1
|
Song XQ, Shao ZM. Identification of immune-related prognostic biomarkers in triple-negative breast cancer. Transl Cancer Res 2024; 13:1707-1720. [PMID: 38737702 PMCID: PMC11082668 DOI: 10.21037/tcr-23-1554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 02/29/2024] [Indexed: 05/14/2024]
Abstract
Background Triple-negative breast cancer (TNBC), a type of breast cancer, lacks immune-related markers that can be used for prognosis or prediction. Therefore, we created a predictive framework for TNBC using a risk assessment. Methods Our previous study group consisted of 360 individuals who were diagnosed with TNBC through pathology using RNA sequencing and had clinical data from Fudan University Shanghai Cancer Center (FUSCC). A risk scoring model was constructed using the Cox regression method with the least absolute shrinkage and selection operator (LASSO). A multivariate Cox regression analysis was utilized to develop the prediction model, which was then assessed using the consistency index and calibration plots. The validation cohort of The Cancer Genome Atlas (TCGA) TNBC confirmed the strength of the signatures' predictive value. Results The prognostic risk score model included 12 genes: TDO2, CHIT1, CARML2, HLA-C, ADIRF, C19orf33, CA8, AHNAK2, RHOV, OPLAH, THEM6, and NEBL. The receiver operator characteristic (ROC) curves for survivability values at 1, 3, and 5 years in the FUSCC TNBC cohort demonstrated area under the curve (AUC) values of 0.78, 0.83, and 0.75, respectively. These results indicated a high level of accuracy in predicting outcomes, which was further confirmed through validation using TCGA database. The patients in the high-risk group showed worse prognoses and lower levels of immune cell infiltration, specifically CD8+ T cells, than those in the low-risk group. Furthermore, the low-risk group exhibited a significant upregulation of genes that encode immune checkpoints, including CD274 and CTLA4, suggesting that immunotherapy may yield enhanced efficacy within this particular group. Conclusions In conclusion, the prognostic signature consisting of 12 genes can assist in the choice of immunotherapy for TNBC.
Collapse
Affiliation(s)
- Xiao-Qing Song
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhi-Ming Shao
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
2
|
Pradeau-Phélut L, Etienne-Manneville S. Cytoskeletal crosstalk: A focus on intermediate filaments. Curr Opin Cell Biol 2024; 87:102325. [PMID: 38359728 DOI: 10.1016/j.ceb.2024.102325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 01/05/2024] [Accepted: 01/07/2024] [Indexed: 02/17/2024]
Abstract
The cytoskeleton, comprising actin microfilaments, microtubules, and intermediate filaments, is crucial for cell motility and tissue integrity. While prior studies largely focused on individual cytoskeletal networks, recent research underscores the interconnected nature of these systems in fundamental cellular functions like adhesion, migration, and division. Understanding the coordination of these distinct networks in both time and space is essential. This review synthesizes current findings on the intricate interplay between these networks, emphasizing the pivotal role of intermediate filaments. Notably, these filaments engage in extensive crosstalk with microfilaments and microtubules through direct molecular interactions, cytoskeletal linkers, and molecular motors that form molecular bridges, as well as via more complex regulation of intracellular signaling.
Collapse
Affiliation(s)
- Lucas Pradeau-Phélut
- Cell Polarity, Migration and Cancer Unit, Institut Pasteur - CNRS UMR 3691, Université Paris-Cité, Équipe Labellisée Ligue Nationale Contre le Cancer 2023, 25 rue du Docteur Roux, F-75015, Paris, France; Sorbonne Université, Collège Doctoral, 4 place Jussieu, F-75005 Paris, France
| | - Sandrine Etienne-Manneville
- Cell Polarity, Migration and Cancer Unit, Institut Pasteur - CNRS UMR 3691, Université Paris-Cité, Équipe Labellisée Ligue Nationale Contre le Cancer 2023, 25 rue du Docteur Roux, F-75015, Paris, France.
| |
Collapse
|
3
|
Bao L, Zhong M, Zhang Z, Yu X, You B, You Y, Gu M, Zhang Q, Chen W, Lei W, Hu S. Stiffness promotes cell migration, invasion, and invadopodia in nasopharyngeal carcinoma by regulating the WT-CTTN level. Cancer Sci 2024; 115:836-846. [PMID: 38273817 PMCID: PMC10920987 DOI: 10.1111/cas.16075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 12/30/2023] [Accepted: 01/05/2024] [Indexed: 01/27/2024] Open
Abstract
Matrix stiffness potently promotes the malignant phenotype in various biological contexts. Therefore, identification of gene expression to participate in mechanical force signals transduced into downstream biochemical signaling will contribute substantially to the advances in nasopharyngeal carcinoma (NPC) treatment. In the present study, we detected that cortactin (CTTN) played an indispensable role in matrix stiffness-induced cell migration, invasion, and invadopodia formation. Advances in cancer research have highlighted that dysregulated alternative splicing contributes to cancer progression as an oncogenic driver. However, whether WT-CTTN or splice variants (SV1-CTTN or SV2-CTTN) regulate matrix stiffness-induced malignant phenotype is largely unknown. We proved that alteration of WT-CTTN expression modulated matrix stiffness-induced cell migration, invasion, and invadopodia formation. Considering that splicing factors might drive cancer progression through positive feedback loops, we analyzed and showed how the splicing factor PTBP2 and TIA1 modulated the production of WT-CTTN. Moreover, we determined that high stiffness activated PTBP2 expression. Taken together, our findings showed that the PTBP2-WT-CTTN level increases upon stiffening and then promotes cell migration, invasion, and invadopodia formation in NPC.
Collapse
Affiliation(s)
- Lili Bao
- Department of Otorhinolaryngology Head and Neck SurgeryAffiliated Hospital of Nantong UniversityNantongJiangsu ProvinceChina
- Institute of Otolaryngology Head and Neck SurgeryAffiliated Hospital of Nantong UniversityNantongJiangsu ProvinceChina
- Medical College of Nantong UniversityNantongJiangsu ProvinceChina
| | - Ming Zhong
- Department of Otorhinolaryngology Head and Neck SurgeryThe People's Hospital of RugaoRugaoJiangsu ProvinceChina
| | - Zixiang Zhang
- Department of Otorhinolaryngology Head and Neck SurgeryAffiliated Hospital of Nantong UniversityNantongJiangsu ProvinceChina
- Institute of Otolaryngology Head and Neck SurgeryAffiliated Hospital of Nantong UniversityNantongJiangsu ProvinceChina
- Medical College of Nantong UniversityNantongJiangsu ProvinceChina
| | - Xiangqing Yu
- Department of Otorhinolaryngology Head and Neck SurgeryAffiliated Hospital of Nantong UniversityNantongJiangsu ProvinceChina
- Institute of Otolaryngology Head and Neck SurgeryAffiliated Hospital of Nantong UniversityNantongJiangsu ProvinceChina
- Medical College of Nantong UniversityNantongJiangsu ProvinceChina
| | - Bo You
- Department of Otorhinolaryngology Head and Neck SurgeryAffiliated Hospital of Nantong UniversityNantongJiangsu ProvinceChina
- Institute of Otolaryngology Head and Neck SurgeryAffiliated Hospital of Nantong UniversityNantongJiangsu ProvinceChina
- Medical College of Nantong UniversityNantongJiangsu ProvinceChina
| | - Yiwen You
- Department of Otorhinolaryngology Head and Neck SurgeryAffiliated Hospital of Nantong UniversityNantongJiangsu ProvinceChina
- Institute of Otolaryngology Head and Neck SurgeryAffiliated Hospital of Nantong UniversityNantongJiangsu ProvinceChina
- Medical College of Nantong UniversityNantongJiangsu ProvinceChina
| | - Miao Gu
- Department of Otorhinolaryngology Head and Neck SurgeryAffiliated Hospital of Nantong UniversityNantongJiangsu ProvinceChina
- Institute of Otolaryngology Head and Neck SurgeryAffiliated Hospital of Nantong UniversityNantongJiangsu ProvinceChina
- Medical College of Nantong UniversityNantongJiangsu ProvinceChina
| | - Qicheng Zhang
- Department of Otorhinolaryngology Head and Neck SurgeryAffiliated Hospital of Nantong UniversityNantongJiangsu ProvinceChina
- Institute of Otolaryngology Head and Neck SurgeryAffiliated Hospital of Nantong UniversityNantongJiangsu ProvinceChina
- Medical College of Nantong UniversityNantongJiangsu ProvinceChina
| | - Wenhui Chen
- Department of Otorhinolaryngology Head and Neck SurgeryAffiliated Hospital of Nantong UniversityNantongJiangsu ProvinceChina
- Institute of Otolaryngology Head and Neck SurgeryAffiliated Hospital of Nantong UniversityNantongJiangsu ProvinceChina
- Medical College of Nantong UniversityNantongJiangsu ProvinceChina
| | - Wei Lei
- Department of Otorhinolaryngology Head and Neck SurgeryAffiliated Hospital of Nantong UniversityNantongJiangsu ProvinceChina
- Institute of Otolaryngology Head and Neck SurgeryAffiliated Hospital of Nantong UniversityNantongJiangsu ProvinceChina
- Medical College of Nantong UniversityNantongJiangsu ProvinceChina
| | - Songqun Hu
- Department of Otorhinolaryngology Head and Neck SurgeryAffiliated Hospital of Nantong UniversityNantongJiangsu ProvinceChina
- Institute of Otolaryngology Head and Neck SurgeryAffiliated Hospital of Nantong UniversityNantongJiangsu ProvinceChina
- Medical College of Nantong UniversityNantongJiangsu ProvinceChina
| |
Collapse
|
4
|
Chikina AS, Zholudeva AO, Lomakina ME, Kireev II, Dayal AA, Minin AA, Maurin M, Svitkina TM, Alexandrova AY. Plasma Membrane Blebbing Is Controlled by Subcellular Distribution of Vimentin Intermediate Filaments. Cells 2024; 13:105. [PMID: 38201309 PMCID: PMC10778383 DOI: 10.3390/cells13010105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/18/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024] Open
Abstract
The formation of specific cellular protrusions, plasma membrane blebs, underlies the amoeboid mode of cell motility, which is characteristic for free-living amoebae and leukocytes, and can also be adopted by stem and tumor cells to bypass unfavorable migration conditions and thus facilitate their long-distance migration. Not all cells are equally prone to bleb formation. We have previously shown that membrane blebbing can be experimentally induced in a subset of HT1080 fibrosarcoma cells, whereas other cells in the same culture under the same conditions retain non-blebbing mesenchymal morphology. Here we show that this heterogeneity is associated with the distribution of vimentin intermediate filaments (VIFs). Using different approaches to alter the VIF organization, we show that blebbing activity is biased toward cell edges lacking abundant VIFs, whereas the VIF-rich regions of the cell periphery exhibit low blebbing activity. This pattern is observed both in interphase fibroblasts, with and without experimentally induced blebbing, and during mitosis-associated blebbing. Moreover, the downregulation of vimentin expression or displacement of VIFs away from the cell periphery promotes blebbing even in cells resistant to bleb-inducing treatments. Thus, we reveal a new important function of VIFs in cell physiology that involves the regulation of non-apoptotic blebbing essential for amoeboid cell migration and mitosis.
Collapse
Affiliation(s)
- Aleksandra S. Chikina
- N.N. Blokhin National Medical Research Center of Oncology, 24 Kashirskoe Shosse, Moscow 115478, Russia; (A.S.C.); (A.O.Z.); (M.E.L.)
- Dynamics of Immune Responses Team, INSERM-U1223 Institut Pasteur, 25-28 Rue du Dr Roux, 75015 Paris, France
| | - Anna O. Zholudeva
- N.N. Blokhin National Medical Research Center of Oncology, 24 Kashirskoe Shosse, Moscow 115478, Russia; (A.S.C.); (A.O.Z.); (M.E.L.)
| | - Maria E. Lomakina
- N.N. Blokhin National Medical Research Center of Oncology, 24 Kashirskoe Shosse, Moscow 115478, Russia; (A.S.C.); (A.O.Z.); (M.E.L.)
| | - Igor I. Kireev
- Department of Biology and A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, 1 Leninskie Gory, Moscow 119992, Russia;
| | - Alexander A. Dayal
- Institute of Protein Research, Department of Cell Biology, Russian Academy of Sciences, Moscow 119988, Russia; (A.A.D.); (A.A.M.)
| | - Alexander A. Minin
- Institute of Protein Research, Department of Cell Biology, Russian Academy of Sciences, Moscow 119988, Russia; (A.A.D.); (A.A.M.)
| | - Mathieu Maurin
- Institut Curie, PSL Research University, INSERM U932, 26 rue d’Ulm, 75248 Paris, France;
| | - Tatyana M. Svitkina
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Antonina Y. Alexandrova
- N.N. Blokhin National Medical Research Center of Oncology, 24 Kashirskoe Shosse, Moscow 115478, Russia; (A.S.C.); (A.O.Z.); (M.E.L.)
| |
Collapse
|
5
|
Berr AL, Wiese K, Dos Santos G, Koch CM, Anekalla KR, Kidd M, Davis JM, Cheng Y, Hu YS, Ridge KM. Vimentin is required for tumor progression and metastasis in a mouse model of non-small cell lung cancer. Oncogene 2023:10.1038/s41388-023-02703-9. [PMID: 37161053 DOI: 10.1038/s41388-023-02703-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 11/15/2022] [Accepted: 04/20/2023] [Indexed: 05/11/2023]
Abstract
Vimentin is highly expressed in metastatic cancers, and its expression correlates with poor patient prognoses. However, no causal in vivo studies linking vimentin and non-small cell lung cancer (NSCLC) progression existed until now. We use three complementary in vivo models to show that vimentin is required for the progression of NSCLC. First, we crossed LSL-KrasG12D; Tp53fl/fl mice (KPV+/+) with vimentin knockout mice (KPV-/-) to demonstrate that KPV-/- mice have attenuated tumor growth and improved survival compared with KPV+/+ mice. Next, we therapeutically treated KPV+/+ mice with withaferin A (WFA), an agent that disrupts vimentin intermediate filaments (IFs). We show that WFA suppresses tumor growth and reduces tumor burden in the lung. Finally, luciferase-expressing KPV+/+, KPV-/-, or KPVY117L cells were implanted into the flanks of athymic mice to track cancer metastasis to the lung. In KPVY117L cells, vimentin forms oligomers called unit-length filaments but cannot assemble into mature vimentin IFs. KPV-/- and KPVY117L cells fail to metastasize, suggesting that cell-autonomous metastasis requires mature vimentin IFs. Integrative metabolomic and transcriptomic analysis reveals that KPV-/- cells upregulate genes associated with ferroptosis, an iron-dependent form of regulated cell death. KPV-/- cells have reduced glutathione peroxidase 4 (GPX4) levels, resulting in the accumulation of toxic lipid peroxides and increased ferroptosis. Together, our results demonstrate that vimentin is required for rapid tumor growth, metastasis, and protection from ferroptosis in NSCLC.
Collapse
Affiliation(s)
- Alexandra L Berr
- Department of Biomedical Engineering, Northwestern University, Chicago, IL, USA
- Division of Pulmonary and Critical Care Medicine, Northwestern University, Chicago, IL, USA
| | - Kristin Wiese
- Division of Pulmonary and Critical Care Medicine, Northwestern University, Chicago, IL, USA
| | - Gimena Dos Santos
- Division of Pulmonary and Critical Care Medicine, Northwestern University, Chicago, IL, USA
| | - Clarissa M Koch
- Division of Pulmonary and Critical Care Medicine, Northwestern University, Chicago, IL, USA
| | - Kishore R Anekalla
- Division of Pulmonary and Critical Care Medicine, Northwestern University, Chicago, IL, USA
| | - Martha Kidd
- Division of Pulmonary and Critical Care Medicine, Northwestern University, Chicago, IL, USA
| | - Jennifer M Davis
- Division of Pulmonary and Critical Care Medicine, Northwestern University, Chicago, IL, USA
| | - Yuan Cheng
- Division of Pulmonary and Critical Care Medicine, Northwestern University, Chicago, IL, USA
| | - Yuan-Shih Hu
- Division of Pulmonary and Critical Care Medicine, Northwestern University, Chicago, IL, USA
| | - Karen M Ridge
- Division of Pulmonary and Critical Care Medicine, Northwestern University, Chicago, IL, USA.
- Department of Cell and Molecular Biology, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
6
|
Vij M, Sivasankaran M, Jayaraman D, Sankaranarayanan S, Kumar V, Munirathnam D, Scott J. CARMIL2 Immunodeficiency with Epstein Barr Virus Associated Smooth Muscle Tumor (EBV-SMT). Report of a Case with Comprehensive Review of Literature. Fetal Pediatr Pathol 2022; 41:1023-1034. [PMID: 34738861 DOI: 10.1080/15513815.2021.2000533] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Background: Primary immunodeficiency (PID) having defects related to lymphocyte cytotoxic pathway or T-cell dysfunction are well known for developing opportunistic infections and Epstein-Barr virus (EBV)-associated diseases. CARMIL2 deficiency is a recently described combined immunodeficiency (CID) disorder characterized by defective CD28-mediated T cell co-stimulation, altered cytoskeletal dynamics, susceptibility to various infections and Epstein Barr Virus smooth muscle tumor (EBV-SMT). Case report: We report a homozygous CARMIL2 pathogenic variant presenting with recurrent infections and EBV associated smooth muscle tumor (SMT) in a child. Conclusion: The present study reports that EBV SMT may occur in a child with CARMIL2 deficiency.
Collapse
Affiliation(s)
- Mukul Vij
- Department of Pathology, Dr Rela Institute and Medical Centre, Bharath Institute of Higher Education and Research, Chennai, India
| | - Meena Sivasankaran
- Paediatric Hematology and Oncology, Kanchi Kamakoti CHILDS Trust Hospital, Chennai, India
| | - Dhaarani Jayaraman
- Paediatric Hematology and Oncology, Sri Ramachandra Institute of Higher Education and Research, Chennai, India
| | | | - Vimal Kumar
- Department of Paediatric Haematology & Oncology, Dr Rela Institute & Medical Centre, Bharath Institute of Higher Education and Research, Chennai, India
| | - Deenadayalan Munirathnam
- Department of Paediatric Haematology & Oncology, Dr Rela Institute & Medical Centre, Bharath Institute of Higher Education and Research, Chennai, India
| | - Julius Scott
- Paediatric Hematology and Oncology, Sri Ramachandra Institute of Higher Education and Research, Chennai, India
| |
Collapse
|
7
|
Karoii DH, Azizi H, Amirian M. Signaling Pathways and Protein-Protein Interaction of Vimentin in Invasive and Migration Cells: A Review. Cell Reprogram 2022; 24:165-174. [PMID: 35749708 DOI: 10.1089/cell.2022.0025] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The vimentin (encoded by VIM) is one of the 70 human intermediate filaments (IFs), building highly dynamic and cell-type-specific web networks in the cytoplasm. Vim-/- mice exhibit process defects associated with cell differentiation, which can have implications for understanding cancer and disease. This review showed recent reports from studies that unveiled vimentin intermediate filaments (VIFs) as an essential component of the cytoskeleton, followed by a description of vimentin's physiological functions and process reports in VIF signaling pathway and gene network studies. The main focus of the discussion is on vital signaling pathways associated with how VIF coordinates invasion cells and migration. The current research will open up multiple processes to research the function of VIF and other IF proteins in cellular and molecular biology, and they will lead to essential insights into different VIF levels for the invasive metastatic cancer cells. Enrich GO databases used Gene Ontology and Pathway Enrichment Analysis. Estimation with STRING online was to predict the functional and molecular interactions of proteins-protein with Cytoscape analysis to search and select the master genes. Using Cytoscape and STRING analysis, we presented eight genes, RhoA, Smad3, Akt1, Cdk2, Rock1, Rock2, Mapk1, and Mapk8, as the essential protein-protein interaction with vimentin involved in the invasion.
Collapse
Affiliation(s)
- Danial Hashemi Karoii
- Faculty of Biotechnology, Amol University of Special Modern Technologies, Amol, Iran
| | - Hossein Azizi
- Faculty of Biotechnology, Amol University of Special Modern Technologies, Amol, Iran
| | - Mahdi Amirian
- Institute for Anatomy and Cell Biology, Medical Faculty, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
8
|
Vakhrusheva A, Murashko A, Trifonova E, Efremov Y, Timashev P, Sokolova O. Role of Actin-binding Proteins in the Regulation of Cellular Mechanics. Eur J Cell Biol 2022; 101:151241. [DOI: 10.1016/j.ejcb.2022.151241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 04/18/2022] [Accepted: 05/19/2022] [Indexed: 12/25/2022] Open
|
9
|
Ndiaye AB, Koenderink GH, Shemesh M. Intermediate Filaments in Cellular Mechanoresponsiveness: Mediating Cytoskeletal Crosstalk From Membrane to Nucleus and Back. Front Cell Dev Biol 2022; 10:882037. [PMID: 35478961 PMCID: PMC9035595 DOI: 10.3389/fcell.2022.882037] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 03/24/2022] [Indexed: 11/25/2022] Open
Abstract
The mammalian cytoskeleton forms a mechanical continuum that spans across the cell, connecting the cell surface to the nucleus via transmembrane protein complexes in the plasma and nuclear membranes. It transmits extracellular forces to the cell interior, providing mechanical cues that influence cellular decisions, but also actively generates intracellular forces, enabling the cell to probe and remodel its tissue microenvironment. Cells adapt their gene expression profile and morphology to external cues provided by the matrix and adjacent cells as well as to cell-intrinsic changes in cytoplasmic and nuclear volume. The cytoskeleton is a complex filamentous network of three interpenetrating structural proteins: actin, microtubules, and intermediate filaments. Traditionally the actin cytoskeleton is considered the main contributor to mechanosensitivity. This view is now shifting owing to the mounting evidence that the three cytoskeletal filaments have interdependent functions due to cytoskeletal crosstalk, with intermediate filaments taking a central role. In this Mini Review we discuss how cytoskeletal crosstalk confers mechanosensitivity to cells and tissues, with a particular focus on the role of intermediate filaments. We propose a view of the cytoskeleton as a composite structure, in which cytoskeletal crosstalk regulates the local stability and organization of all three filament families at the sub-cellular scale, cytoskeletal mechanics at the cellular scale, and cell adaptation to external cues at the tissue scale.
Collapse
Affiliation(s)
| | | | - Michal Shemesh
- *Correspondence: Michal Shemesh, ; Gijsje H. Koenderink,
| |
Collapse
|
10
|
Ostrowska-Podhorodecka Z, Ding I, Norouzi M, McCulloch CA. Impact of Vimentin on Regulation of Cell Signaling and Matrix Remodeling. Front Cell Dev Biol 2022; 10:869069. [PMID: 35359446 PMCID: PMC8961691 DOI: 10.3389/fcell.2022.869069] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 02/25/2022] [Indexed: 12/12/2022] Open
Abstract
Vimentin expression contributes to cellular mechanoprotection and is a widely recognized marker of fibroblasts and of epithelial-mesenchymal transition. But it is not understood how vimentin affects signaling that controls cell migration and extracellular matrix (ECM) remodeling. Recent data indicate that vimentin controls collagen deposition and ECM structure by regulating contractile force application to the ECM and through post-transcriptional regulation of ECM related genes. Binding of cells to the ECM promotes the association of vimentin with cytoplasmic domains of adhesion receptors such as integrins. After initial adhesion, cell-generated, myosin-dependent forces and signals that impact vimentin structure can affect cell migration. Post-translational modifications of vimentin determine its adaptor functions, including binding to cell adhesion proteins like paxillin and talin. Accordingly, vimentin regulates the growth, maturation and adhesive strength of integrin-dependent adhesions, which enables cells to tune their attachment to collagen, regulate the formation of cell extensions and control cell migration through connective tissues. Thus, vimentin tunes signaling cascades that regulate cell migration and ECM remodeling. Here we consider how specific properties of vimentin serve to control cell attachment to the underlying ECM and to regulate mesenchymal cell migration and remodeling of the ECM by resident fibroblasts.
Collapse
|
11
|
Kolukisa B, Baser D, Akcam B, Danielson J, Eltan SB, Haliloglu Y, Sefer AP, Babayeva R, Akgun G, Charbonnier LM, Schmitz-Abe K, Demirkol YK, Zhang Y, Gonzaga-Jauregui C, Heredia RJ, Kasap N, Kiykim A, Yucel EO, Gok V, Unal E, Kisaarslan AP, Nepesov S, Baysoy G, Onal Z, Yesil G, Celkan TT, Cokugras H, Camcioglu Y, Eken A, Boztug K, Lo B, Karakoc-Aydiner E, Su HC, Ozen A, Chatila TA, Baris S. Evolution and long-term outcomes of combined immunodeficiency due to CARMIL2 deficiency. Allergy 2022; 77:1004-1019. [PMID: 34287962 PMCID: PMC9976932 DOI: 10.1111/all.15010] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 06/05/2021] [Accepted: 07/01/2021] [Indexed: 01/07/2023]
Abstract
BACKGROUND Biallelic loss-of-function mutations in CARMIL2 cause combined immunodeficiency associated with dermatitis, inflammatory bowel disease (IBD), and EBV-related smooth muscle tumors. Clinical and immunological characterizations of the disease with long-term follow-up and treatment options have not been previously reported in large cohorts. We sought to determine the clinical and immunological features of CARMIL2 deficiency and long-term efficacy of treatment in controlling different disease manifestations. METHODS The presenting phenotypes, long-term outcomes, and treatment responses were evaluated prospectively in 15 CARMIL2-deficient patients, including 13 novel cases. Lymphocyte subpopulations, protein expression, regulatory T (Treg), and circulating T follicular helper (cTFH ) cells were analyzed. Three-dimensional (3D) migration assay was performed to determine T-cell shape. RESULTS Mean age at disease onset was 38 ± 23 months. Main clinical features were skin manifestations (n = 14, 93%), failure to thrive (n = 10, 67%), recurrent infections (n = 10, 67%), allergic symptoms (n = 8, 53%), chronic diarrhea (n = 4, 27%), and EBV-related leiomyoma (n = 2, 13%). Skin manifestations ranged from atopic and seborrheic dermatitis to psoriasiform rash. Patients had reduced proportions of memory CD4+ T cells, Treg, and cTFH cells. Memory B and NK cells were also decreased. CARMIL2-deficient T cells exhibited reduced T-cell proliferation and cytokine production following CD28 co-stimulation and normal morphology when migrating in a high-density 3D collagen gel matrix. IBD was the most severe clinical manifestation, leading to growth retardation, requiring multiple interventional treatments. All patients were alive with a median follow-up of 10.8 years (range: 3-17 years). CONCLUSION This cohort provides clinical and immunological features and long-term follow-up of different manifestations of CARMIL2 deficiency.
Collapse
Affiliation(s)
- Burcu Kolukisa
- Marmara University, Faculty of Medicine, Pediatric Allergy
and Immunology, Istanbul, Turkey,Istanbul Jeffrey Modell Diagnostic and Research Center for
Primary Immunodeficiencies, Istanbul, Turkey,The Isil Berat Barlan Center for Translational
Medicine
| | - Dilek Baser
- Marmara University, Faculty of Medicine, Pediatric Allergy
and Immunology, Istanbul, Turkey,Istanbul Jeffrey Modell Diagnostic and Research Center for
Primary Immunodeficiencies, Istanbul, Turkey,The Isil Berat Barlan Center for Translational
Medicine
| | - Bengu Akcam
- Marmara University, Faculty of Medicine, Pediatric Allergy
and Immunology, Istanbul, Turkey,Istanbul Jeffrey Modell Diagnostic and Research Center for
Primary Immunodeficiencies, Istanbul, Turkey,The Isil Berat Barlan Center for Translational
Medicine
| | - Jeffrey Danielson
- Human Immunological Diseases Section, Laboratory of
Clinical Immunology and Microbiology, NIAID, NIH, Bethesda, MD, USA,Clinical Genomics Program, NIAID, NIH, Bethesda, MD,
USA
| | - Sevgi Bilgic Eltan
- Marmara University, Faculty of Medicine, Pediatric Allergy
and Immunology, Istanbul, Turkey,Istanbul Jeffrey Modell Diagnostic and Research Center for
Primary Immunodeficiencies, Istanbul, Turkey,The Isil Berat Barlan Center for Translational
Medicine
| | - Yesim Haliloglu
- Erciyes University School of Medicine, Department of
Medical Biology, Kayseri, Turkey
| | - Asena Pinar Sefer
- Marmara University, Faculty of Medicine, Pediatric Allergy
and Immunology, Istanbul, Turkey,Istanbul Jeffrey Modell Diagnostic and Research Center for
Primary Immunodeficiencies, Istanbul, Turkey,The Isil Berat Barlan Center for Translational
Medicine
| | - Royale Babayeva
- Marmara University, Faculty of Medicine, Pediatric Allergy
and Immunology, Istanbul, Turkey,Istanbul Jeffrey Modell Diagnostic and Research Center for
Primary Immunodeficiencies, Istanbul, Turkey,The Isil Berat Barlan Center for Translational
Medicine
| | - Gamze Akgun
- Marmara University, Faculty of Medicine, Pediatric Allergy
and Immunology, Istanbul, Turkey,Istanbul Jeffrey Modell Diagnostic and Research Center for
Primary Immunodeficiencies, Istanbul, Turkey,The Isil Berat Barlan Center for Translational
Medicine
| | - Louis-Marie Charbonnier
- Boston Children’s Hospital and Department of
Pediatrics, Harvard Medical School, Division of Immunology, Boston, MA, USA
| | - Klaus Schmitz-Abe
- Boston Children’s Hospital, Division of Immunology
and Newborn Medicine, Harvard Medical School, Boston, MA, USA
| | - Yasemin Kendir Demirkol
- Genomic Laboratory (GLAB), Umraniye Teaching and Research
Hospital, University of Health Sciences, Istanbul, Turkey
| | - Yu Zhang
- Human Immunological Diseases Section, Laboratory of
Clinical Immunology and Microbiology, NIAID, NIH, Bethesda, MD, USA,Clinical Genomics Program, NIAID, NIH, Bethesda, MD,
USA
| | | | - Raul Jimenez Heredia
- Ludwig Boltzmann Institute for Rare and Undiagnosed
Diseases, Vienna, Austria,St. Anna Children’s Cancer Research Institute
(CCRI), Vienna, Austria
| | - Nurhan Kasap
- Marmara University, Faculty of Medicine, Pediatric Allergy
and Immunology, Istanbul, Turkey,Istanbul Jeffrey Modell Diagnostic and Research Center for
Primary Immunodeficiencies, Istanbul, Turkey,The Isil Berat Barlan Center for Translational
Medicine
| | - Ayca Kiykim
- Istanbul University-Cerrahpasa, Faculty of Medicine,
Pediatric Allergy and Immunology, Istanbul, Turkey
| | - Esra Ozek Yucel
- Istanbul University, Istanbul Faculty of Medicine,
Pediatric Allergy and Immunology, Istanbul, Turkey
| | - Veysel Gok
- Erciyes University School of Medicine, Pediatric
Hematology and Oncology, Kayseri, Turkey
| | - Ekrem Unal
- Erciyes University School of Medicine, Pediatric
Hematology and Oncology, Kayseri, Turkey
| | | | - Serdar Nepesov
- Medipol University Medical Faculty, Department of
Pediatric Allergy and Immunology, Istanbul, Turkey
| | - Gokhan Baysoy
- Medipol University Medical Faculty, Department of
Pediatric Gastroenterology, Istanbul, Turkey
| | - Zerrin Onal
- Istanbul University, Istanbul Faculty of Medicine,
Department of Pediatric Gastroenterology, Hepatology and Nutrition, Istanbul,
Turkey
| | - Gozde Yesil
- Istanbul University, Istanbul Faculty of Medicine,
Department of Medical Genetics, Istanbul, Turkey
| | - Tulin Tiraje Celkan
- Istanbul University-Cerrahpasa, Faculty of Medicine,
Division of Pediatric Hematology and Oncology, Istanbul, Turkey
| | - Haluk Cokugras
- Istanbul University-Cerrahpasa, Faculty of Medicine,
Pediatric Allergy and Immunology, Istanbul, Turkey
| | - Yildiz Camcioglu
- Istanbul University-Cerrahpasa, Faculty of Medicine,
Pediatric Allergy and Immunology, Istanbul, Turkey
| | - Ahmet Eken
- Erciyes University School of Medicine, Department of
Medical Biology, Kayseri, Turkey
| | - Kaan Boztug
- Ludwig Boltzmann Institute for Rare and Undiagnosed
Diseases, Vienna, Austria,St. Anna Children’s Cancer Research Institute
(CCRI), Vienna, Austria
| | - Bernice Lo
- Sidra Medicine, Research Branch, Division of
Translational Medicine, Doha, Qatar,College of Health and Life Sciences, Hamad Bin Khalifa
University, Doha, Qatar
| | - Elif Karakoc-Aydiner
- Marmara University, Faculty of Medicine, Pediatric Allergy
and Immunology, Istanbul, Turkey,Istanbul Jeffrey Modell Diagnostic and Research Center for
Primary Immunodeficiencies, Istanbul, Turkey,The Isil Berat Barlan Center for Translational
Medicine
| | - Helen C. Su
- Human Immunological Diseases Section, Laboratory of
Clinical Immunology and Microbiology, NIAID, NIH, Bethesda, MD, USA,Clinical Genomics Program, NIAID, NIH, Bethesda, MD,
USA
| | - Ahmet Ozen
- Marmara University, Faculty of Medicine, Pediatric Allergy
and Immunology, Istanbul, Turkey,Istanbul Jeffrey Modell Diagnostic and Research Center for
Primary Immunodeficiencies, Istanbul, Turkey,The Isil Berat Barlan Center for Translational
Medicine
| | - Talal A. Chatila
- Boston Children’s Hospital and Department of
Pediatrics, Harvard Medical School, Division of Immunology, Boston, MA, USA
| | - Safa Baris
- Marmara University, Faculty of Medicine, Pediatric Allergy
and Immunology, Istanbul, Turkey,Istanbul Jeffrey Modell Diagnostic and Research Center for
Primary Immunodeficiencies, Istanbul, Turkey,The Isil Berat Barlan Center for Translational
Medicine
| |
Collapse
|
12
|
Zhu Y, Ye L, Huang H, Xu X, Liu Y, Wang J, Jin Y. Case report: Primary immunodeficiency due to a novel mutation in CARMIL2 and its response to combined immunomodulatory therapy. Front Pediatr 2022; 10:1042302. [PMID: 36727012 PMCID: PMC9884805 DOI: 10.3389/fped.2022.1042302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 12/06/2022] [Indexed: 01/18/2023] Open
Abstract
Capping protein regulator and myosin 1 linker 2 (CARMIL2) is necessary for invadopodia formation, cell polarity, lamellipodial assembly, membrane ruffling, acropinocytosis, and collective cell migration. CARMIL2 deficiency is a rare autosomal recessive disease characterized by dysfunction in naïve T-cell activation, proliferation, differentiation, and effector function and insufficient responses in T-cell memory. In this paper, we report a 9-year-old female patient with a novel pathogenic variant in CARMIL2 (c.2063C > G:p.Thr688Arg) who presented with various symptoms of primary immunodeficiencies including recurrent upper and lower respiratory infections, perioral and perineum papules, reddish impetiginized atopic dermatitis, oral ulcer, painful urination and vaginitis, otitis media, and failure to thrive. A missense mutation leading to insufficient CARMIL2 protein expression, reduced absolute T-cell and natural killer cell (NK cell) counts, and marked skewing to the naïve T-cell form was identified and indicated defective maturation of T cells and B cells. Following 1 year of multitargeted treatment with corticosteroids, hydroxychloroquine, mycophenolate mofetil, and thymosin, the patient presented with significant regression in rashes. CD4+ T-cell, CD8+ T-cell, and NK cell counts were significantly improved.
Collapse
Affiliation(s)
- Yu Zhu
- Department of Rheumatology & Immunology, Shanghai Children's Medical Center, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Lili Ye
- Department of Rheumatology & Immunology, Shanghai Children's Medical Center, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Hua Huang
- Department of Rheumatology & Immunology, Shanghai Children's Medical Center, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Xuemei Xu
- Department of Rheumatology & Immunology, Shanghai Children's Medical Center, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Yu Liu
- Department of Rheumatology & Immunology, Shanghai Children's Medical Center, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Jian Wang
- Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Children's Medical Center, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Yanliang Jin
- Department of Rheumatology & Immunology, Shanghai Children's Medical Center, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| |
Collapse
|
13
|
Stark BC, Gao Y, Sepich DS, Belk L, Culver MA, Hu B, Mekel M, Ferris W, Shin J, Solnica-Krezel L, Lin F, Cooper JA. CARMIL3 is important for cell migration and morphogenesis during early development in zebrafish. Dev Biol 2022; 481:148-159. [PMID: 34599906 PMCID: PMC8781030 DOI: 10.1016/j.ydbio.2021.09.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 09/21/2021] [Accepted: 09/24/2021] [Indexed: 01/03/2023]
Abstract
Cell migration is important during early animal embryogenesis. Cell migration and cell shape are controlled by actin assembly and dynamics, which depend on capping proteins, including the barbed-end heterodimeric actin capping protein (CP). CP activity can be regulated by capping-protein-interacting (CPI) motif proteins, including CARMIL (capping protein Arp2/3 myosin-I linker) family proteins. Previous studies of CARMIL3, one of the three highly conserved CARMIL genes in vertebrates, have largely been limited to cells in culture. Towards understanding CARMIL function during embryogenesis in vivo, we analyzed zebrafish lines carrying mutations of carmil3. Maternal-zygotic mutants showed impaired endodermal migration during gastrulation, along with defects in dorsal forerunner cell (DFC) cluster formation, which affected the morphogenesis of Kupffer's vesicle (KV). Mutant KVs were smaller, contained fewer cells and displayed decreased numbers of cilia, leading to defects in left/right (L/R) patterning with variable penetrance and expressivity. The penetrance and expressivity of the KV phenotype in carmil3 mutants correlated well with the L/R heart positioning defect at the end of embryogenesis. This in vivo animal study of CARMIL3 reveals its new role during morphogenesis of the vertebrate embryo. This role involves migration of endodermal cells and DFCs, along with subsequent morphogenesis of the KV and L/R asymmetry.
Collapse
Affiliation(s)
- Benjamin C. Stark
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St Louis, MO
| | - Yuanyuan Gao
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA
| | - Diane S. Sepich
- Department of Developmental Biology, Washington University School of Medicine, St Louis, MO
| | - Lakyn Belk
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA
| | - Matthew A. Culver
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA
| | - Bo Hu
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA
| | - Marlene Mekel
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St Louis, MO
| | - Wyndham Ferris
- Department of Developmental Biology, Washington University School of Medicine, St Louis, MO
| | - Jimann Shin
- Department of Developmental Biology, Washington University School of Medicine, St Louis, MO
| | - Lilianna Solnica-Krezel
- Department of Developmental Biology, Washington University School of Medicine, St Louis, MO,Corresponding authors. Email addresses for correspondence after publication: Fang Lin, ; Lilianna Solnica-Krezel, ; John Cooper,
| | - Fang Lin
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA.,Corresponding authors. Email addresses for correspondence after publication: Fang Lin, ; Lilianna Solnica-Krezel, ; John Cooper,
| | - John A. Cooper
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St Louis, MO,Department of Cell Biology and Physiology, Washington University School of Medicine, St Louis, MO,Corresponding authors. Email addresses for correspondence after publication: Fang Lin, ; Lilianna Solnica-Krezel, ; John Cooper,
| |
Collapse
|
14
|
Marks P, Petrie R. Push or pull: how cytoskeletal crosstalk facilitates nuclear movement through 3D environments. Phys Biol 2021; 19. [PMID: 34936999 DOI: 10.1088/1478-3975/ac45e3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 12/22/2021] [Indexed: 11/11/2022]
Abstract
As cells move from two-dimensional (2D) surfaces into complex 3D environments, the nucleus becomes a barrier to movement due to its size and rigidity. Therefore, moving the nucleus is a key step in 3D cell migration. In this review, we discuss how coordination between cytoskeletal and nucleoskeletal networks is required to pull the nucleus forward through complex 3D spaces. We summarize recent migration models which utilize unique molecular crosstalk to drive nuclear migration through different 3D environments. In addition, we speculate about the role of proteins that indirectly crosslink cytoskeletal networks and the role of 3D focal adhesions and how these protein complexes may drive 3D nuclear migration.
Collapse
Affiliation(s)
- Pragati Marks
- Department of Biology, Drexel University, 3245 CHESTNUT ST, PISB 401M1, PHILADELPHIA, Philadelphia, 19104-2816, UNITED STATES
| | - Ryan Petrie
- Department of Biology, Drexel University, 3245 Chestnut Street, PISB 419, Philadelphia, Philadelphia, Pennsylvania, 19104-2816, UNITED STATES
| |
Collapse
|
15
|
Shin SU, Cho HM, Das R, Gil-Henn H, Ramakrishnan S, Al Bayati A, Carroll SF, Zhang Y, Sankar AP, Elledge C, Pimentel A, Blonska M, Rosenblatt JD. Inhibition of Vasculogenic Mimicry and Angiogenesis by an Anti-EGFR IgG1-Human Endostatin-P125A Fusion Protein Reduces Triple Negative Breast Cancer Metastases. Cells 2021; 10:cells10112904. [PMID: 34831127 PMCID: PMC8616280 DOI: 10.3390/cells10112904] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/08/2021] [Accepted: 10/19/2021] [Indexed: 12/16/2022] Open
Abstract
Triple negative breast cancer (TNBC) is an aggressive breast cancer subtype with limited therapeutic options. Metastasis is the major cause of TNBC mortality. Angiogenesis facilitates TNBC metastases. Many TNBCs also form vascular channels lined by tumor cells rather than endothelial cells, known as ‘vasculogenic mimicry’ (VM). VM has been linked to metastatic TNBC behavior and resistance to anti-angiogenic agents. Epidermal growth factor receptor (EGFR) is frequently expressed on TNBC, but anti-EGFR antibodies have limited efficacy. We synthesized an anti-EGFR antibody–endostatin fusion protein, αEGFR IgG1-huEndo-P125A (αEGFR-E-P125A), designed to deliver a mutant endostatin, huEndo-P125A (E-P125A), to EGFR expressing tumors, and tested its effects on angiogenesis, TNBC VM, and motility in vitro, and on the growth and metastasis of two independent human TNBC xenograft models in vivo. αEGFR-E-P125A completely inhibited the ability of human umbilical vein endothelial cells to form capillary-like structures (CLS) and of TNBC cells to engage in VM and form tubes in vitro. αEGFR-E-P125A treatment reduced endothelial and TNBC motility in vitro more effectively than E-P125A or cetuximab, delivered alone or in combination. Treatment of TNBC with αEGFR-E-P125A was associated with a reduction in cytoplasmic and nuclear β-catenin and reduced phosphorylation of vimentin. αEGFR-E-P125A treatment of TNBC xenografts in vivo inhibited angiogenesis and VM, reduced primary tumor growth and lung metastasis of orthotopically implanted MDA-MB-468 TNBC cells, and markedly decreased lung metastases following intravenous injection of MDA-MB-231-4175 lung-tropic TNBC cells. Combined inhibition of angiogenesis, VM, and TNBC motility mediated by αEGFR-E-P125A is a promising strategy for the prevention of TNBC metastases.
Collapse
Affiliation(s)
- Seung-Uon Shin
- Sylvester Comprehensive Cancer Center, Department of Medicine, Division of Hematology, University of Miami Miller School of Medicine (UMMSOM), Miami, FL 33136, USA; (S.-U.S.); (H.-M.C.); (A.A.B.); (Y.Z.); (M.B.)
| | - Hyun-Mi Cho
- Sylvester Comprehensive Cancer Center, Department of Medicine, Division of Hematology, University of Miami Miller School of Medicine (UMMSOM), Miami, FL 33136, USA; (S.-U.S.); (H.-M.C.); (A.A.B.); (Y.Z.); (M.B.)
| | - Rathin Das
- Synergys Biotherapeutics Inc., Alamo, CA 94507, USA; (R.D.); (S.F.C.)
| | - Hava Gil-Henn
- The Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel;
| | - Sundaram Ramakrishnan
- Department of Surgery, University of Miami Miller School of Medicine (UMMSOM), Miami, FL 33136, USA;
| | - Ahmed Al Bayati
- Sylvester Comprehensive Cancer Center, Department of Medicine, Division of Hematology, University of Miami Miller School of Medicine (UMMSOM), Miami, FL 33136, USA; (S.-U.S.); (H.-M.C.); (A.A.B.); (Y.Z.); (M.B.)
- Kentucky Clinic, University of Kentucky, Lexington, KY 40536, USA
| | | | - Yu Zhang
- Sylvester Comprehensive Cancer Center, Department of Medicine, Division of Hematology, University of Miami Miller School of Medicine (UMMSOM), Miami, FL 33136, USA; (S.-U.S.); (H.-M.C.); (A.A.B.); (Y.Z.); (M.B.)
| | - Ankita P. Sankar
- Sheila and David Fuente Graduate Program in Cancer Biology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine (UMMSOM), Miami, FL 33136, USA; (A.P.S.); (C.E.)
| | - Christian Elledge
- Sheila and David Fuente Graduate Program in Cancer Biology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine (UMMSOM), Miami, FL 33136, USA; (A.P.S.); (C.E.)
| | - Augustin Pimentel
- Sylvester Comprehensive Cancer Center, Department of Medicine, Division of Medical Oncology, University of Miami Miller School of Medicine (UMMSOM), Miami, FL 33136, USA;
| | - Marzenna Blonska
- Sylvester Comprehensive Cancer Center, Department of Medicine, Division of Hematology, University of Miami Miller School of Medicine (UMMSOM), Miami, FL 33136, USA; (S.-U.S.); (H.-M.C.); (A.A.B.); (Y.Z.); (M.B.)
| | - Joseph D. Rosenblatt
- Sylvester Comprehensive Cancer Center, Department of Medicine, Division of Hematology, University of Miami Miller School of Medicine (UMMSOM), Miami, FL 33136, USA; (S.-U.S.); (H.-M.C.); (A.A.B.); (Y.Z.); (M.B.)
- Correspondence: ; Tel.: +1-305-243-4618; Fax: +1-305-243-9161
| |
Collapse
|
16
|
Mylvaganam S, Freeman SA, Grinstein S. The cytoskeleton in phagocytosis and macropinocytosis. Curr Biol 2021; 31:R619-R632. [PMID: 34033794 DOI: 10.1016/j.cub.2021.01.036] [Citation(s) in RCA: 93] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cells of the innate immune system, notably macrophages, neutrophils and dendritic cells, perform essential antimicrobial and homeostatic functions. These functions rely on the dynamic surveillance of the environment supported by the formation of elaborate membrane protrusions. Such protrusions - pseudopodia, lamellipodia and filopodia - facilitate the sampling of the surrounding fluid by macropinocytosis, as well as the engulfment of particulates by phagocytosis. Both processes entail extreme plasma membrane deformations that require the coordinated rearrangement of cytoskeletal polymers, which exert protrusive force and drive membrane coalescence and scission. The resulting vacuolar compartments undergo pronounced remodeling and ultimate resolution by mechanisms that also involve the cytoskeleton. Here, we describe the regulation and functions of cytoskeletal assembly and remodeling during macropinocytosis and phagocytosis.
Collapse
Affiliation(s)
- Sivakami Mylvaganam
- Program in Cell Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Spencer A Freeman
- Program in Cell Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada.
| | - Sergio Grinstein
- Program in Cell Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
17
|
Bosa L, Batura V, Colavito D, Fiedler K, Gaio P, Guo C, Li Q, Marzollo A, Mescoli C, Nambu R, Pan J, Perilongo G, Warner N, Zhang S, Kotlarz D, Klein C, Snapper SB, Walters TD, Leon A, Griffiths AM, Cananzi M, Muise AM. Novel CARMIL2 loss-of-function variants are associated with pediatric inflammatory bowel disease. Sci Rep 2021; 11:5945. [PMID: 33723309 PMCID: PMC7960730 DOI: 10.1038/s41598-021-85399-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 03/01/2021] [Indexed: 01/31/2023] Open
Abstract
CARMIL2 is required for CD28-mediated co-stimulation of NF-κB signaling in T cells and its deficiency has been associated with primary immunodeficiency and, recently, very early onset inflammatory bowel disease (IBD). Here we describe the identification of novel biallelic CARMIL2 variants in three patients presenting with pediatric-onset IBD and in one with autoimmune polyendocrine syndrome (APS). None manifested overt clinical signs of immunodeficiency before their diagnosis. The first patient presented with very early onset IBD. His brother was found homozygous for the same CARMIL2 null variant and diagnosed with APS. Two other IBD patients were found homozygous for a nonsense and a missense CARMIL2 variant, respectively, and they both experienced a complicated postoperative course marked by severe infections. Immunostaining of bowel biopsies showed reduced CARMIL2 expression in all the three patients with IBD. Western blot and immunofluorescence of transfected cells revealed an altered expression pattern of the missense variant. Our work expands the genotypic and phenotypic spectrum of CARMIL2 deficiency, which can present with either IBD or APS, aside from classic immunodeficiency manifestations. CARMIL2 should be included in the diagnostic work-up of patients with suspected monogenic IBD.
Collapse
Affiliation(s)
- Luca Bosa
- Department of Woman's and Child's Health, University of Padova, 35128, Padua, Italy
| | - Vritika Batura
- SickKids Inflammatory Bowel Disease Centre, The Hospital for Sick Children, 555 University Ave, Toronto, ON, M5G 1X8, Canada
| | - Davide Colavito
- Research & Innovation (R&I Genetics) Srl, C.so Stati Uniti 4, 35127, Padua, Italy
| | - Karoline Fiedler
- SickKids Inflammatory Bowel Disease Centre, The Hospital for Sick Children, 555 University Ave, Toronto, ON, M5G 1X8, Canada
| | - Paola Gaio
- Department of Woman's and Child's Health, University of Padova, 35128, Padua, Italy
| | - Conghui Guo
- SickKids Inflammatory Bowel Disease Centre, The Hospital for Sick Children, 555 University Ave, Toronto, ON, M5G 1X8, Canada
| | - Qi Li
- SickKids Inflammatory Bowel Disease Centre, The Hospital for Sick Children, 555 University Ave, Toronto, ON, M5G 1X8, Canada
| | - Antonio Marzollo
- Pediatric Hematology, Oncology and Stem Cell Transplant Division, Padova University Hospital, 35128, Padua, Italy
- Fondazione Città della Speranza, Istituto di Ricerca Pediatrica, 35127, Padua, Italy
| | - Claudia Mescoli
- Department of Medicine, Padova University Hospital, 35128, Padua, Italy
| | - Ryusuke Nambu
- SickKids Inflammatory Bowel Disease Centre, The Hospital for Sick Children, 555 University Ave, Toronto, ON, M5G 1X8, Canada
- Division of Gastroenterology and Hepatology, Saitama Children's Medical Center, 1-2 Shintoshin, Chuo-ku, Saitama, Saitama, 330-8777, Japan
| | - Jie Pan
- SickKids Inflammatory Bowel Disease Centre, The Hospital for Sick Children, 555 University Ave, Toronto, ON, M5G 1X8, Canada
| | - Giorgio Perilongo
- Department of Woman's and Child's Health, University of Padova, 35128, Padua, Italy
| | - Neil Warner
- SickKids Inflammatory Bowel Disease Centre, The Hospital for Sick Children, 555 University Ave, Toronto, ON, M5G 1X8, Canada
| | - Shiqi Zhang
- SickKids Inflammatory Bowel Disease Centre, The Hospital for Sick Children, 555 University Ave, Toronto, ON, M5G 1X8, Canada
| | - Daniel Kotlarz
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, LMU Munich, Munich, Germany
| | - Christoph Klein
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, LMU Munich, Munich, Germany
| | - Scott B Snapper
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Division of Gastroenterology, Brigham and Women's Hospital, Boston, MA, USA
| | - Thomas D Walters
- SickKids Inflammatory Bowel Disease Centre, The Hospital for Sick Children, 555 University Ave, Toronto, ON, M5G 1X8, Canada
- Department of Paediatrics, University of Toronto, The Hospital for Sick Children, Toronto, ON, M5G1X8, Canada
| | - Alberta Leon
- Research & Innovation (R&I Genetics) Srl, C.so Stati Uniti 4, 35127, Padua, Italy
| | - Anne M Griffiths
- SickKids Inflammatory Bowel Disease Centre, The Hospital for Sick Children, 555 University Ave, Toronto, ON, M5G 1X8, Canada
- Department of Paediatrics, University of Toronto, The Hospital for Sick Children, Toronto, ON, M5G1X8, Canada
| | - Mara Cananzi
- Department of Woman's and Child's Health, University of Padova, 35128, Padua, Italy
| | - Aleixo M Muise
- SickKids Inflammatory Bowel Disease Centre, The Hospital for Sick Children, 555 University Ave, Toronto, ON, M5G 1X8, Canada.
- Department of Paediatrics, University of Toronto, The Hospital for Sick Children, Toronto, ON, M5G1X8, Canada.
- Cell Biology Program, Research Institute, The Hospital for Sick Children, Toronto, ON, M5G0A4, Canada.
| |
Collapse
|
18
|
Kelemen K, Saft L, Craig FE, Orazi A, Nakashima M, Wertheim GB, George TI, Horny HP, King RL, Quintanilla-Martinez L, Wang SA, Rimsza LM, Reichard KK. Eosinophilia/Hypereosinophilia in the Setting of Reactive and Idiopathic Causes, Well-Defined Myeloid or Lymphoid Leukemias, or Germline Disorders. Am J Clin Pathol 2021; 155:179-210. [PMID: 33367563 DOI: 10.1093/ajcp/aqaa244] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVES To report the findings of the 2019 Society for Hematopathology/European Association for Haematopathology Workshop within the categories of reactive eosinophilia, hypereosinophilic syndrome (HES), germline disorders with eosinophilia (GDE), and myeloid and lymphoid neoplasms associated with eosinophilia (excluding entities covered by other studies in this series). METHODS The workshop panel reviewed 109 cases, assigned consensus diagnosis, and created diagnosis-specific sessions. RESULTS The most frequent diagnosis was reactive eosinophilia (35), followed by acute leukemia (24). Myeloproliferative neoplasms (MPNs) received 17 submissions, including chronic eosinophilic leukemia, not otherwise specified (CEL, NOS). Myelodysplastic syndrome (MDS), MDS/MPN, and therapy-related myeloid neoplasms received 11, while GDE and HES received 12 and 11 submissions, respectively. CONCLUSIONS Hypereosinophilia and HES are defined by specific clinical and laboratory criteria. Eosinophilia is commonly reactive. An acute leukemic onset with eosinophilia may suggest core-binding factor acute myeloid leukemia, blast phase of chronic myeloid leukemia, BCR-ABL1-positive leukemia, or t(5;14) B-lymphoblastic leukemia. Eosinophilia is rare in MDS but common in MDS/MPN. CEL, NOS is a clinically aggressive MPN with eosinophilia as the dominant feature. Bone marrow morphology and cytogenetic and/or molecular clonality may distinguish CEL from HES. Molecular testing helps to better subclassify myeloid neoplasms with eosinophilia and to identify patients for targeted treatments.
Collapse
Affiliation(s)
| | - Leonie Saft
- Department of Pathology, Karolinska University Hospital and Institute, Stockholm, Sweden
| | - Fiona E Craig
- Division of Hematopathology, Mayo Clinic, Phoenix, AZ
| | - Attilio Orazi
- Department of Pathology, Texas Tech University Health Sciences Center, El Paso
| | - Megan Nakashima
- Department of Laboratory Medicine, Cleveland Clinic, Cleveland, OH
| | - Gerald B Wertheim
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Tracy I George
- Department of Pathology, University of Utah School of Medicine, Salt Lake City
| | - Hans-Peter Horny
- Institute of Pathology, University of Munich (LMU), Munich, Germany
| | | | - Leticia Quintanilla-Martinez
- Institute of Pathology and Neuropathology, Eberhard Karls University of Tübingen and Comprehensive Cancer Center, Tübingen University Hospital, Tübingen, Germany
| | - Sa A Wang
- Department of Hematopathology, University of Texas MD Anderson Cancer Center, Houston
| | - Lisa M Rimsza
- Division of Hematopathology, Mayo Clinic, Phoenix, AZ
| | | |
Collapse
|
19
|
Seetharaman S, Etienne-Manneville S. Cytoskeletal Crosstalk in Cell Migration. Trends Cell Biol 2020; 30:720-735. [DOI: 10.1016/j.tcb.2020.06.004] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 06/09/2020] [Accepted: 06/10/2020] [Indexed: 01/15/2023]
|
20
|
Ding I, Ostrowska-Podhorodecka Z, Lee W, Liu RS, Carneiro K, Janmey PA, McCulloch CA. Cooperative roles of PAK1 and filamin A in regulation of vimentin assembly and cell extension formation. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118739. [DOI: 10.1016/j.bbamcr.2020.118739] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 04/30/2020] [Accepted: 05/05/2020] [Indexed: 01/02/2023]
|
21
|
Huang X, Qu R, Ouyang J, Zhong S, Dai J. An Overview of the Cytoskeleton-Associated Role of PDLIM5. Front Physiol 2020; 11:975. [PMID: 32848888 PMCID: PMC7426503 DOI: 10.3389/fphys.2020.00975] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 07/16/2020] [Indexed: 01/08/2023] Open
Abstract
Regenerative medicine represented by stem cell technology has become one of the pillar medical technologies for human disease treatment. Cytoskeleton plays important roles in maintaining cell morphology, bearing external forces, and maintaining the effectiveness of cell internal structure, among which cytoskeleton related proteins are involved in and play an indispensable role in the changes of cytoskeleton. PDLIM5 is a cytoskeleton-related protein that, like other cytoskeletal proteins, acts as a binding protein. PDZ and LIM domain 5 (PDLIM5), also known as ENH (Enigma homolog), is a cytoplasmic protein with a molecular mass of about 63 KDa that consists of a PDZ domain at the N-terminus and three LIM domains at the C-terminus. PDLIM5 binds to the cytoskeleton and membrane proteins through its PDZ domain and interacts with various signaling molecules, including protein kinases and transcription factors, through its LIM domain. As a cytoskeleton-related protein, PDLIM5 plays an important role in regulating cell proliferation, differentiation and cell fate decision in multiple tissues and cell types. In this review, we briefly summarize the state of knowledge on the PDLIM5 gene, structural properties, and molecular functional mechanisms of the PDLIM5 protein, and its role in cells, tissues, and organ systems, and describe the possible underlying molecular signaling pathways. In the last part of this review, we will focus on discussing the limitations of existing research and the future prospects of PDLIM5 research in turn.
Collapse
Affiliation(s)
- Xiaolan Huang
- Guangdong Provincial Key Laboratory of Medical Biomechanics, Department of Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Rongmei Qu
- Guangdong Provincial Key Laboratory of Medical Biomechanics, Department of Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Jun Ouyang
- Guangdong Provincial Key Laboratory of Medical Biomechanics, Department of Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Shizhen Zhong
- Guangdong Provincial Key Laboratory of Medical Biomechanics, Department of Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Jingxing Dai
- Guangdong Provincial Key Laboratory of Medical Biomechanics, Department of Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|
22
|
Caruso S, Atkin-Smith GK, Baxter AA, Tixeira R, Jiang L, Ozkocak DC, Santavanond JP, Hulett MD, Lock P, Phan TK, Poon IKH. Defining the role of cytoskeletal components in the formation of apoptopodia and apoptotic bodies during apoptosis. Apoptosis 2020; 24:862-877. [PMID: 31489517 DOI: 10.1007/s10495-019-01565-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
During apoptosis, dying cells undergo dynamic morphological changes that ultimately lead to their disassembly into fragments called apoptotic bodies (ApoBDs). Reorganisation of the cytoskeletal structures is key in driving various apoptotic morphologies, including the loss of cell adhesion and membrane bleb formation. However, whether cytoskeletal components are also involved in morphological changes that occur later during apoptosis, such as the recently described generation of thin apoptotic membrane protrusions called apoptopodia and subsequent ApoBD formation, is not well defined. Through monitoring the progression of apoptosis by confocal microscopy, specifically focusing on the apoptopodia formation step, we characterised the presence of F-actin and microtubules in a subset of apoptopodia generated by T cells and monocytes. Interestingly, targeting actin polymerisation and microtubule assembly pharmacologically had no major effect on apoptopodia formation. These data demonstrate apoptopodia as a novel type of membrane protrusion that could be formed in the absence of actin polymerisation and microtubule assembly.
Collapse
Affiliation(s)
- Sarah Caruso
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Georgia K Atkin-Smith
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Amy A Baxter
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Rochelle Tixeira
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Lanzhou Jiang
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Dilara C Ozkocak
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Jascinta P Santavanond
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Mark D Hulett
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Peter Lock
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Thanh Kha Phan
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Ivan K H Poon
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia.
| |
Collapse
|
23
|
Shamriz O, Simon AJ, Lev A, Megged O, Ledder O, Picard E, Joseph L, Molho-Pessach V, Tal Y, Millman P, Slae M, Somech R, Toker O, Berger M. Exogenous interleukin-2 can rescue in-vitro T cell activation and proliferation in patients with a novel capping protein regulator and myosin 1 linker 2 mutation. Clin Exp Immunol 2020; 200:215-227. [PMID: 32201938 PMCID: PMC7232008 DOI: 10.1111/cei.13432] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 03/04/2020] [Accepted: 03/16/2020] [Indexed: 12/27/2022] Open
Abstract
Capping protein regulator and myosin 1 linker 2 (CARMIL2) deficiency is characterized by impaired T cell activation, which is attributed to defective CD28-mediated co-signaling. Herein, we aimed to analyze the effect of exogenous interleukin (IL)-2 on in-vitro T cell activation and proliferation in a family with CARMIL2 deficiency. This study included four children (one male and three females; aged 2·5-10 years at presentation). The patients presented with inflammatory bowel disease and recurrent viral infections. Genetic analysis revealed a novel homozygous 25-base pairs deletion in CARMIL2. Immunoblotting demonstrated the absence of CARMIL2 protein in all four patients and confirmed the diagnosis of CARMIL2 deficiency. T cells were activated in-vitro with the addition of IL-2 in different concentrations. CD25 and interferon (IFN)-γ levels were measured after 48 h and 5 days of activation. CD25 surface expression on activated CD8+ and CD4+ T cells was significantly diminished in all patients compared to healthy controls. Additionally, CD8+ T cells from all patients demonstrated significantly reduced IFN-γ production. When cells derived from CARMIL2-deficient patients were treated with IL-2, CD25 and IFN-γ production increased in a dose-dependent manner. T cell proliferation, as measured by Cell Trace Violet, was impaired in one patient and it was also rescued with IL-2. In conclusion, we found that IL-2 rescued T cell activation and proliferation in CARMIL2-deficient patients. Thus, IL-2 should be further studied as a potential therapeutic modality for these patients.
Collapse
Affiliation(s)
- O. Shamriz
- The Lautenberg Center for Immunology and Cancer ResearchInstitute of Medical Research Israel‐CanadaHebrew University‐Hadassah Medical SchoolJerusalemIsrael
- Allergy and Clinical Immunology UnitDepartment of MedicineHadassah‐Hebrew University Medical CenterJerusalemIsrael
| | - A. J. Simon
- Sheba Cancer Research Center and Institute of HematologySheba Medical CenterTel HaShomerRamat‐GanIsrael
| | - A. Lev
- Sackler Faculty of MedicineTel Aviv UniversityTel AvivIsrael
- Pediatric Department A and Immunology ServiceJeffrey Modell Foundation CenterEdmond and Lily Safra Children’s HospitalSheba Medical CenterAffiliated with Tel Aviv UniversityTel AvivIsrael
| | - O. Megged
- Pediatric Infectious diseases UnitShaare Zedek Medical CenterJerusalemIsrael
| | - O. Ledder
- Juliet Keidan Institute of Pediatric Gastroenterology and NutritionShaare Zedek Medical CenterJerusalemIsrael
| | - E. Picard
- Pediatric pulmonology UnitShaare Zedek Medical CenterJerusalemIsrael
| | - L. Joseph
- Pediatric pulmonology UnitShaare Zedek Medical CenterJerusalemIsrael
| | - V. Molho-Pessach
- Department of DermatologyHadassah‐Hebrew University Medical CenterJerusalemIsrael
| | - Y. Tal
- Allergy and Clinical Immunology UnitDepartment of MedicineHadassah‐Hebrew University Medical CenterJerusalemIsrael
| | - P. Millman
- Pediatric Gastroenterology UnitHadassah‐Hebrew University Medical CenterJerusalemIsrael
| | - M. Slae
- Pediatric Gastroenterology UnitHadassah‐Hebrew University Medical CenterJerusalemIsrael
| | - R. Somech
- Sackler Faculty of MedicineTel Aviv UniversityTel AvivIsrael
- Pediatric Department A and Immunology ServiceJeffrey Modell Foundation CenterEdmond and Lily Safra Children’s HospitalSheba Medical CenterAffiliated with Tel Aviv UniversityTel AvivIsrael
| | - O. Toker
- Faculty of MedicineHebrew University of JerusalemJerusalemIsrael
- Allergy and Clinical Immunology UnitShaare Zedek Medical CenterJerusalemIsrael
| | - M. Berger
- The Lautenberg Center for Immunology and Cancer ResearchInstitute of Medical Research Israel‐CanadaHebrew University‐Hadassah Medical SchoolJerusalemIsrael
| |
Collapse
|
24
|
McConnell P, Mekel M, Kozlov AG, Mooren OL, Lohman TM, Cooper JA. Comparative Analysis of CPI-Motif Regulation of Biochemical Functions of Actin Capping Protein. Biochemistry 2020; 59:1202-1215. [PMID: 32133840 DOI: 10.1021/acs.biochem.0c00092] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The heterodimeric actin capping protein (CP) is regulated by a set of proteins that contain CP-interacting (CPI) motifs. Outside of the CPI motif, the sequences of these proteins are unrelated and distinct. The CPI motif and surrounding sequences are conserved within a given protein family, when compared to those of other CPI-motif protein families. Using biochemical assays with purified proteins, we compared the ability of CPI-motif-containing peptides from different protein families (a) to bind to CP, (b) to allosterically inhibit barbed-end capping by CP, and (c) to allosterically inhibit interaction of CP with V-1, another regulator of CP. We found large differences in potency among the different CPI-motif-containing peptides, and the different functional assays showed different orders of potency. These biochemical differences among the CPI-motif peptides presumably reflect interactions between CP and CPI-motif peptides involving amino acid residues that are conserved but are not part of the strictly defined consensus, as it was originally identified in comparisons of sequences of CPI motifs across all protein families [Hernandez-Valladares, M., et al. (2010) Structural characterization of a capping protein interaction motif defines a family of actin filament regulators. Nat. Struct. Mol. Biol. 17, 497-503; Bruck, S., et al. (2006) Identification of a Novel Inhibitory Actin-capping Protein Binding Motif in CD2-associated Protein. J. Biol. Chem. 281, 19196-19203]. These biochemical differences may be important for conserved distinct functions of CPI-motif protein families in cells with respect to the regulation of CP activity and actin assembly near membranes.
Collapse
Affiliation(s)
- Patrick McConnell
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Marlene Mekel
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Alexander G Kozlov
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Olivia L Mooren
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Timothy M Lohman
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - John A Cooper
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| |
Collapse
|
25
|
Kim D, Uner A, Saglam A, Chadburn A, Crane GM. Peripheral eosinophilia in primary immunodeficiencies of actin dysregulation: A case series of Wiskott-Aldrich syndrome, CARMIL2 and DOCK8 deficiency and review of the literature. Ann Diagn Pathol 2019; 43:151413. [DOI: 10.1016/j.anndiagpath.2019.151413] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 09/11/2019] [Indexed: 11/26/2022]
|
26
|
Driving Neurogenesis in Neural Stem Cells with High Sensitivity Optogenetics. Neuromolecular Med 2019; 22:139-149. [PMID: 31595404 DOI: 10.1007/s12017-019-08573-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 09/21/2019] [Indexed: 01/15/2023]
Abstract
Optogenetic stimulation of neural stem cells (NSCs) enables their activity-dependent photo-modulation. This provides a spatio-temporal tool for studying activity-dependent neurogenesis and for regulating the differentiation of the transplanted NSCs. Currently, this is mainly driven by viral transfection of channelrhodopsin-2 (ChR2) gene, which requires high irradiance and complex in vivo/vitro stimulation systems. Additionally, despite the extensive application of optogenetics in neuroscience, the transcriptome-level changes induced by optogenetic stimulation of NSCs have not been elucidated yet. Here, we made transformed NSCs (SFO-NSCs) stably expressing one of the step-function opsin (SFO)-variants of chimeric channelrhodopsins, ChRFR(C167A), which is more sensitive to blue light than native ChR2, via a non-viral transfection system using piggyBac transposon. We set up a simple low-irradiance optical stimulation (OS)-incubation system that induced c-fos mRNA expression, which is activity-dependent, in differentiating SFO-NSCs. More neuron-like SFO-NCSs, which had more elongated axons, were differentiated with daily OS than control cells without OS. This was accompanied by positive/negative changes in the transcriptome involved in axonal remodeling, synaptic plasticity, and microenvironment modulation with the up-regulation of several genes involved in the Ca2+-related functions. Our approach could be applied for stem cell transplantation studies in tissue with two strengths: lower carcinogenicity and less irradiance needed for tissue penetration.
Collapse
|
27
|
Li J, Zou Y, Li Z, Jiu Y. Joining actions: crosstalk between intermediate filaments and actin orchestrates cellular physical dynamics and signaling. SCIENCE CHINA-LIFE SCIENCES 2019; 62:1368-1374. [PMID: 31098891 DOI: 10.1007/s11427-018-9488-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 01/23/2019] [Indexed: 11/28/2022]
Abstract
Many key cellular functions are regulated by the interplay of three distinct cytoskeletal networks, made of actin filaments, microtubules, and intermediate filaments (IFs), which is a hitherto poorly investigated area of research. However, there are growing evidence in the last few years showing that the IFs cooperate with actin filaments to exhibit strongly coupled functions. This review recapitulates our current knowledge on how the crosstalk between IFs and actin filaments modulates the migration properties, mechano-responsiveness and signaling transduction of cells, from both biophysical and biochemical point of view.
Collapse
Affiliation(s)
- Jian Li
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yun Zou
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhifang Li
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yaming Jiu
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
28
|
Tang DD, Liao G, Gerlach BD. Reorganization of the Vimentin Network in Smooth Muscle. ACTA ACUST UNITED AC 2019; 2:0108011-108015. [PMID: 32328567 DOI: 10.1115/1.4042313] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 09/21/2018] [Indexed: 12/15/2022]
Abstract
Vimentin intermediate filaments (IFs) link to desmosomes (intercellular junctions) on the membrane and dense bodies in the cytoplasm, which provides a structural base for intercellular and intracellular force transmission in smooth muscle. There is evidence to suggest that the vimentin framework plays an important role in mediating smooth muscle mechanical properties such as tension and contractile responses. Contractile activation induces vimentin phosphorylation at Ser-56 and vimentin network reorientation, facilitating contractile force transmission among and within smooth muscle cells. p21-activated kinase 1 and polo-like kinase 1 catalyze vimentin phosphorylation at Ser-56, whereas type 1 protein phosphatase dephosphorylates vimentin at this residue. Vimentin filaments are also involved in other cell functions including migration and nuclear positioning. This review recapitulates our current knowledge how the vimentin network modulates mechanical and biological properties of smooth muscle.
Collapse
Affiliation(s)
- Dale D Tang
- Department of Molecular and Cellular Physiology, Albany Medical College, 47 New Scotland Avenue, MC-8, Albany, NY 12118 e-mail:
| | - Guoning Liao
- Department of Molecular and Cellular Physiology, Albany Medical College, 47 New Scotland Avenue, MC-8, Albany, NY 12118
| | - Brennan D Gerlach
- Department of Molecular and Cellular Physiology, Albany Medical College, 47 New Scotland Avenue, MC-8, Albany, NY 12118
| |
Collapse
|
29
|
Abstract
The vimentin gene (
VIM) encodes one of the 71 human intermediate filament (IF) proteins, which are the building blocks of highly ordered, dynamic, and cell type-specific fiber networks. Vimentin is a multi-functional 466 amino acid protein with a high degree of evolutionary conservation among vertebrates.
Vim
−/− mice, though viable, exhibit systemic defects related to development and wound repair, which may have implications for understanding human disease pathogenesis. Vimentin IFs are required for the plasticity of mesenchymal cells under normal physiological conditions and for the migration of cancer cells that have undergone epithelial–mesenchymal transition. Although it was observed years ago that vimentin promotes cell migration, the molecular mechanisms were not completely understood. Recent advances in microscopic techniques, combined with computational image analysis, have helped illuminate vimentin dynamics and function in migrating cells on a precise scale. This review includes a brief historical account of early studies that unveiled vimentin as a unique component of the cell cytoskeleton followed by an overview of the physiological vimentin functions documented in studies on
Vim
−/− mice. The primary focus of the discussion is on novel mechanisms related to how vimentin coordinates cell migration. The current hypothesis is that vimentin promotes cell migration by integrating mechanical input from the environment and modulating the dynamics of microtubules and the actomyosin network. These new findings undoubtedly will open up multiple avenues to study the broader function of vimentin and other IF proteins in cell biology and will lead to critical insights into the relevance of different vimentin levels for the invasive behaviors of metastatic cancer cells.
Collapse
Affiliation(s)
- Rachel A Battaglia
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC, USA
| | - Samed Delic
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC, USA
| | - Harald Herrmann
- Division of Molecular Genetics, German Cancer Research Center, Heidelberg, Germany.,Institute of Neuropathology, University Hospital Erlangen, Erlangen, Germany
| | - Natasha T Snider
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
30
|
Aberrant expression of vimentin predisposes oral premalignant lesion derived cells towards transformation. Exp Mol Pathol 2018; 105:243-251. [PMID: 30189187 DOI: 10.1016/j.yexmp.2018.08.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 06/23/2018] [Accepted: 08/30/2018] [Indexed: 11/20/2022]
Abstract
OBJECTIVE We have previously reported the aberrant expression of vimentin in human oral premalignant lesions and a 4-Nitroquinoline 1-oxide (4NQO) model of rat lingual carcinogenesis. Hence, we wanted to understand whether the expression of vimentin in early stage contributes to the process of transformation. STUDY DESIGN Vimentin was stably expressed in oral premalignant lesion derived cells (vimentin negative) and various transformation related phenotypic assays were performed. Since vimentin alone failed to transform the cells, an additional carcinogenic stimulus benzo[a]pyrene (BP) was used. Concomitantly, immunohistochemistry (IHC) was performed on oral leukoplakia and tumor tissues for studying the expression of vimentin and E-cadherin. RESULTS Exogenous expression of vimentin led to the appearance of EMT and stemness-related signatures. Further, upon BP treatment, vimentin expressing clones showed an increase in vitro and in vivo transformation efficiency. Importantly, high vimentin-low E-cadherin expression significantly correlated with the grade of dysplasia, as also with the lymph node metastasis in oral tumors. CONCLUSION Our study suggests that the expression of vimentin in early stages may be beneficial, although not sufficient to achieve transformation. Further, high vimentin-low E-cadherin expression, if validated in more number of early oral lesions, may prove useful in the identification of high risk human premalignant lesions.
Collapse
|
31
|
Liao G, Wang R, Rezey AC, Gerlach BD, Tang DD. MicroRNA miR-509 Regulates ERK1/2, the Vimentin Network, and Focal Adhesions by Targeting Plk1. Sci Rep 2018; 8:12635. [PMID: 30135525 PMCID: PMC6105636 DOI: 10.1038/s41598-018-30895-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 08/08/2018] [Indexed: 12/20/2022] Open
Abstract
Polo-like kinase 1 (Plk1) has been implicated in mitosis, cytokinesis, and proliferation. The mechanisms that regulate Plk1 expression remain to be elucidated. It is reported that miR-100 targets Plk1 in certain cancer cells. Here, treatment with miR-100 did not affect Plk1 protein expression in human airway smooth muscle cells. In contrast, treatment with miR-509 inhibited the expression of Plk1 in airway smooth muscle cells. Exposure to miR-509 inhibitor enhanced Plk1 expression in cells. Introduction of miR-509 reduced luciferase activity of a Plk1 3'UTR reporter. Mutation of miR-509 targeting sequence in Plk1 3'UTR resisted the reduction of the luciferase activity. Furthermore, miR-509 inhibited the PDGF-induced phosphorylation of MEK1/2 and ERK1/2, and cell proliferation without affecting the expression of c-Abl, a tyrosine kinase implicated in cell proliferation. Moreover, we unexpectedly found that vimentin filaments contacted paxillin-positive focal adhesions. miR-509 exposure inhibited vimentin phosphorylation at Ser-56, vimentin network reorganization, focal adhesion formation, and cell migration. The effects of miR-509 on ERK1/2 and vimentin were diminished in RNAi-resistant Plk1 expressing cells treated with miR-509. Taken together, these findings unveil previously unknown mechanisms that miR-509 regulates ERK1/2 and proliferation by targeting Plk1. miR-509 controls vimentin cytoskeleton reorganization, focal adhesion assembly, and cell migration through Plk1.
Collapse
Affiliation(s)
- Guoning Liao
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York, USA
| | - Ruping Wang
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York, USA
| | - Alyssa C Rezey
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York, USA
| | - Brennan D Gerlach
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York, USA
| | - Dale D Tang
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York, USA.
| |
Collapse
|
32
|
Colburn ZT, Jones JCR. Complexes of α6β4 integrin and vimentin act as signaling hubs to regulate epithelial cell migration. J Cell Sci 2018; 131:jcs214593. [PMID: 29976561 PMCID: PMC6080603 DOI: 10.1242/jcs.214593] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 06/26/2018] [Indexed: 12/27/2022] Open
Abstract
We find that clusters of β4 integrin, organized into distinct puncta, localize along vimentin filaments within lamellipodia at the cell edge of A549 cells, as assessed by interferometric photoactivated localization microscopy. Moreover, puncta and vimentin filaments exhibit a dynamic interplay in live cells, as viewed by structured-illumination microscopy, with β4 integrin puncta that associate with vimentin persisting for longer than those that do not. Interestingly, in A549 cells β4 integrin regulates vimentin cytoskeleton organization. When β4 integrin is knocked down there is a loss of vimentin filaments from lamellipodia. However, in these conditions, vimentin filaments instead concentrate around the nucleus. Although β4 integrin organization is unaffected in vimentin-deficient A549 cells, such cells move in a less-directed fashion and exhibit reduced Rac1 activity, mimicking the phenotype of β4 integrin-deficient A549 cells. Moreover, in vimentin-deficient cells, Rac1 fails to cluster at sites enriched in α6β4 integrin heterodimers. The aberrant motility of both β4 integrin and vimentin-deficient cells is rescued by expression of active Rac1, leading us to propose that complexes of β4 integrin and vimentin act as signaling hubs, regulating cell motility behavior.
Collapse
Affiliation(s)
- Zachary T Colburn
- School of Molecular Biosciences, Washington State University, BLS 202F, 1770 NE Stadium Way, Pullman, WA 99164, USA
| | - Jonathan C R Jones
- School of Molecular Biosciences, Washington State University, BLS 202F, 1770 NE Stadium Way, Pullman, WA 99164, USA
| |
Collapse
|
33
|
Abstract
Proper regulation of the immune system is required for protection against pathogens and preventing autoimmune disorders. Inborn errors of the immune system due to inherited or de novo germline mutations can lead to the loss of protective immunity, aberrant immune homeostasis, and the development of autoimmune disease, or combinations of these. Forward genetic screens involving clinical material from patients with primary immunodeficiencies (PIDs) can vary in severity from life-threatening disease affecting multiple cell types and organs to relatively mild disease with susceptibility to a limited range of pathogens or mild autoimmune conditions. As central mediators of innate and adaptive immune responses, T cells are critical orchestrators and effectors of the immune response. As such, several PIDs result from loss of or altered T cell function. PID-associated functional defects range from complete absence of T cell development to uncontrolled effector cell activation. Furthermore, the gene products of known PID causal genes are involved in diverse molecular pathways ranging from T cell receptor signaling to regulators of protein glycosylation. Identification of the molecular and biochemical cause of PIDs can not only guide the course of treatment for patients, but also inform our understanding of the basic biology behind T cell function. In this chapter, we review PIDs with known genetic causes that intrinsically affect T cell function with particular focus on perturbations of biochemical pathways.
Collapse
Affiliation(s)
- William A Comrie
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States; Clinical Genomics Program, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD, United States
| | - Michael J Lenardo
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States; Clinical Genomics Program, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD, United States.
| |
Collapse
|
34
|
Yuda A, Lee WS, Petrovic P, McCulloch CA. Novel proteins that regulate cell extension formation in fibroblasts. Exp Cell Res 2018; 365:85-96. [PMID: 29476834 DOI: 10.1016/j.yexcr.2018.02.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 02/19/2018] [Accepted: 02/20/2018] [Indexed: 01/05/2023]
Abstract
Cell extensions are critical structures that enable matrix remodeling in wound healing and cancer invasion but the regulation of their formation is not well-defined. We searched for new proteins that mediated cell extension formation over collagen by tandem mass tagged mass spectrometry analysis of purified extensions in 3T3 fibroblasts. Unexpectedly, importin-5, ENH isoform 1b (PDLIM5) and 26 S protease regulatory subunit 6B (PSMC4) were more abundant (> 10-fold) in membrane-penetrating cell extensions than cell bodies, which was confirmed by immunostaining and immunoblotting and also observed in human gingival fibroblasts. After siRNA knockdown of these proteins and plating cells on grid-supported floating collagen gels for 6 h, formation of cell extensions and collagen remodeling were examined. Knockdown of importin-5 reduced collagen compaction (1.9-fold), pericellular collagen degradation (~ 1.8-fold) and number of cell extensions (~ 69%). Knockdown of PSMC4 reduced collagen compaction (~ 1.5-fold), pericellular collagen degradation (~ 1.7-fold) and number of cell extensions (~ 42%). Knockdown of PDLIM5 reduced collagen compaction (~ 1.6-fold) and number of cell extensions (~ 21%). Inhibition of the TGF-β RI kinase, Smad3 or ROCK-II signaling pathways reduced the abundance of PDLIM5 in cell extensions but PSMC4 and importin-5 were reduced only by Smad3 or ROCK-II inhibitors. We conclude that these novel proteins are required for cell extension formation and their recruitment into extensions involves the Smad3 and ROCK signaling pathways.
Collapse
Affiliation(s)
- A Yuda
- Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Canada
| | - W S Lee
- Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Canada
| | - P Petrovic
- Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Canada
| | - C A McCulloch
- Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Canada.
| |
Collapse
|
35
|
Alazami AM, Al-Helale M, Alhissi S, Al-Saud B, Alajlan H, Monies D, Shah Z, Abouelhoda M, Arnaout R, Al-Dhekri H, Al-Numair NS, Ghebeh H, Sheikh F, Al-Mousa H. Novel CARMIL2 Mutations in Patients with Variable Clinical Dermatitis, Infections, and Combined Immunodeficiency. Front Immunol 2018; 9:203. [PMID: 29479355 PMCID: PMC5811477 DOI: 10.3389/fimmu.2018.00203] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 01/24/2018] [Indexed: 12/13/2022] Open
Abstract
Combined immunodeficiencies are a heterogeneous collection of primary immune disorders that exhibit defects in T cell development or function, along with impaired B cell activity even in light of normal B cell maturation. CARMIL2 (RLTPR) is a protein involved in cytoskeletal organization and cell migration, which also plays a role in CD28 co-signaling of T cells. Mutations in this protein have recently been reported to cause a novel primary immunodeficiency disorder with variable phenotypic presentations. Here, we describe seven patients from three unrelated, consanguineous multiplex families that presented with dermatitis, esophagitis, and recurrent skin and chest infections with evidence of combined immunodeficiency. Through the use of whole exome sequencing and autozygome-guided analysis, we uncovered two mutations not previously reported (p.R50T and p.L846Sfs) in CARMIL2. Real-time PCR analysis revealed that the biallelic frameshift mutation is under negative selection, likely due to nonsense-mediated RNA decay and leading to loss of detectable protein upon immunoblotting. Protein loss was also observed for the missense mutation, and 3D modeling suggested a disturbance in structural stability due to an increase in the electrostatic energy for the affected amino acid and surrounding residues. Immunophenotyping revealed that patient Treg counts were significantly depressed, and that CD4+ T cells were heavily skewed towards the naïve status. CD3/CD28 signaling impairment was evidenced by reduced proliferative response to stimulation. This work broadens the allelic heterogeneity associated with CARMIL2 and highlights a deleterious missense alteration located outside the leucine-rich repeat of the protein, where all other missense mutations have been reported to date.
Collapse
Affiliation(s)
- Anas M Alazami
- Department of Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia.,Saudi Human Genome Program, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Maryam Al-Helale
- Department of Pediatrics, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | - Safa Alhissi
- Department of Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Bandar Al-Saud
- Department of Pediatrics, Allergy and Immunology Section, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Huda Alajlan
- Department of Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Dorota Monies
- Department of Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia.,Saudi Human Genome Program, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Zeeshan Shah
- Department of Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia.,Saudi Human Genome Program, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Mohamed Abouelhoda
- Department of Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia.,Saudi Human Genome Program, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Rand Arnaout
- Department of Medicine, Allergy and Immunology Section, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia.,Alfaisal University, Riyadh, Saudi Arabia
| | - Hasan Al-Dhekri
- Department of Pediatrics, Allergy and Immunology Section, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Nouf S Al-Numair
- Department of Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Hazem Ghebeh
- Alfaisal University, Riyadh, Saudi Arabia.,Stem Cell & Tissue Re-Engineering Program, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Farrukh Sheikh
- Department of Medicine, Allergy and Immunology Section, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Hamoud Al-Mousa
- Department of Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia.,Department of Pediatrics, Allergy and Immunology Section, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia.,Alfaisal University, Riyadh, Saudi Arabia
| |
Collapse
|
36
|
Stark BC, Lanier MH, Cooper JA. CARMIL family proteins as multidomain regulators of actin-based motility. Mol Biol Cell 2017; 28:1713-1723. [PMID: 28663287 PMCID: PMC5491179 DOI: 10.1091/mbc.e17-01-0019] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 04/20/2017] [Accepted: 04/27/2017] [Indexed: 12/23/2022] Open
Abstract
CARMILs are large multidomain proteins that regulate the actin-binding activity of capping protein (CP), a major capper of actin filament barbed ends in cells. CARMILs bind directly to CP and induce a conformational change that allosterically decreases but does not abolish its actin-capping activity. The CP-binding domain of CARMIL consists of the CP-interaction (CPI) and CARMIL-specific interaction (CSI) motifs, which are arranged in tandem. Many cellular functions of CARMILs require the interaction with CP; however, a more surprising result is that the cellular function of CP in cells appears to require binding to a CARMIL or another protein with a CPI motif, suggesting that CPI-motif proteins target CP and modulate its actin-capping activity. Vertebrates have three highly conserved genes and expressed isoforms of CARMIL with distinct and overlapping localizations and functions in cells. Various domains of these CARMIL isoforms interact with plasma membranes, vimentin intermediate filaments, SH3-containing class I myosins, the dual-GEF Trio, and other adaptors and signaling molecules. These biochemical properties suggest that CARMILs play a variety of membrane-associated functions related to actin assembly and signaling. CARMIL mutations and variants have been implicated in several human diseases. We focus on roles for CARMILs in signaling in addition to their function as regulators of CP and actin.
Collapse
Affiliation(s)
- Benjamin C Stark
- Department of Biochemistry and Molecular Biophysics and Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110
| | - M Hunter Lanier
- Department of Biochemistry and Molecular Biophysics and Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110
| | - John A Cooper
- Department of Biochemistry and Molecular Biophysics and Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110
| |
Collapse
|
37
|
Zhang C, Yu P, Zhu L, Zhao Q, Lu X, Bo S. Blockade of α7 nicotinic acetylcholine receptors inhibit nicotine-induced tumor growth and vimentin expression in non-small cell lung cancer through MEK/ERK signaling way. Oncol Rep 2017; 38:3309-3318. [PMID: 29039603 PMCID: PMC5783576 DOI: 10.3892/or.2017.6014] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 09/07/2017] [Indexed: 12/22/2022] Open
Abstract
Nicotine can stimulate the progression of non-small cell lung cancer (NSCLC) through nicotinic acetylcholine receptors (nAChRs). The persistent proliferation of cancer cells is one of the key effects of nicotinic signaling. The present study aimed to clarify the mechanism of nicotine-induced proliferation in NSCLCs at the receptor subtype level. We have previously reported that there are various subtypes of nicotinic receptors expressed in NSCLC cell lines. In the present study, we demonstrated that blocking α7nAChRs agonized by nicotine could suppress the proliferation of H1299 cells in vitro and decrease H1299 tumor xenograft growth in nude mice. During this process, the expression of vimentin was also markedly attenuated, concomitant with the decreased expression of α7nAChR. These results were ascertained by knocking down the α7nAChR gene to abolish receptor functioning. Furthermore, under the stimulation of nicotine, the MEK/ERK signaling pathway was found to be inhibited when cells were treated with an antagonist of α7nAChR or an inhibitor of MEK. Collectively the results indicate that the changes in proliferation and vimentin expression of H1299 cells in response to α7nAChR stimulation are mediated by the MEK/ERK pathway. These findings demonstrate that α7nAChR plays an important role in H1299 cell proliferation, tumor growth and expression of vimentin. Therefore, blocking α7nAChRs in NSCLC may be a potential adjuvant therapy for the targeted treatment of NSCLC.
Collapse
Affiliation(s)
- Chun Zhang
- Department of Pharmacy, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, P.R. China
| | - Ping Yu
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| | - Liang Zhu
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| | - Qingnan Zhao
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| | - Xiaotong Lu
- Department of Pharmacy, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, P.R. China
| | - Shuhong Bo
- Department of Pharmacy, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, P.R. China
| |
Collapse
|
38
|
Lustri AM, Di Matteo S, Fraveto A, Costantini D, Cantafora A, Napoletano C, Bragazzi MC, Giuliante F, De Rose AM, Berloco PB, Grazi GL, Carpino G, Alvaro D. TGF-β signaling is an effective target to impair survival and induce apoptosis of human cholangiocarcinoma cells: A study on human primary cell cultures. PLoS One 2017; 12:e0183932. [PMID: 28873435 PMCID: PMC5584931 DOI: 10.1371/journal.pone.0183932] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 08/14/2017] [Indexed: 12/15/2022] Open
Abstract
Cholangiocarcinoma (CCA) and its subtypes (mucin- and mixed-CCA) arise from the neoplastic transformation of cholangiocytes, the epithelial cells lining the biliary tree. CCA has a high mortality rate owing to its aggressiveness, late diagnosis and high resistance to radiotherapy and chemotherapeutics. We have demonstrated that CCA is enriched for cancer stem cells which express epithelial to mesenchymal transition (EMT) traits, with these features being associated with aggressiveness and drug resistance. TGF-β signaling is upregulated in CCA and involved in EMT. We have recently established primary cell cultures from human mucin- and mixed-intrahepatic CCA. In human CCA primary cultures with different levels of EMT trait expression, we evaluated the anticancer effects of: (i) CX-4945, a casein kinase-2 (CK2) inhibitor that blocks TGF-β1-induced EMT; and (ii) LY2157299, a TGF-β receptor I kinase inhibitor. We tested primary cell lines expressing EMT trait markers (vimentin, N-cadherin and nuclear catenin) but negative for epithelial markers, and cell lines expressing epithelial markers (CK19-positive) in association with EMT traits. Cell viability was evaluated by MTS assays, apoptosis by Annexin V FITC and cell migration by wound-healing assay. Results: at a dose of 10 μM, CX4945 significantly decreased cell viability of primary human cell cultures from both mucin and mixed CCA, whereas in CK19-positive cell cultures, the effect of CX4945 on cell viability required higher concentrations (>30μM). At the same concentrations, CX4945 also induced apoptosis (3- fold increase vs controls) which correlated with the expression level of CK2 in the different CCA cell lines (mucin- and mixed-CCA). Indeed, no apoptotic effects were observed in CK19-positive cells expressing lower CK2 levels. The effects of CX4945 on viability and apoptosis were associated with an increased number of γ-H2ax (biomarker for DNA double-strand breaks) foci, suggesting the active role of CK2 as a repair mechanism in CCAs. LY2157299 failed to influence cell proliferation or apoptosis but significantly inhibited cell migration. At a 50 μM concentration, in fact, LY2157299 significantly impaired (at 24, 48 and 120 hrs) the wound-healing of primary cell cultures from both mucin-and mixed-CCA. In conclusion, we demonstrated that CX4945 and LY2157299 exert relevant but distinct anticancer effects against human CCA cells, with CX4945 acting on cell viability and apoptosis, and LY2157299 impairing cell migration. These results suggest that targeting the TGF-β signaling with a combination of CX-4945 and LY2157299 could have potential benefits in the treatment of human CCA.
Collapse
Affiliation(s)
- Anna Maria Lustri
- Medico-surgical Sciences and Biotechnologies, Sapienza University of Rome, RM, ROMA, Italy
| | - Sabina Di Matteo
- Medico-surgical Sciences and Biotechnologies, Sapienza University of Rome, RM, ROMA, Italy
| | - Alice Fraveto
- Medico-surgical Sciences and Biotechnologies, Sapienza University of Rome, RM, ROMA, Italy
| | - Daniele Costantini
- Medico-surgical Sciences and Biotechnologies, Sapienza University of Rome, RM, ROMA, Italy
| | - Alfredo Cantafora
- Medico-surgical Sciences and Biotechnologies, Sapienza University of Rome, RM, ROMA, Italy
| | - Chiara Napoletano
- Department of Experimental Medicine, University of Rome Sapienza, Roma, Italy
| | | | - Felice Giuliante
- Catholic University of the Sacred Heart School of Medicine, Roma, Italy
| | | | - Pasquale B. Berloco
- Department of General Surgery and Organ Transplantation, Sapienza University of Rome, Roma, Italy
| | - Gian Luca Grazi
- Regina Elena National Cancer Institute, the Gastroenterology Unit, Roma, Italy
| | - Guido Carpino
- Department of Health Science, University of Rome Foro Italico, Roma, Italy
| | - Domenico Alvaro
- Department of Internal Medicine and Medical Specialties, Sapienza University of Rome, RM, ROMA, Italy
- * E-mail:
| |
Collapse
|
39
|
Lv YJ, Wang W, Ji CS, Jia, Xie MR, Hu B. Association between periostin and epithelial-mesenchymal transition in esophageal squamous cell carcinoma and its clinical significance. Oncol Lett 2017; 14:376-382. [PMID: 28693179 DOI: 10.3892/ol.2017.6124] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 02/03/2017] [Indexed: 01/08/2023] Open
Abstract
The present study aimed to investigate the association between periostin (POSTN), epithelial cadherin (E-cad) and vimentin (Vim) expression levels in esophageal squamous cell carcinoma (ESCC) tissues, and its clinicopathological significance. A total of 58 patients with esophageal cancer were enrolled. Immunohistochemistry was performed to quantify the expression levels of POSTN, E-cad and Vim. E-cad expression was reduced in ESCC tissue, which was associated with severe tumor node metastasis (TNM) stage (P<0.001), lymphatic metastasis (P<0.001) and vascular invasion (P=0.026). Conversely, Vim expression was found to be increased in ESCC tissues, and had associations with TNM stage (P=0.039) and lymphatic metastasis (P=0.039). POSTN overexpression observed in ESCC cells was associated with attenuation of E-cad expression (P<0.001) and elevated expression levels of Vim (P<0.001). Additionally, significant correlations between the overexpression of POSTN in ESCC cells and clinicopathological variables including TNM staging (P=0.009), degree of differentiation (P<0.001), lymphatic metastasis (P=0.009) and vascular invasion (P=0.002) were verified. Multivariate analysis revealed that overexpression of POSTN in ESCC cancer cells is able to predict the poor prognosis of patients independently of overall survival (P=0.022) and disease free survival (P=0.019). The preliminary findings of the present study demonstrate that POSTN is involved in the epithelial-mesenchymal transition of ESCC cells, and may therefore be a predictive factor for tumor invasion and metastasis, as well as an indicator of poor prognosis for patients with ESCC.
Collapse
Affiliation(s)
- Ya-Jing Lv
- Department of Medical Oncology, Anhui Provincial Hospital, Anhui Medical University, Hefei, Anhui 230001, P.R. China
| | - Wei Wang
- Department of Medical Oncology, Anhui Provincial Hospital, Anhui Medical University, Hefei, Anhui 230001, P.R. China
| | - Chu-Shu Ji
- Department of Medical Oncology, Anhui Provincial Hospital, Anhui Medical University, Hefei, Anhui 230001, P.R. China
| | - Jia
- Department of Medical Oncology, Anhui Provincial Hospital, Anhui Medical University, Hefei, Anhui 230001, P.R. China
| | - Ming-Ran Xie
- Department of Thoracic Surgery, Anhui Provincial Hospital, Anhui Medical University, Hefei, Anhui 230001, P.R. China
| | - Bing Hu
- Department of Medical Oncology, Anhui Provincial Hospital, Anhui Medical University, Hefei, Anhui 230001, P.R. China
| |
Collapse
|
40
|
Tang DD, Gerlach BD. The roles and regulation of the actin cytoskeleton, intermediate filaments and microtubules in smooth muscle cell migration. Respir Res 2017; 18:54. [PMID: 28390425 PMCID: PMC5385055 DOI: 10.1186/s12931-017-0544-7] [Citation(s) in RCA: 195] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 04/05/2017] [Indexed: 02/06/2023] Open
Abstract
Smooth muscle cell migration has been implicated in the development of respiratory and cardiovascular systems; and airway/vascular remodeling. Cell migration is a polarized cellular process involving a protrusive cell front and a retracting trailing rear. There are three cytoskeletal systems in mammalian cells: the actin cytoskeleton, the intermediate filament network, and microtubules; all of which regulate all or part of the migrated process. The dynamic actin cytoskeleton spatially and temporally regulates protrusion, adhesions, contraction, and retraction from the cell front to the rear. c-Abl tyrosine kinase plays a critical role in regulating actin dynamics and migration of airway smooth muscle cells and nonmuscle cells. Recent studies suggest that intermediate filaments undergo reorganization during migration, which coordinates focal adhesion dynamics, cell contraction, and nucleus rigidity. In particular, vimentin intermediate filaments undergo phosphorylation and reorientation in smooth muscle cells, which may regulate cell contraction and focal adhesion assembly/disassembly. Motile cells are characterized by a front-rear polarization of the microtubule framework, which regulates all essential processes leading to cell migration through its role in cell mechanics, intracellular trafficking, and signaling. This review recapitulates our current knowledge how the three cytoskeletal systems spatially and temporally modulate the migratory properties of cells. We also summarize the potential role of migration-associated biomolecules in lung and vascular diseases.
Collapse
Affiliation(s)
- Dale D Tang
- Department of Molecular and Cellular Physiology, Albany Medical College, 47 New Scotland Avenue, MC-8, Albany, NY, 12208, USA.
| | - Brennan D Gerlach
- Department of Molecular and Cellular Physiology, Albany Medical College, 47 New Scotland Avenue, MC-8, Albany, NY, 12208, USA
| |
Collapse
|
41
|
Schober T, Magg T, Laschinger M, Rohlfs M, Linhares ND, Puchalka J, Weisser T, Fehlner K, Mautner J, Walz C, Hussein K, Jaeger G, Kammer B, Schmid I, Bahia M, Pena SD, Behrends U, Belohradsky BH, Klein C, Hauck F. A human immunodeficiency syndrome caused by mutations in CARMIL2. Nat Commun 2017; 8:14209. [PMID: 28112205 PMCID: PMC5473639 DOI: 10.1038/ncomms14209] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 11/17/2016] [Indexed: 12/22/2022] Open
Abstract
Human T-cell function is dependent on T-cell antigen receptor (TCR) and co-signalling as evidenced by immunodeficiencies affecting TCR-dependent signalling pathways. Here, we show four human patients with EBV+ disseminated smooth muscle tumours that carry two homozygous loss-of-function mutations in the CARMIL2 (RLTPR) gene encoding the capping protein regulator and myosin 1 linker 2. These patients lack regulatory T cells without evidence of organ-specific autoimmunity, and have defective CD28 co-signalling associated with impaired T-cell activation, differentiation and function, as well as perturbed cytoskeletal organization associated with T-cell polarity and migration disorders. Human CARMIL2-deficiency is therefore an autosomal recessive primary immunodeficiency disorder associated with defective CD28-mediated TCR co-signalling and impaired cytoskeletal dynamics. CARMIL2 (Rltpr) is involved in T-cell function. Here, the authors identify human CARMIL2-deficiency as an autosomal recessive primary immunodeficiency disorder characterized by EBV+ smooth muscle tumours, CD28 co-signalling deficiency and impaired cytoskeletal dynamics.
Collapse
Affiliation(s)
- T Schober
- Dr. von Hauner Children's Hospital, Ludwig-Maximilians-Universität (LMU), Lindwurmstrasse 4, D-80337 Munich, Germany
| | - T Magg
- Dr. von Hauner Children's Hospital, Ludwig-Maximilians-Universität (LMU), Lindwurmstrasse 4, D-80337 Munich, Germany
| | - M Laschinger
- Department of Surgery, Technische Universität München (TUM), Ismaninger Strasse 22, D-81675 Munich, Germany
| | - M Rohlfs
- Dr. von Hauner Children's Hospital, Ludwig-Maximilians-Universität (LMU), Lindwurmstrasse 4, D-80337 Munich, Germany
| | - N D Linhares
- Laboratory of Clinical Genomics, Federal University of Minas Gerais, 190 Professor Alfredo Balena Avenida, Belo Horizonte 30130-100, Brazil
| | - J Puchalka
- Dr. von Hauner Children's Hospital, Ludwig-Maximilians-Universität (LMU), Lindwurmstrasse 4, D-80337 Munich, Germany
| | - T Weisser
- Department of Surgery, Technische Universität München (TUM), Ismaninger Strasse 22, D-81675 Munich, Germany
| | - K Fehlner
- Department of Surgery, Technische Universität München (TUM), Ismaninger Strasse 22, D-81675 Munich, Germany
| | - J Mautner
- Research Unit Gene Vectors, Helmholtz Zentrum München (HMGU)-German Research Center for Environmental Health, Marchioninistrasse 25, D-81377 Munich, Germany.,Children's Hospital, Technische Universität München (TUM), Munich D-80804, Germany.,German Centre for Infection Research (DZIF), Trogerstrasse 30, D-81675 Munich, Germany
| | - C Walz
- Institute of Pathology, Ludwig-Maximilians-Universität (LMU), Thalkirchner Strasse 36, D-80337 Munich, Germany
| | - K Hussein
- Institute of Pathology, Hannover Medical School (MHH), Carl-Neuberg-Strasse 1, D-30625 Hanover, Germany
| | - G Jaeger
- Department of Diagnostic Virology, Max von Pettenkofer-Institute, Ludwig-Maximilians-Universität (LMU), Pettenkoferstrasse 9a, D-80336 Munich, Germany
| | - B Kammer
- Dr. von Hauner Children's Hospital, Ludwig-Maximilians-Universität (LMU), Lindwurmstrasse 4, D-80337 Munich, Germany
| | - I Schmid
- Dr. von Hauner Children's Hospital, Ludwig-Maximilians-Universität (LMU), Lindwurmstrasse 4, D-80337 Munich, Germany
| | - M Bahia
- Department of Pediatric Gastroenterology, Federal University of Minas Gerais, 110 Prof. Alfredo Balena Avenida, Belo Horizonte 30130-100, Brazil
| | - S D Pena
- Laboratory of Clinical Genomics, Federal University of Minas Gerais, 190 Professor Alfredo Balena Avenida, Belo Horizonte 30130-100, Brazil
| | - U Behrends
- Research Unit Gene Vectors, Helmholtz Zentrum München (HMGU)-German Research Center for Environmental Health, Marchioninistrasse 25, D-81377 Munich, Germany.,Children's Hospital, Technische Universität München (TUM), Munich D-80804, Germany.,German Centre for Infection Research (DZIF), Trogerstrasse 30, D-81675 Munich, Germany
| | - B H Belohradsky
- Dr. von Hauner Children's Hospital, Ludwig-Maximilians-Universität (LMU), Lindwurmstrasse 4, D-80337 Munich, Germany
| | - C Klein
- Dr. von Hauner Children's Hospital, Ludwig-Maximilians-Universität (LMU), Lindwurmstrasse 4, D-80337 Munich, Germany.,German Centre for Infection Research (DZIF), Trogerstrasse 30, D-81675 Munich, Germany
| | - F Hauck
- Dr. von Hauner Children's Hospital, Ludwig-Maximilians-Universität (LMU), Lindwurmstrasse 4, D-80337 Munich, Germany.,German Centre for Infection Research (DZIF), Trogerstrasse 30, D-81675 Munich, Germany
| |
Collapse
|
42
|
Roncagalli R, Cucchetti M, Jarmuzynski N, Grégoire C, Bergot E, Audebert S, Baudelet E, Menoita MG, Joachim A, Durand S, Suchanek M, Fiore F, Zhang L, Liang Y, Camoin L, Malissen M, Malissen B. The scaffolding function of the RLTPR protein explains its essential role for CD28 co-stimulation in mouse and human T cells. J Exp Med 2016; 213:2437-2457. [PMID: 27647348 PMCID: PMC5068240 DOI: 10.1084/jem.20160579] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 08/17/2016] [Indexed: 12/26/2022] Open
Abstract
In two complementary papers, Casanova, Malissen, and collaborators report the discovery of human RLTPR deficiency, the first primary immunodeficiency of the human CD28 pathway in T cells. Together, the two studies elucidate the largely (but not completely) overlapping roles of RLTPR in CD28 signaling in T and B cells of humans and mice. The RLTPR cytosolic protein, also known as CARMIL2, is essential for CD28 co-stimulation in mice, but its importance in human T cells and mode of action remain elusive. Here, using affinity purification followed by mass spectrometry analysis, we showed that RLTPR acts as a scaffold, bridging CD28 to the CARD11/CARMA1 cytosolic adaptor and to the NF-κB signaling pathway, and identified proteins not found before within the CD28 signaling pathway. We further demonstrated that RLTPR is essential for CD28 co-stimulation in human T cells and that its noncanonical pleckstrin-homology domain, leucine-rich repeat domain, and proline-rich region were mandatory for that task. Although RLTPR is thought to function as an actin-uncapping protein, this property was dispensable for CD28 co-stimulation in both mouse and human. Our findings suggest that the scaffolding role of RLTPR predominates during CD28 co-stimulation and underpins the similar function of RLTPR in human and mouse T cells. Along that line, the lack of functional RLTPR molecules impeded the differentiation toward Th1 and Th17 fates of both human and mouse CD4+ T cells. RLTPR was also expressed in both human and mouse B cells. In the mouse, RLTPR did not play, however, any detectable role in BCR-mediated signaling and T cell-independent B cell responses.
Collapse
Affiliation(s)
- Romain Roncagalli
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, INSERM, CNRS, 13288 Marseille, France
| | - Margot Cucchetti
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, INSERM, CNRS, 13288 Marseille, France
| | - Nicolas Jarmuzynski
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, INSERM, CNRS, 13288 Marseille, France
| | - Claude Grégoire
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, INSERM, CNRS, 13288 Marseille, France
| | - Elise Bergot
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, INSERM, CNRS, 13288 Marseille, France
| | - Stéphane Audebert
- CRCM, Marseille Protéomique, Institut Paoli-Calmettes, Aix Marseille Université, INSERM, CNRS, 13009 Marseille, France
| | - Emilie Baudelet
- CRCM, Marseille Protéomique, Institut Paoli-Calmettes, Aix Marseille Université, INSERM, CNRS, 13009 Marseille, France
| | - Marisa Goncalves Menoita
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, INSERM, CNRS, 13288 Marseille, France
| | - Anais Joachim
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, INSERM, CNRS, 13288 Marseille, France
| | - Stéphane Durand
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, INSERM, CNRS, 13288 Marseille, France
| | | | - Frédéric Fiore
- Centre d'Immunophénomique, Aix Marseille Université, INSERM, CNRS, 13288 Marseille, France
| | - Lichen Zhang
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, INSERM, CNRS, 13288 Marseille, France.,School of Laboratory Medicine, Xinxiang Medical University, Xinxiang 453003, China
| | - Yinming Liang
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, INSERM, CNRS, 13288 Marseille, France.,School of Laboratory Medicine, Xinxiang Medical University, Xinxiang 453003, China
| | - Luc Camoin
- CRCM, Marseille Protéomique, Institut Paoli-Calmettes, Aix Marseille Université, INSERM, CNRS, 13009 Marseille, France
| | - Marie Malissen
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, INSERM, CNRS, 13288 Marseille, France .,Centre d'Immunophénomique, Aix Marseille Université, INSERM, CNRS, 13288 Marseille, France
| | - Bernard Malissen
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, INSERM, CNRS, 13288 Marseille, France .,Centre d'Immunophénomique, Aix Marseille Université, INSERM, CNRS, 13288 Marseille, France
| |
Collapse
|
43
|
Lanier MH, McConnell P, Cooper JA. Cell Migration and Invadopodia Formation Require a Membrane-binding Domain of CARMIL2. J Biol Chem 2015; 291:1076-91. [PMID: 26578515 DOI: 10.1074/jbc.m115.676882] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Indexed: 02/01/2023] Open
Abstract
CARMILs regulate capping protein (CP), a critical determinant of actin assembly and actin-based cell motility. Vertebrates have three conserved CARMIL genes with distinct functions. In migrating cells, CARMIL2 is important for cell polarity, lamellipodial assembly, ruffling, and macropinocytosis. In cells, CARMIL2 localizes with a distinctive dual pattern to vimentin intermediate filaments and to membranes at leading edges and macropinosomes. The mechanism by which CARMIL2 localizes to membranes has not been defined. Here, we report that CARMIL2 has a conserved membrane-binding domain composed of basic and hydrophobic residues, which is necessary and sufficient for membrane localization, based on expression studies in cells and on direct binding of purified protein to lipids. Most important, we find that the membrane-binding domain is necessary for CARMIL2 to function in cells, based on rescue expression with a set of biochemically defined mutants. CARMIL1 and CARMIL3 contain similar membrane-binding domains, based on sequence analysis and on experiments, but other CPI motif proteins, such as CD2AP, do not. Based on these results, we propose a model in which the membrane-binding domain of CARMIL2 tethers this multidomain protein to the membrane, where it links dynamic vimentin filaments with regulation of actin assembly via CP.
Collapse
Affiliation(s)
- M Hunter Lanier
- From the Department of Cell Biology and Physiology, Washington University, St. Louis, Missouri 63110
| | - Patrick McConnell
- From the Department of Cell Biology and Physiology, Washington University, St. Louis, Missouri 63110
| | - John A Cooper
- From the Department of Cell Biology and Physiology, Washington University, St. Louis, Missouri 63110
| |
Collapse
|
44
|
Stark BC, Cooper JA. Differential expression of CARMIL-family genes during zebrafish development. Cytoskeleton (Hoboken) 2015; 72:534-41. [PMID: 26426389 DOI: 10.1002/cm.21257] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 09/27/2015] [Accepted: 09/29/2015] [Indexed: 12/19/2022]
Abstract
CARMILs are a conserved family of large multidomain proteins that regulate and target actin assembly by interacting with actin capping protein (CP). Vertebrates contain three highly conserved CARMIL isoforms encoded by three genes, whereas lower organisms contain only one isoform and gene. In order to investigate the functions of vertebrate CARMILs, we identified and characterized the three CARMIL genes in zebrafish (Danio rerio). We isolated and sequenced complete and partial cDNAs from embryos. The three genes display distinct spatial and temporal expression patterns during development. Sequence and phylogenetic analyses of cDNAs and predicted protein sequences reveal that the three zebrafish genes fall into the three conserved isoform groups previously defined for other vertebrates, which have isoform-specific and overlapping functions in human cultured cells. These results provide new tools and offer insight into understanding the role of the regulation of actin assembly dynamics during embryonic development and tissue morphogenesis.
Collapse
Affiliation(s)
- Benjamin C Stark
- Departments of Biochemistry & Molecular Biophysics and Cell Biology & Physiology, Washington University in St. Louis, St. Louis, Missouri
| | - John A Cooper
- Departments of Biochemistry & Molecular Biophysics and Cell Biology & Physiology, Washington University in St. Louis, St. Louis, Missouri
| |
Collapse
|