1
|
Ibarra-García-Padilla R, Nambiar A, Hamre TA, Singleton EW, Uribe RA. Expansion of a neural crest gene signature following ectopic MYCN expression in sympathoadrenal lineage cells in vivo. PLoS One 2024; 19:e0310727. [PMID: 39292691 PMCID: PMC11410271 DOI: 10.1371/journal.pone.0310727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 08/26/2024] [Indexed: 09/20/2024] Open
Abstract
Neural crest cells (NCC) are multipotent migratory stem cells that originate from the neural tube during early vertebrate embryogenesis. NCCs give rise to a variety of cell types within the developing organism, including neurons and glia of the sympathetic nervous system. It has been suggested that failure in correct NCC differentiation leads to several diseases, including neuroblastoma (NB). During normal NCC development, MYCN is transiently expressed to promote NCC migration, and its downregulation precedes neuronal differentiation. Overexpression of MYCN has been linked to high-risk and aggressive NB progression. For this reason, understanding the effect overexpression of this oncogene has on the development of NCC-derived sympathoadrenal progenitors (SAP), which later give rise to sympathetic nerves, will help elucidate the developmental mechanisms that may prime the onset of NB. Here, we found that overexpressing human EGFP-MYCN within SAP lineage cells in zebrafish led to the transient formation of an abnormal SAP population, which displayed expanded and elevated expression of NCC markers while paradoxically also co-expressing SAP and neuronal differentiation markers. The aberrant NCC signature was corroborated with in vivo time-lapse confocal imaging in zebrafish larvae, which revealed transient expansion of sox10 reporter expression in MYCN overexpressing SAPs during the early stages of SAP development. In these aberrant MYCN overexpressing SAP cells, we also found evidence of dampened BMP signaling activity, indicating that BMP signaling disruption occurs following elevated MYCN expression. Furthermore, we discovered that pharmacological inhibition of BMP signaling was sufficient to create an aberrant NCC gene signature in SAP cells, phenocopying MYCN overexpression. Together, our results suggest that MYCN overexpression in SAPs disrupts their differentiation by eliciting abnormal NCC gene expression programs, and dampening BMP signaling response, having developmental implications for the priming of NB in vivo.
Collapse
Affiliation(s)
- Rodrigo Ibarra-García-Padilla
- Department of Biosciences, Rice University, Houston, Texas, United States of America
- Biochemistry and Cell Biology Graduate Program, Rice University, Houston, Texas, United States of America
| | - Annika Nambiar
- Department of Biosciences, Rice University, Houston, Texas, United States of America
| | - Thomas A Hamre
- Department of Biosciences, Rice University, Houston, Texas, United States of America
| | - Eileen W Singleton
- Department of Biosciences, Rice University, Houston, Texas, United States of America
| | - Rosa A Uribe
- Department of Biosciences, Rice University, Houston, Texas, United States of America
| |
Collapse
|
2
|
Moreno-Campos R, Singleton EW, Uribe RA. A targeted CRISPR-Cas9 mediated F0 screen identifies genes involved in establishment of the enteric nervous system. PLoS One 2024; 19:e0303914. [PMID: 38809858 PMCID: PMC11135701 DOI: 10.1371/journal.pone.0303914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 05/02/2024] [Indexed: 05/31/2024] Open
Abstract
The vertebrate enteric nervous system (ENS) is a crucial network of enteric neurons and glia resident within the entire gastrointestinal tract (GI). Overseeing essential GI functions such as gut motility and water balance, the ENS serves as a pivotal bidirectional link in the gut-brain axis. During early development, the ENS is primarily derived from enteric neural crest cells (ENCCs). Disruptions to ENCC development, as seen in conditions like Hirschsprung disease (HSCR), lead to the absence of ENS in the GI, particularly in the colon. In this study, using zebrafish, we devised an in vivo F0 CRISPR-based screen employing a robust, rapid pipeline integrating single-cell RNA sequencing, CRISPR reverse genetics, and high-content imaging. Our findings unveil various genes, including those encoding opioid receptors, as possible regulators of ENS establishment. In addition, we present evidence that suggests opioid receptor involvement in the neurochemical coding of the larval ENS. In summary, our work presents a novel, efficient CRISPR screen targeting ENS development, facilitating the discovery of previously unknown genes, and increasing knowledge of nervous system construction.
Collapse
Affiliation(s)
- Rodrigo Moreno-Campos
- Biosciences Department, Rice University, Houston, Texas, United States of America
- Laboratory of Neural Crest and Enteric Nervous System Development, Rice University, Houston, Texas, United States of America
| | - Eileen W. Singleton
- Biosciences Department, Rice University, Houston, Texas, United States of America
- Laboratory of Neural Crest and Enteric Nervous System Development, Rice University, Houston, Texas, United States of America
| | - Rosa A. Uribe
- Biosciences Department, Rice University, Houston, Texas, United States of America
- Laboratory of Neural Crest and Enteric Nervous System Development, Rice University, Houston, Texas, United States of America
| |
Collapse
|
3
|
Uribe RA. Genetic regulation of enteric nervous system development in zebrafish. Biochem Soc Trans 2024; 52:177-190. [PMID: 38174765 PMCID: PMC10903509 DOI: 10.1042/bst20230343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/13/2023] [Accepted: 12/15/2023] [Indexed: 01/05/2024]
Abstract
The enteric nervous system (ENS) is a complex series of interconnected neurons and glia that reside within and along the entire length of the gastrointestinal tract. ENS functions are vital to gut homeostasis and digestion, including local control of peristalsis, water balance, and intestinal cell barrier function. How the ENS develops during embryological development is a topic of great concern, as defects in ENS development can result in various diseases, the most common being Hirschsprung disease, in which variable regions of the infant gut lack ENS, with the distal colon most affected. Deciphering how the ENS forms from its progenitor cells, enteric neural crest cells, is an active area of research across various animal models. The vertebrate animal model, zebrafish, has been increasingly leveraged to understand early ENS formation, and over the past 20 years has contributed to our knowledge of the genetic regulation that underlies enteric development. In this review, I summarize our knowledge regarding the genetic regulation of zebrafish enteric neuronal development, and based on the most current literature, present a gene regulatory network inferred to underlie its construction. I also provide perspectives on areas for future zebrafish ENS research.
Collapse
Affiliation(s)
- Rosa A. Uribe
- Biosciences Department, Rice University, Houston, TX 77005, U.S.A
- Laboratory of Neural Crest and Enteric Nervous System Development, Rice University, Houston, TX 77005, U.S.A
| |
Collapse
|
4
|
Moreno-Campos R, Singleton EW, Uribe RA. A targeted CRISPR-Cas9 mediated F0 screen identifies genes involved in establishment of the enteric nervous system. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.28.573581. [PMID: 38234831 PMCID: PMC10793464 DOI: 10.1101/2023.12.28.573581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
The vertebrate enteric nervous system (ENS) is a crucial network of enteric neurons and glia resident within the entire gastrointestinal tract (GI). Overseeing essential GI functions such as gut motility and water balance, the ENS serves as a pivotal bidirectional link in the gut-brain axis. During early development, the ENS is primarily derived from enteric neural crest cells (ENCCs). Disruptions to ENCC development, as seen in conditions like Hirschsprung disease (HSCR), lead to absence of ENS in the GI, particularly in the colon. In this study, using zebrafish, we devised an in vivo F0 CRISPR-based screen employing a robust, rapid pipeline integrating single-cell RNA sequencing, CRISPR reverse genetics, and high-content imaging. Our findings unveil various genes, including those encoding for opioid receptors, as possible regulators of ENS establishment. In addition, we present evidence that suggests opioid receptor involvement in neurochemical coding of the larval ENS. In summary, our work presents a novel, efficient CRISPR screen targeting ENS development, facilitating the discovery of previously unknown genes, and increasing knowledge of nervous system construction.
Collapse
Affiliation(s)
- Rodrigo Moreno-Campos
- Biosciences Department, Rice University, Houston, Texas, 77005, U.S.A
- Laboratory of Neural Crest and Enteric Nervous System Development, Rice University, Houston, Texas, 77005, U.S.A
| | - Eileen W. Singleton
- Biosciences Department, Rice University, Houston, Texas, 77005, U.S.A
- Laboratory of Neural Crest and Enteric Nervous System Development, Rice University, Houston, Texas, 77005, U.S.A
| | - Rosa A. Uribe
- Biosciences Department, Rice University, Houston, Texas, 77005, U.S.A
- Laboratory of Neural Crest and Enteric Nervous System Development, Rice University, Houston, Texas, 77005, U.S.A
| |
Collapse
|
5
|
Jacobs-Li J, Tang W, Li C, Bronner ME. Single-cell profiling coupled with lineage analysis reveals vagal and sacral neural crest contributions to the developing enteric nervous system. eLife 2023; 12:e79156. [PMID: 37877560 PMCID: PMC10627514 DOI: 10.7554/elife.79156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 10/23/2023] [Indexed: 10/26/2023] Open
Abstract
During development, much of the enteric nervous system (ENS) arises from the vagal neural crest that emerges from the caudal hindbrain and colonizes the entire gastrointestinal tract. However, a second ENS contribution comes from the sacral neural crest that arises in the caudal neural tube and populates the post-umbilical gut. By coupling single-cell transcriptomics with axial-level-specific lineage tracing in avian embryos, we compared the contributions of embryonic vagal and sacral neural crest cells to the chick ENS and the associated peripheral ganglia (Nerve of Remak and pelvic plexuses). At embryonic day (E) 10, the two neural crest populations form overlapping subsets of neuronal and glia cell types. Surprisingly, the post-umbilical vagal neural crest much more closely resembles the sacral neural crest than the pre-umbilical vagal neural crest. However, some differences in cluster types were noted between vagal and sacral derived cells. Notably, RNA trajectory analysis suggests that the vagal neural crest maintains a neuronal/glial progenitor pool, whereas this cluster is depleted in the E10 sacral neural crest which instead has numerous enteric glia. The present findings reveal sacral neural crest contributions to the hindgut and associated peripheral ganglia and highlight the potential influence of the local environment and/or developmental timing in differentiation of neural crest-derived cells in the developing ENS.
Collapse
Affiliation(s)
- Jessica Jacobs-Li
- Division of Biology and Biological Engineering, California Institute of TechnologyPasadenaUnited States
| | - Weiyi Tang
- Division of Biology and Biological Engineering, California Institute of TechnologyPasadenaUnited States
| | - Can Li
- Division of Biology and Biological Engineering, California Institute of TechnologyPasadenaUnited States
| | - Marianne E Bronner
- Division of Biology and Biological Engineering, California Institute of TechnologyPasadenaUnited States
| |
Collapse
|
6
|
Moescheid MF, Puckelwaldt O, Beutler M, Haeberlein S, Grevelding CG. Defining an optimal control for RNAi experiments with adult Schistosoma mansoni. Sci Rep 2023; 13:9766. [PMID: 37328492 PMCID: PMC10276032 DOI: 10.1038/s41598-023-36826-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 06/10/2023] [Indexed: 06/18/2023] Open
Abstract
In parasites such as Schistosoma mansoni, gene knockdown by RNA interference (RNAi) has become an indispensable tool for functional gene characterization. To distinguish target-specific RNAi effects versus off-target effects, controls are essential. To date, however, there is still no general agreement about suitable RNAi controls, which limits the comparability between studies. To address this point, we investigated three selected dsRNAs for their suitability as RNAi controls in experiments with adult S. mansoni in vitro. Two dsRNAs were of bacterial origin, the neomycin resistance gene (neoR) and the ampicillin resistance gene (ampR). The third one, the green fluorescent protein gene (gfp), originated from jellyfish. Following dsRNA application, we analyzed physiological parameters like pairing stability, motility, and egg production as well as morphological integrity. Furthermore, using RT-qPCR we evaluated the potential of the used dsRNAs to influence transcript patterns of off-target genes, which had been predicted by si-Fi (siRNA-Finder). At the physiological and morphological levels, we observed no obvious changes in the dsRNA treatment groups compared to an untreated control. However, we detected remarkable differences at the transcript level of gene expression. Amongst the three tested candidates, we suggest dsRNA of the E. coli ampR gene as the most suitable RNAi control.
Collapse
Affiliation(s)
- Max F Moescheid
- Institute of Parasitology, Biomedical Research Center Seltersberg (BFS), Justus Liebig University Giessen, Giessen, Germany
| | - Oliver Puckelwaldt
- Institute of Parasitology, Biomedical Research Center Seltersberg (BFS), Justus Liebig University Giessen, Giessen, Germany
| | - Mandy Beutler
- Institute of Parasitology, Biomedical Research Center Seltersberg (BFS), Justus Liebig University Giessen, Giessen, Germany
| | - Simone Haeberlein
- Institute of Parasitology, Biomedical Research Center Seltersberg (BFS), Justus Liebig University Giessen, Giessen, Germany
| | - Christoph G Grevelding
- Institute of Parasitology, Biomedical Research Center Seltersberg (BFS), Justus Liebig University Giessen, Giessen, Germany.
| |
Collapse
|
7
|
Baker PA, Ibarra-García-Padilla R, Venkatesh A, Singleton EW, Uribe RA. In toto imaging of early enteric nervous system development reveals that gut colonization is tied to proliferation downstream of Ret. Development 2022; 149:278609. [PMID: 36300492 PMCID: PMC9686996 DOI: 10.1242/dev.200668] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 09/27/2022] [Indexed: 01/19/2023]
Abstract
The enteric nervous system is a vast intrinsic network of neurons and glia within the gastrointestinal tract and is largely derived from enteric neural crest cells (ENCCs) that emigrate into the gut during vertebrate embryonic development. Study of ENCC migration dynamics and their genetic regulators provides great insights into fundamentals of collective cell migration and nervous system formation, and these are pertinent subjects for study due to their relevance to the human congenital disease Hirschsprung disease (HSCR). For the first time, we performed in toto gut imaging and single-cell generation tracing of ENCC migration in wild type and a novel ret heterozygous background zebrafish (retwmr1/+) to gain insight into ENCC dynamics in vivo. We observed that retwmr1/+ zebrafish produced fewer ENCCs localized along the gut, and these ENCCs failed to reach the hindgut, resulting in HSCR-like phenotypes. Specifically, we observed a proliferation-dependent migration mechanism, where cell divisions were associated with inter-cell distances and migration speed. Lastly, we detected a premature neuronal differentiation gene expression signature in retwmr1/+ ENCCs. These results suggest that Ret signaling may regulate maintenance of a stem state in ENCCs.
Collapse
Affiliation(s)
- Phillip A. Baker
- BioSciences Department, Rice University, Houston, TX 77005, USA,Biochemistry and Cell Biology Program, Rice University, Houston, TX 77005, USA
| | - Rodrigo Ibarra-García-Padilla
- BioSciences Department, Rice University, Houston, TX 77005, USA,Biochemistry and Cell Biology Program, Rice University, Houston, TX 77005, USA
| | | | | | - Rosa. A. Uribe
- BioSciences Department, Rice University, Houston, TX 77005, USA,Biochemistry and Cell Biology Program, Rice University, Houston, TX 77005, USA,Author for correspondence ()
| |
Collapse
|
8
|
WhichTF is functionally important in your open chromatin data? PLoS Comput Biol 2022; 18:e1010378. [PMID: 36040971 PMCID: PMC9426921 DOI: 10.1371/journal.pcbi.1010378] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 07/11/2022] [Indexed: 11/19/2022] Open
Abstract
We present WhichTF, a computational method to identify functionally important transcription factors (TFs) from chromatin accessibility measurements. To rank TFs, WhichTF applies an ontology-guided functional approach to compute novel enrichment by integrating accessibility measurements, high-confidence pre-computed conservation-aware TF binding sites, and putative gene-regulatory models. Comparison with prior sheer abundance-based methods reveals the unique ability of WhichTF to identify context-specific TFs with functional relevance, including NF-κB family members in lymphocytes and GATA factors in cardiac cells. To distinguish the transcriptional regulatory landscape in closely related samples, we apply differential analysis and demonstrate its utility in lymphocyte, mesoderm developmental, and disease cells. We find suggestive, under-characterized TFs, such as RUNX3 in mesoderm development and GLI1 in systemic lupus erythematosus. We also find TFs known for stress response, suggesting routine experimental caveats that warrant careful consideration. WhichTF yields biological insight into known and novel molecular mechanisms of TF-mediated transcriptional regulation in diverse contexts, including human and mouse cell types, cell fate trajectories, and disease-associated cells. Transcription factors (TFs), a class of DNA binding proteins, regulate tissue- and cell-type-specific expression of genes. Identifying the critical TFs in a given cellular context leads to investigating molecular regulatory mechanisms in development, differentiation, and disease. Because there are more than 1,500 human TFs, experimental measurements of genome-wide occupancy across all TFs have been challenging. While computational approaches play pivotal roles, most existing methods rely on statistical enrichment, focusing either on sequence motif similarity recognized by TFs or the similarity of the genomic region of interest with the previously characterized TF occupancy profile. Here we propose WhichTF as an alternative, incorporating curated biomedical knowledge from ontology and integrating it with the high-confidence prediction of conserved TF binding sites in user-provided genomic regions of interest. We develop a new WhichTF score to rank TFs and demonstrate its applicability across human and mouse cell types, cellular differentiation trajectories, and disease-associated cells.
Collapse
|
9
|
Prummel KD, Crowell HL, Nieuwenhuize S, Brombacher EC, Daetwyler S, Soneson C, Kresoja-Rakic J, Kocere A, Ronner M, Ernst A, Labbaf Z, Clouthier DE, Firulli AB, Sánchez-Iranzo H, Naganathan SR, O'Rourke R, Raz E, Mercader N, Burger A, Felley-Bosco E, Huisken J, Robinson MD, Mosimann C. Hand2 delineates mesothelium progenitors and is reactivated in mesothelioma. Nat Commun 2022; 13:1677. [PMID: 35354817 PMCID: PMC8967825 DOI: 10.1038/s41467-022-29311-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 03/04/2022] [Indexed: 01/27/2023] Open
Abstract
The mesothelium lines body cavities and surrounds internal organs, widely contributing to homeostasis and regeneration. Mesothelium disruptions cause visceral anomalies and mesothelioma tumors. Nonetheless, the embryonic emergence of mesothelia remains incompletely understood. Here, we track mesothelial origins in the lateral plate mesoderm (LPM) using zebrafish. Single-cell transcriptomics uncovers a post-gastrulation gene expression signature centered on hand2 in distinct LPM progenitor cells. We map mesothelial progenitors to lateral-most, hand2-expressing LPM and confirm conservation in mouse. Time-lapse imaging of zebrafish hand2 reporter embryos captures mesothelium formation including pericardium, visceral, and parietal peritoneum. We find primordial germ cells migrate with the forming mesothelium as ventral migration boundary. Functionally, hand2 loss disrupts mesothelium formation with reduced progenitor cells and perturbed migration. In mouse and human mesothelioma, we document expression of LPM-associated transcription factors including Hand2, suggesting re-initiation of a developmental program. Our data connects mesothelium development to Hand2, expanding our understanding of mesothelial pathologies.
Collapse
Affiliation(s)
- Karin D Prummel
- Department of Pediatrics, Section of Developmental Biology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, USA
- Department of Molecular Life Sciences, University of Zurich, Zürich, Switzerland
- Structural and Computational Biology Unit, EMBL, Heidelberg, Germany
| | - Helena L Crowell
- Department of Molecular Life Sciences, University of Zurich, Zürich, Switzerland
- SIB Swiss Institute of Bioinformatics, University of Zurich, Zürich, Switzerland
| | - Susan Nieuwenhuize
- Department of Pediatrics, Section of Developmental Biology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, USA
- Department of Molecular Life Sciences, University of Zurich, Zürich, Switzerland
| | - Eline C Brombacher
- Department of Molecular Life Sciences, University of Zurich, Zürich, Switzerland
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| | - Stephan Daetwyler
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX, United States
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, TX, United States
| | - Charlotte Soneson
- Department of Molecular Life Sciences, University of Zurich, Zürich, Switzerland
- SIB Swiss Institute of Bioinformatics, University of Zurich, Zürich, Switzerland
| | - Jelena Kresoja-Rakic
- Department of Pediatrics, Section of Developmental Biology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, USA
- Laboratory of Molecular Oncology, Department of Thoracic Surgery, University Hospital Zurich, Zürich, Switzerland
| | - Agnese Kocere
- Department of Pediatrics, Section of Developmental Biology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, USA
- Department of Molecular Life Sciences, University of Zurich, Zürich, Switzerland
| | - Manuel Ronner
- Laboratory of Molecular Oncology, Department of Thoracic Surgery, University Hospital Zurich, Zürich, Switzerland
| | | | - Zahra Labbaf
- Institute for Cell Biology, ZMBE, Muenster, Germany
| | - David E Clouthier
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Anthony B Firulli
- Herman B Wells Center for Pediatric Research, Departments of Pediatrics, Anatomy and Medical and Molecular Genetics, Indiana Medical School, Indianapolis, IN, USA
| | - Héctor Sánchez-Iranzo
- Centro Nacional de Investigaciones Cardiovasculares (CNIC-ISCIII), Madrid, Spain
- Institute of Biological and Chemical System - Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany
| | - Sundar R Naganathan
- Institute of Bioengineering, Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland
| | - Rebecca O'Rourke
- Department of Pediatrics, Section of Developmental Biology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, USA
| | - Erez Raz
- Institute for Cell Biology, ZMBE, Muenster, Germany
| | - Nadia Mercader
- Institute of Anatomy, University of Bern, Bern, Switzerland
- Centro Nacional de Investigaciones Cardiovasculares (CNIC-ISCIII), Madrid, Spain
| | - Alexa Burger
- Department of Pediatrics, Section of Developmental Biology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, USA
| | - Emanuela Felley-Bosco
- Laboratory of Molecular Oncology, Department of Thoracic Surgery, University Hospital Zurich, Zürich, Switzerland
| | - Jan Huisken
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- Morgridge Institute for Research, Madison, WI, USA
| | - Mark D Robinson
- Department of Molecular Life Sciences, University of Zurich, Zürich, Switzerland
- SIB Swiss Institute of Bioinformatics, University of Zurich, Zürich, Switzerland
| | - Christian Mosimann
- Department of Pediatrics, Section of Developmental Biology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
10
|
Howard AGA, Nguyen AC, Tworig J, Ravisankar P, Singleton EW, Li C, Kotzur G, Waxman JS, Uribe RA. Elevated Hoxb5b Expands Vagal Neural Crest Pool and Blocks Enteric Neuronal Development in Zebrafish. Front Cell Dev Biol 2022; 9:803370. [PMID: 35174164 PMCID: PMC8841348 DOI: 10.3389/fcell.2021.803370] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 12/13/2021] [Indexed: 11/13/2022] Open
Abstract
Neural crest cells (NCCs) are a migratory, transient, and multipotent stem cell population essential to vertebrate embryonic development, contributing to numerous cell lineages in the adult organism. While great strides have been made in elucidating molecular and cellular events that drive NCC specification, comprehensive knowledge of the genetic factors that orchestrate NCC developmental programs is still far from complete. We discovered that elevated Hoxb5b levels promoted an expansion of zebrafish NCCs, which persisted throughout multiple stages of development. Correspondingly, elevated Hoxb5b also specifically expanded expression domains of the vagal NCC markers foxd3 and phox2bb. Increases in NCCs were most apparent after pulsed ectopic Hoxb5b expression at early developmental stages, rather than later during differentiation stages, as determined using a novel transgenic zebrafish line. The increase in vagal NCCs early in development led to supernumerary Phox2b+ enteric neural progenitors, while leaving many other NCC-derived tissues without an overt phenotype. Surprisingly, these NCC-derived enteric progenitors failed to expand properly into sufficient quantities of enterically fated neurons and stalled in the gut tissue. These results suggest that while Hoxb5b participates in vagal NCC development as a driver of progenitor expansion, the supernumerary, ectopically localized NCC fail to initiate expansion programs in timely fashion in the gut. All together, these data point to a model in which Hoxb5b regulates NCCs both in a tissue specific and temporally restricted manner.
Collapse
Affiliation(s)
| | - Aaron C. Nguyen
- BioSciences Department, Rice University, Houston, TX, United States
| | - Joshua Tworig
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| | - Priya Ravisankar
- Molecular Cardiovascular Biology Division, Cincinnati Children’s Hospital Medical Center and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Allen Institute of Immunology, Seattle, WA, United States
| | | | - Can Li
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| | - Grayson Kotzur
- BioSciences Department, Rice University, Houston, TX, United States
| | - Joshua S. Waxman
- Molecular Cardiovascular Biology Division, Cincinnati Children’s Hospital Medical Center and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Rosa A. Uribe
- BioSciences Department, Rice University, Houston, TX, United States
- *Correspondence: Rosa A. Uribe,
| |
Collapse
|
11
|
Tao L, Moreno‐Smith M, Ibarra‐García‐Padilla R, Milazzo G, Drolet NA, Hernandez BE, Oh YS, Patel I, Kim JJ, Zorman B, Patel T, Kamal AHM, Zhao Y, Hicks J, Vasudevan SA, Putluri N, Coarfa C, Sumazin P, Perini G, Parchem RJ, Uribe RA, Barbieri E. CHAF1A Blocks Neuronal Differentiation and Promotes Neuroblastoma Oncogenesis via Metabolic Reprogramming. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2005047. [PMID: 34365742 PMCID: PMC8498874 DOI: 10.1002/advs.202005047] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 06/04/2021] [Indexed: 05/28/2023]
Abstract
Neuroblastoma (NB) arises from oncogenic disruption of neural crest (NC) differentiation. Treatment with retinoic acid (RA) to induce differentiation has improved survival in some NB patients, but not all patients respond, and most NBs eventually develop resistance to RA. Loss of the chromatin modifier chromatin assembly factor 1 subunit p150 (CHAF1A) promotes NB cell differentiation; however, the mechanism by which CHAF1A drives NB oncogenesis has remained unexplored. This study shows that CHAF1A gain-of-function supports cell malignancy, blocks neuronal differentiation in three models (zebrafish NC, human NC, and human NB), and promotes NB oncogenesis. Mechanistically, CHAF1A upregulates polyamine metabolism, which blocks neuronal differentiation and promotes cell cycle progression. Targeting polyamine synthesis promotes NB differentiation and enhances the anti-tumor activity of RA. The authors' results provide insight into the mechanisms that drive NB oncogenesis and suggest a rapidly translatable therapeutic approach (DFMO plus RA) to enhance the clinical efficacy of differentiation therapy in NB patients.
Collapse
|
12
|
Lee DI, Roy S. GRiNCH: simultaneous smoothing and detection of topological units of genome organization from sparse chromatin contact count matrices with matrix factorization. Genome Biol 2021; 22:164. [PMID: 34034791 PMCID: PMC8152090 DOI: 10.1186/s13059-021-02378-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 05/10/2021] [Indexed: 11/18/2022] Open
Abstract
High-throughput chromosome conformation capture assays, such as Hi-C, have shown that the genome is organized into organizational units such as topologically associating domains (TADs), which can impact gene regulatory processes. The sparsity of Hi-C matrices poses a challenge for reliable detection of these units. We present GRiNCH, a constrained matrix-factorization-based approach for simultaneous smoothing and discovery of TADs from sparse contact count matrices. GRiNCH shows superior performance against seven TAD-calling methods and three smoothing methods. GRiNCH is applicable to multiple platforms including SPRITE and HiChIP and can predict novel boundary factors with potential roles in genome organization.
Collapse
Affiliation(s)
- Da-Inn Lee
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, 53715, USA
| | - Sushmita Roy
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, 53715, USA.
- Wisconsin Institute for Discovery, 330 N. Orchard Street, Madison, 53715, USA.
| |
Collapse
|
13
|
Howard AGA, Baker PA, Ibarra-García-Padilla R, Moore JA, Rivas LJ, Tallman JJ, Singleton EW, Westheimer JL, Corteguera JA, Uribe RA. An atlas of neural crest lineages along the posterior developing zebrafish at single-cell resolution. eLife 2021; 10:e60005. [PMID: 33591267 PMCID: PMC7886338 DOI: 10.7554/elife.60005] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 01/31/2021] [Indexed: 02/06/2023] Open
Abstract
Neural crest cells (NCCs) are vertebrate stem cells that give rise to various cell types throughout the developing body in early life. Here, we utilized single-cell transcriptomic analyses to delineate NCC-derivatives along the posterior developing vertebrate, zebrafish, during the late embryonic to early larval stage, a period when NCCs are actively differentiating into distinct cellular lineages. We identified several major NCC/NCC-derived cell-types including mesenchyme, neural crest, neural, neuronal, glial, and pigment, from which we resolved over three dozen cellular subtypes. We dissected gene expression signatures of pigment progenitors delineating into chromatophore lineages, mesenchyme cells, and enteric NCCs transforming into enteric neurons. Global analysis of NCC derivatives revealed they were demarcated by combinatorial hox gene codes, with distinct profiles within neuronal cells. From these analyses, we present a comprehensive cell-type atlas that can be utilized as a valuable resource for further mechanistic and evolutionary investigations of NCC differentiation.
Collapse
Affiliation(s)
| | - Phillip A Baker
- Department of BioSciences, Rice UniversityHoustonUnited States
| | | | - Joshua A Moore
- Department of BioSciences, Rice UniversityHoustonUnited States
| | - Lucia J Rivas
- Department of BioSciences, Rice UniversityHoustonUnited States
| | - James J Tallman
- Department of BioSciences, Rice UniversityHoustonUnited States
| | | | | | | | - Rosa A Uribe
- Department of BioSciences, Rice UniversityHoustonUnited States
| |
Collapse
|
14
|
Kuil LE, Chauhan RK, Cheng WW, Hofstra RMW, Alves MM. Zebrafish: A Model Organism for Studying Enteric Nervous System Development and Disease. Front Cell Dev Biol 2021; 8:629073. [PMID: 33553169 PMCID: PMC7859111 DOI: 10.3389/fcell.2020.629073] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 12/23/2020] [Indexed: 12/11/2022] Open
Abstract
The Enteric Nervous System (ENS) is a large network of enteric neurons and glia that regulates various processes in the gastrointestinal tract including motility, local blood flow, mucosal transport and secretion. The ENS is derived from stem cells coming from the neural crest that migrate into and along the primitive gut. Defects in ENS establishment cause enteric neuropathies, including Hirschsprung disease (HSCR), which is characterized by an absence of enteric neural crest cells in the distal part of the colon. In this review, we discuss the use of zebrafish as a model organism to study the development of the ENS. The accessibility of the rapidly developing gut in zebrafish embryos and larvae, enables in vivo visualization of ENS development, peristalsis and gut transit. These properties make the zebrafish a highly suitable model to bring new insights into ENS development, as well as in HSCR pathogenesis. Zebrafish have already proven fruitful in studying ENS functionality and in the validation of novel HSCR risk genes. With the rapid advancements in gene editing techniques and their unique properties, research using zebrafish as a disease model, will further increase our understanding on the genetics underlying HSCR, as well as possible treatment options for this disease.
Collapse
Affiliation(s)
- Laura E. Kuil
- Department of Clinical Genetics, Erasmus University Medical Centre, Rotterdam, Netherlands
| | - Rajendra K. Chauhan
- Department of Clinical Genetics, Erasmus University Medical Centre, Rotterdam, Netherlands
| | - William W. Cheng
- Department of Clinical Genetics, Erasmus University Medical Centre, Rotterdam, Netherlands
| | - Robert M. W. Hofstra
- Department of Clinical Genetics, Erasmus University Medical Centre, Rotterdam, Netherlands
- Stem Cells and Regenerative Medicine, University College London (UCL) Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Maria M. Alves
- Department of Clinical Genetics, Erasmus University Medical Centre, Rotterdam, Netherlands
| |
Collapse
|
15
|
Gİrgİn B, KaradaĞ-Alpaslan M, KocabaŞ F. Oncogenic and tumor suppressor function of MEIS and associated factors. ACTA ACUST UNITED AC 2021; 44:328-355. [PMID: 33402862 PMCID: PMC7759197 DOI: 10.3906/biy-2006-25] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 08/13/2020] [Indexed: 12/14/2022]
Abstract
MEIS proteins are historically associated with tumorigenesis, metastasis, and invasion in cancer. MEIS and associated PBX-HOX proteins may act as tumor suppressors or oncogenes in different cellular settings. Their expressions tend to be misregulated in various cancers. Bioinformatic analyses have suggested their upregulation in leukemia/lymphoma, thymoma, pancreas, glioma, and glioblastoma, and downregulation in cervical, uterine, rectum, and colon cancers. However, every cancer type includes, at least, a subtype with high MEIS expression. In addition, studies have highlighted that MEIS proteins and associated factors may function as diagnostic or therapeutic biomarkers for various diseases. Herein, MEIS proteins and associated factors in tumorigenesis are discussed with recent discoveries in addition to how they could be modulated by noncoding RNAs or newly developed small-molecule MEIS inhibitors.
Collapse
Affiliation(s)
- Birkan Gİrgİn
- Regenerative Biology Research Laboratory, Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, İstanbul Turkey.,Graduate School of Natural and Applied Sciences, Yeditepe University, İstanbul Turkey.,Meinox Pharma Technologies, İstanbul Turkey
| | - Medine KaradaĞ-Alpaslan
- Department of Medical Genetics, Faculty of Medicine, Ondokuz Mayıs University, Samsun Turkey
| | - Fatih KocabaŞ
- Regenerative Biology Research Laboratory, Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, İstanbul Turkey.,Graduate School of Natural and Applied Sciences, Yeditepe University, İstanbul Turkey.,Meinox Pharma Technologies, İstanbul Turkey
| |
Collapse
|
16
|
Frith TJR, Gogolou A, Hackland JOS, Hewitt ZA, Moore HD, Barbaric I, Thapar N, Burns AJ, Andrews PW, Tsakiridis A, McCann CJ. Retinoic Acid Accelerates the Specification of Enteric Neural Progenitors from In-Vitro-Derived Neural Crest. Stem Cell Reports 2020; 15:557-565. [PMID: 32857978 PMCID: PMC7486303 DOI: 10.1016/j.stemcr.2020.07.024] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 07/28/2020] [Accepted: 07/29/2020] [Indexed: 12/16/2022] Open
Abstract
The enteric nervous system (ENS) is derived primarily from the vagal neural crest, a migratory multipotent cell population emerging from the dorsal neural tube between somites 1 and 7. Defects in the development and function of the ENS cause a range of enteric neuropathies, including Hirschsprung disease. Little is known about the signals that specify early ENS progenitors, limiting progress in the generation of enteric neurons from human pluripotent stem cells (hPSCs) to provide tools for disease modeling and regenerative medicine for enteric neuropathies. We describe the efficient and accelerated generation of ENS progenitors from hPSCs, revealing that retinoic acid is critical for the acquisition of vagal axial identity and early ENS progenitor specification. These ENS progenitors generate enteric neurons in vitro and, following in vivo transplantation, achieved long-term colonization of the ENS in adult mice. Thus, hPSC-derived ENS progenitors may provide the basis for cell therapy for defects in the ENS. Retinoic acid alters the axial identity of hPSC-derived neural crest cells ENS progenitor markers are upregulated in response to RA ENS progenitors are capable of generating enteric neurons in vitro hPSC ENS progenitors colonize the ENS of mice following long-term transplantation
Collapse
Affiliation(s)
- Thomas J R Frith
- University of Sheffield, Department of Biomedical Science, Sheffield, UK.
| | - Antigoni Gogolou
- University of Sheffield, Department of Biomedical Science, Sheffield, UK
| | - James O S Hackland
- The Center for Stem Cell Biology, Memorial Sloan Kettering Cancer Center, New York, USA
| | - Zoe A Hewitt
- University of Sheffield, Department of Biomedical Science, Sheffield, UK
| | - Harry D Moore
- University of Sheffield, Department of Biomedical Science, Sheffield, UK
| | - Ivana Barbaric
- University of Sheffield, Department of Biomedical Science, Sheffield, UK
| | - Nikhil Thapar
- Stem Cells and Regenerative Medicine, UCL Great Ormond Street Institute of Child Health, London, UK; Neurogastroenterology and Motility Unit, Great Ormond Street Hospital, London, UK; Department of Gastroenterology, Hepatology and Liver Transplant, Queensland Children's Hospital, Brisbane, Australia; Prince Abdullah Ben Khalid Celiac Research Chair, College of Medicine, King Saud University, Riyadh, KSA
| | - Alan J Burns
- Stem Cells and Regenerative Medicine, UCL Great Ormond Street Institute of Child Health, London, UK; Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Peter W Andrews
- University of Sheffield, Department of Biomedical Science, Sheffield, UK
| | - Anestis Tsakiridis
- University of Sheffield, Department of Biomedical Science, Sheffield, UK.
| | - Conor J McCann
- Stem Cells and Regenerative Medicine, UCL Great Ormond Street Institute of Child Health, London, UK.
| |
Collapse
|
17
|
Rocha M, Singh N, Ahsan K, Beiriger A, Prince VE. Neural crest development: insights from the zebrafish. Dev Dyn 2019; 249:88-111. [PMID: 31591788 DOI: 10.1002/dvdy.122] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 09/21/2019] [Accepted: 09/22/2019] [Indexed: 12/12/2022] Open
Abstract
Our understanding of the neural crest, a key vertebrate innovation, is built upon studies of multiple model organisms. Early research on neural crest cells (NCCs) was dominated by analyses of accessible amphibian and avian embryos, with mouse genetics providing complementary insights in more recent years. The zebrafish model is a relative newcomer to the field, yet it offers unparalleled advantages for the study of NCCs. Specifically, zebrafish provide powerful genetic and transgenic tools, coupled with rapidly developing transparent embryos that are ideal for high-resolution real-time imaging of the dynamic process of neural crest development. While the broad principles of neural crest development are largely conserved across vertebrate species, there are critical differences in anatomy, morphogenesis, and genetics that must be considered before information from one model is extrapolated to another. Here, our goal is to provide the reader with a helpful primer specific to neural crest development in the zebrafish model. We focus largely on the earliest events-specification, delamination, and migration-discussing what is known about zebrafish NCC development and how it differs from NCC development in non-teleost species, as well as highlighting current gaps in knowledge.
Collapse
Affiliation(s)
- Manuel Rocha
- Committee on Development, Regeneration and Stem Cell Biology, The University of Chicago, Chicago, Illinois
| | - Noor Singh
- Department of Organismal Biology and Anatomy, The University of Chicago, Chicago, Illinois
| | - Kamil Ahsan
- Committee on Development, Regeneration and Stem Cell Biology, The University of Chicago, Chicago, Illinois
| | - Anastasia Beiriger
- Committee on Development, Regeneration and Stem Cell Biology, The University of Chicago, Chicago, Illinois
| | - Victoria E Prince
- Committee on Development, Regeneration and Stem Cell Biology, The University of Chicago, Chicago, Illinois.,Department of Organismal Biology and Anatomy, The University of Chicago, Chicago, Illinois
| |
Collapse
|
18
|
Schulte D, Geerts D. MEIS transcription factors in development and disease. Development 2019; 146:146/16/dev174706. [PMID: 31416930 DOI: 10.1242/dev.174706] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 06/28/2019] [Indexed: 12/12/2022]
Abstract
MEIS transcription factors are key regulators of embryonic development and cancer. Research on MEIS genes in the embryo and in stem cell systems has revealed novel and surprising mechanisms by which these proteins control gene expression. This Primer summarizes recent findings about MEIS protein activity and regulation in development, and discusses new insights into the role of MEIS genes in disease, focusing on the pathogenesis of solid cancers.
Collapse
Affiliation(s)
- Dorothea Schulte
- Institute of Neurology (Edinger Institute), University Hospital Frankfurt, Goethe University, 60528 Frankfurt, Germany
| | - Dirk Geerts
- Department of Medical Biology L2-109, Amsterdam University Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
19
|
Baker PA, Meyer MD, Tsang A, Uribe RA. Immunohistochemical and ultrastructural analysis of the maturing larval zebrafish enteric nervous system reveals the formation of a neuropil pattern. Sci Rep 2019; 9:6941. [PMID: 31061452 PMCID: PMC6502827 DOI: 10.1038/s41598-019-43497-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 04/24/2019] [Indexed: 12/31/2022] Open
Abstract
The gastrointestinal tract is constructed with an intrinsic series of interconnected ganglia that span its entire length, called the enteric nervous system (ENS). The ENS exerts critical local reflex control over many essential gut functions; including peristalsis, water balance, hormone secretions and intestinal barrier homeostasis. ENS ganglia exist as a collection of neurons and glia that are arranged in a series of plexuses throughout the gut: the myenteric plexus and submucosal plexus. While it is known that enteric ganglia are derived from a stem cell population called the neural crest, mechanisms that dictate final neuropil plexus organization remain obscure. Recently, the vertebrate animal, zebrafish, has emerged as a useful model to understand ENS development, however knowledge of its developing myenteric plexus architecture was unknown. Here, we examine myenteric plexus of the maturing zebrafish larval fish histologically over time and find that it consists of a series of tight axon layers and long glial cell processes that wrap the circumference of the gut tube to completely encapsulate it, along all levels of the gut. By late larval stages, complexity of the myenteric plexus increases such that a layer of axons is juxtaposed to concentric layers of glial cells. Ultrastructurally, glial cells contain glial filaments and make intimate contacts with one another in long, thread-like projections. Conserved indicators of vesicular axon profiles are readily abundant throughout the larval plexus neuropil. Together, these data extend our understanding of myenteric plexus architecture in maturing zebrafish, thereby enabling functional studies of its formation in the future.
Collapse
Affiliation(s)
- Phillip A Baker
- Biosciences Department, MS 140, Rice University, 6100 Main Street, Houston, Texas, 77005, USA
| | - Matthew D Meyer
- Shared Equipment Authority, MS 100, Rice University, 6100 Main Street, Houston, Texas, 77005, USA
| | - Ashley Tsang
- Biosciences Department, MS 140, Rice University, 6100 Main Street, Houston, Texas, 77005, USA
| | - Rosa A Uribe
- Biosciences Department, MS 140, Rice University, 6100 Main Street, Houston, Texas, 77005, USA.
| |
Collapse
|
20
|
Migration and diversification of the vagal neural crest. Dev Biol 2018; 444 Suppl 1:S98-S109. [PMID: 29981692 DOI: 10.1016/j.ydbio.2018.07.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 07/03/2018] [Accepted: 07/03/2018] [Indexed: 12/17/2022]
Abstract
Arising within the neural tube between the cranial and trunk regions of the body axis, the vagal neural crest shares interesting similarities in its migratory routes and derivatives with other neural crest populations. However, the vagal neural crest is also unique in its ability to contribute to diverse organs including the heart and enteric nervous system. This review highlights the migratory routes of the vagal neural crest and compares them across multiple vertebrates. We also summarize recent advances in understanding vagal neural crest ontogeny and discuss the contribution of this important neural crest population to the cardiovascular system and endoderm-derived organs, including the thymus, lungs and pancreas.
Collapse
|
21
|
Ganz J. Gut feelings: Studying enteric nervous system development, function, and disease in the zebrafish model system. Dev Dyn 2018; 247:268-278. [PMID: 28975691 DOI: 10.1002/dvdy.24597] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 07/14/2017] [Accepted: 09/15/2017] [Indexed: 12/15/2022] Open
Abstract
The enteric nervous system (ENS) is the largest part of the peripheral nervous system and is entirely neural crest-derived. It provides the intrinsic innervation of the gut, controlling different aspects of gut function, such as motility. In this review, we will discuss key points of Zebrafish ENS development, genes, and signaling pathways regulating ENS development, as well as contributions of the Zebrafish model system to better understand ENS disorders. During their migration, enteric progenitor cells (EPCs) display a gradient of developmental states based on their proliferative and migratory characteristics, and show spatiotemporal heterogeneity based on gene expression patterns. Many genes and signaling pathways that regulate the migration and proliferation of EPCs have been identified, but later stages of ENS development, especially steps of neuronal and glial differentiation, remain poorly understood. In recent years, Zebrafish have become increasingly important to test candidate genes for ENS disorders (e.g., from genome-wide association studies), to identify environmental influences on ENS development (e.g., through large-scale drug screens), and to investigate the role the gut microbiota play in ENS development and disease. With its unique advantages as a model organism, Zebrafish will continue to contribute to a better understanding of ENS development, function, and disease. Developmental Dynamics 247:268-278, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Julia Ganz
- Department of Integrative Biology, Michigan State University, East Lansing, Michigan
| |
Collapse
|
22
|
Uribe RA, Hong SS, Bronner ME. Retinoic acid temporally orchestrates colonization of the gut by vagal neural crest cells. Dev Biol 2018; 433:17-32. [PMID: 29108781 PMCID: PMC5722660 DOI: 10.1016/j.ydbio.2017.10.021] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 10/23/2017] [Indexed: 02/06/2023]
Abstract
The enteric nervous system arises from neural crest cells that migrate as chains into and along the primitive gut, subsequently differentiating into enteric neurons and glia. Little is known about the mechanisms governing neural crest migration en route to and along the gut in vivo. Here, we report that Retinoic Acid (RA) temporally controls zebrafish enteric neural crest cell chain migration. In vivo imaging reveals that RA loss severely compromises the integrity and migration of the chain of neural crest cells during the window of time window when they are moving along the foregut. After loss of RA, enteric progenitors accumulate in the foregut and differentiate into enteric neurons, but subsequently undergo apoptosis resulting in a striking neuronal deficit. Moreover, ectopic expression of the transcription factor meis3 and/or the receptor ret, partially rescues enteric neuron colonization after RA attenuation. Collectively, our findings suggest that retinoic acid plays a critical temporal role in promoting enteric neural crest chain migration and neuronal survival upstream of Meis3 and RET in vivo.
Collapse
Affiliation(s)
- Rosa A Uribe
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; Department of Biosciences, Rice University, Houston, TX 77005, USA.
| | - Stephanie S Hong
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Marianne E Bronner
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
23
|
Wang L, Wang X, Wang L, Yousaf M, Li J, Zuo M, Yang Z, Gou D, Bao B, Li L, Xiang N, Jia H, Xu C, Chen Q, Wang QK. Identification of a new adtrp1-tfpi regulatory axis for the specification of primitive myelopoiesis and definitive hematopoiesis. FASEB J 2017; 32:183-194. [PMID: 28877957 DOI: 10.1096/fj.201700166rr] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 08/21/2017] [Indexed: 12/13/2022]
Abstract
A genomic variant in the human ADTRP [androgen-dependent tissue factor (TF) pathway inhibitor (TFPI) regulating protein] gene increases the risk of coronary artery disease, the leading cause of death worldwide. TFPI is the TF pathway inhibitor that is involved in coagulation. Here, we report that adtrp and tfpi form a regulatory axis that specifies primitive myelopoiesis and definitive hematopoiesis, but not primitive erythropoiesis or vasculogenesis. In zebrafish, there are 2 paralogues for adtrp (i.e., adtrp1 and adtrp2). Knockdown of adtrp1 expression inhibits the specification of hemangioblasts, as shown by decreased expression of the hemangioblast markers, etsrp, fli1a, and scl; blocks primitive hematopoiesis, as shown by decreased expression of pu.1, mpo, and l-plastin; and disrupts the specification of hematopoietic stem cells (definitive hematopoiesis), as shown by decreased expression of runx1 and c-myb However, adtrp1 knockdown does not affect erythropoiesis during primitive hematopoiesis (no effect on gata1 or h-bae1) or vasculogenesis (no effect on kdrl, ephb2a, notch3, dab2, or flt4). Knockdown of adtrp2 expression does not have apparent effects on all markers tested. Knockdown of adtrp1 reduced the expression of tfpi, and hematopoietic defects in adtrp1 morphants were rescued by tfpi overexpression. These data suggest that the regulation of tfpi expression is one potential mechanism by which adtrp1 regulates primitive myelopoiesis and definitive hematopoiesis.-Wang, L., Wang, X., Wang, L., Yousaf, M., Li, J., Zuo, M., Yang, Z., Gou, D., Bao, B., Li, L., Xiang, N., Jia, H., Xu, C., Chen, Q., Wang, Q. K. Identification of a new adtrp1-tfpi regulatory axis for the specification of primitive myelopoiesis and definitive hematopoiesis.
Collapse
Affiliation(s)
- Li Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Center, College of Life Science and Technology, Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaojing Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Center, College of Life Science and Technology, Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Longfei Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Center, College of Life Science and Technology, Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Muhammad Yousaf
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Center, College of Life Science and Technology, Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Jia Li
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Center, College of Life Science and Technology, Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Mengxia Zuo
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Center, College of Life Science and Technology, Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Zhongcheng Yang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Center, College of Life Science and Technology, Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Dongzhi Gou
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Center, College of Life Science and Technology, Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Binghao Bao
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Center, College of Life Science and Technology, Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Lei Li
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Center, College of Life Science and Technology, Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Ning Xiang
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Haibo Jia
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Center, College of Life Science and Technology, Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Chengqi Xu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Center, College of Life Science and Technology, Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Qiuyun Chen
- Center for Cardiovascular Genetics, Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA; .,Department of Molecular Medicine, Lerner College of Medicine, Cleveland Clinic, Cleveland, Ohio, USA.,Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio, USA
| | - Qing Kenneth Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Center, College of Life Science and Technology, Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China; .,Center for Cardiovascular Genetics, Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA.,Department of Molecular Medicine, Lerner College of Medicine, Cleveland Clinic, Cleveland, Ohio, USA.,Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
24
|
Liu JA, Cheung M. Neural crest stem cells and their potential therapeutic applications. Dev Biol 2016; 419:199-216. [PMID: 27640086 DOI: 10.1016/j.ydbio.2016.09.006] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Revised: 09/07/2016] [Accepted: 09/07/2016] [Indexed: 12/13/2022]
Abstract
The neural crest (NC) is a remarkable transient structure generated during early vertebrate development. The neural crest progenitors have extensive migratory capacity and multipotency, harboring stem cell-like characteristics such as self-renewal. They can differentiate into a variety of cell types from craniofacial skeletal tissues to the trunk peripheral nervous system (PNS). Multiple regulators such as signaling factors, transcription factors, and migration machinery components are expressed at different stages of NC development. Gain- and loss-of-function studies in various vertebrate species revealed epistatic relationships of these molecules that could be assembled into a gene regulatory network defining the processes of NC induction, specification, migration, and differentiation. These basic developmental studies led to the subsequent establishment and molecular validation of neural crest stem cells (NCSCs) derived by various strategies. We provide here an overview of the isolation and characterization of NCSCs from embryonic, fetal, and adult tissues; the experimental strategies for the derivation of NCSCs from embryonic stem cells, induced pluripotent stem cells, and skin fibroblasts; and recent developments in the use of patient-derived NCSCs for modeling and treating neurocristopathies. We discuss future research on further refinement of the culture conditions required for the differentiation of pluripotent stem cells into axial-specific NC progenitors and their derivatives, developing non-viral approaches for the generation of induced NC cells (NCCs), and using a genomic editing approach to correct genetic mutations in patient-derived NCSCs for transplantation therapy. These future endeavors should facilitate the therapeutic applications of NCSCs in the clinical setting.
Collapse
Affiliation(s)
- Jessica Aijia Liu
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Martin Cheung
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
25
|
Tang W, Cai P, Huo W, Li H, Tang J, Zhu D, Xie H, Chen P, Hang B, Wang S, Xia Y. Suppressive action of miRNAs to ARP2/3 complex reduces cell migration and proliferation via RAC isoforms in Hirschsprung disease. J Cell Mol Med 2016; 20:1266-75. [PMID: 26991540 PMCID: PMC4929290 DOI: 10.1111/jcmm.12799] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2015] [Accepted: 12/22/2015] [Indexed: 01/05/2023] Open
Abstract
Hirschsprung disease (HSCR) is a congenital disorder caused by the defective function of the embryonic enteric neural crest. The impaired migration of embryonic enteric neural crest plays an important role in the pathogenesis of this disease. Recent studies showed that the ARP2/3 complex and RAC isoforms had effects on actin cytoskeleton remodelling, which contributes to migration. Moreover, some regulatory relationships were identified between ARP2/3 complex and RAC isoforms. Although microRNAs (miRNAs) have been known to modulate target gene expression on the post-transcriptional level, little is known about the regulation among miRNAs, ARP2/3 complex and RAC isoforms. Here, we report that down-regulation of ARP2 and ARP3, two main subunits of ARP2/3 complex, suppressed migration and proliferation in 293T and SH-SY5Y cell lines via the inhibition of RAC1 and RAC2. Meanwhile, as the target genes, ARP2 and ARP3 are reduced by increased miR-24-1* and let-7a*, respectively, in 70 HSCR samples as compared with 74 normal controls. Co-immunoprecipitation showed that aberrant reduction in ARP2 and ARP3 could weaken the function of ARP2/3 complex. Our study demonstrates that the miR-24-1*/let-7a*-ARP2/3 complex-RAC isoforms pathway may represent a novel pathogenic mechanism for HSCR.
Collapse
Affiliation(s)
- Weibing Tang
- Department of Pediatric Surgery, Nanjing Children's Hospital Affiliated Nanjing Medical University, Nanjing, China
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Peng Cai
- Children's Hospital of Soochow University, Soochow, China
| | - Weiwei Huo
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, China
- Key Laboratory of Modern Toxicology (Nanjing Medical University), Ministry of Education, Nanjing, China
| | - Hongxing Li
- Department of Pediatric Surgery, Nanjing Children's Hospital Affiliated Nanjing Medical University, Nanjing, China
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Junwei Tang
- Department of Pediatric Surgery, Nanjing Children's Hospital Affiliated Nanjing Medical University, Nanjing, China
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Dongmei Zhu
- Department of Pediatric Surgery, Nanjing Children's Hospital Affiliated Nanjing Medical University, Nanjing, China
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Hua Xie
- Department of Pediatric Surgery, Nanjing Children's Hospital Affiliated Nanjing Medical University, Nanjing, China
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Pingfa Chen
- Department of Pediatric Surgery, Nanjing Children's Hospital Affiliated Nanjing Medical University, Nanjing, China
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Bo Hang
- Department of Cell and Molecular Biology, Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Shouyu Wang
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, China
- Key Laboratory of Modern Toxicology (Nanjing Medical University), Ministry of Education, Nanjing, China
- Department of Molecular Cell Biology and Toxicology, Jiangsu Key Lab of Cancer Biomarkers, Prevention & Treatment, Cancer Center, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yankai Xia
- Children's Hospital of Soochow University, Soochow, China
- Key Laboratory of Modern Toxicology (Nanjing Medical University), Ministry of Education, Nanjing, China
| |
Collapse
|
26
|
Zebrafish as a model for understanding enteric nervous system interactions in the developing intestinal tract. Methods Cell Biol 2016; 134:139-64. [PMID: 27312493 DOI: 10.1016/bs.mcb.2016.02.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The enteric nervous system (ENS) forms intimate connections with many other intestinal cell types, including immune cells and bacterial consortia resident in the intestinal lumen. In this review, we highlight contributions of the zebrafish model to understanding interactions among these cells. Zebrafish is a powerful model for forward genetic screens, several of which have uncovered genes previously unknown to be important for ENS development. More recently, zebrafish has emerged as a model for testing functions of genes identified in human patients or large-scale human susceptibility screens. In several cases, zebrafish studies have revealed mechanisms connecting intestinal symptoms with other, seemingly unrelated disease phenotypes. Importantly, chemical library screens in zebrafish have provided startling new insights into potential effects of common drugs on ENS development. A key feature of the zebrafish model is the ability to rear large numbers of animals germ free or in association with only specific bacterial species. Studies utilizing these approaches have demonstrated the importance of bacterial signals for normal intestinal development. These types of studies also show how luminal bacteria and the immune system can contribute to inflammatory processes that can feedback to influence ENS development. The excellent optical properties of zebrafish embryos and larvae, coupled with the ease of generating genetically marked cells of both the host and its resident bacteria, allow visualization of multiple intestinal cell types in living larvae and should promote a more in-depth understanding of intestinal cell interactions, especially interactions between other intestinal cell types and the ENS.
Collapse
|