1
|
Hong T. Mathematical Modeling for Oscillations Driven by Noncoding RNAs. Methods Mol Biol 2025; 2883:155-165. [PMID: 39702708 DOI: 10.1007/978-1-0716-4290-0_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
In this chapter, we first survey strategies for the mathematical modeling of gene regulatory networks for capturing physiologically important dynamics in cells such as oscillations. We focus on models based on ordinary differential equations with various forms of nonlinear functions that describe gene regulations. We next use a small system of a microRNA and its mRNA target to illustrate a recently discovered oscillator driven by noncoding RNAs. This oscillator has unique features that distinguish it from conventional biological oscillators, including the absence of an imposed negative feedback loop and the divergence of the periods. The latter property may serve crucial biological functions for restoring heterogeneity of cell populations on the timescale of days. We describe general requirements for obtaining the limit cycle oscillations in terms of underlying biochemical reactions and kinetic rate constants. We discuss future directions stemming from this minimal, noncoding RNA-based model for gene expression oscillation.
Collapse
Affiliation(s)
- Tian Hong
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX, USA.
| |
Collapse
|
2
|
Paul S, Adetunji J, Hong T. Widespread biochemical reaction networks enable Turing patterns without imposed feedback. Nat Commun 2024; 15:8380. [PMID: 39333132 PMCID: PMC11436923 DOI: 10.1038/s41467-024-52591-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 09/11/2024] [Indexed: 09/29/2024] Open
Abstract
Understanding self-organized pattern formation is fundamental to biology. In 1952, Alan Turing proposed a pattern-enabling mechanism in reaction-diffusion systems containing chemical species later conceptualized as activators and inhibitors that are involved in feedback loops. However, identifying pattern-enabling regulatory systems with the concept of feedback loops has been a long-standing challenge. To date, very few pattern-enabling circuits have been discovered experimentally. This is in stark contrast to ubiquitous periodic patterns and symmetry in biology. In this work, we systematically study Turing patterns in 23 elementary biochemical networks without assigning any activator or inhibitor. These mass action models describe post-synthesis interactions applicable to most proteins and RNAs in multicellular organisms. Strikingly, we find ten simple reaction networks capable of generating Turing patterns. While these network models are consistent with Turing's theory mathematically, there is no apparent connection between them and commonly used activator-feedback intuition. Instead, we identify a unifying network motif that enables Turing patterns via regulated degradation pathways with flexible diffusion rate constants of individual molecules. Our work reveals widespread biochemical systems for pattern formation, and it provides an alternative approach to tackle the challenge of identifying pattern-enabling biological systems.
Collapse
Affiliation(s)
- Shibashis Paul
- Department of Biochemistry & Cellular and Molecular Biology, The University of Tennessee, Knoxville, Knoxville, TN, 37916, USA
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Joy Adetunji
- Department of Biochemistry & Cellular and Molecular Biology, The University of Tennessee, Knoxville, Knoxville, TN, 37916, USA
| | - Tian Hong
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX, 75080, USA.
| |
Collapse
|
3
|
Joshi B, Nguyen TD. Bifunctional enzyme provides absolute concentration robustness in multisite covalent modification networks. J Math Biol 2024; 88:36. [PMID: 38429564 DOI: 10.1007/s00285-024-02060-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 01/29/2024] [Accepted: 02/04/2024] [Indexed: 03/03/2024]
Abstract
Biochemical covalent modification networks exhibit a remarkable suite of steady state and dynamical properties such as multistationarity, oscillations, ultrasensitivity and absolute concentration robustness. This paper focuses on conditions required for a network of this type to have a species with absolute concentration robustness. We find that the robustness in a substrate is endowed by its interaction with a bifunctional enzyme, which is an enzyme that has different roles when isolated versus when bound as a substrate-enzyme complex. When isolated, the bifunctional enzyme promotes production of more molecules of the robust species while when bound, the same enzyme facilitates degradation of the robust species. These dual actions produce robustness in the large class of covalent modification networks. For each network of this type, we find the network conditions for the presence of robustness, the species that has robustness, and its robustness value. The unified approach of simultaneously analyzing a large class of networks for a single property, i.e. absolute concentration robustness, reveals the underlying mechanism of the action of bifunctional enzyme while simultaneously providing a precise mathematical description of bifunctionality.
Collapse
Affiliation(s)
- Badal Joshi
- Department of Mathematics, California State University San Marcos, San Marcos, USA
| | - Tung D Nguyen
- Department of Mathematics, Texas A &M University, College Station, USA.
| |
Collapse
|
4
|
Ramesh V, Krishnan J. A unified approach to dissecting biphasic responses in cell signaling. eLife 2023; 13:e86520. [PMID: 38054655 DOI: 10.7554/elife.86520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 12/05/2023] [Indexed: 12/07/2023] Open
Abstract
Biphasic responses are encountered at all levels in biological systems. At the cellular level, biphasic dose-responses are widely encountered in cell signaling and post-translational modification systems and represent safeguards against overactivation or overexpression of species. In this paper, we provide a unified theoretical synthesis of biphasic responses in cell signaling systems, by assessing signaling systems ranging from basic biochemical building blocks to canonical network structures to well-characterized exemplars on one hand, and examining different types of doses on the other. By using analytical and computational approaches applied to a range of systems across levels (described by broadly employed models), we reveal (i) design principles enabling the presence of biphasic responses, including in almost all instances, an explicit characterization of the parameter space (ii) structural factors which preclude the possibility of biphasic responses (iii) different combinations of the presence or absence of enzyme-biphasic and substrate-biphasic responses, representing safeguards against overactivation and overexpression, respectively (iv) the possibility of broadly robust biphasic responses (v) the complete alteration of signaling behavior in a network due to biphasic interactions between species (biphasic regulation) (vi) the propensity of different co-existing biphasic responses in the Erk signaling network. These results both individually and in totality have a number of important consequences for systems and synthetic biology.
Collapse
Affiliation(s)
- Vaidhiswaran Ramesh
- Department of Chemical Engineering, Sargent Centre for Process Systems Engineering, Imperial College London, London, United Kingdom
| | - J Krishnan
- Department of Chemical Engineering, Sargent Centre for Process Systems Engineering, Imperial College London, London, United Kingdom
- Institute for Systems and Synthetic Biology, Imperial College London, South Kensington Campus, London, United Kingdom
| |
Collapse
|
5
|
Shvartsman SY, McFann S, Wühr M, Rubinstein BY. Phase plane dynamics of ERK phosphorylation. J Biol Chem 2023; 299:105234. [PMID: 37690685 PMCID: PMC10616409 DOI: 10.1016/j.jbc.2023.105234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 08/27/2023] [Accepted: 08/29/2023] [Indexed: 09/12/2023] Open
Abstract
The extracellular signal-regulated kinase (ERK) controls multiple critical processes in the cell and is deregulated in human cancers, congenital abnormalities, immune diseases, and neurodevelopmental syndromes. Catalytic activity of ERK requires dual phosphorylation by an upstream kinase, in a mechanism that can be described by two sequential Michaelis-Menten steps. The estimation of individual reaction rate constants from kinetic data in the full mechanism has proved challenging. Here, we present an analytically tractable approach to parameter estimation that is based on the phase plane representation of ERK activation and yields two combinations of six reaction rate constants in the detailed mechanism. These combinations correspond to the ratio of the specificities of two consecutive phosphorylations and the probability that monophosphorylated substrate does not dissociate from the enzyme before the second phosphorylation. The presented approach offers a language for comparing the effects of mutations that disrupt ERK activation and function in vivo. As an illustration, we use phase plane representation to analyze dual phosphorylation under heterozygous conditions, when two enzyme variants compete for the same substrate.
Collapse
Affiliation(s)
- Stanislav Y Shvartsman
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA; Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, USA; Center for Computational Biology, Flatiron Institute, New York, New York, USA.
| | - Sarah McFann
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, USA; Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey, USA
| | - Martin Wühr
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA; Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, USA
| | | |
Collapse
|
6
|
Nordick B, Yu PY, Liao G, Hong T. Nonmodular oscillator and switch based on RNA decay drive regeneration of multimodal gene expression. Nucleic Acids Res 2022; 50:3693-3708. [PMID: 35380686 PMCID: PMC9023291 DOI: 10.1093/nar/gkac217] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/13/2022] [Accepted: 03/21/2022] [Indexed: 12/15/2022] Open
Abstract
Periodic gene expression dynamics are key to cell and organism physiology. Studies of oscillatory expression have focused on networks with intuitive regulatory negative feedback loops, leaving unknown whether other common biochemical reactions can produce oscillations. Oscillation and noise have been proposed to support mammalian progenitor cells’ capacity to restore heterogenous, multimodal expression from extreme subpopulations, but underlying networks and specific roles of noise remained elusive. We use mass-action-based models to show that regulated RNA degradation involving as few as two RNA species—applicable to nearly half of human protein-coding genes—can generate sustained oscillations without explicit feedback. Diverging oscillation periods synergize with noise to robustly restore cell populations’ bimodal expression on timescales of days. The global bifurcation organizing this divergence relies on an oscillator and bistable switch which cannot be decomposed into two structural modules. Our work reveals surprisingly rich dynamics of post-transcriptional reactions and a potentially widespread mechanism underlying development, tissue regeneration, and cancer cell heterogeneity.
Collapse
Affiliation(s)
- Benjamin Nordick
- School of Genome Science and Technology, The University of Tennessee, Knoxville, Tennessee 37916, USA
| | - Polly Y Yu
- NSF-Simons Center for Mathematical and Statistical Analysis of Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Guangyuan Liao
- Department of Biochemistry & Cellular and Molecular Biology, The University of Tennessee, Knoxville, Tennessee 37916, USA
| | - Tian Hong
- Department of Biochemistry & Cellular and Molecular Biology, The University of Tennessee, Knoxville, Tennessee 37916, USA.,National Institute for Mathematical and Biological Synthesis, Knoxville, Tennessee 37916, USA
| |
Collapse
|
7
|
Nordick B, Hong T. Identification, visualization, statistical analysis and mathematical modeling of high-feedback loops in gene regulatory networks. BMC Bioinformatics 2021; 22:481. [PMID: 34607562 PMCID: PMC8489061 DOI: 10.1186/s12859-021-04405-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 09/27/2021] [Indexed: 12/21/2022] Open
Abstract
Background Feedback loops in gene regulatory networks play pivotal roles in governing functional dynamics of cells. Systems approaches demonstrated characteristic dynamical features, including multistability and oscillation, of positive and negative feedback loops. Recent experiments and theories have implicated highly interconnected feedback loops (high-feedback loops) in additional nonintuitive functions, such as controlling cell differentiation rate and multistep cell lineage progression. However, it remains challenging to identify and visualize high-feedback loops in complex gene regulatory networks due to the myriad of ways in which the loops can be combined. Furthermore, it is unclear whether the high-feedback loop structures with these potential functions are widespread in biological systems. Finally, it remains challenging to understand diverse dynamical features, such as high-order multistability and oscillation, generated by individual networks containing high-feedback loops. To address these problems, we developed HiLoop, a toolkit that enables discovery, visualization, and analysis of several types of high-feedback loops in large biological networks. Results HiLoop not only extracts high-feedback structures and visualize them in intuitive ways, but also quantifies the enrichment of overrepresented structures. Through random parameterization of mathematical models derived from target networks, HiLoop presents characteristic features of the underlying systems, including complex multistability and oscillations, in a unifying framework. Using HiLoop, we were able to analyze realistic gene regulatory networks containing dozens to hundreds of genes, and to identify many small high-feedback systems. We found more than a 100 human transcription factors involved in high-feedback loops that were not studied previously. In addition, HiLoop enabled the discovery of an enrichment of high feedback in pathways related to epithelial-mesenchymal transition. Conclusions HiLoop makes the study of complex networks accessible without significant computational demands. It can serve as a hypothesis generator through identification and modeling of high-feedback subnetworks, or as a quantification method for motif enrichment analysis. As an example of discovery, we found that multistep cell lineage progression may be driven by either specific instances of high-feedback loops with sparse appearances, or generally enriched topologies in gene regulatory networks. We expect HiLoop’s usefulness to increase as experimental data of regulatory networks accumulate. Code is freely available for use or extension at https://github.com/BenNordick/HiLoop. Supplementary Information The online version contains supplementary material available at 10.1186/s12859-021-04405-z.
Collapse
Affiliation(s)
- Benjamin Nordick
- School of Genome Science and Technology, The University of Tennessee, Knoxville, TN, USA
| | - Tian Hong
- Department of Biochemistry & Cellular and Molecular Biology, The University of Tennessee, Knoxville, TN, USA. .,National Institute for Mathematical and Biological Synthesis, Knoxville, TN, USA.
| |
Collapse
|
8
|
Ramesh V, Krishnan J. Symmetry breaking meets multisite modification. eLife 2021; 10:65358. [PMID: 34018920 PMCID: PMC8439660 DOI: 10.7554/elife.65358] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 05/20/2021] [Indexed: 12/19/2022] Open
Abstract
Multisite modification is a basic way of conferring functionality to proteins and a key component of post-translational modification networks. Additional interest in multisite modification stems from its capability of acting as complex information processors. In this paper, we connect two seemingly disparate themes: symmetry and multisite modification. We examine different classes of random modification networks of substrates involving separate or common enzymes. We demonstrate that under different instances of symmetry of the modification network (invoked explicitly or implicitly and discussed in the literature), the biochemistry of multisite modification can lead to the symmetry being broken. This is shown computationally and consolidated analytically, revealing parameter regions where this can (and in fact does) happen, and characteristics of the symmetry-broken state. We discuss the relevance of these results in situations where exact symmetry is not present. Overall, through our study we show how symmetry breaking (i) can confer new capabilities to protein networks, including concentration robustness of different combinations of species (in conjunction with multiple steady states); (ii) could have been the basis for ordering of multisite modification, which is widely observed in cells; (iii) can significantly impact information processing in multisite modification and in cell signalling networks/pathways where multisite modification is present; and (iv) can be a fruitful new angle for engineering in synthetic biology and chemistry. All in all, the emerging conceptual synthesis provides a new vantage point for the elucidation and the engineering of molecular systems at the junction of chemical and biological systems. Proteins help our cells perform the chemical reactions necessary for life. Once proteins are made, they can also be modified in different ways. This can simply change their activity, or otherwise make them better suited for their specific jobs within the cell. Biological ‘catalysts’ called enzymes carry out protein modifications by reversibly adding (or removing) chemical groups, such as phosphate groups. ‘Multisite modifications’ occur when a protein has two or more modifications in different areas, which can be added randomly or in a specific sequence. The combination of all the modifications attached to a protein acts like a chemical barcode and confers a specific function to the protein. Modification networks add levels of complexity above individual proteins. These encompass not only the proteins in a cell or tissue, but also the different enzymes that can modify them, and how they all interact with each other. Although our knowledge of these networks is substantial, basic aspects, such as how the ordering of multisite modification systems emerges, is still not well understood. Using a simple set of multisite modifications, Ramesh and Krishnan set out to study the potential mechanisms allowing the creation of order in this context. Symmetry is a pervasive theme across the sciences. In biology, symmetry and how it may be broken, is important to understand, for example, how organism develop. Ramesh and Krishnan used the perspective of symmetry in protein networks to uncover the origins of ordering. First, mathematical models of simple modification networks were created based on their basic descriptions. This system centred on proteins that could have phosphate modifications at two possible sites. The network was ‘symmetric’, meaning that the rate of different sets of chemical reactions was identical, as were the amounts of all the enzymes involved. Dissecting the simulated network using a variety of mathematical approaches showed that its initial symmetry could break, giving rise to sets of ordered multisite modifications. Breaking symmetry did not require any additional features or factors; the basic chemical ‘ingredients’ of protein modification were all that was needed. The prism of symmetry also revealed other aspects of these multisite modification networks, such as robustness and oscillations. This study sheds new light on the mechanism behind ordering of protein modifications. In the future, Ramesh and Krishnan hope that this approach can be applied to the study of not just proteins but also a wider range of biochemical networks.
Collapse
Affiliation(s)
- Vaidhiswaran Ramesh
- Department of Chemical Engineerng, Centre for Process Systems Engineering, Imperial College London, London, United Kingdom
| | - J Krishnan
- Department of Chemical Engineering, Centre for Process Systems Engineering, Imperial College London, London, United Kingdom
| |
Collapse
|
9
|
Conradi C, Obatake N, Shiu A, Tang X. Dynamics of ERK regulation in the processive limit. J Math Biol 2021; 82:32. [PMID: 33694015 DOI: 10.1007/s00285-021-01574-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 09/01/2020] [Accepted: 02/13/2021] [Indexed: 10/21/2022]
Abstract
We consider a model of extracellular signal-regulated kinase regulation by dual-site phosphorylation and dephosphorylation, which exhibits bistability and oscillations, but loses these properties in the limit in which the mechanisms underlying phosphorylation and dephosphorylation become processive. Our results suggest that anywhere along the way to becoming processive, the model remains bistable and oscillatory. More precisely, in simplified versions of the model, precursors to bistability and oscillations (specifically, multistationarity and Hopf bifurcations, respectively) exist at all "processivity levels". Finally, we investigate whether bistability and oscillations can exist together.
Collapse
Affiliation(s)
| | - Nida Obatake
- Department of Mathematics, Texas A&M University, College Station, USA
| | - Anne Shiu
- Department of Mathematics, Texas A&M University, College Station, USA
| | - Xiaoxian Tang
- Department of Mathematics, Texas A&M University, College Station, USA. .,School of Mathematical Sciences, Beihang University, Beijing, China.
| |
Collapse
|
10
|
Suwanmajo T, Ramesh V, Krishnan J. Exploring cyclic networks of multisite modification reveals origins of information processing characteristics. Sci Rep 2020; 10:16542. [PMID: 33024185 PMCID: PMC7539153 DOI: 10.1038/s41598-020-73045-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 09/07/2020] [Indexed: 12/20/2022] Open
Abstract
Multisite phosphorylation (and generally multisite modification) is a basic way of encoding substrate function and circuits/networks of post-translational modifications (PTM) are ubiquitous in cell signalling. The information processing characteristics of PTM systems are a focal point of broad interest. The ordering of modifications is a key aspect of multisite modification, and a broad synthesis of the impact of ordering of modifications is still missing. We focus on a basic class of multisite modification circuits: the cyclic mechanism, which corresponds to the same ordering of phosphorylation and dephosphorylation, and examine multiple variants involving common/separate kinases and common/separate phosphatases. This is of interest both because it is encountered in concrete cellular contexts, and because it serves as a bridge between ordered (sequential) mechanisms (representing one type of ordering) and random mechanisms (which have no ordering). We show that bistability and biphasic dose response curves of the maximally modified phosphoform are ruled out for basic structural reasons independent of parameters, while oscillations can result with even just one shared enzyme. We then examine the effect of relaxing some basic assumptions about the ordering of modification. We show computationally and analytically how bistability, biphasic responses and oscillations can be generated by minimal augmentations to the cyclic mechanism even when these augmentations involved reactions operating in the unsaturated limit. All in all, using this approach we demonstrate (1) how the cyclic mechanism (with single augmentations) represents a modification circuit using minimal ingredients (in terms of shared enzymes and sequestration of enzymes) to generate bistability and oscillations, when compared to other mechanisms, (2) new design principles for rationally designing PTM systems for a variety of behaviour, (3) a basis and a necessary step for understanding the origins and robustness of behaviour observed in basic multisite modification systems.
Collapse
Affiliation(s)
- Thapanar Suwanmajo
- Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai, 50200, Thailand
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Vaidhiswaran Ramesh
- Department of Chemical Engineering, Centre for Process Systems Engineering, Imperial College London, London, SW7 2AZ, UK
| | - J Krishnan
- Department of Chemical Engineering, Centre for Process Systems Engineering, Imperial College London, London, SW7 2AZ, UK.
- Institute for Systems and Synthetic Biology, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK.
| |
Collapse
|
11
|
Kim J, Enciso G. Absolutely robust controllers for chemical reaction networks. J R Soc Interface 2020; 17:20200031. [PMID: 32396809 DOI: 10.1098/rsif.2020.0031] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
In this work, we design a type of controller that consists of adding a specific set of reactions to an existing mass-action chemical reaction network in order to control a target species. This set of reactions is effective for both deterministic and stochastic networks, in the latter case controlling the mean as well as the variance of the target species. We employ a type of network property called absolute concentration robustness (ACR). We provide applications to the control of a multisite phosphorylation model as well as a receptor-ligand signalling system. For this framework, we use the so-called deficiency zero theorem from chemical reaction network theory as well as multiscaling model reduction methods. We show that the target species has approximately Poisson distribution with the desired mean. We further show that ACR controllers can bring robust perfect adaptation to a target species and are complementary to a recently introduced antithetic feedback controller used for stochastic chemical reactions.
Collapse
Affiliation(s)
- Jinsu Kim
- Department of Mathematics, University of California Irvine, Irvine, CA 92614, USA
| | - German Enciso
- Department of Mathematics, University of California Irvine, Irvine, CA 92614, USA
| |
Collapse
|
12
|
Nam KM, Gyori BM, Amethyst SV, Bates DJ, Gunawardena J. Robustness and parameter geography in post-translational modification systems. PLoS Comput Biol 2020; 16:e1007573. [PMID: 32365103 PMCID: PMC7224580 DOI: 10.1371/journal.pcbi.1007573] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 05/14/2020] [Accepted: 04/02/2020] [Indexed: 11/23/2022] Open
Abstract
Biological systems are acknowledged to be robust to perturbations but a rigorous understanding of this has been elusive. In a mathematical model, perturbations often exert their effect through parameters, so sizes and shapes of parametric regions offer an integrated global estimate of robustness. Here, we explore this “parameter geography” for bistability in post-translational modification (PTM) systems. We use the previously developed “linear framework” for timescale separation to describe the steady-states of a two-site PTM system as the solutions of two polynomial equations in two variables, with eight non-dimensional parameters. Importantly, this approach allows us to accommodate enzyme mechanisms of arbitrary complexity beyond the conventional Michaelis-Menten scheme, which unrealistically forbids product rebinding. We further use the numerical algebraic geometry tools Bertini, Paramotopy, and alphaCertified to statistically assess the solutions to these equations at ∼109 parameter points in total. Subject to sampling limitations, we find no bistability when substrate amount is below a threshold relative to enzyme amounts. As substrate increases, the bistable region acquires 8-dimensional volume which increases in an apparently monotonic and sigmoidal manner towards saturation. The region remains connected but not convex, albeit with a high visibility ratio. Surprisingly, the saturating bistable region occupies a much smaller proportion of the sampling domain under mechanistic assumptions more realistic than the Michaelis-Menten scheme. We find that bistability is compromised by product rebinding and that unrealistic assumptions on enzyme mechanisms have obscured its parametric rarity. The apparent monotonic increase in volume of the bistable region remains perplexing because the region itself does not grow monotonically: parameter points can move back and forth between monostability and bistability. We suggest mathematical conjectures and questions arising from these findings. Advances in theory and software now permit insights into parameter geography to be uncovered by high-dimensional, data-centric analysis. Biological organisms are often said to have robust properties but it is difficult to understand how such robustness arises from molecular interactions. Here, we use a mathematical model to study how the molecular mechanism of protein modification exhibits the property of multiple internal states, which has been suggested to underlie memory and decision making. The robustness of this property is revealed by the size and shape, or “geography,” of the parametric region in which the property holds. We use advances in reducing model complexity and in rapidly solving the underlying equations, to extensively sample parameter points in an 8-dimensional space. We find that under realistic molecular assumptions the size of the region is surprisingly small, suggesting that generating multiple internal states with such a mechanism is much harder than expected. While the shape of the region appears straightforward, we find surprising complexity in how the region grows with increasing amounts of the modified substrate. Our approach uses statistical analysis of data generated from a model, rather than from experiments, but leads to precise mathematical conjectures about parameter geography and biological robustness.
Collapse
Affiliation(s)
- Kee-Myoung Nam
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Benjamin M. Gyori
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Silviana V. Amethyst
- Department of Mathematics, University of Wisconsin–Eau Claire, Eau Claire, Wisconsin, United States of America
| | - Daniel J. Bates
- Department of Mathematics, United States Naval Academy, Annapolis, Maryland, United States of America
| | - Jeremy Gunawardena
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
13
|
Chen M, Ahmadian M, Watson LT, Cao Y. Finding acceptable parameter regions of stochastic Hill functions for multisite phosphorylation mechanism. J Chem Phys 2020; 152:124108. [DOI: 10.1063/1.5143004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- M. Chen
- Department of Computer Science, Virginia Tech, Blacksburg, Virginia 24061, USA
| | - M. Ahmadian
- Department of Computer Science, Virginia Tech, Blacksburg, Virginia 24061, USA
| | - L. T. Watson
- Department of Computer Science, Virginia Tech, Blacksburg, Virginia 24061, USA
| | - Y. Cao
- Department of Computer Science, Virginia Tech, Blacksburg, Virginia 24061, USA
| |
Collapse
|
14
|
Suwanmajo T, Krishnan J. Exploring the intrinsic behaviour of multisite phosphorylation systems as part of signalling pathways. J R Soc Interface 2019; 15:rsif.2018.0109. [PMID: 29950514 DOI: 10.1098/rsif.2018.0109] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 05/31/2018] [Indexed: 01/13/2023] Open
Abstract
Multisite phosphorylation is a basic way of chemically encoding substrate function and a recurring feature of cell signalling pathways. A number of studies have explored information processing characteristics of multisite phosphorylation, through studies of the intrinsic kinetics. Many of these studies focus on the module in isolation. In this paper, we build a bridge to connect the behaviour of multisite modification in isolation to that as part of pathways. We study the effect of activation of the enzymes (which are basic ways in which the module may be regulated), as well the effects of the modified substrates being involved in further modifications or exiting reaction compartments. We find that these effects can induce multiple kinds of transitions, including to behaviour not seen intrinsically in the multisite modification module. We then build on these insights to investigate how these multisite modification systems can be tuned by enzyme activation to realize a range of information processing outcomes for the design of synthetic phosphorylation circuits. Connecting the complexity of multisite modification kinetics, with the pathways in which they are embedded, serves as a basis for teasing out many aspects of their interaction, providing insights of relevance in systems biology, synthetic biology/chemistry and chemical information processing.
Collapse
Affiliation(s)
- Thapanar Suwanmajo
- Department of Chemical Engineering, Centre for Process Systems Engineering, Imperial College London, London SW7 2AZ, UK.,Centre of Excellence in Materials Science and Technology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand.,Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - J Krishnan
- Department of Chemical Engineering, Centre for Process Systems Engineering, Imperial College London, London SW7 2AZ, UK .,Institute for Systems and Synthetic Biology, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| |
Collapse
|
15
|
Oscillations and bistability in a model of ERK regulation. J Math Biol 2019; 79:1515-1549. [PMID: 31346693 DOI: 10.1007/s00285-019-01402-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 07/03/2019] [Indexed: 11/26/2022]
Abstract
This work concerns the question of how two important dynamical properties, oscillations and bistability, emerge in an important biological signaling network. Specifically, we consider a model for dual-site phosphorylation and dephosphorylation of extracellular signal-regulated kinase (ERK). We prove that oscillations persist even as the model is greatly simplified (reactions are made irreversible and intermediates are removed). Bistability, however, is much less robust-this property is lost when intermediates are removed or even when all reactions are made irreversible. Moreover, bistability is characterized by the presence of two reversible, catalytic reactions: as other reactions are made irreversible, bistability persists as long as one or both of the specified reactions is preserved. Finally, we investigate the maximum number of steady states, aided by a network's "mixed volume" (a concept from convex geometry). Taken together, our results shed light on the question of how oscillations and bistability emerge from a limiting network of the ERK network-namely, the fully processive dual-site network-which is known to be globally stable and therefore lack both oscillations and bistability. Our proofs are enabled by a Hopf bifurcation criterion due to Yang, analyses of Newton polytopes arising from Hurwitz determinants, and recent characterizations of multistationarity for networks having a steady-state parametrization.
Collapse
|
16
|
Conradi C, Mincheva M, Shiu A. Emergence of Oscillations in a Mixed-Mechanism Phosphorylation System. Bull Math Biol 2019; 81:1829-1852. [DOI: 10.1007/s11538-019-00580-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Accepted: 02/08/2019] [Indexed: 10/27/2022]
|
17
|
Dynamics of Posttranslational Modification Systems: Recent Progress and Future Directions. Biophys J 2019; 114:507-515. [PMID: 29414696 DOI: 10.1016/j.bpj.2017.11.3787] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 10/23/2017] [Accepted: 11/27/2017] [Indexed: 12/13/2022] Open
Abstract
Posttranslational modification of proteins is important for signal transduction, and hence significant effort has gone toward understanding how posttranslational modification networks process information. This involves, on the theory side, analyzing the dynamical systems arising from such networks. Which networks are, for instance, bistable? Which networks admit sustained oscillations? Which parameter values enable such behaviors? In this Biophysical Perspective, we highlight recent progress in this area and point out some important future directions. Along the way, we summarize several techniques for analyzing general networks, such as eliminating variables to obtain steady-state parameterizations, and harnessing results on how incorporating intermediates affects dynamics.
Collapse
|
18
|
Multistationarity in Structured Reaction Networks. Bull Math Biol 2019; 81:1527-1581. [DOI: 10.1007/s11538-019-00572-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 01/24/2019] [Indexed: 10/27/2022]
|
19
|
Wang Y, Zhang Y, Lu C, Zhang W, Deng H, Wu J, Wang J, Wang Z. Kinetic and mechanistic studies of p38α
MAP
kinase phosphorylation by
MKK
6. FEBS J 2019; 286:1030-1052. [DOI: 10.1111/febs.14762] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 11/29/2018] [Accepted: 01/17/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Yu‐Lu Wang
- Key Laboratory of Ministry of Education for Protein Science School of Life Sciences Tsinghua University Beijing China
| | - Yuan‐Yuan Zhang
- Key Laboratory of Ministry of Education for Protein Science School of Life Sciences Tsinghua University Beijing China
| | - Chang Lu
- Key Laboratory of Ministry of Education for Protein Science School of Life Sciences Tsinghua University Beijing China
| | - Wenhao Zhang
- Key Laboratory of Ministry of Education for Protein Science School of Life Sciences Tsinghua University Beijing China
| | - Haiteng Deng
- Key Laboratory of Ministry of Education for Protein Science School of Life Sciences Tsinghua University Beijing China
| | - Jia‐Wei Wu
- Key Laboratory of Ministry of Education for Protein Science School of Life Sciences Tsinghua University Beijing China
- Institute of Molecular Enzymology Soochow University Suzhou China
| | - Jue Wang
- Institute of Molecular Enzymology Soochow University Suzhou China
| | - Zhi‐Xin Wang
- Key Laboratory of Ministry of Education for Protein Science School of Life Sciences Tsinghua University Beijing China
- Institute of Molecular Enzymology Soochow University Suzhou China
| |
Collapse
|
20
|
Witzel F, Blüthgen N. When More Is Less: Dual Phosphorylation Protects Signaling Off State against Overexpression. Biophys J 2018; 115:1383-1392. [PMID: 30217381 DOI: 10.1016/j.bpj.2018.08.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 08/14/2018] [Accepted: 08/15/2018] [Indexed: 01/03/2023] Open
Abstract
Kinases in signaling pathways are commonly activated by multisite phosphorylation. For example, the mitogen-activated protein kinase Erk is activated by its kinase Mek by two consecutive phosphorylations within its activation loop. In this article, we use kinetic models to study how the activation of Erk is coupled to its abundance. Intuitively, Erk activity should rise with increasing amounts of Erk protein. However, a mathematical model shows that the signaling off state is robust to increasing amounts of Erk, and Erk activity may even decline with increasing amounts of Erk. This counterintuitive, bell-shaped response of Erk activity to increasing amounts of Erk arises from the competition of the unmodified and single phosphorylated form of Erk for access to its kinase Mek. This shows that phosphorylation cycles can contain an intrinsic robustness mechanism that protects signaling from aberrant activation e.g., by gene expression noise or kinase overexpression after gene duplication events in diseases like cancer.
Collapse
Affiliation(s)
- Franziska Witzel
- Institute of Pathology, Charité-Universitätsmedizin Berlin, Berlin, Germany; IRI Life Sciences, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Nils Blüthgen
- Institute of Pathology, Charité-Universitätsmedizin Berlin, Berlin, Germany; IRI Life Sciences, Humboldt-Universität zu Berlin, Berlin, Germany.
| |
Collapse
|
21
|
Aledo JC. Multisite phosphorylation provides a reliable mechanism for making decisions in noisy environments. FEBS J 2018; 285:3729-3737. [PMID: 30112800 DOI: 10.1111/febs.14636] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Revised: 06/11/2018] [Accepted: 08/13/2018] [Indexed: 11/27/2022]
Abstract
The ability to make decisions at the cellular level is absolutely critical for the survival of organisms. Eukaryotic cells are constantly making binary decisions in response to internal and environmental signals. Among the most notable transducers of information are protein kinases. The regulation of these signaling proteins often relies on the activity of other protein kinases located upstream in the signaling cascade. However, these signaling systems are by their own nature an important source of molecular noise. Herein, we have assessed the role of multisite phosphorylation in detecting signals in the face of molecular noise. To address this issue, we have conceptually envisioned the biochemical transduction machinery as a classifier model that can lead to four possible outputs: true positives and negatives, and false positives and negatives. In this probabilistic framework, we show that multisite phosphorylation represents a mechanism to filter noise during the decision-making process. We present results showing that nonessential phosphorylation sites contribute to increase the rate of true positives while, at the same time, they can lessen the rate of false positives. This simultaneous increase in sensitivity and specificity, makes multisite phosphorylation a valuable and easily implemented mechanism to reliably transduce information in noisy contexts.
Collapse
Affiliation(s)
- Juan Carlos Aledo
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Spain
| |
Collapse
|
22
|
Goyal Y, Schüpbach T, Shvartsman SY. A quantitative model of developmental RTK signaling. Dev Biol 2018; 442:80-86. [PMID: 30026122 DOI: 10.1016/j.ydbio.2018.07.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Revised: 06/22/2018] [Accepted: 07/13/2018] [Indexed: 01/06/2023]
Abstract
Receptor tyrosine kinases (RTKs) control a wide range of developmental processes, from the first stages of embryogenesis to postnatal growth and neurocognitive development in the adult. A significant share of our knowledge about RTKs comes from genetic screens in model organisms, which provided numerous examples demonstrating how specific cell fates and morphologies are abolished when RTK activation is either abrogated or significantly reduced. Aberrant activation of such pathways has also been recognized in many forms of cancer. More recently, studies of human developmental syndromes established that excessive activation of RTKs and their downstream signaling effectors, most notably the Ras signaling pathway, can also lead to structural and functional defects. Given that both insufficient and excessive pathway activation can lead to abnormalities, mechanistic analysis of developmental RTK signaling must address quantitative questions about its regulation and function. Patterning events controlled by the RTK Torso in the early Drosophila embryo are well-suited for this purpose. This mini review summarizes current state of knowledge about Torso-dependent Ras activation and discusses its potential to serve as a quantitative model for studying the general principles of Ras signaling in development and disease.
Collapse
Affiliation(s)
- Yogesh Goyal
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, United States; The Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, United States
| | - Trudi Schüpbach
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, United States
| | - Stanislav Y Shvartsman
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, United States; The Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, United States; Department of Molecular Biology, Princeton University, Princeton, NJ 08544, United States.
| |
Collapse
|
23
|
Dissecting RAF Inhibitor Resistance by Structure-based Modeling Reveals Ways to Overcome Oncogenic RAS Signaling. Cell Syst 2018; 7:161-179.e14. [PMID: 30007540 DOI: 10.1016/j.cels.2018.06.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 03/09/2018] [Accepted: 06/04/2018] [Indexed: 12/19/2022]
Abstract
Clinically used RAF inhibitors are ineffective in RAS mutant tumors because they enhance homo- and heterodimerization of RAF kinases, leading to paradoxical activation of ERK signaling. Overcoming enhanced RAF dimerization and the resulting resistance is a challenge for drug design. Combining multiple inhibitors could be more effective, but it is unclear how the best combinations can be chosen. We built a next-generation mechanistic dynamic model to analyze combinations of structurally different RAF inhibitors, which can efficiently suppress MEK/ERK signaling. This rule-based model of the RAS/ERK pathway integrates thermodynamics and kinetics of drug-protein interactions, structural elements, posttranslational modifications, and cell mutational status as model rules to predict RAF inhibitor combinations for inhibiting ERK activity in oncogenic RAS and/or BRAFV600E backgrounds. Predicted synergistic inhibition of ERK signaling was corroborated by experiments in mutant NRAS, HRAS, and BRAFV600E cells, and inhibition of oncogenic RAS signaling was associated with reduced cell proliferation and colony formation.
Collapse
|
24
|
Elucidating the various multi-phosphorylation statuses of protein functional regions by 193-nm ultraviolet photodissociation. CHINESE CHEM LETT 2018. [DOI: 10.1016/j.cclet.2017.10.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
25
|
Mattingly HH, Sheintuch M, Shvartsman SY. The Design Space of the Embryonic Cell Cycle Oscillator. Biophys J 2017; 113:743-752. [PMID: 28793227 DOI: 10.1016/j.bpj.2017.06.045] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 06/16/2017] [Accepted: 06/21/2017] [Indexed: 11/28/2022] Open
Abstract
One of the main tasks in the analysis of models of biomolecular networks is to characterize the domain of the parameter space that corresponds to a specific behavior. Given the large number of parameters in most models, this is no trivial task. We use a model of the embryonic cell cycle to illustrate the approaches that can be used to characterize the domain of parameter space corresponding to limit cycle oscillations, a regime that coordinates periodic entry into and exit from mitosis. Our approach relies on geometric construction of bifurcation sets, numerical continuation, and random sampling of parameters. We delineate the multidimensional oscillatory domain and use it to quantify the robustness of periodic trajectories. Although some of our techniques explore the specific features of the chosen system, the general approach can be extended to other models of the cell cycle engine and other biomolecular networks.
Collapse
Affiliation(s)
- Henry H Mattingly
- Lewis Sigler Institute for Integrative Genomics and Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey
| | - Moshe Sheintuch
- Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa, Israel
| | - Stanislav Y Shvartsman
- Lewis Sigler Institute for Integrative Genomics and Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey.
| |
Collapse
|
26
|
Hadač O, Muzika F, Nevoral V, Přibyl M, Schreiber I. Minimal oscillating subnetwork in the Huang-Ferrell model of the MAPK cascade. PLoS One 2017; 12:e0178457. [PMID: 28636629 PMCID: PMC5479530 DOI: 10.1371/journal.pone.0178457] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 05/12/2017] [Indexed: 12/31/2022] Open
Abstract
Prompted by the recent growing evidence of oscillatory behavior involving MAPK cascades we present a systematic approach of analyzing models and elucidating the nature of biochemical oscillations based on reaction network theory. In particular, we formulate a minimal biochemically consistent mass action subnetwork of the Huang-Ferrell model of the MAPK signalling that provides an oscillatory response when a parameter controlling the activation of the top-tier kinase is varied. Such dynamics are either intertwined with or separated from the earlier found bistable/hysteretic behavior in this model. Using the theory of stability of stoichiometric networks, we reduce the original MAPK model, convert kinetic to convex parameters and examine those properties of the minimal subnetwork that underlie the oscillatory dynamics. We also use the methods of classification of chemical oscillatory networks to explain the rhythmic behavior in physicochemical terms, i.e., we identify of the role of individual biochemical species in positive and negative feedback loops and describe their coordinated action leading to oscillations. Our approach provides an insight into dynamics without the necessity of knowing rate coefficients and thus is useful prior the statistical evaluation of parameters.
Collapse
Affiliation(s)
- Otto Hadač
- Department of Chemical Engineering, University of Chemistry and Technology, Prague, Czech Republic
| | - František Muzika
- Department of Chemical Engineering, University of Chemistry and Technology, Prague, Czech Republic
| | - Vladislav Nevoral
- Department of Chemical Engineering, University of Chemistry and Technology, Prague, Czech Republic
| | - Michal Přibyl
- Department of Chemical Engineering, University of Chemistry and Technology, Prague, Czech Republic
| | - Igor Schreiber
- Department of Chemical Engineering, University of Chemistry and Technology, Prague, Czech Republic
| |
Collapse
|