1
|
Wang L, Zhang S. Investigating the Causal Effects of Exercise-Induced Genes on Sarcopenia. Int J Mol Sci 2024; 25:10773. [PMID: 39409102 PMCID: PMC11476887 DOI: 10.3390/ijms251910773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/29/2024] [Accepted: 09/30/2024] [Indexed: 10/20/2024] Open
Abstract
Exercise is increasingly recognized as an effective strategy to counteract skeletal muscle aging and conditions such as sarcopenia. However, the specific exercise-induced genes responsible for these protective effects remain unclear. To address this, we conducted an eight-week aerobic exercise regimen on late-middle-aged mice and developed an integrated approach that combines mouse exercise-induced genes with human GWAS datasets to identify causal genes for sarcopenia. This approach led to significant improvements in the skeletal muscle phenotype of the mice and the identification of exercise-induced genes and miRNAs. By constructing a miRNA regulatory network enriched with transcription factors and GWAS signals related to muscle function and traits, we focused on 896 exercise-induced genes. Using human skeletal muscle cis-eQTLs as instrumental variables, 250 of these exercise-induced genes underwent two-sample Mendelian randomization analysis, identifying 40, 68, and 62 causal genes associated with sarcopenia and its clinical indicators-appendicular lean mass (ALM) and hand grip strength (HGS), respectively. Sensitivity analyses and cross-phenotype validation confirmed the robustness of our findings. Consistently across the three outcomes, RXRA, MDM1, RBL2, KCNJ2, and ADHFE1 were identified as risk factors, while NMB, TECPR2, MGAT3, ECHDC2, and GINM1 were identified as protective factors, all with potential as biomarkers for sarcopenia progression. Biological activity and disease association analyses suggested that exercise exerts its anti-sarcopenia effects primarily through the regulation of fatty acid oxidation. Based on available drug-gene interaction data, 21 of the causal genes are druggable, offering potential therapeutic targets. Our findings highlight key genes and molecular pathways potentially responsible for the anti-sarcopenia benefits of exercise, offering insights into future therapeutic strategies that could mimic the safe and mild protective effects of exercise on age-related skeletal muscle degeneration.
Collapse
Affiliation(s)
- Li Wang
- Institute of Sports Medicine and Health, Chengdu Sport University, Chengdu 610041, China
| | - Song Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China;
| |
Collapse
|
2
|
Zeemering S, Isaacs A, Winters J, Maesen B, Bidar E, Dimopoulou C, Guasch E, Batlle M, Haase D, Hatem SN, Kara M, Kääb S, Mont L, Sinner MF, Wakili R, Maessen J, Crijns HJGM, Fabritz L, Kirchhof P, Stoll M, Schotten U. Atrial fibrillation in the presence and absence of heart failure enhances expression of genes involved in cardiomyocyte structure, conduction properties, fibrosis, inflammation, and endothelial dysfunction. Heart Rhythm 2022; 19:2115-2124. [PMID: 36007727 DOI: 10.1016/j.hrthm.2022.08.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 07/29/2022] [Accepted: 08/16/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND Little is known about genome-wide changes in the atrial transcriptome as a cause or consequence of atrial fibrillation (AF), and the effect of its common and clinically relevant comorbidity-heart failure (HF). OBJECTIVE The purpose of this study was to explore candidate disease processes for AF by investigating gene expression changes in atrial tissue samples from patients with and without AF, stratified by HF. METHODS RNA sequencing was performed in right and left atrial appendage tissue in 195 patients undergoing open heart surgery from centers participating in the CATCH-ME consortium (no history of AF, n = 91; paroxysmal AF, n = 53; persistent/permanent AF, n = 51). Analyses were stratified into patients with/without HF (n = 75/120) and adjusted for age, sex, atrial side, and a combination of clinical characteristics. RESULTS We identified 35 genes associated with persistent AF compared to patients without a history of AF, both in the presence or absence of HF (false discovery rate <0.05). These were mostly novel associations, including 13 long noncoding RNAs. Genes were involved in regulation of cardiomyocyte structure, conduction properties, fibrosis, inflammation, and endothelial dysfunction. Gene set enrichment analysis identified mainly inflammatory gene sets to be enriched in AF patients without HF, and gene sets involved in cellular respiration in AF patients with HF. CONCLUSION Analysis of atrial gene expression profiles identified numerous novel genes associated with persistent AF, in the presence or absence of HF. Interestingly, no consistent transcriptional changes were associated with paroxysmal AF, suggesting that AF-induced changes in gene expression predominate other changes.
Collapse
Affiliation(s)
- Stef Zeemering
- Department of Physiology, Cardiovascular Research Institute Maastricht, University Maastricht, Maastricht, the Netherlands
| | - Aaron Isaacs
- Department of Physiology, Cardiovascular Research Institute Maastricht, University Maastricht, Maastricht, the Netherlands; Maastricht Centre for Systems Biology, Maastricht University, Maastricht, the Netherlands
| | - Joris Winters
- Department of Physiology, Cardiovascular Research Institute Maastricht, University Maastricht, Maastricht, the Netherlands
| | - Bart Maesen
- Department of Cardiothoracic Surgery, Maastricht University Medical Centre, University Maastricht, Maastricht, the Netherlands
| | - Elham Bidar
- Department of Cardiothoracic Surgery, Maastricht University Medical Centre, University Maastricht, Maastricht, the Netherlands
| | | | - Eduard Guasch
- Cardiovascular Institute, Hospital Clinic Barcelona, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi I Sunyer, Barcelona, Spain; CIBERCV, Madrid, Spain
| | - Montserrat Batlle
- Institut d'Investigacions Biomèdiques August Pi I Sunyer, Barcelona, Spain; CIBERCV, Madrid, Spain
| | | | - Stéphane N Hatem
- INSERM UMRS1166, Institute of CardioMetabolism and Nutrition, Sorbonne Université, Paris, France; Institut de Cardiologie, Hôpital Pitié-Salpêtrière, Paris, France
| | - Mansour Kara
- Institut de Cardiologie, Hôpital Pitié-Salpêtrière, Paris, France
| | - Stefan Kääb
- Department of Medicine I, University Hospital, Munich, Germany; German Centre for Cardiovascular Research, partner site Munich Heart, Munich, Germany
| | - Lluis Mont
- European Society of Cardiology, Sophia Antipolis, France; Cardiovascular Institute, Hospital Clinic Barcelona, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi I Sunyer, Barcelona, Spain; CIBERCV, Madrid, Spain
| | - Moritz F Sinner
- Department of Medicine I, University Hospital, Munich, Germany; German Centre for Cardiovascular Research, partner site Munich Heart, Munich, Germany
| | - Reza Wakili
- German Centre for Cardiovascular Research, partner site Munich Heart, Munich, Germany; Department of Cardiology and Vascular Medicine, West German Heart and Vascular Center Essen, Essen, Germany
| | - Jos Maessen
- Maastricht Centre for Systems Biology, Maastricht University, Maastricht, the Netherlands
| | - Harry J G M Crijns
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Larissa Fabritz
- Department of Cardiology, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, the Netherlands; Department of Cardiology, UHB and SWBH NHS Trusts, Birmingham, United Kingdom
| | - Paulus Kirchhof
- INSERM UMRS1166, Institute of CardioMetabolism and Nutrition, Sorbonne Université, Paris, France; Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, United Kingdom; University Heart and Vascular Center UKE Hamburg, Hamburg, Germany; German Center for Cardiovascular Research, partner site Hamburg/Kiel/Lübeck, Germany
| | - Monika Stoll
- Maastricht Centre for Systems Biology, Maastricht University, Maastricht, the Netherlands; Institute of Human Genetics, University of Muenster, Muenster, Germany
| | - Ulrich Schotten
- Department of Physiology, Cardiovascular Research Institute Maastricht, University Maastricht, Maastricht, the Netherlands; INSERM UMRS1166, Institute of CardioMetabolism and Nutrition, Sorbonne Université, Paris, France.
| |
Collapse
|
3
|
Mdm1 ablation results in retinal degeneration by specific intraflagellar transport defects of photoreceptor cells. Cell Death Dis 2022; 13:833. [PMID: 36171205 PMCID: PMC9519634 DOI: 10.1038/s41419-022-05237-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 09/01/2022] [Accepted: 09/05/2022] [Indexed: 01/23/2023]
Abstract
Mouse double minute 1 (Mdm1) might be involved in the function and structure of centrioles and age-related retinal degeneration. However, the mechanism by which Mdm1 deficiency causes retinal degeneration remains unknown. We confirmed that the Mdm1 protein is localized at the connecting cilium (CC) of photoreceptor cells in the retina. The electroretinograms of 6-week-old Mdm1-/- mice revealed decreased vision, which was eventually lost, and outer segment (OS) photoreceptor degeneration was evident on postnatal day 7, with complete loss of the outer nuclear layer (ONL) observed at 35 weeks. Mdm1-/- mouse retinas showed mislocalization of opsins in the photoreceptor cells, indicating particular intraflagellar transport (IFT) defects, and entrapment of the nuclei in the ONL by microvilli of retinal pigment epithelial cells, leading to apoptosis in the ONL. These results suggest that Mdm1 ablation causes specific IFT defects, which prevents the OS from continuously replenishing new discs, resulting in retinal degeneration.
Collapse
|
4
|
Arslanhan MD, Rauniyar N, Yates JR, Firat-Karalar EN. Aurora Kinase A proximity map reveals centriolar satellites as regulators of its ciliary function. EMBO Rep 2021; 22:e51902. [PMID: 34169630 PMCID: PMC8339716 DOI: 10.15252/embr.202051902] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 05/19/2021] [Accepted: 05/26/2021] [Indexed: 12/30/2022] Open
Abstract
Aurora kinase A (AURKA) is a conserved kinase that plays crucial roles in numerous cellular processes. Although AURKA overexpression is frequent in human cancers, its pleiotropic functions and multifaceted regulation present challenges in its therapeutic targeting. Key to overcoming these challenges is to identify and characterize the full range of AURKA interactors, which are often weak and transient. Previous proteomic studies were limited in monitoring dynamic and non-mitotic AURKA interactions. Here, we generate the proximity interactome of AURKA in asynchronous cells, which consists of 440 proteins involving multiple biological processes and cellular compartments. Importantly, AURKA has extensive proximate and physical interactions to centriolar satellites, key regulators of the primary cilium. Loss-of-function experiments identify satellites as negative regulators of AURKA activity, abundance, and localization in quiescent cells. Notably, loss of satellites activates AURKA at the basal body, decreases centrosomal IFT88 levels, and causes ciliogenesis defects. Collectively, our results provide a resource for dissecting spatiotemporal regulation of AURKA and uncover its proteostatic regulation by satellites as a new mechanism for its ciliary functions.
Collapse
Affiliation(s)
- Melis D Arslanhan
- Department of Molecular Biology and Genetics, Koç University, Istanbul, Turkey
| | - Navin Rauniyar
- Department of Chemical Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - John R Yates
- Department of Chemical Biology, The Scripps Research Institute, La Jolla, CA, USA
| | | |
Collapse
|
5
|
Gurkaslar HK, Culfa E, Arslanhan MD, Lince-Faria M, Firat-Karalar EN. CCDC57 Cooperates with Microtubules and Microcephaly Protein CEP63 and Regulates Centriole Duplication and Mitotic Progression. Cell Rep 2021; 31:107630. [PMID: 32402286 DOI: 10.1016/j.celrep.2020.107630] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 03/08/2020] [Accepted: 04/20/2020] [Indexed: 12/21/2022] Open
Abstract
Centrosomes function in key cellular processes ranging from cell division to cellular signaling. Their dysfunction is linked to cancer and developmental disorders. Here, we identify CCDC57 as a pleiotropic regulator of centriole duplication, mitosis, and ciliogenesis. Combining proximity mapping with superresolution imaging, we show that CCDC57 localizes to the proximal end of centrioles and interacts with the microcephaly protein CEP63, centriolar satellite proteins, and microtubules. Loss of CCDC57 causes defects in centriole duplication and results in a failure to localize CEP63 and CEP152 to the centrosome. Additionally, CCDC57 depletion perturbs mitotic progression both in wild-type and centriole-less cells. Importantly, its centrosome-targeting region is required for its interaction with CEP63 and functions during centriole duplication and cilium assembly, whereas the microtubule-targeting region is required for its mitotic functions. Together, our results identify CCDC57 as a critical interface between centrosome and microtubule-mediated cellular processes that are deregulated in microcephaly.
Collapse
Affiliation(s)
- H Kubra Gurkaslar
- Department of Molecular Biology and Genetics, Koç University, Sarıyer, İstanbul 34450, Turkey
| | - Efraim Culfa
- Department of Molecular Biology and Genetics, Koç University, Sarıyer, İstanbul 34450, Turkey
| | - Melis D Arslanhan
- Department of Molecular Biology and Genetics, Koç University, Sarıyer, İstanbul 34450, Turkey
| | - Mariana Lince-Faria
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, Oeiras 2780-156, Portugal
| | - Elif Nur Firat-Karalar
- Department of Molecular Biology and Genetics, Koç University, Sarıyer, İstanbul 34450, Turkey.
| |
Collapse
|
6
|
Differential transcriptome analysis in HPV-positive and HPV-negative cervical cancer cells through CRISPR knockout of miR-214. J Biosci 2020. [DOI: 10.1007/s12038-020-00075-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
7
|
Glentis S, Dimopoulos AC, Rouskas K, Ntritsos G, Evangelou E, Narod SA, Mes-Masson AM, Foulkes WD, Rivera B, Tonin PN, Ragoussis J, Dimas AS. Exome Sequencing in BRCA1- and BRCA2-Negative Greek Families Identifies MDM1 and NBEAL1 as Candidate Risk Genes for Hereditary Breast Cancer. Front Genet 2019; 10:1005. [PMID: 31681433 PMCID: PMC6813924 DOI: 10.3389/fgene.2019.01005] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 09/20/2019] [Indexed: 12/30/2022] Open
Abstract
Approximately 10% of breast cancer (BC) cases are hereditary BC (HBC), with HBC most commonly encountered in the context of hereditary breast and ovarian cancer (HBOC) syndrome. Although thousands of loss-of-function (LoF) alleles in over 20 genes have been associated with HBC susceptibility, the genetic etiology of approximately 50% of cases remains unexplained, even when polygenic risk models are considered. We focused on one of the least-studied European populations and applied whole-exome sequencing (WES) to 52 individuals from 17 Greek HBOC families, in which at least one patient was negative for known HBC risk variants. Initial screening revealed pathogenic variants in known cancer genes, including BARD1:p.Trp91* detected in a cancer-free individual, and MEN1:p.Glu260Lys detected in a BC patient. Gene- and variant-based approaches were applied to exome data to identify candidate risk variants outside of known risk genes. Findings were verified in a collection of Canadian HBOC patients of European ancestry (FBRCAX), in an independent group of Canadian BC patients (CHUM-BC) and controls (CARTaGENE), as well as in individuals from The Cancer Genome Atlas (TCGA) and the UK Biobank (UKB). Rare LoF variants were uncovered in MDM1 and NBEAL1 in Greek and Canadian HBOC patients. We also report prioritized missense variants SETBP1:c.4129G > C and C7orf34:c.248C > T. These variants comprise promising candidates whose role in cancer pathogenicity needs to be explored further.
Collapse
Affiliation(s)
- Stavros Glentis
- Division of Molecular Biology and Genetics, Biomedical Sciences Research Center Al. Fleming, Vari, Greece
| | - Alexandros C Dimopoulos
- Division of Molecular Biology and Genetics, Biomedical Sciences Research Center Al. Fleming, Vari, Greece
| | - Konstantinos Rouskas
- Division of Molecular Biology and Genetics, Biomedical Sciences Research Center Al. Fleming, Vari, Greece
| | - George Ntritsos
- Department of Hygiene and Epidemiology, University of Ioannina Medical School, Ioannina, Greece
| | - Evangelos Evangelou
- Department of Hygiene and Epidemiology, University of Ioannina Medical School, Ioannina, Greece.,Department of Epidemiology and Biostatistics, Imperial College London, London, United Kingdom
| | - Steven A Narod
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada.,Women's College Research Institute, Women's College Hospital, Toronto, ON, Canada
| | - Anne-Marie Mes-Masson
- Centre de recherche du Centre hospitalier de l'Université de Montréal and Institut du cancer de Montréal, Montreal, QC, Canada
| | - William D Foulkes
- Department of Oncology, McGill University, Montreal, QC, Canada.,Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, QC, Canada.,Department of Medical Genetics, The Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Barbara Rivera
- Department of Oncology, McGill University, Montreal, QC, Canada.,Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, QC, Canada
| | - Patricia N Tonin
- Department of Medicine, McGill University, Montreal, QC, Canada.,Department of Human Genetics, McGill University, Montreal, QC, Canada.,Cancer Research Program, The Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Jiannis Ragoussis
- Department of Oncology, McGill University, Montreal, QC, Canada.,McGill University and Genome Quebec Innovation Centre, Montreal, QC, Canada
| | - Antigone S Dimas
- Division of Molecular Biology and Genetics, Biomedical Sciences Research Center Al. Fleming, Vari, Greece
| |
Collapse
|
8
|
Prata DP, Costa-Neves B, Cosme G, Vassos E. Unravelling the genetic basis of schizophrenia and bipolar disorder with GWAS: A systematic review. J Psychiatr Res 2019; 114:178-207. [PMID: 31096178 DOI: 10.1016/j.jpsychires.2019.04.007] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 04/08/2019] [Accepted: 04/10/2019] [Indexed: 01/02/2023]
Abstract
OBJECTIVES To systematically review findings of GWAS in schizophrenia (SZ) and in bipolar disorder (BD); and to interpret findings, with a focus on identifying independent replications. METHOD PubMed search, selection and review of all independent GWAS in SZ or BD, published since March 2011, i.e. studies using non-overlapping samples within each article, between articles, and with those of the previous review (Li et al., 2012). RESULTS From the 22 GWAS included in this review, the genetic associations surviving standard GWAS-significance were for genetic markers in the regions of ACSL3/KCNE4, ADCY2, AMBRA1, ANK3, BRP44, DTL, FBLN1, HHAT, INTS7, LOC392301, LOC645434/NMBR, LOC729457, LRRFIP1, LSM1, MDM1, MHC, MIR2113/POU3F2, NDST3, NKAPL, ODZ4, PGBD1, RENBP, TRANK1, TSPAN18, TWIST2, UGT1A1/HJURP, WHSC1L1/FGFR1 and ZKSCAN4. All genes implicated across both reviews are discussed in terms of their function and implication in neuropsychiatry. CONCLUSION Taking all GWAS to date into account, AMBRA1, ANK3, ARNTL, CDH13, EFHD1 (albeit with different alleles), MHC, PLXNA2 and UGT1A1 have been implicated in either disorder in at least two reportedly non-overlapping samples. Additionally, evidence for a SZ/BD common genetic basis is most strongly supported by the implication of ANK3, NDST3, and PLXNA2.
Collapse
Affiliation(s)
- Diana P Prata
- Instituto de Biofísica e Engenharia Biomédica, Faculdade de Ciências, Universidade de Lisboa, Portugal; Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, 16 De Crespigny Park, SE5 8AF, UK; Instituto Universitário de Lisboa (ISCTE-IUL), Centro de Investigação e Intervenção Social, Lisboa, Portugal.
| | - Bernardo Costa-Neves
- Lisbon Medical School, University of Lisbon, Av. Professor Egas Moniz, 1649-028, Lisbon, Portugal; Centro Hospitalar Psiquiátrico de Lisboa, Av. do Brasil, 53 1749-002, Lisbon, Portugal
| | - Gonçalo Cosme
- Instituto de Biofísica e Engenharia Biomédica, Faculdade de Ciências, Universidade de Lisboa, Portugal
| | - Evangelos Vassos
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, King's College London, 16 De Crespigny Park, SE5 8AF, UK
| |
Collapse
|
9
|
McKenzie CW, Preston CC, Finn R, Eyster KM, Faustino RS, Lee L. Strain-specific differences in brain gene expression in a hydrocephalic mouse model with motile cilia dysfunction. Sci Rep 2018; 8:13370. [PMID: 30190587 PMCID: PMC6127338 DOI: 10.1038/s41598-018-31743-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 08/22/2018] [Indexed: 01/10/2023] Open
Abstract
Congenital hydrocephalus results from cerebrospinal fluid accumulation in the ventricles of the brain and causes severe neurological damage, but the underlying causes are not well understood. It is associated with several syndromes, including primary ciliary dyskinesia (PCD), which is caused by dysfunction of motile cilia. We previously demonstrated that mouse models of PCD lacking ciliary proteins CFAP221, CFAP54 and SPEF2 all have hydrocephalus with a strain-dependent severity. While morphological defects are more severe on the C57BL/6J (B6) background than 129S6/SvEvTac (129), cerebrospinal fluid flow is perturbed on both backgrounds, suggesting that abnormal cilia-driven flow is not the only factor underlying the hydrocephalus phenotype. Here, we performed a microarray analysis on brains from wild type and nm1054 mice lacking CFAP221 on the B6 and 129 backgrounds. Expression differences were observed for a number of genes that cluster into distinct groups based on expression pattern and biological function, many of them implicated in cellular and biochemical processes essential for proper brain development. These include genes known to be functionally relevant to congenital hydrocephalus, as well as formation and function of both motile and sensory cilia. Identification of these genes provides important clues to mechanisms underlying congenital hydrocephalus severity.
Collapse
Affiliation(s)
- Casey W McKenzie
- Pediatrics and Rare Diseases Group, Sanford Research, 2301 E. 60th Street N., Sioux Falls, SD, 57104, USA
| | - Claudia C Preston
- Genetics and Genomics Group, Sanford Research, 2301 E. 60th Street N., Sioux Falls, SD, 57104, USA
| | - Rozzy Finn
- Pediatrics and Rare Diseases Group, Sanford Research, 2301 E. 60th Street N., Sioux Falls, SD, 57104, USA
| | - Kathleen M Eyster
- Division of Basic Biomedical Sciences, Sanford School of Medicine of the University of South Dakota, Vermillion, SD, 57069, USA
| | - Randolph S Faustino
- Genetics and Genomics Group, Sanford Research, 2301 E. 60th Street N., Sioux Falls, SD, 57104, USA.,Department of Pediatrics, Sanford School of Medicine of the University of South Dakota, 1400 W. 22nd Street, Sioux Falls, SD, 57105, USA
| | - Lance Lee
- Pediatrics and Rare Diseases Group, Sanford Research, 2301 E. 60th Street N., Sioux Falls, SD, 57104, USA. .,Department of Pediatrics, Sanford School of Medicine of the University of South Dakota, 1400 W. 22nd Street, Sioux Falls, SD, 57105, USA.
| |
Collapse
|
10
|
Kumari A, Panda D. Regulation of microtubule stability by centrosomal proteins. IUBMB Life 2018; 70:602-611. [DOI: 10.1002/iub.1865] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 04/12/2018] [Indexed: 12/12/2022]
Affiliation(s)
- Anuradha Kumari
- Department of Biosciences and Bioengineering; Indian Institute of Technology Bombay; Mumbai India
| | - Dulal Panda
- Department of Biosciences and Bioengineering; Indian Institute of Technology Bombay; Mumbai India
| |
Collapse
|
11
|
Over-elongation of centrioles in cancer promotes centriole amplification and chromosome missegregation. Nat Commun 2018; 9:1258. [PMID: 29593297 PMCID: PMC5871873 DOI: 10.1038/s41467-018-03641-x] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 03/02/2018] [Indexed: 12/16/2022] Open
Abstract
Centrosomes are the major microtubule organising centres of animal cells. Deregulation in their number occurs in cancer and was shown to trigger tumorigenesis in mice. However, the incidence, consequence and origins of this abnormality are poorly understood. Here, we screened the NCI-60 panel of human cancer cell lines to systematically analyse centriole number and structure. Our screen shows that centriole amplification is widespread in cancer cell lines and highly prevalent in aggressive breast carcinomas. Moreover, we identify another recurrent feature of cancer cells: centriole size deregulation. Further experiments demonstrate that severe centriole over-elongation can promote amplification through both centriole fragmentation and ectopic procentriole formation. Furthermore, we show that overly long centrioles form over-active centrosomes that nucleate more microtubules, a known cause of invasiveness, and perturb chromosome segregation. Our screen establishes centriole amplification and size deregulation as recurrent features of cancer cells and identifies novel causes and consequences of those abnormalities. Cancer cells are characterised by abnormalities in the number of centrosomes and this phenotype is linked with tumorigenesis. Here the authors report centriole length deregulation in a subset of cancer cell lines and suggest a link with subsequent alterations in centriole numbers and chromosomal instability.
Collapse
|
12
|
Tan BX, Liew HP, Chua JS, Ghadessy FJ, Tan YS, Lane DP, Coffill CR. Anatomy of Mdm2 and Mdm4 in evolution. J Mol Cell Biol 2017; 9:3-15. [PMID: 28077607 PMCID: PMC6372010 DOI: 10.1093/jmcb/mjx002] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 11/24/2016] [Accepted: 01/10/2017] [Indexed: 01/09/2023] Open
Abstract
Mouse double minute (Mdm) genes span an evolutionary timeframe from the ancient eukaryotic placozoa Trichoplax adhaerens to Homo sapiens, implying a significant and possibly conserved cellular role throughout history. Maintenance of DNA integrity and response to DNA damage involve many key regulatory pathways, including precise control over the tumour suppressor protein p53. In most vertebrates, degradation of p53 through proteasomal targeting is primarily mediated by heterodimers of Mdm2 and the Mdm2-related protein Mdm4 (also known as MdmX). Both Mdm2 and Mdm4 have p53-binding regions, acidic domains, zinc fingers, and C-terminal RING domains that are conserved throughout evolution. Vertebrates typically have both Mdm2 and Mdm4 genes, while analyses of sequenced genomes of invertebrate species have identified single Mdm genes, suggesting that a duplication event occurred prior to emergence of jawless vertebrates about 550-440 million years ago. The functional relationship between Mdm and p53 in T. adhaerens, an organism that has existed for 1 billion years, implies that these two proteins have evolved together to maintain a conserved and regulated function.
Collapse
Affiliation(s)
- Ban Xiong Tan
- p53 Laboratory, Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, Immunos #06-06, Singapore138648, Singapore
| | - Hoe Peng Liew
- p53 Laboratory, Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, Immunos #06-06, Singapore138648, Singapore
| | - Joy S. Chua
- p53 Laboratory, Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, Immunos #06-06, Singapore138648, Singapore
| | - Farid J. Ghadessy
- p53 Laboratory, Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, Immunos #06-06, Singapore138648, Singapore
| | - Yaw Sing Tan
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), 30 Biopolis St, #07-01,Singapore138671, Singapore
| | - David P. Lane
- p53 Laboratory, Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, Immunos #06-06, Singapore138648, Singapore
| | - Cynthia R. Coffill
- p53 Laboratory, Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, Immunos #06-06, Singapore138648, Singapore
| |
Collapse
|
13
|
Hensley MR, Chua RFM, Leung YF, Yang JY, Zhang G. Molecular Evolution of MDM1, a "Duplication-Resistant" Gene in Vertebrates. PLoS One 2016; 11:e0163229. [PMID: 27658201 PMCID: PMC5033493 DOI: 10.1371/journal.pone.0163229] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 09/06/2016] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND The mouse double minute 1 (Mdm1) gene was first reported and cloned in mouse tumor cell lines as an oncogene candidate. Later, it was found that mutation of Mdm1 might cause age-related retinal degeneration 2 in mice by genetic linkage analysis. Additionally, the MDM1 protein was found to be expressed in the centrosomes, cilia, and the nucleus of multiciliated tracheal epithelial cells in mice. These observations suggest that MDM1 may have some basal functions in cell physiology. However, the evolutionary history of this gene and its expression during embryonic development remain largely unexplored. RESULTS Using molecular phylogenetic analysis, we found that the MDM1 gene encoded an evolutionarily conserved protein across all metazoans. We also found that the MDM1 gene was in a conserved synteny in vertebrates. In almost all the species that were analyzed, there was only one MDM1 gene based on current genome annotations. Since vertebrate genomes underwent two to three rounds of whole-genome duplications around the origin of the vertebrates, it is interesting that only one MDM1 ohnolog was retained. This observation implies that other MDM1 ohnologs were lost after the whole-genome duplications. Furthermore, using whole-mount in situ hybridization, we found that mdm1 was expressed in the forebrain, nephric ducts, and tail buds during zebrafish early embryonic development. CONCLUSION MDM1 is an evolutionary conserved gene, and its homologous genes can be traced back to basal metazoan lineages. In vertebrates, the MDM1 gene is in a conserved synteny and there is only one MDM1 ohnolog suggesting it is a "duplication-resistant" gene. Its expression patterns in early zebrafish embryos indicate that mdm1 may play important roles in the development of the central nervous system, kidneys, and hematopoietic system.
Collapse
Affiliation(s)
- Monica R. Hensley
- Department of Comparative Pathobiology, Purdue University. West Lafayette, Indiana, United States of America
| | - Rhys F. M. Chua
- Department of Comparative Pathobiology, Purdue University. West Lafayette, Indiana, United States of America
| | - Yuk Fai Leung
- Department of Biological Sciences, Purdue University. West Lafayette, Indiana, United States of America
- Purdue Institute for Integrative Neuroscience, Purdue University. West Lafayette, Indiana, United States of America
| | - Jer-Yen Yang
- Department of Basic Medical Sciences, Purdue University. West Lafayette, Indiana, United States of America
- Purdue University Center for Cancer Research. West Lafayette, Indiana, United States of America
| | - GuangJun Zhang
- Department of Comparative Pathobiology, Purdue University. West Lafayette, Indiana, United States of America
- Purdue Institute for Integrative Neuroscience, Purdue University. West Lafayette, Indiana, United States of America
- Purdue University Center for Cancer Research. West Lafayette, Indiana, United States of America
- Purdue Institute for Inflammation, Immunology and Infectious Diseases (PI4D), Purdue University. West Lafayette, Indiana, United States of America
- * E-mail:
| |
Collapse
|