, Kutay U, Preisinger C, Moreno‐Andres D, Antonin W. The nucleoporin Nup50 activates the Ran guanine nucleotide exchange factor RCC1 to promote NPC assembly at the end of mitosis. EMBO J 2021; 40:e108788. [PMID: 34725842 PMCID: PMC8634129 DOI: 10.15252/embj.2021108788] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 10/06/2021] [Accepted: 10/07/2021] [Indexed: 12/26/2022] Open
Abstract
During mitotic exit, thousands of nuclear pore complexes (NPCs) assemble concomitant with the nuclear envelope to build a transport-competent nucleus. Here, we show that Nup50 plays a crucial role in NPC assembly independent of its well-established function in nuclear transport. RNAi-mediated downregulation in cells or immunodepletion of Nup50 protein in Xenopus egg extracts interferes with NPC assembly. We define a conserved central region of 46 residues in Nup50 that is crucial for Nup153 and MEL28/ELYS binding, and for NPC interaction. Surprisingly, neither NPC interaction nor binding of Nup50 to importin α/β, the GTPase Ran, or chromatin is crucial for its function in the assembly process. Instead, an N-terminal fragment of Nup50 can stimulate the Ran GTPase guanine nucleotide exchange factor RCC1 and NPC assembly, indicating that Nup50 acts via the Ran system in NPC reformation at the end of mitosis. In support of this conclusion, Nup50 mutants defective in RCC1 binding and stimulation cannot replace the wild-type protein in in vitro NPC assembly assays, whereas excess RCC1 can compensate the loss of Nup50.
Collapse
Affiliation(s)
- Guillaume Holzer
- Institute of Biochemistry and Molecular Cell BiologyMedical SchoolRWTH Aachen UniversityAachenGermany
| | - Paola De Magistris
- Institute of Biochemistry and Molecular Cell BiologyMedical SchoolRWTH Aachen UniversityAachenGermany
- Friedrich Miescher Laboratory of the Max Planck SocietyTübingenGermany
- Present address:
Department of BionanoscienceKavli Institute of NanoscienceDelftthe Netherlands
| | | | - Ruchika Sachdev
- Friedrich Miescher Laboratory of the Max Planck SocietyTübingenGermany
| | - Adriana Magalska
- Friedrich Miescher Laboratory of the Max Planck SocietyTübingenGermany
| | - Allana Schooley
- Friedrich Miescher Laboratory of the Max Planck SocietyTübingenGermany
| | - Anja Scheufen
- Institute of Biochemistry and Molecular Cell BiologyMedical SchoolRWTH Aachen UniversityAachenGermany
| | - Birgitt Lennartz
- Institute of Biochemistry and Molecular Cell BiologyMedical SchoolRWTH Aachen UniversityAachenGermany
| | - Marianna Tatarek‐Nossol
- Institute of Biochemistry and Molecular Cell BiologyMedical SchoolRWTH Aachen UniversityAachenGermany
| | - Hongqi Lue
- Institute of Biochemistry and Molecular Cell BiologyMedical SchoolRWTH Aachen UniversityAachenGermany
| | - Monika I Linder
- Institute of BiochemistryETH ZurichZurichSwitzerland
- Present address:
Department of PediatricsDr. von Hauner Children's Hospital and Gene CenterUniversity Hospital, LMUMunichGermany
| | - Ulrike Kutay
- Institute of BiochemistryETH ZurichZurichSwitzerland
| | - Christian Preisinger
- Proteomics FacilityInterdisciplinary Centre for Clinical Research (IZKF)Medical SchoolRWTH Aachen UniversityAachenGermany
| | - Daniel Moreno‐Andres
- Institute of Biochemistry and Molecular Cell BiologyMedical SchoolRWTH Aachen UniversityAachenGermany
| | - Wolfram Antonin
- Institute of Biochemistry and Molecular Cell BiologyMedical SchoolRWTH Aachen UniversityAachenGermany
| |
Collapse
|
8
|
Koch-Bojalad BA, Carson L, Yu HG. Forever young: the key to rejuvenation during gametogenesis. Curr Genet 2020; 67:231-235. [PMID: 33247310 DOI: 10.1007/s00294-020-01133-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/09/2020] [Accepted: 11/12/2020] [Indexed: 11/26/2022]
Abstract
Cell aging is the result of deteriorating competence in maintaining cellular homeostasis and quality control. Certain cell types are able to rejuvenate through asymmetric cell division by excluding aging factors, including damaged cellular compartments and extrachromosomal rDNA circles, from entering the daughter cell. Recent findings from the budding yeast S. cerevisiae have shown that gametogenesis represents another type of cellular rejuvenation. Gametes, whether produced by an old or a young mother cell, are granted a renewed replicative lifespan through the formation of a fifth nuclear compartment that sequesters the harmful senescence factors accumulated by the mother. Here, we describe the importance and mechanism of cellular remodeling at the nuclear envelope mediated by ESCRT-III and the LEM-domain proteins, with a focus on nuclear pore biogenesis and chromatin interaction during gamete rejuvenation.
Collapse
Affiliation(s)
- Bailey A Koch-Bojalad
- Department of Biological Science, Florida State University, Tallahassee, FL, 32306, USA
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Lauren Carson
- Department of Biological Science, Florida State University, Tallahassee, FL, 32306, USA
| | - Hong-Guo Yu
- Department of Biological Science, Florida State University, Tallahassee, FL, 32306, USA.
| |
Collapse
|
9
|
Vishnoi N, Dhanasekeran K, Chalfant M, Surovstev I, Khokha MK, Lusk CP. Differential turnover of Nup188 controls its levels at centrosomes and role in centriole duplication. J Cell Biol 2020; 219:133835. [PMID: 32211895 PMCID: PMC7055002 DOI: 10.1083/jcb.201906031] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 11/18/2019] [Accepted: 01/09/2020] [Indexed: 02/07/2023] Open
Abstract
NUP188 encodes a scaffold component of the nuclear pore complex (NPC) and has been implicated as a congenital heart disease gene through an ill-defined function at centrioles. Here, we explore the mechanisms that physically and functionally segregate Nup188 between the pericentriolar material (PCM) and NPCs. Pulse-chase fluorescent labeling indicates that Nup188 populates centrosomes with newly synthesized protein that does not exchange with NPCs even after mitotic NPC breakdown. In addition, the steady-state levels of Nup188 are controlled by the sensitivity of the PCM pool, but not the NPC pool, to proteasomal degradation. Proximity-labeling and super-resolution microscopy show that Nup188 is vicinal to the inner core of the interphase centrosome. Consistent with this, we demonstrate direct binding between Nup188 and Cep152. We further show that Nup188 functions in centriole duplication at or upstream of Sas6 loading. Together, our data establish Nup188 as a component of PCM needed to duplicate the centriole with implications for congenital heart disease mechanisms.
Collapse
Affiliation(s)
- Nidhi Vishnoi
- Department of Cell Biology, Yale School of Medicine, New Haven, CT
| | | | | | - Ivan Surovstev
- Department of Cell Biology, Yale School of Medicine, New Haven, CT
| | - Mustafa K Khokha
- Pediatric Genomics Discovery Program, Departments of Pediatrics and Genetics, Yale School of Medicine, New Haven, CT
| | - C Patrick Lusk
- Department of Cell Biology, Yale School of Medicine, New Haven, CT
| |
Collapse
|
10
|
King GA, Ünal E. The dynamic nuclear periphery as a facilitator of gamete health and rejuvenation. Curr Genet 2020; 66:487-493. [PMID: 31915924 DOI: 10.1007/s00294-019-01050-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 12/20/2019] [Accepted: 12/21/2019] [Indexed: 12/26/2022]
Abstract
The nuclear periphery is a hotspot for the accumulation of age-induced damage in eukaryotic cells. The types of damage that occur at the periphery and their phenotypic consequences have begun to be characterized; however, the mechanisms by which cells repair or eliminate nuclear damage remain poorly understood. Using budding yeast meiosis as a natural system to study cellular rejuvenation, we recently discovered a novel nuclear quality control event, in which age-induced damage is sequestered away from dividing chromosomes to a discarded nuclear compartment that we term the GUNC (for "Gametogenesis Uninherited Nuclear Compartment"). Interestingly, extensive nuclear remodeling occurs even in young cells, including a surprising modularity of the nuclear pore complex, suggesting a general contribution to gamete fitness. In this review, we discuss these findings in the context of recent evidence that the nuclear periphery is a highly dynamic region critical for cellular health.
Collapse
Affiliation(s)
- Grant A King
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, 94720, USA
| | - Elçin Ünal
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, 94720, USA.
| |
Collapse
|
11
|
King GA, Goodman JS, Schick JG, Chetlapalli K, Jorgens DM, McDonald KL, Ünal E. Meiotic cellular rejuvenation is coupled to nuclear remodeling in budding yeast. eLife 2019; 8:e47156. [PMID: 31397671 PMCID: PMC6711709 DOI: 10.7554/elife.47156] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 07/19/2019] [Indexed: 12/12/2022] Open
Abstract
Production of healthy gametes in meiosis relies on the quality control and proper distribution of both nuclear and cytoplasmic contents. Meiotic differentiation naturally eliminates age-induced cellular damage by an unknown mechanism. Using time-lapse fluorescence microscopy in budding yeast, we found that nuclear senescence factors - including protein aggregates, extrachromosomal ribosomal DNA circles, and abnormal nucleolar material - are sequestered away from chromosomes during meiosis II and subsequently eliminated. A similar sequestration and elimination process occurs for the core subunits of the nuclear pore complex in both young and aged cells. Nuclear envelope remodeling drives the formation of a membranous compartment containing the sequestered material. Importantly, de novo generation of plasma membrane is required for the sequestration event, preventing the inheritance of long-lived nucleoporins and senescence factors into the newly formed gametes. Our study uncovers a new mechanism of nuclear quality control and provides insight into its function in meiotic cellular rejuvenation.
Collapse
Affiliation(s)
- Grant A King
- Department of Molecular and Cell BiologyUniversity of California, BerkeleyBerkeleyUnited States
| | - Jay S Goodman
- Department of Molecular and Cell BiologyUniversity of California, BerkeleyBerkeleyUnited States
| | - Jennifer G Schick
- Department of Molecular and Cell BiologyUniversity of California, BerkeleyBerkeleyUnited States
| | - Keerthana Chetlapalli
- Department of Molecular and Cell BiologyUniversity of California, BerkeleyBerkeleyUnited States
| | - Danielle M Jorgens
- Electron Microscope LabUniversity of California, BerkeleyBerkeleyUnited States
| | - Kent L McDonald
- Electron Microscope LabUniversity of California, BerkeleyBerkeleyUnited States
| | - Elçin Ünal
- Department of Molecular and Cell BiologyUniversity of California, BerkeleyBerkeleyUnited States
| |
Collapse
|
12
|
Chemudupati M, Johns M, Osmani SA. The mode of mitosis is dramatically modified by deletion of a single nuclear pore complex gene in Aspergillus nidulans. Fungal Genet Biol 2019; 130:72-81. [PMID: 31026588 DOI: 10.1016/j.fgb.2019.04.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 04/18/2019] [Accepted: 04/19/2019] [Indexed: 02/06/2023]
Abstract
Nuclear pore complex (NPC) proteins (Nups) play multiple roles during mitosis. In this study we expand these roles and reveal that in Aspergillus nidulans, compromising the core Nup84-120 subcomplex of the NPC modifies the mitotic behavior of the nuclear envelope (NE). In wildtype cells, the NE undergoes simultaneous double pinching events to separate daughter nuclei during mitotic exit, whereas in Nup84-120 complex mutants, only one restriction of the NE is observed. Investigating the basis for this modified behavior of the NE in Nup deleted cells uncovered previously unrealized roles for core Nups in mitotic exit. During wildtype anaphase, the NE surrounds the two separating daughter DNA masses which typically flank the central nucleolus, to form three distinct nuclear compartments. In contrast, deletion of core Nups frequently results in early nucleolar eviction from the mitotic nucleus, in turn causing an uncharacteristic dumbbell-shaped NE morphology of anaphase nuclei with a nuclear membrane bridge connecting the two forming G1 nuclei. Importantly, the absence of the nucleolus between the separating daughter nuclei during anaphase delays chromosome segregation and progression into G1 as nuclei remain connected by chromatin bridges. Proteins localizing to late segregating chromosome arms are observed between forming daughter nuclei, and the mitotic spindle fails to resolve in a timely manner. These chromatin bridges are occupied by the Aurora kinase until nuclei have fully separated, suggesting involvement of Aurora in monitoring mitotic spindle and nuclear membrane resolution during mitotic exit. Our findings thus reveal a novel requirement for core Nups in mediating nucleolar positioning during mitosis, which dictates the pattern of NE fissions during karyokinesis and facilitates normal chromosome segregation. The findings additionally demonstrate that the mode of mitosis can be dramatically modified by deletion of a single NPC gene and reveals surprising fluidity in mitotic mechanisms.
Collapse
Affiliation(s)
- Mahesh Chemudupati
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, United States; Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210, United States
| | - Matthew Johns
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, United States
| | - Stephen A Osmani
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, United States; Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210, United States.
| |
Collapse
|
13
|
Suresh S, Osmani SA. Poring over chromosomes: mitotic nuclear pore complex segregation. Curr Opin Cell Biol 2019; 58:42-49. [PMID: 30798206 DOI: 10.1016/j.ceb.2019.01.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 01/09/2019] [Accepted: 01/18/2019] [Indexed: 01/23/2023]
Abstract
Eukaryotic cells rely on flux of macromolecules between the nucleus and the cytoplasm for growth and survival. Bidirectional transport is achieved through Nuclear Pore Complexes (NPCs) embedded in the Nuclear Envelope (NE). NPC proteins perform other cellular functions during mitosis, chromatin organization, DNA repair and gene regulation. Dysregulation of NPC number, or defects in their structure and function, are linked to numerous diseases but how NPCs are faithfully inherited during mitosis is poorly understood. In this review, we discuss recent insights to mechanisms of mammalian mitotic NPC segregation and NPC assembly as well as mitotic NPC inheritance via the mitotic chromatin located NPC protein Nup2 in Aspergillus nidulans. We suggest mitotic Nup2 chromatin-based mechanisms could also operate in vertebrate cells.
Collapse
Affiliation(s)
- Subbulakshmi Suresh
- Department of Molecular Genetics, The Ohio State University, 484 West 12th Avenue, Columbus, OH 43210, USA.
| | - Stephen A Osmani
- Department of Molecular Genetics, The Ohio State University, 484 West 12th Avenue, Columbus, OH 43210, USA
| |
Collapse
|
14
|
Suresh S, Markossian S, Osmani AH, Osmani SA. Nup2 performs diverse interphase functions in Aspergillus nidulans. Mol Biol Cell 2018; 29:3144-3154. [PMID: 30355026 PMCID: PMC6340215 DOI: 10.1091/mbc.e18-04-0223] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The nuclear pore complex (NPC) protein Nup2 plays interphase nuclear transport roles and in Aspergillus nidulans also functions to bridge NPCs at mitotic chromatin for their faithful coinheritance to daughter G1 nuclei. In this study, we further investigate the interphase functions of Nup2 in A. nidulans. Although Nup2 is not required for nuclear import of all nuclear proteins after mitosis, it is required for normal G1 nuclear accumulation of the NPC nuclear basket–associated components Mad2 and Mlp1 as well as the THO complex protein Tho2. Targeting of Mlp1 to nuclei partially rescues the interphase delay seen in nup2 mutants indicating that some of the interphase defects in Nup2-deleted cells are due to Mlp1 mislocalization. Among the inner nuclear membrane proteins, Nup2 affects the localization of Ima1, orthologues of which are involved in nuclear movement. Interestingly, nup2 mutant G1 nuclei also exhibit an abnormally long period of extensive to-and-fro movement immediately after mitosis in a manner dependent on the microtubule cytoskeleton. This indicates that Nup2 is required to limit the transient postmitotic nuclear migration typical of many filamentous fungi. The findings reveal that Nup2 is a multifunctional protein that performs diverse functions during both interphase and mitosis in A. nidulans.
Collapse
Affiliation(s)
- Subbulakshmi Suresh
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210.,Laboratory of Chemistry and Cell Biology, The Rockefeller University, New York, NY 10065
| | - Sarine Markossian
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210.,Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94143
| | - Aysha H Osmani
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210
| | - Stephen A Osmani
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210
| |
Collapse
|
15
|
Tools for retargeting proteins within Aspergillus nidulans. PLoS One 2017; 12:e0189077. [PMID: 29194456 PMCID: PMC5711018 DOI: 10.1371/journal.pone.0189077] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 11/17/2017] [Indexed: 12/17/2022] Open
Abstract
Endogenously tagging proteins with green fluorescent protein (GFP) enables the visualization of the tagged protein using live cell microscopy. GFP-tagging is widely utilized to study biological processes in model experimental organisms including filamentous fungi such as Aspergillus nidulans. Many strains of A. nidulans have therefore been generated with different proteins endogenously tagged with GFP. To further enhance experimental approaches based upon GFP-tagging, we have adapted the GFP Binding Protein (GBP) system for A. nidulans. GBP is a genetically encoded Llama single chain antibody against GFP which binds GFP with high affinity. Using gene replacement approaches, it is therefore possible to link GBP to anchor proteins, which will then retarget GFP-tagged proteins away from their normal location to the location of the anchor-GBP protein. To facilitate this approach in A. nidulans, we made four base plasmid cassettes that can be used to generate gene replacement GBP-tagging constructs by utilizing fusion PCR. Using these base cassettes, fusion PCR, and gene targeting approaches, we generated strains with SPA10-GBP and Tom20-GBP gene replacements. These strains enabled test targeting of GFP-tagged proteins to septa or to the surface of mitochondria respectively. SPA10-GBP is shown to effectively target GFP-tagged proteins to both forming and mature septa. Tom20-GBP has a higher capacity to retarget GFP-tagged proteins being able to relocate all Nup49-GFP from its location within nuclear pore complexes (NPCs) to the cytoplasm in association with mitochondria. Notably, removal of Nup49-GFP from NPCs causes cold sensitivity as does deletion of the nup49 gene. The cassette constructs described facilitate experimental approaches to generate precise protein-protein linkages in fungi. The A. nidulans SPA10-GBP and Tom20-GBP strains can be utilized to modulate other GFP-tagged proteins of interest.
Collapse
|
16
|
Suresh S, Markossian S, Osmani AH, Osmani SA. Mitotic nuclear pore complex segregation involves Nup2 in Aspergillus nidulans. J Cell Biol 2017; 216:2813-2826. [PMID: 28747316 PMCID: PMC5584150 DOI: 10.1083/jcb.201610019] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 05/11/2017] [Accepted: 07/06/2017] [Indexed: 01/20/2023] Open
Abstract
Transport through nuclear pore complexes (NPCs) during interphase is facilitated by the nucleoporin Nup2 via its importin α- and Ran-binding domains. However, Aspergillus nidulans and vertebrate Nup2 also locate to chromatin during mitosis, suggestive of mitotic functions. In this study, we report that Nup2 is required for mitotic NPC inheritance in A. nidulans Interestingly, the role of Nup2 during mitotic NPC segregation is independent of its importin α- and Ran-binding domains but relies on a central targeting domain that is necessary for localization and viability. To test whether mitotic chromatin-associated Nup2 might function to bridge NPCs with chromatin during segregation, we provided an artificial link between NPCs and chromatin via Nup133 and histone H1. Using this approach, we bypassed the requirement of Nup2 for NPC segregation. This indicates that A. nidulans cells ensure accurate mitotic NPC segregation to daughter nuclei by linking mitotic DNA and NPC segregation via the mitotic specific chromatin association of Nup2.
Collapse
Affiliation(s)
- Subbulakshmi Suresh
- Department of Molecular Genetics, The Ohio State University, Columbus, OH
- Laboratory of Chemistry and Cell Biology, The Rockefeller University, New York, NY
| | - Sarine Markossian
- Department of Molecular Genetics, The Ohio State University, Columbus, OH
| | - Aysha H Osmani
- Department of Molecular Genetics, The Ohio State University, Columbus, OH
| | - Stephen A Osmani
- Department of Molecular Genetics, The Ohio State University, Columbus, OH
| |
Collapse
|
17
|
Complex Commingling: Nucleoporins and the Spindle Assembly Checkpoint. Cells 2015; 4:706-25. [PMID: 26540075 PMCID: PMC4695854 DOI: 10.3390/cells4040706] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 10/12/2015] [Accepted: 10/28/2015] [Indexed: 12/14/2022] Open
Abstract
The segregation of the chromosomes during mitosis is an important process, in which the replicated DNA content is properly allocated into two daughter cells. To ensure their genomic integrity, cells present an essential surveillance mechanism known as the spindle assembly checkpoint (SAC), which monitors the bipolar attachment of the mitotic spindle to chromosomes to prevent errors that would result in chromosome mis-segregation and aneuploidy. Multiple components of the nuclear pore complex (NPC), a gigantic protein complex that forms a channel through the nuclear envelope to allow nucleocytoplasmic exchange of macromolecules, were shown to be critical for faithful cell division and implicated in the regulation of different steps of the mitotic process, including kinetochore and spindle assembly as well as the SAC. In this review, we will describe current knowledge about the interconnection between the NPC and the SAC in an evolutional perspective, which primarily relies on the two mitotic checkpoint regulators, Mad1 and Mad2. We will further discuss the role of NPC constituents, the nucleoporins, in kinetochore and spindle assembly and the formation of the mitotic checkpoint complex during mitosis and interphase.
Collapse
|
18
|
The Inner Nuclear Membrane Protein Src1 Is Required for Stable Post-Mitotic Progression into G1 in Aspergillus nidulans. PLoS One 2015; 10:e0132489. [PMID: 26147902 PMCID: PMC4492595 DOI: 10.1371/journal.pone.0132489] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 06/15/2015] [Indexed: 01/13/2023] Open
Abstract
How membranes and associated proteins of the nuclear envelope (NE) are assembled specifically and inclusively around segregated genomes during exit from mitosis is incompletely understood. Inner nuclear membrane (INM) proteins play key roles by providing links between DNA and the NE. In this study we have investigated the highly conserved INM protein Src1 in Aspergillus nidulans and have uncovered a novel cell cycle response during post mitotic formation of G1 nuclei. Live cell imaging indicates Src1 could have roles during mitotic exit as it preferentially locates to the NE abscission points during nucleokinesis and to the NE surrounding forming daughter G1 nuclei. Deletion analysis further supported this idea revealing that although Src1 is not required for interphase progression or mitosis it is required for stable post-mitotic G1 nuclear formation. This conclusion is based upon the observation that in the absence of Src1 newly formed G1 nuclei are structurally unstable and immediately undergo architectural modifications typical of mitosis. These changes include NPC modifications that stop nuclear transport as well as disassembly of nucleoli. More intriguingly, the newly generated G1 nuclei then cycle between mitotic- and interphase-like states. The findings indicate that defects in post-mitotic G1 nuclear formation caused by lack of Src1 promote repeated failed attempts to generate stable G1 nuclei. To explain this unexpected phenotype we suggest a type of regulation that promotes repetition of defective cell cycle transitions rather than preventing progression past the defective cell cycle transition. We suggest the term “reboot regulation” to define this mode of cell cycle regulation. The findings are discussed in relationship to recent studies showing the Cdk1 master oscillator can entrain subservient oscillators that when uncoupled cause cell cycle transitions to be repeated.
Collapse
|