1
|
Lujan P, Garcia-Cabau C, Wakana Y, Vera Lillo J, Rodilla-Ramírez C, Sugiura H, Malhotra V, Salvatella X, Garcia-Parajo MF, Campelo F. Sorting of secretory proteins at the trans-Golgi network by human TGN46. eLife 2024; 12:RP91708. [PMID: 38466628 PMCID: PMC10928510 DOI: 10.7554/elife.91708] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024] Open
Abstract
Secretory proteins are sorted at the trans-Golgi network (TGN) for export into specific transport carriers. However, the molecular players involved in this fundamental process remain largely elusive. Here, we identified the human transmembrane protein TGN46 as a receptor for the export of secretory cargo protein PAUF in CARTS - a class of protein kinase D-dependent TGN-to-plasma membrane carriers. We show that TGN46 is necessary for cargo sorting and loading into nascent carriers at the TGN. By combining quantitative fluorescence microscopy and mutagenesis approaches, we further discovered that the lumenal domain of TGN46 encodes for its cargo sorting function. In summary, our results define a cellular function of TGN46 in sorting secretory proteins for export from the TGN.
Collapse
Affiliation(s)
- Pablo Lujan
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and TechnologyBarcelonaSpain
| | - Carla Garcia-Cabau
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and TechnologyBarcelonaSpain
| | - Yuichi Wakana
- School of Life Sciences, Tokyo University of Pharmacy and Life SciencesTokyoJapan
| | - Javier Vera Lillo
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and TechnologyBarcelonaSpain
| | - Carmen Rodilla-Ramírez
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and TechnologyBarcelonaSpain
| | - Hideaki Sugiura
- School of Life Sciences, Tokyo University of Pharmacy and Life SciencesTokyoJapan
| | - Vivek Malhotra
- Centre for Genomic Regulation, The Barcelona Institute of Science and TechnologyBarcelonaSpain
- Universitat Pompeu FabraBarcelonaSpain
- Institució Catalana de Recerca i Estudis Avançats (ICREA)BarcelonaSpain
| | - Xavier Salvatella
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and TechnologyBarcelonaSpain
- Institució Catalana de Recerca i Estudis Avançats (ICREA)BarcelonaSpain
| | - Maria F Garcia-Parajo
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and TechnologyBarcelonaSpain
- Institució Catalana de Recerca i Estudis Avançats (ICREA)BarcelonaSpain
| | - Felix Campelo
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and TechnologyBarcelonaSpain
| |
Collapse
|
2
|
Subra M, Antonny B, Mesmin B. New insights into the OSBP‒VAP cycle. Curr Opin Cell Biol 2023; 82:102172. [PMID: 37245352 DOI: 10.1016/j.ceb.2023.102172] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/16/2023] [Accepted: 04/24/2023] [Indexed: 05/30/2023]
Abstract
VAP-A is a major endoplasmic reticulum (ER) receptor that allows this organelle to engage numerous membrane contact sites with other organelles. One highly studied example is the formation of contact sites through VAP-A interaction with Oxysterol-binding protein (OSBP). This lipid transfer protein transports cholesterol from the ER to the trans-Golgi network owing to the counter-exchange of the phosphoinositide PI(4)P. In this review, we highlight recent studies that advance our understanding of the OSBP cycle and extend the model of lipid exchange to other cellular contexts and other physiological and pathological conditions.
Collapse
Affiliation(s)
- Mélody Subra
- Université Côte d'Azur, Inserm, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, 660 Route des Lucioles, 06560, Valbonne, France
| | - Bruno Antonny
- Université Côte d'Azur, Inserm, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, 660 Route des Lucioles, 06560, Valbonne, France.
| | - Bruno Mesmin
- Université Côte d'Azur, Inserm, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, 660 Route des Lucioles, 06560, Valbonne, France.
| |
Collapse
|
3
|
Buser DP, Spang A. Protein sorting from endosomes to the TGN. Front Cell Dev Biol 2023; 11:1140605. [PMID: 36895788 PMCID: PMC9988951 DOI: 10.3389/fcell.2023.1140605] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 02/09/2023] [Indexed: 02/23/2023] Open
Abstract
Retrograde transport from endosomes to the trans-Golgi network is essential for recycling of protein and lipid cargoes to counterbalance anterograde membrane traffic. Protein cargo subjected to retrograde traffic include lysosomal acid-hydrolase receptors, SNARE proteins, processing enzymes, nutrient transporters, a variety of other transmembrane proteins, and some extracellular non-host proteins such as viral, plant, and bacterial toxins. Efficient delivery of these protein cargo molecules depends on sorting machineries selectively recognizing and concentrating them for their directed retrograde transport from endosomal compartments. In this review, we outline the different retrograde transport pathways governed by various sorting machineries involved in endosome-to-TGN transport. In addition, we discuss how this transport route can be analyzed experimentally.
Collapse
Affiliation(s)
| | - Anne Spang
- *Correspondence: Dominik P. Buser, ; Anne Spang,
| |
Collapse
|
4
|
Subra M, Dezi M, Bigay J, Lacas-Gervais S, Di Cicco A, Araújo ARD, Abélanet S, Fleuriot L, Debayle D, Gautier R, Patel A, Roussi F, Antonny B, Lévy D, Mesmin B. VAP-A intrinsically disordered regions enable versatile tethering at membrane contact sites. Dev Cell 2023; 58:121-138.e9. [PMID: 36693319 DOI: 10.1016/j.devcel.2022.12.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 10/21/2022] [Accepted: 12/20/2022] [Indexed: 01/24/2023]
Abstract
Membrane contact sites (MCSs) are heterogeneous in shape, composition, and dynamics. Despite this diversity, VAP proteins act as receptors for multiple FFAT motif-containing proteins and drive the formation of most MCSs that involve the endoplasmic reticulum (ER). Although the VAP-FFAT interaction is well characterized, no model explains how VAP adapts to its partners in various MCSs. We report that VAP-A localization to different MCSs depends on its intrinsically disordered regions (IDRs) in human cells. VAP-A interaction with PTPIP51 and VPS13A at ER-mitochondria MCS conditions mitochondria fusion by promoting lipid transfer and cardiolipin buildup. VAP-A also enables lipid exchange at ER-Golgi MCS by interacting with oxysterol-binding protein (OSBP) and CERT. However, removing IDRs from VAP-A restricts its distribution and function to ER-mitochondria MCS. Our data suggest that IDRs do not modulate VAP-A preference toward specific partners but do adjust their geometry to MCS organization and lifetime constraints. Thus, IDR-mediated VAP-A conformational flexibility ensures membrane tethering plasticity and efficiency.
Collapse
Affiliation(s)
- Mélody Subra
- Université Côte d'Azur, Inserm, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, 660 route des lucioles, 06560 Valbonne, France
| | - Manuela Dezi
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physico-Chimie Curie, 75005 Paris, France
| | - Joëlle Bigay
- Université Côte d'Azur, Inserm, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, 660 route des lucioles, 06560 Valbonne, France
| | - Sandra Lacas-Gervais
- Université Côte d'Azur, Centre Commun de Microscopie Appliquée, Parc Valrose, 06000 Nice, France
| | - Aurélie Di Cicco
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physico-Chimie Curie, 75005 Paris, France
| | - Ana Rita Dias Araújo
- Université Côte d'Azur, Inserm, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, 660 route des lucioles, 06560 Valbonne, France
| | - Sophie Abélanet
- Université Côte d'Azur, Inserm, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, 660 route des lucioles, 06560 Valbonne, France
| | - Lucile Fleuriot
- Université Côte d'Azur, Inserm, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, 660 route des lucioles, 06560 Valbonne, France
| | - Delphine Debayle
- Université Côte d'Azur, Inserm, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, 660 route des lucioles, 06560 Valbonne, France
| | - Romain Gautier
- Université Côte d'Azur, Inserm, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, 660 route des lucioles, 06560 Valbonne, France
| | - Amanda Patel
- Université Côte d'Azur, Inserm, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, 660 route des lucioles, 06560 Valbonne, France
| | - Fanny Roussi
- Institut de Chimie des Substances Naturelles, CNRS, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Bruno Antonny
- Université Côte d'Azur, Inserm, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, 660 route des lucioles, 06560 Valbonne, France
| | - Daniel Lévy
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physico-Chimie Curie, 75005 Paris, France
| | - Bruno Mesmin
- Université Côte d'Azur, Inserm, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, 660 route des lucioles, 06560 Valbonne, France.
| |
Collapse
|
5
|
Subra M, Grimanelli Z, Gautier R, Mesmin B. Stranger Twins: A Tale of Resemblance and Contrast Between VAP Proteins. CONTACT (THOUSAND OAKS (VENTURA COUNTY, CALIF.)) 2023; 6:25152564231183897. [PMID: 37455812 PMCID: PMC10345920 DOI: 10.1177/25152564231183897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 06/06/2023] [Indexed: 07/18/2023]
Abstract
When considering the vesicle-associated membrane protein-associated protein (VAP) family, major receptors at the surface of the endoplasmic reticulum (ER), it appears that VAP-A and VAP-B paralogs largely overlap in structure and function, and that specific features to distinguish these two proteins hardly exist or are poorly documented. Here, we question the degree of redundancy between VAP-A and VAP-B: is one simply a backup plan, in case of loss of function of one of the two genes, or are there molecular and functional divergences that would explain their maintenance during evolution?
Collapse
Affiliation(s)
- Mélody Subra
- Institut de Pharmacologie Moléculaire et Cellulaire, Inserm, CNRS, Université Côte d’Azur, Valbonne, France
| | - Zoé Grimanelli
- Institut de Pharmacologie Moléculaire et Cellulaire, Inserm, CNRS, Université Côte d’Azur, Valbonne, France
| | - Romain Gautier
- Institut de Pharmacologie Moléculaire et Cellulaire, Inserm, CNRS, Université Côte d’Azur, Valbonne, France
| | - Bruno Mesmin
- Institut de Pharmacologie Moléculaire et Cellulaire, Inserm, CNRS, Université Côte d’Azur, Valbonne, France
| |
Collapse
|
6
|
Wakana Y, Tagaya M. CARTS Formation Assay. Methods Mol Biol 2022; 2557:573-581. [PMID: 36512238 DOI: 10.1007/978-1-0716-2639-9_34] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Sorting and transport of secretory and membrane proteins occur at the trans-Golgi network (TGN). Carriers of the TGN to the cell surface (CARTS) are one of the carriers that mediate the transport of certain proteins from the TGN to the plasma membrane. Recent studies have shown that CARTS formation is dependent on membrane contact sites between the Golgi apparatus and the endoplasmic reticulum (ER). Here, we describe a method to visualize by fluorescence microscopy the formation of CARTS at the TGN. This method combines a reverse dimerization system for synchronized export from the ER of a CARTS-specific cargo, pancreatic adenocarcinoma upregulated factor, together with the halt of export from the TGN by a 20 °C block. Incubation of cells at 37 °C releases the 20 °C block and allows to monitor the formation of CARTS at the TGN. Finally, we also present a workflow to quantify CARTS formation using ImageJ software.
Collapse
Affiliation(s)
- Yuichi Wakana
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan.
| | - Mitsuo Tagaya
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| |
Collapse
|
7
|
Creating and sensing asymmetric lipid distributions throughout the cell. Emerg Top Life Sci 2022; 7:7-19. [PMID: 36373850 DOI: 10.1042/etls20220028] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/24/2022] [Accepted: 11/01/2022] [Indexed: 11/16/2022]
Abstract
A key feature of eukaryotic cells is the asymmetric distribution of lipids along their secretory pathway. Because of the biological significance of these asymmetries, it is crucial to define the mechanisms which create them. Extensive studies have led to the identification of lipid transfer proteins (LTPs) that work with lipid-synthesizing enzymes to carry lipids between two distinct membranes in a directional manner, and are thus able to create asymmetries in lipid distribution throughout the cell. These networks are often in contact sites where two organelle membranes are in close proximity for reasons we have only recently started to understand. A question is whether these networks transfer lipids en masse within the cells or adjust the lipid composition of organelle membranes. Finally, recent data have confirmed that some networks organized around LTPs do not generate lipid asymmetries between membranes but sense them and rectify the lipid content of the cell.
Collapse
|
8
|
Wenzel EM, Elfmark LA, Stenmark H, Raiborg C. ER as master regulator of membrane trafficking and organelle function. J Cell Biol 2022; 221:e202205135. [PMID: 36108241 PMCID: PMC9481738 DOI: 10.1083/jcb.202205135] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 08/16/2022] [Accepted: 08/22/2022] [Indexed: 12/13/2022] Open
Abstract
The endoplasmic reticulum (ER), which occupies a large portion of the cytoplasm, is the cell's main site for the biosynthesis of lipids and carbohydrate conjugates, and it is essential for folding, assembly, and biosynthetic transport of secreted proteins and integral membrane proteins. The discovery of abundant membrane contact sites (MCSs) between the ER and other membrane compartments has revealed that, in addition to its biosynthetic and secretory functions, the ER plays key roles in the regulation of organelle dynamics and functions. In this review, we will discuss how the ER regulates endosomes, lysosomes, autophagosomes, mitochondria, peroxisomes, and the Golgi apparatus via MCSs. Such regulation occurs via lipid and Ca2+ transfer and also via control of in trans dephosphorylation reactions and organelle motility, positioning, fusion, and fission. The diverse controls of other organelles via MCSs manifest the ER as master regulator of organelle biology.
Collapse
Affiliation(s)
- Eva Maria Wenzel
- Centre for Cancer Cell Reprogramming, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Liv Anker Elfmark
- Centre for Cancer Cell Reprogramming, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Harald Stenmark
- Centre for Cancer Cell Reprogramming, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Camilla Raiborg
- Centre for Cancer Cell Reprogramming, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
9
|
Li YH, Ke TY, Shih WC, Liou RF, Wang CW. NbSOBIR1 Partitions Into Plasma Membrane Microdomains and Binds ER-Localized NbRLP1. FRONTIERS IN PLANT SCIENCE 2021; 12:721548. [PMID: 34539715 PMCID: PMC8442688 DOI: 10.3389/fpls.2021.721548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 08/02/2021] [Indexed: 06/13/2023]
Abstract
The receptor-like kinase Suppressor of BIR1 (SOBIR1) binds various receptor-like proteins (RLPs) that perceive microbe-associated molecular patterns (MAMPs) at the plasma membrane, which is thought to activate plant pattern-triggered immunity (PTI) against pathogen invasion. Despite its potentially crucial role, how SOBIR1 transmits immune signaling to ultimately elicit PTI remains largely unresolved. Herein, we report that a Nicotiana benthamiana gene NbRLP1, like NbSOBIR1, was highly induced upon Phytophthora parasitica infection. Intriguingly, NbRLP1 is characterized as a receptor-like protein localizing to the endoplasmic reticulum (ER) membrane rather than the plasma membrane. Using bimolecular fluorescence complementation and affinity purification assays, we established that NbRLP1 is likely to associate with NbSOBIR1 through the contact between the ER and plasma membrane. We further found that NbSOBIR1 at the plasma membrane partitions into mobile microdomains that undergo frequent lateral movement and internalization. Remarkably, the dynamics of NbSOBIR1 microdomain is coupled to the remodeling of the cortical ER network. When NbSOBIR1 microdomains were induced by the P. parasitica MAMP ParA1, tobacco cells overexpressing NbRLP1 accelerated NbSOBIR1 internalization. Overexpressing NbRLP1 in tobacco further exaggerated the ParA1-induced necrosis. Together, these findings have prompted us to propose that ER and the ER-localized NbRLP1 may play a role in transmitting plant immune signals by regulating NbSOBIR1 internalization.
Collapse
Affiliation(s)
- Yi-Hua Li
- Department of Plant Pathology and Microbiology, National Taiwan University, Taipei, Taiwan
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Tai-Yu Ke
- Department of Plant Pathology and Microbiology, National Taiwan University, Taipei, Taiwan
| | - Wei-Che Shih
- Department of Plant Pathology and Microbiology, National Taiwan University, Taipei, Taiwan
| | - Ruey-Fen Liou
- Department of Plant Pathology and Microbiology, National Taiwan University, Taipei, Taiwan
| | - Chao-Wen Wang
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
10
|
Lujan P, Campelo F. Should I stay or should I go? Golgi membrane spatial organization for protein sorting and retention. Arch Biochem Biophys 2021; 707:108921. [PMID: 34038703 DOI: 10.1016/j.abb.2021.108921] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 04/12/2021] [Accepted: 05/03/2021] [Indexed: 12/23/2022]
Abstract
The Golgi complex is the membrane-bound organelle that lies at the center of the secretory pathway. Its main functions are to maintain cellular lipid homeostasis, to orchestrate protein processing and maturation, and to mediate protein sorting and export. These functions are not independent of one another, and they all require that the membranes of the Golgi complex have a well-defined biochemical composition. Importantly, a finely-regulated spatiotemporal organization of the Golgi membrane components is essential for the correct performance of the organelle. In here, we review our current mechanistic and molecular understanding of how Golgi membranes are spatially organized in the lateral and axial directions to fulfill their functions. In particular, we highlight the current evidence and proposed models of intra-Golgi transport, as well as the known mechanisms for the retention of Golgi residents and for the sorting and export of transmembrane cargo proteins. Despite the controversies, conflicting evidence, clashes between models, and technical limitations, the field has moved forward and we have gained extensive knowledge in this fascinating topic. However, there are still many important questions that remain to be completely answered. We hope that this review will help boost future investigations on these issues.
Collapse
Affiliation(s)
- Pablo Lujan
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860, Barcelona, Spain.
| | - Felix Campelo
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860, Barcelona, Spain.
| |
Collapse
|
11
|
Ramazanov BR, Tran ML, von Blume J. Sending out molecules from the TGN. Curr Opin Cell Biol 2021; 71:55-62. [PMID: 33706234 PMCID: PMC8328904 DOI: 10.1016/j.ceb.2021.02.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/27/2021] [Accepted: 02/04/2021] [Indexed: 01/20/2023]
Abstract
The sorting of secreted cargo proteins and their export from the trans-Golgi network (TGN) remains an enigma in the field of membrane trafficking; although the sorting mechanisms of many transmembrane proteins have been well described. The sorting of secreted proteins at the TGN is crucial for the release of signaling factors, as well as extracellular matrix proteins. These proteins are required for cell-cell communication and integrity of an organism. Missecretion of these factors can cause diseases such as neurological disorders, autoimmune disease, or cancer. The major open question is how soluble proteins that are not associated with the membrane are packed into TGN derived transport carriers to facilitate their transport to the plasma membrane. Recent investigations have identified novel types of protein and lipid machinery that facilitate the packing of these molecules into a TGN derived vesicle. In addition, novel research has uncovered an exciting link between cargo sorting and export in which TGN structure and dynamics, as well as TGN/endoplasmic reticulum contact sites, play a significant role. Here, we have reviewed the progress made in our understanding of these processes.
Collapse
Affiliation(s)
- Bulat R Ramazanov
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
| | - Mai Ly Tran
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
| | - Julia von Blume
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
12
|
Borgese N, Iacomino N, Colombo SF, Navone F. The Link between VAPB Loss of Function and Amyotrophic Lateral Sclerosis. Cells 2021; 10:1865. [PMID: 34440634 PMCID: PMC8392409 DOI: 10.3390/cells10081865] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/16/2021] [Accepted: 07/16/2021] [Indexed: 02/06/2023] Open
Abstract
The VAP proteins are integral adaptor proteins of the endoplasmic reticulum (ER) membrane that recruit a myriad of interacting partners to the ER surface. Through these interactions, the VAPs mediate a large number of processes, notably the generation of membrane contact sites between the ER and essentially all other cellular membranes. In 2004, it was discovered that a mutation (p.P56S) in the VAPB paralogue causes a rare form of dominantly inherited familial amyotrophic lateral sclerosis (ALS8). The mutant protein is aggregation-prone, non-functional and unstable, and its expression from a single allele appears to be insufficient to support toxic gain-of-function effects within motor neurons. Instead, loss-of-function of the single wild-type allele is required for pathological effects, and VAPB haploinsufficiency may be the main driver of the disease. In this article, we review the studies on the effects of VAPB deficit in cellular and animal models. Several basic cell physiological processes are affected by downregulation or complete depletion of VAPB, impinging on phosphoinositide homeostasis, Ca2+ signalling, ion transport, neurite extension, and ER stress. In the future, the distinction between the roles of the two VAP paralogues (A and B), as well as studies on motor neurons generated from induced pluripotent stem cells (iPSC) of ALS8 patients will further elucidate the pathogenic basis of p.P56S familial ALS, as well as of other more common forms of the disease.
Collapse
Affiliation(s)
- Nica Borgese
- CNR Institute of Neuroscience, Via Follereau 3, Bldg U28, 20854 Vedano al Lambro, Italy; (N.I.); (S.F.C.)
| | | | | | - Francesca Navone
- CNR Institute of Neuroscience, Via Follereau 3, Bldg U28, 20854 Vedano al Lambro, Italy; (N.I.); (S.F.C.)
| |
Collapse
|
13
|
The PKD-Dependent Biogenesis of TGN-to-Plasma Membrane Transport Carriers. Cells 2021; 10:cells10071618. [PMID: 34203456 PMCID: PMC8303525 DOI: 10.3390/cells10071618] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/14/2021] [Accepted: 06/24/2021] [Indexed: 01/30/2023] Open
Abstract
Membrane trafficking is essential for processing and transport of proteins and lipids and to establish cell compartmentation and tissue organization. Cells respond to their needs and control the quantity and quality of protein secretion accordingly. In this review, we focus on a particular membrane trafficking route from the trans-Golgi network (TGN) to the cell surface: protein kinase D (PKD)-dependent pathway for constitutive secretion mediated by carriers of the TGN to the cell surface (CARTS). Recent findings highlight the importance of lipid signaling by organelle membrane contact sites (MCSs) in this pathway. Finally, we discuss our current understanding of multiple signaling pathways for membrane trafficking regulation mediated by PKD, G protein-coupled receptors (GPCRs), growth factors, metabolites, and mechanosensors.
Collapse
|
14
|
Wakana Y, Hayashi K, Nemoto T, Watanabe C, Taoka M, Angulo-Capel J, Garcia-Parajo MF, Kumata H, Umemura T, Inoue H, Arasaki K, Campelo F, Tagaya M. The ER cholesterol sensor SCAP promotes CARTS biogenesis at ER-Golgi membrane contact sites. J Cell Biol 2021; 220:211521. [PMID: 33156328 PMCID: PMC7654440 DOI: 10.1083/jcb.202002150] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 09/15/2020] [Accepted: 10/12/2020] [Indexed: 12/13/2022] Open
Abstract
In response to cholesterol deprivation, SCAP escorts SREBP transcription factors from the endoplasmic reticulum to the Golgi complex for their proteolytic activation, leading to gene expression for cholesterol synthesis and uptake. Here, we show that in cholesterol-fed cells, ER-localized SCAP interacts through Sac1 phosphatidylinositol 4-phosphate (PI4P) phosphatase with a VAP-OSBP complex, which mediates counter-transport of ER cholesterol and Golgi PI4P at ER-Golgi membrane contact sites (MCSs). SCAP knockdown inhibited the turnover of PI4P, perhaps due to a cholesterol transport defect, and altered the subcellular distribution of the VAP-OSBP complex. As in the case of perturbation of lipid transfer complexes at ER-Golgi MCSs, SCAP knockdown inhibited the biogenesis of the trans-Golgi network-derived transport carriers CARTS, which was reversed by expression of wild-type SCAP or a Golgi transport-defective mutant, but not of cholesterol sensing-defective mutants. Altogether, our findings reveal a new role for SCAP under cholesterol-fed conditions in the facilitation of CARTS biogenesis via ER-Golgi MCSs, depending on the ER cholesterol.
Collapse
Affiliation(s)
- Yuichi Wakana
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| | - Kaito Hayashi
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| | - Takumi Nemoto
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| | - Chiaki Watanabe
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| | - Masato Taoka
- Faculty of Science, Department of Chemistry, Tokyo Metropolitan University, Hachioji, Tokyo, Japan
| | - Jessica Angulo-Capel
- Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Maria F Garcia-Parajo
- Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| | - Hidetoshi Kumata
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| | - Tomonari Umemura
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| | - Hiroki Inoue
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| | - Kohei Arasaki
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| | - Felix Campelo
- Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Mitsuo Tagaya
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| |
Collapse
|
15
|
Ikonen E, Zhou X. Cholesterol transport between cellular membranes: A balancing act between interconnected lipid fluxes. Dev Cell 2021; 56:1430-1436. [PMID: 34004151 DOI: 10.1016/j.devcel.2021.04.025] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 12/14/2022]
Abstract
Cholesterol represents the most abundant single lipid in mammalian cells. How its asymmetric distribution between subcellular membranes is achieved and maintained attracts considerable interest. One of the challenges is that cholesterol rarely is transported alone, but rather is coupled with heterotypic transport and metabolism of other lipids, in particular phosphoinositides, phosphatidylserine, and sphingolipids. This perspective summarizes the major exo- and endocytic cholesterol transport routes and how lipid transfer proteins at membrane contacts and membrane transport intersect along these routes. It discusses the co-transport of cholesterol with other lipids in mammalian cells and reviews emerging evidence related to the physiological relevance of this process.
Collapse
Affiliation(s)
- Elina Ikonen
- Department of Anatomy and Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Minerva Foundation Institute for Medical Research, Helsinki, Finland.
| | - Xin Zhou
- Department of Anatomy and Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Minerva Foundation Institute for Medical Research, Helsinki, Finland
| |
Collapse
|
16
|
Lujan P, Angulo-Capel J, Chabanon M, Campelo F. Interorganelle communication and membrane shaping in the early secretory pathway. Curr Opin Cell Biol 2021; 71:95-102. [PMID: 33711785 DOI: 10.1016/j.ceb.2021.01.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/25/2021] [Accepted: 01/30/2021] [Indexed: 01/02/2023]
Abstract
Biomolecules in the secretory pathway use membrane trafficking for reaching their final intracellular destination or for secretion outside the cell. This highly dynamic and multipartite process involves different organelles that communicate to one another while maintaining their identity, shape, and function. Recent studies unraveled new mechanisms of interorganelle communication that help organize the early secretory pathway. We highlight how the spatial proximity between endoplasmic reticulum (ER) exit sites and early Golgi elements provides novel means of ER-Golgi communication for ER export. We also review recent findings on how membrane contact sites between the ER and the trans-Golgi membranes can sustain anterograde traffic out of the Golgi complex.
Collapse
Affiliation(s)
- Pablo Lujan
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860 Barcelona, Spain
| | - Jessica Angulo-Capel
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860 Barcelona, Spain
| | - Morgan Chabanon
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860 Barcelona, Spain; Universitat Politècnica de Catalunya-BarcelonaTech, E-08034, Barcelona, Spain
| | - Felix Campelo
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860 Barcelona, Spain.
| |
Collapse
|
17
|
Lucken-Ardjomande Häsler S, Vallis Y, Pasche M, McMahon HT. GRAF2, WDR44, and MICAL1 mediate Rab8/10/11-dependent export of E-cadherin, MMP14, and CFTR ΔF508. J Cell Biol 2021; 219:151714. [PMID: 32344433 PMCID: PMC7199855 DOI: 10.1083/jcb.201811014] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 11/07/2019] [Accepted: 02/26/2020] [Indexed: 02/07/2023] Open
Abstract
In addition to the classical pathway of secretion, some transmembrane proteins reach the plasma membrane through alternative routes. Several proteins transit through endosomes and are exported in a Rab8-, Rab10-, and/or Rab11-dependent manner. GRAFs are membrane-binding proteins associated with tubules and vesicles. We found extensive colocalization of GRAF1b/2 with Rab8a/b and partial with Rab10. We identified MICAL1 and WDR44 as direct GRAF-binding partners. MICAL1 links GRAF1b/2 to Rab8a/b and Rab10, and WDR44 binds Rab11. Endogenous WDR44 labels a subset of tubular endosomes, which are closely aligned with the ER via binding to VAPA/B. With its BAR domain, GRAF2 can tubulate membranes, and in its absence WDR44 tubules are not observed. We show that GRAF2 and WDR44 are essential for the export of neosynthesized E-cadherin, MMP14, and CFTR ΔF508, three proteins whose exocytosis is sensitive to ER stress. Overexpression of dominant negative mutants of GRAF1/2, WDR44, and MICAL1 also interferes with it, facilitating future studies of Rab8/10/11-dependent exocytic pathways of central importance in biology.
Collapse
Affiliation(s)
| | - Yvonne Vallis
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Mathias Pasche
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Harvey T McMahon
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| |
Collapse
|
18
|
David Y, Castro IG, Schuldiner M. The Fast and the Furious: Golgi Contact Sites. CONTACT (THOUSAND OAKS (VENTURA COUNTY, CALIF.)) 2021; 4:1-15. [PMID: 35071979 PMCID: PMC7612241 DOI: 10.1177/25152564211034424] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Contact sites are areas of close apposition between two membranes that coordinate nonvesicular communication between organelles. Such interactions serve a wide range of cellular functions from regulating metabolic pathways to executing stress responses and coordinating organelle inheritance. The past decade has seen a dramatic increase in information on certain contact sites, mostly those involving the endoplasmic reticulum. However, despite its central role in the secretory pathway, the Golgi apparatus and its contact sites remain largely unexplored. In this review, we discuss the current knowledge of Golgi contact sites and share our thoughts as to why Golgi contact sites are understudied. We also highlight what exciting future directions may exist in this emerging field.
Collapse
Affiliation(s)
- Yotam David
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Inês G Castro
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Maya Schuldiner
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
19
|
Borgese N, Navone F, Nukina N, Yamanaka T. Mutant VAPB: Culprit or Innocent Bystander of Amyotrophic Lateral Sclerosis? CONTACT (THOUSAND OAKS (VENTURA COUNTY, CALIF.)) 2021; 4:25152564211022515. [PMID: 37366377 PMCID: PMC10243577 DOI: 10.1177/25152564211022515] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 05/08/2021] [Accepted: 05/12/2021] [Indexed: 06/28/2023]
Abstract
Nearly twenty years ago a mutation in the VAPB gene, resulting in a proline to serine substitution (p.P56S), was identified as the cause of a rare, slowly progressing, familial form of the motor neuron degenerative disease Amyotrophic Lateral Sclerosis (ALS). Since then, progress in unravelling the mechanistic basis of this mutation has proceeded in parallel with research on the VAP proteins and on their role in establishing membrane contact sites between the ER and other organelles. Analysis of the literature on cellular and animal models reviewed here supports the conclusion that P56S-VAPB, which is aggregation-prone, non-functional and unstable, is expressed at levels that are insufficient to support toxic gain-of-function or dominant negative effects within motor neurons. Instead, insufficient levels of the product of the single wild-type allele appear to be required for pathological effects, and may be the main driver of the disease. In light of the multiple interactions of the VAP proteins, we address the consequences of specific VAPB depletion and highlight various affected processes that could contribute to motor neuron degeneration. In the future, distinction of specific roles of each of the two VAP paralogues should help to further elucidate the basis of p.P56S familial ALS, as well as of other more common forms of the disease.
Collapse
Affiliation(s)
- Nica Borgese
- CNR Institute of
Neuroscience, Vedano al Lambro (MB), Italy
| | | | - Nobuyuki Nukina
- Laboratory of Structural
Neuropathology, Doshisha University Graduate School of Brain Science,
Kyoto, Japan
| | - Tomoyuki Yamanaka
- Laboratory of Structural
Neuropathology, Doshisha University Graduate School of Brain Science,
Kyoto, Japan
| |
Collapse
|
20
|
Stalder D, Gershlick DC. Direct trafficking pathways from the Golgi apparatus to the plasma membrane. Semin Cell Dev Biol 2020; 107:112-125. [PMID: 32317144 PMCID: PMC7152905 DOI: 10.1016/j.semcdb.2020.04.001] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 04/03/2020] [Accepted: 04/06/2020] [Indexed: 12/19/2022]
Abstract
In eukaryotic cells, protein sorting is a highly regulated mechanism important for many physiological events. After synthesis in the endoplasmic reticulum and trafficking to the Golgi apparatus, proteins sort to many different cellular destinations including the endolysosomal system and the extracellular space. Secreted proteins need to be delivered directly to the cell surface. Sorting of secreted proteins from the Golgi apparatus has been a topic of interest for over thirty years, yet there is still no clear understanding of the machinery that forms the post-Golgi carriers. Most evidence points to these post-Golgi carriers being tubular pleomorphic structures that bud from the trans-face of the Golgi. In this review, we present the background studies and highlight the key components of this pathway, we then discuss the machinery implicated in the formation of these carriers, their translocation across the cytosol, and their fusion at the plasma membrane.
Collapse
Key Words
- ATP, adenosine triphosphate
- BFA, Brefeldin A
- CARTS, CARriers of the TGN to the cell Surface
- CI-MPR, cation-independent mannose-6 phosphate receptor
- Constitutive Secretion
- CtBP3/BARS, C-terminus binding protein 3/BFA adenosine diphosphate–ribosylated substrate
- ER, endoplasmic reticulum
- GPI-anchored proteins, glycosylphosphatidylinositol-anchored proteins
- GlcCer, glucosylceramidetol
- Golgi to plasma membrane sorting
- PAUF, pancreatic adenocarcinoma up-regulated factor
- PKD, Protein Kinase D
- RUSH, retention using selective hooks
- SBP, streptavidin-binding peptide
- SM, sphingomyelin
- SNARE, soluble N-ethylmaleimide sensitive fusion protein attachment protein receptor
- SPCA1, secretory pathway calcium ATPase 1
- Secretion
- TGN, trans-Golgi Network
- TIRF, total internal reflection fluorescence
- VSV, vesicular stomatitis virus
- pleomorphic tubular carriers
- post-Golgi carriers
- ts, temperature sensitive
Collapse
Affiliation(s)
- Danièle Stalder
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - David C Gershlick
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom.
| |
Collapse
|
21
|
ER-Golgi membrane contact sites. Biochem Soc Trans 2020; 48:187-197. [DOI: 10.1042/bst20190537] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 01/20/2020] [Accepted: 01/24/2020] [Indexed: 12/13/2022]
Abstract
Membrane contact sites (MCSs) are sites where the membranes of two different organelles come into close apposition (10–30 nm). Different classes of proteins populate MCSs including factors that act as tethers between the two membranes, proteins that use the MCSs for their function (mainly lipid or ion exchange), and regulatory proteins and enzymes that can act in trans across the MCSs. The ER-Golgi MCSs were visualized by electron microscopists early in the sixties but have remained elusive for decades due to a lack of suitable methodological approaches. Here we report recent progress in the study of this class of MCSs that has led to the identification of their main morphological features and of some of their components and roles. Among these, lipid transfer proteins and lipid exchange have been the most studied and understood so far. However, many unknowns remain regarding their regulation and their role in controlling key TGN functions such as sorting and trafficking as well as their relevance in physiological and pathological conditions.
Collapse
|
22
|
Masone MC, Morra V, Venditti R. Illuminating the membrane contact sites between the endoplasmic reticulum and the trans-Golgi network. FEBS Lett 2019; 593:3135-3148. [PMID: 31610025 DOI: 10.1002/1873-3468.13639] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 10/08/2019] [Accepted: 10/08/2019] [Indexed: 12/22/2022]
Abstract
Membrane contact sites (MCSs) between different organelles have been identified and extensively studied over the last decade. Several classes of MCSs have now well-established roles, although the contacts between the endoplasmic reticulum (ER) and the trans-side of the Golgi network (TGN) have long remained elusive. Until recently, the study of ER-TGN contact sites has represented a major challenge in the field, as a result of the lack of suitable visualization and isolation techniques. Only in the last 5 years has the combination of advanced technologies and innovative approaches permitted the identification of new molecular players and the functions of ER-TGN MCSs that couple lipid metabolism and anterograde transport. Although much has yet to be discovered, it is now established that ER-TGN MCSs control phosphatidyl-4-phosphate homeostasis by coupling the cis and the trans activity of the ER-resident 4-phosphatase Sac1. In this review, we focus on recent advances on the composition and function of ER-TGN MCSs.
Collapse
Affiliation(s)
| | - Valentina Morra
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy
| | - Rossella Venditti
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy.,Department of Molecular Medicine and Medical Biotechnology, Medical School, University of Napoli Federico II, Naples, Italy
| |
Collapse
|
23
|
von Blume J, Hausser A. Lipid-dependent coupling of secretory cargo sorting and trafficking at the trans-Golgi network. FEBS Lett 2019; 593:2412-2427. [PMID: 31344259 PMCID: PMC8048779 DOI: 10.1002/1873-3468.13552] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 07/10/2019] [Accepted: 07/22/2019] [Indexed: 12/17/2022]
Abstract
In eukaryotic cells, the trans-Golgi network (TGN) serves as a platform for secretory cargo sorting and trafficking. In recent years, it has become evident that a complex network of lipid–lipid and lipid–protein interactions contributes to these key functions. This review addresses the role of lipids at the TGN with a particular emphasis on sphingolipids and diacylglycerol. We further highlight how these lipids couple secretory cargo sorting and trafficking for spatiotemporal coordination of protein transport to the plasma membrane.
Collapse
Affiliation(s)
- Julia von Blume
- Department of Cell Biology, Yale School of Medicine, New Haven, CT, USA.,Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Angelika Hausser
- Institute of Cell Biology and Immunology, University of Stuttgart, Germany.,Stuttgart Research Center Systems Biology, University of Stuttgart, Germany
| |
Collapse
|
24
|
Genevini P, Colombo MN, Venditti R, Marcuzzo S, Colombo SF, Bernasconi P, De Matteis MA, Borgese N, Navone F. VAPB depletion alters neuritogenesis and phosphoinositide balance in motoneuron-like cells: relevance to VAPB-linked amyotrophic lateral sclerosis. J Cell Sci 2019; 132:jcs.220061. [PMID: 30745341 DOI: 10.1242/jcs.220061] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 02/01/2019] [Indexed: 12/12/2022] Open
Abstract
VAPB and VAPA are ubiquitously expressed endoplasmic reticulum membrane proteins that play key roles in lipid exchange at membrane contact sites. A mutant, aggregation-prone, form of VAPB (P56S) is linked to a dominantly inherited form of amyotrophic lateral sclerosis; however, it has been unclear whether its pathogenicity is due to toxic gain of function, to negative dominance, or simply to insufficient levels of the wild-type protein produced from a single allele (haploinsufficiency). To investigate whether reduced levels of functional VAPB, independently from the presence of the mutant form, affect the physiology of mammalian motoneuron-like cells, we generated NSC34 clones, from which VAPB was partially or nearly completely depleted. VAPA levels, determined to be over fourfold higher than those of VAPB in untransfected cells, were unaffected. Nonetheless, cells with even partially depleted VAPB showed an increase in Golgi- and acidic vesicle-localized phosphatidylinositol-4-phosphate (PI4P) and reduced neurite extension when induced to differentiate. Conversely, the PI4 kinase inhibitors PIK93 and IN-10 increased neurite elongation. Thus, for long-term survival, motoneurons might require the full dose of functional VAPB, which may have unique function(s) that VAPA cannot perform.
Collapse
Affiliation(s)
- Paola Genevini
- Consiglio Nazionale delle Ricerche Neuroscience Institute and BIOMETRA Department, Università degli Studi di Milano, Milan 20129, Italy
| | - Maria Nicol Colombo
- Consiglio Nazionale delle Ricerche Neuroscience Institute and BIOMETRA Department, Università degli Studi di Milano, Milan 20129, Italy
| | | | - Stefania Marcuzzo
- Neurology IV - Neuroimmunology and Neuromuscular Diseases Unit, Fondazione Istituto Neurologico 'Carlo Besta', Milan 20133, Italy
| | - Sara Francesca Colombo
- Consiglio Nazionale delle Ricerche Neuroscience Institute and BIOMETRA Department, Università degli Studi di Milano, Milan 20129, Italy
| | - Pia Bernasconi
- Neurology IV - Neuroimmunology and Neuromuscular Diseases Unit, Fondazione Istituto Neurologico 'Carlo Besta', Milan 20133, Italy
| | - Maria Antonietta De Matteis
- Telethon Institute of Genetics and Medicine, Pozzuoli 80078, Italy.,Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples 80133, Italy
| | - Nica Borgese
- Consiglio Nazionale delle Ricerche Neuroscience Institute and BIOMETRA Department, Università degli Studi di Milano, Milan 20129, Italy
| | - Francesca Navone
- Consiglio Nazionale delle Ricerche Neuroscience Institute and BIOMETRA Department, Università degli Studi di Milano, Milan 20129, Italy
| |
Collapse
|
25
|
Lipid exchange and signaling at ER–Golgi contact sites. Curr Opin Cell Biol 2019; 57:8-15. [DOI: 10.1016/j.ceb.2018.10.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 10/14/2018] [Accepted: 10/16/2018] [Indexed: 01/24/2023]
|
26
|
Pakdel M, von Blume J. Exploring new routes for secretory protein export from the trans-Golgi network. Mol Biol Cell 2019; 29:235-240. [PMID: 29382805 PMCID: PMC5996961 DOI: 10.1091/mbc.e17-02-0117] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 11/30/2017] [Accepted: 12/01/2017] [Indexed: 12/21/2022] Open
Abstract
Sorting of soluble proteins for transport to intracellular compartments and for secretion from cells is essential for cell and tissue homeostasis. The trans-Golgi network (TGN) is a major sorting station that sorts secretory proteins into specific carriers to transport them to their final destinations. The sorting of lysosomal hydrolases at the TGN by the mannose 6-phosphate receptor is well understood. The recent discovery of a Ca2+-based sorting of secretory cargo at the TGN is beginning to uncover the mechanism by which cells sort secretory cargoes from Golgi residents and cargoes destined to the other cellular compartments. This Ca2+-based sorting involves the cytoplasmic actin cytoskeleton, which through membrane anchored Ca2+ ATPase SPCA1 and the luminal Ca2+ binding protein Cab45 sorts of a subset of secretory proteins at the TGN. We present this discovery and highlight important challenges that remain unaddressed in the overall pathway of cargo sorting at the TGN.
Collapse
Affiliation(s)
- Mehrshad Pakdel
- Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Julia von Blume
- Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| |
Collapse
|
27
|
In Vitro Measurement of Sphingolipid Intermembrane Transport Illustrated by GLTP Superfamily Members. Methods Mol Biol 2019; 1949:237-256. [PMID: 30790260 DOI: 10.1007/978-1-4939-9136-5_17] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Herein, we describe methodological approaches for measuring in vitro transfer of sphingolipids (SLs) between membranes. The approaches rely on direct tracking of the lipid. Typically, direct tracking involves lipid labeling via attachment of fluorophores or introduction of radioactivity. Members of the GlycoLipid Transfer Protein (GLTP) superfamily are used to illustrate two broadly applicable methods for direct lipid tracking. One method relies on Förster resonance energy transfer (FRET) that enables continuous assessment of fluorophore-labeled SL transfer in real time between lipid donor and acceptor vesicles. The second method relies on tracking of radiolabeled SL transfer by separation of lipid donor and acceptor vesicles at discrete time points. The assays are readily adjustable for assessing lipid transfer (1) between various model membrane assemblies (vesicles, micelles, bicelles, nanodiscs), (2) involving other lipid types by other lipid transfer proteins, (3) with protein preparations that are either crudely or highly purified, and (4) that is spontaneous and occurs in the absence of protein.
Collapse
|
28
|
Deng Y, Pakdel M, Blank B, Sundberg EL, Burd CG, von Blume J. Activity of the SPCA1 Calcium Pump Couples Sphingomyelin Synthesis to Sorting of Secretory Proteins in the Trans-Golgi Network. Dev Cell 2018; 47:464-478.e8. [PMID: 30393074 PMCID: PMC6261503 DOI: 10.1016/j.devcel.2018.10.012] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 08/29/2018] [Accepted: 10/05/2018] [Indexed: 12/24/2022]
Abstract
How the principal functions of the Golgi apparatus-protein processing, lipid synthesis, and sorting of macromolecules-are integrated to constitute cargo-specific trafficking pathways originating from the trans-Golgi network (TGN) is unknown. Here, we show that the activity of the Golgi localized SPCA1 calcium pump couples sorting and export of secreted proteins to synthesis of new lipid in the TGN membrane. A secreted Ca2+-binding protein, Cab45, constitutes the core component of a Ca2+-dependent, oligomerization-driven sorting mechanism whereby secreted proteins bound to Cab45 are packaged into a TGN-derived vesicular carrier whose membrane is enriched in sphingomyelin, a lipid implicated in TGN-to-cell surface transport. SPCA1 activity is controlled by the sphingomyelin content of the TGN membrane, such that local sphingomyelin synthesis promotes Ca2+ flux into the lumen of the TGN, which drives secretory protein sorting and export, thereby establishing a protein- and lipid-specific secretion pathway.
Collapse
Affiliation(s)
- Yongqiang Deng
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
| | - Mehrshad Pakdel
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Birgit Blank
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Emma L Sundberg
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
| | - Christopher G Burd
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA.
| | - Julia von Blume
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany.
| |
Collapse
|
29
|
Cellular Protein Kinase D Modulators Play a Role during Multiple Steps of Herpes Simplex Virus 1 Egress. J Virol 2018; 92:JVI.01486-18. [PMID: 30232182 DOI: 10.1128/jvi.01486-18] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 09/14/2018] [Indexed: 12/12/2022] Open
Abstract
The assembly of new herpes simplex virus 1 (HSV-1) particles takes place in the nucleus. These particles then travel across the two nuclear membranes and acquire a final envelope from a cellular compartment. The contribution of the cell to the release of the virus is, however, little known. We previously demonstrated, using a synchronized infection, that the host protein kinase D and diacylglycerol, a lipid that recruits the kinase to the trans-Golgi network (TGN), promote the release of the virus from that compartment. Given the role this cellular protein plays in the herpes simplex virus 1 life cycle and the many molecules that modulate its activity, we aimed to determine to what extent this virus utilizes the protein kinase D pathway during a nonsynchronized infection. Several molecular protein kinase D (PKD) regulators were targeted by RNA interference and viral production monitored. Surprisingly, many of these modulators negatively impacted the extracellular release of the virus. Overexpression studies, the use of pharmacological reagents, and assays to monitor intracellular lipids implicated in the biology of PKD suggested that these effects were oddly independent of total intracellular diacylglycerol levels. Instead, mapping of the viral intermediates by electron microscopy suggested that some of these modulators could regulate distinct steps along the viral egress pathway, notably nuclear egress. Altogether, this suggests a more complex contribution of PKD to HSV-1 egress than originally anticipated and new research avenues to explore.IMPORTANCE Viruses are obligatory parasites that highjack numerous cellular functions. This is certainly true when it comes to transporting viral particles within the cell. Herpesviruses share the unique property of traveling through the two nuclear membranes by subsequent budding and fusion and acquiring their final envelope from a cellular organelle. Albeit disputed, the overall evidence from many laboratories points to the trans-Golgi network (TGN) as the source of that membrane. Moreover, past findings revealed that the host protein kinase D (PKD) plays an important role at that stage, which is significant given the known implication of that protein in vesicular transport. The present findings suggest that the PKD machinery not only affects the late stages of herpes simplex virus I egress but also modulates earlier steps, such as nuclear egress. This opens up new means to control these viruses.
Collapse
|
30
|
Pietrangelo A, Ridgway ND. Bridging the molecular and biological functions of the oxysterol-binding protein family. Cell Mol Life Sci 2018; 75:3079-3098. [PMID: 29536114 PMCID: PMC11105248 DOI: 10.1007/s00018-018-2795-y] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 02/18/2018] [Accepted: 03/07/2018] [Indexed: 12/19/2022]
Abstract
Oxysterol-binding protein (OSBP) and OSBP-related proteins (ORPs) constitute a large eukaryotic gene family that transports and regulates the metabolism of sterols and phospholipids. The original classification of the family based on oxysterol-binding activity belies the complex dual lipid-binding specificity of the conserved OSBP homology domain (OHD). Additional protein- and membrane-interacting modules mediate the targeting of select OSBP/ORPs to membrane contact sites between organelles, thus positioning the OHD between opposing membranes for lipid transfer and metabolic regulation. This unique subcellular location, coupled with diverse ligand preferences and tissue distribution, has identified OSBP/ORPs as key arbiters of membrane composition and function. Here, we will review how molecular models of OSBP/ORP-mediated intracellular lipid transport and regulation at membrane contact sites relate to their emerging roles in cellular and organismal functions.
Collapse
Affiliation(s)
- Antonietta Pietrangelo
- Atlantic Research Center, C306 CRC Bldg, Department of Pediatrics, and Biochemistry and Molecular Biology, Dalhousie University, 5849 University Av., Halifax, NS, B3H4R2, Canada
| | - Neale D Ridgway
- Atlantic Research Center, C306 CRC Bldg, Department of Pediatrics, and Biochemistry and Molecular Biology, Dalhousie University, 5849 University Av., Halifax, NS, B3H4R2, Canada.
| |
Collapse
|
31
|
Antonny B, Bigay J, Mesmin B. The Oxysterol-Binding Protein Cycle: Burning Off PI(4)P to Transport Cholesterol. Annu Rev Biochem 2018; 87:809-837. [PMID: 29596003 DOI: 10.1146/annurev-biochem-061516-044924] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
To maintain an asymmetric distribution of ions across membranes, protein pumps displace ions against their concentration gradient by using chemical energy. Here, we describe a functionally analogous but topologically opposite process that applies to the lipid transfer protein (LTP) oxysterol-binding protein (OSBP). This multidomain protein exchanges cholesterol for the phosphoinositide phosphatidylinositol 4-phosphate [PI(4)P] between two apposed membranes. Because of the subsequent hydrolysis of PI(4)P, this counterexchange is irreversible and contributes to the establishment of a cholesterol gradient along organelles of the secretory pathway. The facts that some natural anti-cancer molecules block OSBP and that many viruses hijack the OSBP cycle for the formation of intracellular replication organelles highlight the importance and potency of OSBP-mediated lipid exchange. The architecture of some LTPs is similar to that of OSBP, suggesting that the principles of the OSBP cycle-burning PI(4)P for the vectorial transfer of another lipid-might be general.
Collapse
Affiliation(s)
- Bruno Antonny
- Institut de Pharmacologie Moléculaire et Cellulaire, CNRS UMR 7275, Université Côte d'Azur, 06560 Valbonne, France;
| | - Joëlle Bigay
- Institut de Pharmacologie Moléculaire et Cellulaire, CNRS UMR 7275, Université Côte d'Azur, 06560 Valbonne, France;
| | - Bruno Mesmin
- Institut de Pharmacologie Moléculaire et Cellulaire, CNRS UMR 7275, Université Côte d'Azur, 06560 Valbonne, France;
| |
Collapse
|
32
|
Model of OSBP-Mediated Cholesterol Supply to Aichi Virus RNA Replication Sites Involving Protein-Protein Interactions among Viral Proteins, ACBD3, OSBP, VAP-A/B, and SAC1. J Virol 2018; 92:JVI.01952-17. [PMID: 29367253 DOI: 10.1128/jvi.01952-17] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 01/19/2018] [Indexed: 01/25/2023] Open
Abstract
Positive-strand RNA viruses, including picornaviruses, utilize cellular machinery for genome replication. Previously, we reported that each of the 2B, 2BC, 2C, 3A, and 3AB proteins of Aichi virus (AiV), a picornavirus, forms a complex with the Golgi apparatus protein ACBD3 and phosphatidylinositol 4-kinase IIIβ (PI4KB) at viral RNA replication sites (replication organelles [ROs]), enhancing PI4KB-dependent phosphatidylinositol 4-phosphate (PI4P) production. Here, we demonstrate AiV hijacking of the cellular cholesterol transport system involving oxysterol-binding protein (OSBP), a PI4P-binding cholesterol transfer protein. AiV RNA replication was inhibited by silencing cellular proteins known to be components of this pathway, OSBP, the ER membrane proteins VAPA and VAPB (VAP-A/B), the PI4P-phosphatase SAC1, and PI-transfer protein β. OSBP, VAP-A/B, and SAC1 were present at RNA replication sites. We also found various previously unknown interactions among the AiV proteins (2B, 2BC, 2C, 3A, and 3AB), ACBD3, OSBP, VAP-A/B, and SAC1, and the interactions were suggested to be involved in recruiting the component proteins to AiV ROs. Importantly, the OSBP-2B interaction enabled PI4P-independent recruitment of OSBP to AiV ROs, indicating preferential recruitment of OSBP among PI4P-binding proteins. Protein-protein interaction-based OSBP recruitment has not been reported for other picornaviruses. Cholesterol was accumulated at AiV ROs, and inhibition of OSBP-mediated cholesterol transfer impaired cholesterol accumulation and AiV RNA replication. Electron microscopy showed that AiV-induced vesicle-like structures were close to ER membranes. Altogether, we conclude that AiV directly recruits the cholesterol transport machinery through protein-protein interactions, resulting in formation of membrane contact sites between the ER and AiV ROs and cholesterol supply to the ROs.IMPORTANCE Positive-strand RNA viruses utilize host pathways to modulate the lipid composition of viral RNA replication sites for replication. Previously, we demonstrated that Aichi virus (AiV), a picornavirus, forms a complex comprising certain proteins of AiV, the Golgi apparatus protein ACBD3, and the lipid kinase PI4KB to synthesize PI4P lipid at the sites for AiV RNA replication. Here, we confirmed cholesterol accumulation at the AiV RNA replication sites, which are established by hijacking the host cholesterol transfer machinery mediated by a PI4P-binding cholesterol transfer protein, OSBP. We showed that the component proteins of the machinery, OSBP, VAP, SAC1, and PITPNB, are all essential host factors for AiV replication. Importantly, the machinery is directly recruited to the RNA replication sites through previously unknown interactions of VAP/OSBP/SAC1 with the AiV proteins and with ACBD3. Consequently, we propose a specific strategy employed by AiV to efficiently accumulate cholesterol at the RNA replication sites via protein-protein interactions.
Collapse
|
33
|
Del Bel LM, Brill JA. Sac1, a lipid phosphatase at the interface of vesicular and nonvesicular transport. Traffic 2018; 19:301-318. [PMID: 29411923 DOI: 10.1111/tra.12554] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 02/02/2018] [Accepted: 02/02/2018] [Indexed: 12/14/2022]
Abstract
The lipid phosphatase Sac1 dephosphorylates phosphatidylinositol 4-phosphate (PI4P), thereby holding levels of this crucial membrane signaling molecule in check. Sac1 regulates multiple cellular processes, including cytoskeletal organization, membrane trafficking and cell signaling. Here, we review the structure and regulation of Sac1, its roles in cell signaling and development and its links to health and disease. Remarkably, many of the diverse roles attributed to Sac1 can be explained by the recent discovery of its requirement at membrane contact sites, where its consumption of PI4P is proposed to drive interorganelle transfer of other cellular lipids, thereby promoting normal lipid homeostasis within cells.
Collapse
Affiliation(s)
- Lauren M Del Bel
- Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Julie A Brill
- Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
34
|
Zhang L, Li J, Zhang P, Gao Z, Zhao Y, Qiao X, Chen C. PI4KIIα regulates insulin secretion and glucose homeostasis via a PKD-dependent pathway. BIOPHYSICS REPORTS 2018; 4:25-38. [PMID: 29577067 PMCID: PMC5860104 DOI: 10.1007/s41048-018-0049-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 02/08/2018] [Indexed: 12/17/2022] Open
Abstract
Insulin release by pancreatic β cells plays a key role in regulating blood glucose levels in humans, and to understand the mechanism for insulin secretion may reveal therapeutic strategies for diabetes. We found that PI4KIIα transgenic (TG) mice have abnormal glucose tolerance and higher serum glucose levels than wild-type mice. Glucose-stimulated insulin secretion was significantly reduced in both PI4KIIα TG mice and PI4KIIα-overexpressing pancreatic β cell lines. A proximity-based biotin labeling technique, BioID, was used to identify proteins that interact with PI4KIIα, and the results revealed that PI4KIIα interacts with PKD and negatively regulates its activity. The effect of PI4KIIα on insulin secretion was completely rescued by altering PKD activity. PI4KIIα overexpression also worsened glucose tolerance in streptozotocin/high-fat diet-induced diabetic mice by impairing insulin secretion. Our study has shed new light on PI4KIIα function and mechanism in diabetes and identified PI4KIIα as an important regulator of insulin secretion.
Collapse
Affiliation(s)
- Lunfeng Zhang
- 1National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101 China.,2University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Jiangmei Li
- 1National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101 China.,3Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, 201210 China
| | - Panpan Zhang
- 3Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, 201210 China
| | - Zhen Gao
- 1National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101 China.,2University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Yingying Zhao
- 1National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101 China.,3Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, 201210 China
| | - Xinhua Qiao
- 1National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101 China.,2University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Chang Chen
- 1National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101 China.,2University of Chinese Academy of Sciences, Beijing, 100049 China.,4Beijing Institute for Brain Disorders, Beijing, 100069 China
| |
Collapse
|
35
|
Stefano G, Brandizzi F. Advances in Plant ER Architecture and Dynamics. PLANT PHYSIOLOGY 2018; 176:178-186. [PMID: 28986423 PMCID: PMC5761816 DOI: 10.1104/pp.17.01261] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 10/01/2017] [Indexed: 05/18/2023]
Abstract
Recent advances highlight mechanisms that enable the morphological integrity of the plant ER in relation to the other organelles and the cytoskeleton.
Collapse
Affiliation(s)
- Giovanni Stefano
- MSU-DOE Plant Research Lab and Plant Biology Department, Michigan State University, East Lansing, Michigan 48824
| | - Federica Brandizzi
- MSU-DOE Plant Research Lab and Plant Biology Department, Michigan State University, East Lansing, Michigan 48824
| |
Collapse
|
36
|
Stefan CJ, Trimble WS, Grinstein S, Drin G, Reinisch K, De Camilli P, Cohen S, Valm AM, Lippincott-Schwartz J, Levine TP, Iaea DB, Maxfield FR, Futter CE, Eden ER, Judith D, van Vliet AR, Agostinis P, Tooze SA, Sugiura A, McBride HM. Membrane dynamics and organelle biogenesis-lipid pipelines and vesicular carriers. BMC Biol 2017; 15:102. [PMID: 29089042 PMCID: PMC5663033 DOI: 10.1186/s12915-017-0432-0] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Discoveries spanning several decades have pointed to vital membrane lipid trafficking pathways involving both vesicular and non-vesicular carriers. But the relative contributions for distinct membrane delivery pathways in cell growth and organelle biogenesis continue to be a puzzle. This is because lipids flow from many sources and across many paths via transport vesicles, non-vesicular transfer proteins, and dynamic interactions between organelles at membrane contact sites. This forum presents our latest understanding, appreciation, and queries regarding the lipid transport mechanisms necessary to drive membrane expansion during organelle biogenesis and cell growth.
Collapse
Affiliation(s)
- Christopher J. Stefan
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London, WC1E 6BT UK
| | - William S. Trimble
- Cell Biology Program, The Hospital for Sick Children and Department of Biochemistry, University of Toronto, Toronto, Canada
| | - Sergio Grinstein
- Cell Biology Program, The Hospital for Sick Children and Department of Biochemistry, University of Toronto, Toronto, Canada
| | - Guillaume Drin
- Université Côte d’Azur, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France
| | - Karin Reinisch
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520 USA
| | - Pietro De Camilli
- Department of Neuroscience and Cell Biology, Howard Hughes Medical Institute, Kavli Institute for Neuroscience and Program in Cellular Neuroscience, Neurodegeneration, and Repair, Yale University School of Medicine, New Haven, CT 06510 USA
| | | | | | | | - Tim P. Levine
- UCL Institute of Ophthalmology, 11-43 Bath Street, London, EC1V 9EL UK
| | - David B. Iaea
- Genentech, 1 DNA Way, South San Francisco, CA 94080 USA
| | - Frederick R. Maxfield
- Department of Biochemistry, Weill Cornell Medical College, 1300 York Ave, New York, NY 10065 USA
| | - Clare E. Futter
- UCL Institute of Ophthalmology, 11-43 Bath Street, London, EC1V 9EL UK
| | - Emily R. Eden
- UCL Institute of Ophthalmology, 11-43 Bath Street, London, EC1V 9EL UK
| | - Delphine Judith
- Molecular Cell Biology of Autophagy Laboratory, The Francis Crick Institute, London, UK
| | - Alexander R. van Vliet
- Molecular Cell Biology of Autophagy Laboratory, The Francis Crick Institute, London, UK
- Laboratory of Cell Death Research and Therapy, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Patrizia Agostinis
- Laboratory of Cell Death Research and Therapy, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Sharon A. Tooze
- Molecular Cell Biology of Autophagy Laboratory, The Francis Crick Institute, London, UK
| | - Ayumu Sugiura
- Kobe University Graduate School of Medicine, 1-5-6 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047 Japan
| | - Heidi M. McBride
- Montreal Neurological Institute, McGill University, 3801 University Avenue, Montreal, Quebec H3A 2B4 Canada
| |
Collapse
|
37
|
Noroviruses Co-opt the Function of Host Proteins VAPA and VAPB for Replication via a Phenylalanine-Phenylalanine-Acidic-Tract-Motif Mimic in Nonstructural Viral Protein NS1/2. mBio 2017; 8:mBio.00668-17. [PMID: 28698274 PMCID: PMC5513711 DOI: 10.1128/mbio.00668-17] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The Norovirus genus contains important human pathogens, but the role of host pathways in norovirus replication is largely unknown. Murine noroviruses provide the opportunity to study norovirus replication in cell culture and in small animals. The human norovirus nonstructural protein NS1/2 interacts with the host protein VAMP-associated protein A (VAPA), but the significance of the NS1/2-VAPA interaction is unexplored. Here we report decreased murine norovirus replication in VAPA- and VAPB-deficient cells. We characterized the role of VAPA in detail. VAPA was required for the efficiency of a step(s) in the viral replication cycle after entry of viral RNA into the cytoplasm but before the synthesis of viral minus-sense RNA. The interaction of VAPA with viral NS1/2 proteins is conserved between murine and human noroviruses. Murine norovirus NS1/2 directly bound the major sperm protein (MSP) domain of VAPA through its NS1 domain. Mutations within NS1 that disrupted interaction with VAPA inhibited viral replication. Structural analysis revealed that the viral NS1 domain contains a mimic of the phenylalanine–phenylalanine-acidic-tract (FFAT) motif that enables host proteins to bind to the VAPA MSP domain. The NS1/2-FFAT mimic region interacted with the VAPA-MSP domain in a manner similar to that seen with bona fide host FFAT motifs. Amino acids in the FFAT mimic region of the NS1 domain that are important for viral replication are highly conserved across murine norovirus strains. Thus, VAPA interaction with a norovirus protein that functionally mimics host FFAT motifs is important for murine norovirus replication. Human noroviruses are a leading cause of gastroenteritis worldwide, but host factors involved in norovirus replication are incompletely understood. Murine noroviruses have been studied to define mechanisms of norovirus replication. Here we defined the importance of the interaction between the hitherto poorly studied NS1/2 norovirus protein and the VAPA host protein. The NS1/2-VAPA interaction is conserved between murine and human noroviruses and was important for early steps in murine norovirus replication. Using structure-function analysis, we found that NS1/2 contains a short sequence that molecularly mimics the FFAT motif that is found in multiple host proteins that bind VAPA. This represents to our knowledge the first example of functionally important mimicry of a host FFAT motif by a microbial protein.
Collapse
|
38
|
Jackson CL, Walch L, Verbavatz JM. Lipids and Their Trafficking: An Integral Part of Cellular Organization. Dev Cell 2017; 39:139-153. [PMID: 27780039 DOI: 10.1016/j.devcel.2016.09.030] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
An evolutionarily conserved feature of cellular organelles is the distinct phospholipid composition of their bounding membranes, which is essential to their identity and function. Within eukaryotic cells, two major lipid territories can be discerned, one centered on the endoplasmic reticulum and characterized by membranes with lipid packing defects, the other comprising plasma-membrane-derived organelles and characterized by membrane charge. We discuss how this cellular lipid organization is maintained, how lipid flux is regulated, and how perturbations in cellular lipid homeostasis can lead to disease.
Collapse
Affiliation(s)
- Catherine L Jackson
- Institut Jacques Monod, CNRS, UMR 7592, Université Paris Diderot, Sorbonne Paris Cité, 75013 Paris, France.
| | - Laurence Walch
- Institut Jacques Monod, CNRS, UMR 7592, Université Paris Diderot, Sorbonne Paris Cité, 75013 Paris, France
| | - Jean-Marc Verbavatz
- Institut Jacques Monod, CNRS, UMR 7592, Université Paris Diderot, Sorbonne Paris Cité, 75013 Paris, France
| |
Collapse
|
39
|
Capasso S, Sticco L, Rizzo R, Pirozzi M, Russo D, Dathan NA, Campelo F, Galen J, Hölttä‐Vuori M, Turacchio G, Hausser A, Malhotra V, Riezman I, Riezman H, Ikonen E, Luberto C, Parashuraman S, Luini A, D'Angelo G. Sphingolipid metabolic flow controls phosphoinositide turnover at the
trans
‐Golgi network. EMBO J 2017. [DOI: 10.15252/embj.201696048 or not 5519=5519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Serena Capasso
- Istituto di Ricovero e Cura a Carattere Scientifico‐SDN Naples Italy
| | - Lucia Sticco
- Institute of Protein Biochemistry‐National Research Council Naples Italy
| | - Riccardo Rizzo
- Institute of Protein Biochemistry‐National Research Council Naples Italy
| | - Marinella Pirozzi
- Institute of Protein Biochemistry‐National Research Council Naples Italy
| | - Domenico Russo
- Institute of Protein Biochemistry‐National Research Council Naples Italy
| | - Nina A Dathan
- Institute of Protein Biochemistry‐National Research Council Naples Italy
| | - Felix Campelo
- ICFO‐Institut de Ciencies Fotoniques The Barcelona Institute of Science and Technology Barcelona Spain
- Centre for Genomic Regulation The Barcelona Institute of Science and Technology Barcelona Spain
- Universitat Pompeu Fabra Barcelona Spain
| | - Josse Galen
- Centre for Genomic Regulation The Barcelona Institute of Science and Technology Barcelona Spain
- Universitat Pompeu Fabra Barcelona Spain
| | - Maarit Hölttä‐Vuori
- Department of Anatomy Faculty of Medicine Minerva Research Institute for Medical Research University of Helsinki Helsinki Finland
| | - Gabriele Turacchio
- Institute of Protein Biochemistry‐National Research Council Naples Italy
| | - Angelika Hausser
- Institute of Cell Biology and Immunology University of Stuttgart Stuttgart Germany
| | - Vivek Malhotra
- Centre for Genomic Regulation The Barcelona Institute of Science and Technology Barcelona Spain
- Universitat Pompeu Fabra Barcelona Spain
- Institució Catalana de Recerca i Estudis Avançats Barcelona Spain
| | - Isabelle Riezman
- Department of Biochemistry NCCR Chemical Biology University of Geneva Geneva Switzerland
| | - Howard Riezman
- Department of Biochemistry NCCR Chemical Biology University of Geneva Geneva Switzerland
| | - Elina Ikonen
- Department of Anatomy Faculty of Medicine Minerva Research Institute for Medical Research University of Helsinki Helsinki Finland
| | - Chiara Luberto
- Stony Brook Cancer Center Health Science Center Stony Brook University Stony Brook NY USA
| | | | - Alberto Luini
- Istituto di Ricovero e Cura a Carattere Scientifico‐SDN Naples Italy
- Institute of Protein Biochemistry‐National Research Council Naples Italy
| | - Giovanni D'Angelo
- Istituto di Ricovero e Cura a Carattere Scientifico‐SDN Naples Italy
- Institute of Protein Biochemistry‐National Research Council Naples Italy
| |
Collapse
|
40
|
Capasso S, Sticco L, Rizzo R, Pirozzi M, Russo D, Dathan NA, Campelo F, Galen J, Hölttä‐Vuori M, Turacchio G, Hausser A, Malhotra V, Riezman I, Riezman H, Ikonen E, Luberto C, Parashuraman S, Luini A, D'Angelo G. Sphingolipid metabolic flow controls phosphoinositide turnover at the
trans
‐Golgi network. EMBO J 2017. [DOI: 10.15252/embj.201696048 and updatexml(7827,concat(0x2e,0x71707a7171,(select (elt(7827=7827,1))),0x7162766a71),5439)# ubmy] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Serena Capasso
- Istituto di Ricovero e Cura a Carattere Scientifico‐SDN Naples Italy
| | - Lucia Sticco
- Institute of Protein Biochemistry‐National Research Council Naples Italy
| | - Riccardo Rizzo
- Institute of Protein Biochemistry‐National Research Council Naples Italy
| | - Marinella Pirozzi
- Institute of Protein Biochemistry‐National Research Council Naples Italy
| | - Domenico Russo
- Institute of Protein Biochemistry‐National Research Council Naples Italy
| | - Nina A Dathan
- Institute of Protein Biochemistry‐National Research Council Naples Italy
| | - Felix Campelo
- ICFO‐Institut de Ciencies Fotoniques The Barcelona Institute of Science and Technology Barcelona Spain
- Centre for Genomic Regulation The Barcelona Institute of Science and Technology Barcelona Spain
- Universitat Pompeu Fabra Barcelona Spain
| | - Josse Galen
- Centre for Genomic Regulation The Barcelona Institute of Science and Technology Barcelona Spain
- Universitat Pompeu Fabra Barcelona Spain
| | - Maarit Hölttä‐Vuori
- Department of Anatomy Faculty of Medicine Minerva Research Institute for Medical Research University of Helsinki Helsinki Finland
| | - Gabriele Turacchio
- Institute of Protein Biochemistry‐National Research Council Naples Italy
| | - Angelika Hausser
- Institute of Cell Biology and Immunology University of Stuttgart Stuttgart Germany
| | - Vivek Malhotra
- Centre for Genomic Regulation The Barcelona Institute of Science and Technology Barcelona Spain
- Universitat Pompeu Fabra Barcelona Spain
- Institució Catalana de Recerca i Estudis Avançats Barcelona Spain
| | - Isabelle Riezman
- Department of Biochemistry NCCR Chemical Biology University of Geneva Geneva Switzerland
| | - Howard Riezman
- Department of Biochemistry NCCR Chemical Biology University of Geneva Geneva Switzerland
| | - Elina Ikonen
- Department of Anatomy Faculty of Medicine Minerva Research Institute for Medical Research University of Helsinki Helsinki Finland
| | - Chiara Luberto
- Stony Brook Cancer Center Health Science Center Stony Brook University Stony Brook NY USA
| | | | - Alberto Luini
- Istituto di Ricovero e Cura a Carattere Scientifico‐SDN Naples Italy
- Institute of Protein Biochemistry‐National Research Council Naples Italy
| | - Giovanni D'Angelo
- Istituto di Ricovero e Cura a Carattere Scientifico‐SDN Naples Italy
- Institute of Protein Biochemistry‐National Research Council Naples Italy
| |
Collapse
|
41
|
Capasso S, Sticco L, Rizzo R, Pirozzi M, Russo D, Dathan NA, Campelo F, Galen J, Hölttä‐Vuori M, Turacchio G, Hausser A, Malhotra V, Riezman I, Riezman H, Ikonen E, Luberto C, Parashuraman S, Luini A, D'Angelo G. Sphingolipid metabolic flow controls phosphoinositide turnover at the
trans
‐Golgi network. EMBO J 2017. [DOI: 10.15252/embj.201696048 and 6475=('qpzqq'||(select case 6475 when 6475 then 1 else 0 end from rdb$database)||'qbvjq')# hcka] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Serena Capasso
- Istituto di Ricovero e Cura a Carattere Scientifico‐SDN Naples Italy
| | - Lucia Sticco
- Institute of Protein Biochemistry‐National Research Council Naples Italy
| | - Riccardo Rizzo
- Institute of Protein Biochemistry‐National Research Council Naples Italy
| | - Marinella Pirozzi
- Institute of Protein Biochemistry‐National Research Council Naples Italy
| | - Domenico Russo
- Institute of Protein Biochemistry‐National Research Council Naples Italy
| | - Nina A Dathan
- Institute of Protein Biochemistry‐National Research Council Naples Italy
| | - Felix Campelo
- ICFO‐Institut de Ciencies Fotoniques The Barcelona Institute of Science and Technology Barcelona Spain
- Centre for Genomic Regulation The Barcelona Institute of Science and Technology Barcelona Spain
- Universitat Pompeu Fabra Barcelona Spain
| | - Josse Galen
- Centre for Genomic Regulation The Barcelona Institute of Science and Technology Barcelona Spain
- Universitat Pompeu Fabra Barcelona Spain
| | - Maarit Hölttä‐Vuori
- Department of Anatomy Faculty of Medicine Minerva Research Institute for Medical Research University of Helsinki Helsinki Finland
| | - Gabriele Turacchio
- Institute of Protein Biochemistry‐National Research Council Naples Italy
| | - Angelika Hausser
- Institute of Cell Biology and Immunology University of Stuttgart Stuttgart Germany
| | - Vivek Malhotra
- Centre for Genomic Regulation The Barcelona Institute of Science and Technology Barcelona Spain
- Universitat Pompeu Fabra Barcelona Spain
- Institució Catalana de Recerca i Estudis Avançats Barcelona Spain
| | - Isabelle Riezman
- Department of Biochemistry NCCR Chemical Biology University of Geneva Geneva Switzerland
| | - Howard Riezman
- Department of Biochemistry NCCR Chemical Biology University of Geneva Geneva Switzerland
| | - Elina Ikonen
- Department of Anatomy Faculty of Medicine Minerva Research Institute for Medical Research University of Helsinki Helsinki Finland
| | - Chiara Luberto
- Stony Brook Cancer Center Health Science Center Stony Brook University Stony Brook NY USA
| | | | - Alberto Luini
- Istituto di Ricovero e Cura a Carattere Scientifico‐SDN Naples Italy
- Institute of Protein Biochemistry‐National Research Council Naples Italy
| | - Giovanni D'Angelo
- Istituto di Ricovero e Cura a Carattere Scientifico‐SDN Naples Italy
- Institute of Protein Biochemistry‐National Research Council Naples Italy
| |
Collapse
|
42
|
Capasso S, Sticco L, Rizzo R, Pirozzi M, Russo D, Dathan NA, Campelo F, Galen J, Hölttä‐Vuori M, Turacchio G, Hausser A, Malhotra V, Riezman I, Riezman H, Ikonen E, Luberto C, Parashuraman S, Luini A, D'Angelo G. Sphingolipid metabolic flow controls phosphoinositide turnover at the
trans
‐Golgi network. EMBO J 2017. [DOI: 10.15252/embj.201696048 or row(6651,6872)>(select count(*),concat(0x71707a7171,(select (elt(6651=6651,1))),0x7162766a71,floor(rand(0)*2))x from (select 8166 union select 3967 union select 5546 union select 5314)a group by x)-- snjb] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Serena Capasso
- Istituto di Ricovero e Cura a Carattere Scientifico‐SDN Naples Italy
| | - Lucia Sticco
- Institute of Protein Biochemistry‐National Research Council Naples Italy
| | - Riccardo Rizzo
- Institute of Protein Biochemistry‐National Research Council Naples Italy
| | - Marinella Pirozzi
- Institute of Protein Biochemistry‐National Research Council Naples Italy
| | - Domenico Russo
- Institute of Protein Biochemistry‐National Research Council Naples Italy
| | - Nina A Dathan
- Institute of Protein Biochemistry‐National Research Council Naples Italy
| | - Felix Campelo
- ICFO‐Institut de Ciencies Fotoniques The Barcelona Institute of Science and Technology Barcelona Spain
- Centre for Genomic Regulation The Barcelona Institute of Science and Technology Barcelona Spain
- Universitat Pompeu Fabra Barcelona Spain
| | - Josse Galen
- Centre for Genomic Regulation The Barcelona Institute of Science and Technology Barcelona Spain
- Universitat Pompeu Fabra Barcelona Spain
| | - Maarit Hölttä‐Vuori
- Department of Anatomy Faculty of Medicine Minerva Research Institute for Medical Research University of Helsinki Helsinki Finland
| | - Gabriele Turacchio
- Institute of Protein Biochemistry‐National Research Council Naples Italy
| | - Angelika Hausser
- Institute of Cell Biology and Immunology University of Stuttgart Stuttgart Germany
| | - Vivek Malhotra
- Centre for Genomic Regulation The Barcelona Institute of Science and Technology Barcelona Spain
- Universitat Pompeu Fabra Barcelona Spain
- Institució Catalana de Recerca i Estudis Avançats Barcelona Spain
| | - Isabelle Riezman
- Department of Biochemistry NCCR Chemical Biology University of Geneva Geneva Switzerland
| | - Howard Riezman
- Department of Biochemistry NCCR Chemical Biology University of Geneva Geneva Switzerland
| | - Elina Ikonen
- Department of Anatomy Faculty of Medicine Minerva Research Institute for Medical Research University of Helsinki Helsinki Finland
| | - Chiara Luberto
- Stony Brook Cancer Center Health Science Center Stony Brook University Stony Brook NY USA
| | | | - Alberto Luini
- Istituto di Ricovero e Cura a Carattere Scientifico‐SDN Naples Italy
- Institute of Protein Biochemistry‐National Research Council Naples Italy
| | - Giovanni D'Angelo
- Istituto di Ricovero e Cura a Carattere Scientifico‐SDN Naples Italy
- Institute of Protein Biochemistry‐National Research Council Naples Italy
| |
Collapse
|
43
|
Capasso S, Sticco L, Rizzo R, Pirozzi M, Russo D, Dathan NA, Campelo F, Galen J, Hölttä‐Vuori M, Turacchio G, Hausser A, Malhotra V, Riezman I, Riezman H, Ikonen E, Luberto C, Parashuraman S, Luini A, D'Angelo G. Sphingolipid metabolic flow controls phosphoinositide turnover at the
trans
‐Golgi network. EMBO J 2017. [DOI: 10.15252/embj.201696048 and (1555=5860)*5860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Serena Capasso
- Istituto di Ricovero e Cura a Carattere Scientifico‐SDN Naples Italy
| | - Lucia Sticco
- Institute of Protein Biochemistry‐National Research Council Naples Italy
| | - Riccardo Rizzo
- Institute of Protein Biochemistry‐National Research Council Naples Italy
| | - Marinella Pirozzi
- Institute of Protein Biochemistry‐National Research Council Naples Italy
| | - Domenico Russo
- Institute of Protein Biochemistry‐National Research Council Naples Italy
| | - Nina A Dathan
- Institute of Protein Biochemistry‐National Research Council Naples Italy
| | - Felix Campelo
- ICFO‐Institut de Ciencies Fotoniques The Barcelona Institute of Science and Technology Barcelona Spain
- Centre for Genomic Regulation The Barcelona Institute of Science and Technology Barcelona Spain
- Universitat Pompeu Fabra Barcelona Spain
| | - Josse Galen
- Centre for Genomic Regulation The Barcelona Institute of Science and Technology Barcelona Spain
- Universitat Pompeu Fabra Barcelona Spain
| | - Maarit Hölttä‐Vuori
- Department of Anatomy Faculty of Medicine Minerva Research Institute for Medical Research University of Helsinki Helsinki Finland
| | - Gabriele Turacchio
- Institute of Protein Biochemistry‐National Research Council Naples Italy
| | - Angelika Hausser
- Institute of Cell Biology and Immunology University of Stuttgart Stuttgart Germany
| | - Vivek Malhotra
- Centre for Genomic Regulation The Barcelona Institute of Science and Technology Barcelona Spain
- Universitat Pompeu Fabra Barcelona Spain
- Institució Catalana de Recerca i Estudis Avançats Barcelona Spain
| | - Isabelle Riezman
- Department of Biochemistry NCCR Chemical Biology University of Geneva Geneva Switzerland
| | - Howard Riezman
- Department of Biochemistry NCCR Chemical Biology University of Geneva Geneva Switzerland
| | - Elina Ikonen
- Department of Anatomy Faculty of Medicine Minerva Research Institute for Medical Research University of Helsinki Helsinki Finland
| | - Chiara Luberto
- Stony Brook Cancer Center Health Science Center Stony Brook University Stony Brook NY USA
| | | | - Alberto Luini
- Istituto di Ricovero e Cura a Carattere Scientifico‐SDN Naples Italy
- Institute of Protein Biochemistry‐National Research Council Naples Italy
| | - Giovanni D'Angelo
- Istituto di Ricovero e Cura a Carattere Scientifico‐SDN Naples Italy
- Institute of Protein Biochemistry‐National Research Council Naples Italy
| |
Collapse
|
44
|
Capasso S, Sticco L, Rizzo R, Pirozzi M, Russo D, Dathan NA, Campelo F, Galen J, Hölttä‐Vuori M, Turacchio G, Hausser A, Malhotra V, Riezman I, Riezman H, Ikonen E, Luberto C, Parashuraman S, Luini A, D'Angelo G. Sphingolipid metabolic flow controls phosphoinositide turnover at the
trans
‐Golgi network. EMBO J 2017. [DOI: 10.15252/embj.201696048 and 6238=concat(char(113)+char(112)+char(122)+char(113)+char(113),(select (case when (6238=6238) then char(49) else char(48) end)),char(113)+char(98)+char(118)+char(106)+char(113))-- orzw] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Serena Capasso
- Istituto di Ricovero e Cura a Carattere Scientifico‐SDN Naples Italy
| | - Lucia Sticco
- Institute of Protein Biochemistry‐National Research Council Naples Italy
| | - Riccardo Rizzo
- Institute of Protein Biochemistry‐National Research Council Naples Italy
| | - Marinella Pirozzi
- Institute of Protein Biochemistry‐National Research Council Naples Italy
| | - Domenico Russo
- Institute of Protein Biochemistry‐National Research Council Naples Italy
| | - Nina A Dathan
- Institute of Protein Biochemistry‐National Research Council Naples Italy
| | - Felix Campelo
- ICFO‐Institut de Ciencies Fotoniques The Barcelona Institute of Science and Technology Barcelona Spain
- Centre for Genomic Regulation The Barcelona Institute of Science and Technology Barcelona Spain
- Universitat Pompeu Fabra Barcelona Spain
| | - Josse Galen
- Centre for Genomic Regulation The Barcelona Institute of Science and Technology Barcelona Spain
- Universitat Pompeu Fabra Barcelona Spain
| | - Maarit Hölttä‐Vuori
- Department of Anatomy Faculty of Medicine Minerva Research Institute for Medical Research University of Helsinki Helsinki Finland
| | - Gabriele Turacchio
- Institute of Protein Biochemistry‐National Research Council Naples Italy
| | - Angelika Hausser
- Institute of Cell Biology and Immunology University of Stuttgart Stuttgart Germany
| | - Vivek Malhotra
- Centre for Genomic Regulation The Barcelona Institute of Science and Technology Barcelona Spain
- Universitat Pompeu Fabra Barcelona Spain
- Institució Catalana de Recerca i Estudis Avançats Barcelona Spain
| | - Isabelle Riezman
- Department of Biochemistry NCCR Chemical Biology University of Geneva Geneva Switzerland
| | - Howard Riezman
- Department of Biochemistry NCCR Chemical Biology University of Geneva Geneva Switzerland
| | - Elina Ikonen
- Department of Anatomy Faculty of Medicine Minerva Research Institute for Medical Research University of Helsinki Helsinki Finland
| | - Chiara Luberto
- Stony Brook Cancer Center Health Science Center Stony Brook University Stony Brook NY USA
| | | | - Alberto Luini
- Istituto di Ricovero e Cura a Carattere Scientifico‐SDN Naples Italy
- Institute of Protein Biochemistry‐National Research Council Naples Italy
| | - Giovanni D'Angelo
- Istituto di Ricovero e Cura a Carattere Scientifico‐SDN Naples Italy
- Institute of Protein Biochemistry‐National Research Council Naples Italy
| |
Collapse
|
45
|
Capasso S, Sticco L, Rizzo R, Pirozzi M, Russo D, Dathan NA, Campelo F, Galen J, Hölttä‐Vuori M, Turacchio G, Hausser A, Malhotra V, Riezman I, Riezman H, Ikonen E, Luberto C, Parashuraman S, Luini A, D'Angelo G. Sphingolipid metabolic flow controls phosphoinositide turnover at the
trans
‐Golgi network. EMBO J 2017. [DOI: 10.15252/embj.201696048 or not 3930=3930-- kuvo] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Serena Capasso
- Istituto di Ricovero e Cura a Carattere Scientifico‐SDN Naples Italy
| | - Lucia Sticco
- Institute of Protein Biochemistry‐National Research Council Naples Italy
| | - Riccardo Rizzo
- Institute of Protein Biochemistry‐National Research Council Naples Italy
| | - Marinella Pirozzi
- Institute of Protein Biochemistry‐National Research Council Naples Italy
| | - Domenico Russo
- Institute of Protein Biochemistry‐National Research Council Naples Italy
| | - Nina A Dathan
- Institute of Protein Biochemistry‐National Research Council Naples Italy
| | - Felix Campelo
- ICFO‐Institut de Ciencies Fotoniques The Barcelona Institute of Science and Technology Barcelona Spain
- Centre for Genomic Regulation The Barcelona Institute of Science and Technology Barcelona Spain
- Universitat Pompeu Fabra Barcelona Spain
| | - Josse Galen
- Centre for Genomic Regulation The Barcelona Institute of Science and Technology Barcelona Spain
- Universitat Pompeu Fabra Barcelona Spain
| | - Maarit Hölttä‐Vuori
- Department of Anatomy Faculty of Medicine Minerva Research Institute for Medical Research University of Helsinki Helsinki Finland
| | - Gabriele Turacchio
- Institute of Protein Biochemistry‐National Research Council Naples Italy
| | - Angelika Hausser
- Institute of Cell Biology and Immunology University of Stuttgart Stuttgart Germany
| | - Vivek Malhotra
- Centre for Genomic Regulation The Barcelona Institute of Science and Technology Barcelona Spain
- Universitat Pompeu Fabra Barcelona Spain
- Institució Catalana de Recerca i Estudis Avançats Barcelona Spain
| | - Isabelle Riezman
- Department of Biochemistry NCCR Chemical Biology University of Geneva Geneva Switzerland
| | - Howard Riezman
- Department of Biochemistry NCCR Chemical Biology University of Geneva Geneva Switzerland
| | - Elina Ikonen
- Department of Anatomy Faculty of Medicine Minerva Research Institute for Medical Research University of Helsinki Helsinki Finland
| | - Chiara Luberto
- Stony Brook Cancer Center Health Science Center Stony Brook University Stony Brook NY USA
| | | | - Alberto Luini
- Istituto di Ricovero e Cura a Carattere Scientifico‐SDN Naples Italy
- Institute of Protein Biochemistry‐National Research Council Naples Italy
| | - Giovanni D'Angelo
- Istituto di Ricovero e Cura a Carattere Scientifico‐SDN Naples Italy
- Institute of Protein Biochemistry‐National Research Council Naples Italy
| |
Collapse
|
46
|
Capasso S, Sticco L, Rizzo R, Pirozzi M, Russo D, Dathan NA, Campelo F, Galen J, Hölttä‐Vuori M, Turacchio G, Hausser A, Malhotra V, Riezman I, Riezman H, Ikonen E, Luberto C, Parashuraman S, Luini A, D'Angelo G. Sphingolipid metabolic flow controls phosphoinositide turnover at the
trans
‐Golgi network. EMBO J 2017. [DOI: 10.15252/embj.201696048 and 7735=utl_inaddr.get_host_address(chr(113)||chr(112)||chr(122)||chr(113)||chr(113)||(select (case when (7735=7735) then 1 else 0 end) from dual)||chr(113)||chr(98)||chr(118)||chr(106)||chr(113))-- qjpw] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Serena Capasso
- Istituto di Ricovero e Cura a Carattere Scientifico‐SDN Naples Italy
| | - Lucia Sticco
- Institute of Protein Biochemistry‐National Research Council Naples Italy
| | - Riccardo Rizzo
- Institute of Protein Biochemistry‐National Research Council Naples Italy
| | - Marinella Pirozzi
- Institute of Protein Biochemistry‐National Research Council Naples Italy
| | - Domenico Russo
- Institute of Protein Biochemistry‐National Research Council Naples Italy
| | - Nina A Dathan
- Institute of Protein Biochemistry‐National Research Council Naples Italy
| | - Felix Campelo
- ICFO‐Institut de Ciencies Fotoniques The Barcelona Institute of Science and Technology Barcelona Spain
- Centre for Genomic Regulation The Barcelona Institute of Science and Technology Barcelona Spain
- Universitat Pompeu Fabra Barcelona Spain
| | - Josse Galen
- Centre for Genomic Regulation The Barcelona Institute of Science and Technology Barcelona Spain
- Universitat Pompeu Fabra Barcelona Spain
| | - Maarit Hölttä‐Vuori
- Department of Anatomy Faculty of Medicine Minerva Research Institute for Medical Research University of Helsinki Helsinki Finland
| | - Gabriele Turacchio
- Institute of Protein Biochemistry‐National Research Council Naples Italy
| | - Angelika Hausser
- Institute of Cell Biology and Immunology University of Stuttgart Stuttgart Germany
| | - Vivek Malhotra
- Centre for Genomic Regulation The Barcelona Institute of Science and Technology Barcelona Spain
- Universitat Pompeu Fabra Barcelona Spain
- Institució Catalana de Recerca i Estudis Avançats Barcelona Spain
| | - Isabelle Riezman
- Department of Biochemistry NCCR Chemical Biology University of Geneva Geneva Switzerland
| | - Howard Riezman
- Department of Biochemistry NCCR Chemical Biology University of Geneva Geneva Switzerland
| | - Elina Ikonen
- Department of Anatomy Faculty of Medicine Minerva Research Institute for Medical Research University of Helsinki Helsinki Finland
| | - Chiara Luberto
- Stony Brook Cancer Center Health Science Center Stony Brook University Stony Brook NY USA
| | | | - Alberto Luini
- Istituto di Ricovero e Cura a Carattere Scientifico‐SDN Naples Italy
- Institute of Protein Biochemistry‐National Research Council Naples Italy
| | - Giovanni D'Angelo
- Istituto di Ricovero e Cura a Carattere Scientifico‐SDN Naples Italy
- Institute of Protein Biochemistry‐National Research Council Naples Italy
| |
Collapse
|
47
|
Capasso S, Sticco L, Rizzo R, Pirozzi M, Russo D, Dathan NA, Campelo F, Galen J, Hölttä‐Vuori M, Turacchio G, Hausser A, Malhotra V, Riezman I, Riezman H, Ikonen E, Luberto C, Parashuraman S, Luini A, D'Angelo G. Sphingolipid metabolic flow controls phosphoinositide turnover at the
trans
‐Golgi network. EMBO J 2017. [DOI: 10.15252/embj.201696048 and (7752=6318)*6318# msqg] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Serena Capasso
- Istituto di Ricovero e Cura a Carattere Scientifico‐SDN Naples Italy
| | - Lucia Sticco
- Institute of Protein Biochemistry‐National Research Council Naples Italy
| | - Riccardo Rizzo
- Institute of Protein Biochemistry‐National Research Council Naples Italy
| | - Marinella Pirozzi
- Institute of Protein Biochemistry‐National Research Council Naples Italy
| | - Domenico Russo
- Institute of Protein Biochemistry‐National Research Council Naples Italy
| | - Nina A Dathan
- Institute of Protein Biochemistry‐National Research Council Naples Italy
| | - Felix Campelo
- ICFO‐Institut de Ciencies Fotoniques The Barcelona Institute of Science and Technology Barcelona Spain
- Centre for Genomic Regulation The Barcelona Institute of Science and Technology Barcelona Spain
- Universitat Pompeu Fabra Barcelona Spain
| | - Josse Galen
- Centre for Genomic Regulation The Barcelona Institute of Science and Technology Barcelona Spain
- Universitat Pompeu Fabra Barcelona Spain
| | - Maarit Hölttä‐Vuori
- Department of Anatomy Faculty of Medicine Minerva Research Institute for Medical Research University of Helsinki Helsinki Finland
| | - Gabriele Turacchio
- Institute of Protein Biochemistry‐National Research Council Naples Italy
| | - Angelika Hausser
- Institute of Cell Biology and Immunology University of Stuttgart Stuttgart Germany
| | - Vivek Malhotra
- Centre for Genomic Regulation The Barcelona Institute of Science and Technology Barcelona Spain
- Universitat Pompeu Fabra Barcelona Spain
- Institució Catalana de Recerca i Estudis Avançats Barcelona Spain
| | - Isabelle Riezman
- Department of Biochemistry NCCR Chemical Biology University of Geneva Geneva Switzerland
| | - Howard Riezman
- Department of Biochemistry NCCR Chemical Biology University of Geneva Geneva Switzerland
| | - Elina Ikonen
- Department of Anatomy Faculty of Medicine Minerva Research Institute for Medical Research University of Helsinki Helsinki Finland
| | - Chiara Luberto
- Stony Brook Cancer Center Health Science Center Stony Brook University Stony Brook NY USA
| | | | - Alberto Luini
- Istituto di Ricovero e Cura a Carattere Scientifico‐SDN Naples Italy
- Institute of Protein Biochemistry‐National Research Council Naples Italy
| | - Giovanni D'Angelo
- Istituto di Ricovero e Cura a Carattere Scientifico‐SDN Naples Italy
- Institute of Protein Biochemistry‐National Research Council Naples Italy
| |
Collapse
|
48
|
Capasso S, Sticco L, Rizzo R, Pirozzi M, Russo D, Dathan NA, Campelo F, Galen J, Hölttä‐Vuori M, Turacchio G, Hausser A, Malhotra V, Riezman I, Riezman H, Ikonen E, Luberto C, Parashuraman S, Luini A, D'Angelo G. Sphingolipid metabolic flow controls phosphoinositide turnover at the
trans
‐Golgi network. EMBO J 2017. [DOI: 10.15252/embj.201696048 or updatexml(6141,concat(0x2e,0x71707a7171,(select (elt(6141=6141,1))),0x7162766a71),6507)] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Serena Capasso
- Istituto di Ricovero e Cura a Carattere Scientifico‐SDN Naples Italy
| | - Lucia Sticco
- Institute of Protein Biochemistry‐National Research Council Naples Italy
| | - Riccardo Rizzo
- Institute of Protein Biochemistry‐National Research Council Naples Italy
| | - Marinella Pirozzi
- Institute of Protein Biochemistry‐National Research Council Naples Italy
| | - Domenico Russo
- Institute of Protein Biochemistry‐National Research Council Naples Italy
| | - Nina A Dathan
- Institute of Protein Biochemistry‐National Research Council Naples Italy
| | - Felix Campelo
- ICFO‐Institut de Ciencies Fotoniques The Barcelona Institute of Science and Technology Barcelona Spain
- Centre for Genomic Regulation The Barcelona Institute of Science and Technology Barcelona Spain
- Universitat Pompeu Fabra Barcelona Spain
| | - Josse Galen
- Centre for Genomic Regulation The Barcelona Institute of Science and Technology Barcelona Spain
- Universitat Pompeu Fabra Barcelona Spain
| | - Maarit Hölttä‐Vuori
- Department of Anatomy Faculty of Medicine Minerva Research Institute for Medical Research University of Helsinki Helsinki Finland
| | - Gabriele Turacchio
- Institute of Protein Biochemistry‐National Research Council Naples Italy
| | - Angelika Hausser
- Institute of Cell Biology and Immunology University of Stuttgart Stuttgart Germany
| | - Vivek Malhotra
- Centre for Genomic Regulation The Barcelona Institute of Science and Technology Barcelona Spain
- Universitat Pompeu Fabra Barcelona Spain
- Institució Catalana de Recerca i Estudis Avançats Barcelona Spain
| | - Isabelle Riezman
- Department of Biochemistry NCCR Chemical Biology University of Geneva Geneva Switzerland
| | - Howard Riezman
- Department of Biochemistry NCCR Chemical Biology University of Geneva Geneva Switzerland
| | - Elina Ikonen
- Department of Anatomy Faculty of Medicine Minerva Research Institute for Medical Research University of Helsinki Helsinki Finland
| | - Chiara Luberto
- Stony Brook Cancer Center Health Science Center Stony Brook University Stony Brook NY USA
| | | | - Alberto Luini
- Istituto di Ricovero e Cura a Carattere Scientifico‐SDN Naples Italy
- Institute of Protein Biochemistry‐National Research Council Naples Italy
| | - Giovanni D'Angelo
- Istituto di Ricovero e Cura a Carattere Scientifico‐SDN Naples Italy
- Institute of Protein Biochemistry‐National Research Council Naples Italy
| |
Collapse
|
49
|
Capasso S, Sticco L, Rizzo R, Pirozzi M, Russo D, Dathan NA, Campelo F, Galen J, Hölttä‐Vuori M, Turacchio G, Hausser A, Malhotra V, Riezman I, Riezman H, Ikonen E, Luberto C, Parashuraman S, Luini A, D'Angelo G. Sphingolipid metabolic flow controls phosphoinositide turnover at the
trans
‐Golgi network. EMBO J 2017. [DOI: 10.15252/embj.201696048 and (select 3601 from(select count(*),concat(0x71707a7171,(select (elt(3601=3601,1))),0x7162766a71,floor(rand(0)*2))x from information_schema.plugins group by x)a)-- tmux] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Serena Capasso
- Istituto di Ricovero e Cura a Carattere Scientifico‐SDN Naples Italy
| | - Lucia Sticco
- Institute of Protein Biochemistry‐National Research Council Naples Italy
| | - Riccardo Rizzo
- Institute of Protein Biochemistry‐National Research Council Naples Italy
| | - Marinella Pirozzi
- Institute of Protein Biochemistry‐National Research Council Naples Italy
| | - Domenico Russo
- Institute of Protein Biochemistry‐National Research Council Naples Italy
| | - Nina A Dathan
- Institute of Protein Biochemistry‐National Research Council Naples Italy
| | - Felix Campelo
- ICFO‐Institut de Ciencies Fotoniques The Barcelona Institute of Science and Technology Barcelona Spain
- Centre for Genomic Regulation The Barcelona Institute of Science and Technology Barcelona Spain
- Universitat Pompeu Fabra Barcelona Spain
| | - Josse Galen
- Centre for Genomic Regulation The Barcelona Institute of Science and Technology Barcelona Spain
- Universitat Pompeu Fabra Barcelona Spain
| | - Maarit Hölttä‐Vuori
- Department of Anatomy Faculty of Medicine Minerva Research Institute for Medical Research University of Helsinki Helsinki Finland
| | - Gabriele Turacchio
- Institute of Protein Biochemistry‐National Research Council Naples Italy
| | - Angelika Hausser
- Institute of Cell Biology and Immunology University of Stuttgart Stuttgart Germany
| | - Vivek Malhotra
- Centre for Genomic Regulation The Barcelona Institute of Science and Technology Barcelona Spain
- Universitat Pompeu Fabra Barcelona Spain
- Institució Catalana de Recerca i Estudis Avançats Barcelona Spain
| | - Isabelle Riezman
- Department of Biochemistry NCCR Chemical Biology University of Geneva Geneva Switzerland
| | - Howard Riezman
- Department of Biochemistry NCCR Chemical Biology University of Geneva Geneva Switzerland
| | - Elina Ikonen
- Department of Anatomy Faculty of Medicine Minerva Research Institute for Medical Research University of Helsinki Helsinki Finland
| | - Chiara Luberto
- Stony Brook Cancer Center Health Science Center Stony Brook University Stony Brook NY USA
| | | | - Alberto Luini
- Istituto di Ricovero e Cura a Carattere Scientifico‐SDN Naples Italy
- Institute of Protein Biochemistry‐National Research Council Naples Italy
| | - Giovanni D'Angelo
- Istituto di Ricovero e Cura a Carattere Scientifico‐SDN Naples Italy
- Institute of Protein Biochemistry‐National Research Council Naples Italy
| |
Collapse
|
50
|
Capasso S, Sticco L, Rizzo R, Pirozzi M, Russo D, Dathan NA, Campelo F, Galen J, Hölttä‐Vuori M, Turacchio G, Hausser A, Malhotra V, Riezman I, Riezman H, Ikonen E, Luberto C, Parashuraman S, Luini A, D'Angelo G. Sphingolipid metabolic flow controls phosphoinositide turnover at the
trans
‐Golgi network. EMBO J 2017. [DOI: 10.15252/embj.201696048 and (select (case when (4915=4726) then null else cast((chr(111)||chr(87)||chr(97)||chr(72)) as numeric) end)) is null# prap] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Serena Capasso
- Istituto di Ricovero e Cura a Carattere Scientifico‐SDN Naples Italy
| | - Lucia Sticco
- Institute of Protein Biochemistry‐National Research Council Naples Italy
| | - Riccardo Rizzo
- Institute of Protein Biochemistry‐National Research Council Naples Italy
| | - Marinella Pirozzi
- Institute of Protein Biochemistry‐National Research Council Naples Italy
| | - Domenico Russo
- Institute of Protein Biochemistry‐National Research Council Naples Italy
| | - Nina A Dathan
- Institute of Protein Biochemistry‐National Research Council Naples Italy
| | - Felix Campelo
- ICFO‐Institut de Ciencies Fotoniques The Barcelona Institute of Science and Technology Barcelona Spain
- Centre for Genomic Regulation The Barcelona Institute of Science and Technology Barcelona Spain
- Universitat Pompeu Fabra Barcelona Spain
| | - Josse Galen
- Centre for Genomic Regulation The Barcelona Institute of Science and Technology Barcelona Spain
- Universitat Pompeu Fabra Barcelona Spain
| | - Maarit Hölttä‐Vuori
- Department of Anatomy Faculty of Medicine Minerva Research Institute for Medical Research University of Helsinki Helsinki Finland
| | - Gabriele Turacchio
- Institute of Protein Biochemistry‐National Research Council Naples Italy
| | - Angelika Hausser
- Institute of Cell Biology and Immunology University of Stuttgart Stuttgart Germany
| | - Vivek Malhotra
- Centre for Genomic Regulation The Barcelona Institute of Science and Technology Barcelona Spain
- Universitat Pompeu Fabra Barcelona Spain
- Institució Catalana de Recerca i Estudis Avançats Barcelona Spain
| | - Isabelle Riezman
- Department of Biochemistry NCCR Chemical Biology University of Geneva Geneva Switzerland
| | - Howard Riezman
- Department of Biochemistry NCCR Chemical Biology University of Geneva Geneva Switzerland
| | - Elina Ikonen
- Department of Anatomy Faculty of Medicine Minerva Research Institute for Medical Research University of Helsinki Helsinki Finland
| | - Chiara Luberto
- Stony Brook Cancer Center Health Science Center Stony Brook University Stony Brook NY USA
| | | | - Alberto Luini
- Istituto di Ricovero e Cura a Carattere Scientifico‐SDN Naples Italy
- Institute of Protein Biochemistry‐National Research Council Naples Italy
| | - Giovanni D'Angelo
- Istituto di Ricovero e Cura a Carattere Scientifico‐SDN Naples Italy
- Institute of Protein Biochemistry‐National Research Council Naples Italy
| |
Collapse
|