1
|
Zhang J, Mosier JA, Wu Y, Waddle L, Taufalele PV, Wang W, Sun H, Reinhart‐King CA. Cellular Energy Cycle Mediates an Advection-Like Forward Cell Flow to Support Collective Invasion. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400719. [PMID: 39189477 PMCID: PMC11348062 DOI: 10.1002/advs.202400719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 05/25/2024] [Indexed: 08/28/2024]
Abstract
Collective cell migration is a model for nonequilibrium biological dynamics, which is important for morphogenesis, pattern formation, and cancer metastasis. The current understanding of cellular collective dynamics is based primarily on cells moving within a 2D epithelial monolayer. However, solid tumors often invade surrounding tissues in the form of a stream-like 3D structure, and how biophysical cues are integrated at the cellular level to give rise to this collective streaming remains unclear. Here, it is shown that cell cycle-mediated bioenergetics drive a forward advective flow of cells and energy to the front to support 3D collective invasion. The cell division cycle mediates a corresponding energy cycle such that cellular adenosine triphosphate (ATP) energy peaks just before division. A reaction-advection-diffusion (RAD) type model coupled with experimental measurements further indicates that most cells enter an active division cycle at rear positions during 3D streaming. Once the cells progress to a later stage toward division, the high intracellular energy allows them to preferentially stream toward the tip and become leader cells. This energy-driven cellular flow may be a fundamental characteristic of 3D collective dynamics based on thermodynamic principles important for not only cancer invasion but also tissue morphogenesis.
Collapse
Affiliation(s)
- Jian Zhang
- Department of Biomedical EngineeringVanderbilt University2301 Vanderbilt PlaceNashvilleTN37235USA
- Department of Biomedical EngineeringUniversity of Arkansas790 W. Dickson StFayettevilleAR72701USA
| | - Jenna A. Mosier
- Department of Biomedical EngineeringVanderbilt University2301 Vanderbilt PlaceNashvilleTN37235USA
| | - Yusheng Wu
- Department of Biomedical EngineeringVanderbilt University2301 Vanderbilt PlaceNashvilleTN37235USA
| | - Logan Waddle
- Department of Biomedical EngineeringUniversity of Arkansas790 W. Dickson StFayettevilleAR72701USA
| | - Paul V. Taufalele
- Department of Biomedical EngineeringVanderbilt University2301 Vanderbilt PlaceNashvilleTN37235USA
| | - Wenjun Wang
- Department of Biomedical EngineeringVanderbilt University2301 Vanderbilt PlaceNashvilleTN37235USA
| | - Heng Sun
- Department of Biomedical EngineeringVanderbilt University2301 Vanderbilt PlaceNashvilleTN37235USA
| | - Cynthia A. Reinhart‐King
- Department of Biomedical EngineeringVanderbilt University2301 Vanderbilt PlaceNashvilleTN37235USA
| |
Collapse
|
2
|
Saldanha R, Ho Thanh MT, Krishnan N, Hehnly H, Patteson A. Vimentin supports cell polarization by enhancing centrosome function and microtubule acetylation. J R Soc Interface 2024; 21:20230641. [PMID: 38835244 DOI: 10.1098/rsif.2023.0641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 04/10/2024] [Indexed: 06/06/2024] Open
Abstract
Cell polarity is important for controlling cell shape, motility and cell division processes. Vimentin intermediate filaments are important for cell migration and cell polarization in mesenchymal cells and assembly of vimentin and microtubule networks is dynamically coordinated, but the precise details of how vimentin mediates cell polarity remain unclear. Here, we characterize the effects of vimentin on the structure and function of the centrosome and the stability of microtubule filaments in wild-type and vimentin-null mouse embryonic fibroblasts. We find that vimentin mediates the structure of the pericentriolar material, promotes centrosome-mediated microtubule regrowth and increases the level of stable acetylated microtubules in the cell. Loss of vimentin also impairs centrosome repositioning during cell polarization and migration processes that occur during wound closure. Our results suggest that vimentin modulates centrosome structure and function as well as microtubule network stability, which has important implications for how cells establish proper cell polarization and persistent migration.
Collapse
Affiliation(s)
- Renita Saldanha
- Physics Department, Syracuse University , Syracuse, NY, USA
- BioInspired Institute, Syracuse University , Syracuse, NY, USA
| | - Minh Tri Ho Thanh
- Physics Department, Syracuse University , Syracuse, NY, USA
- BioInspired Institute, Syracuse University , Syracuse, NY, USA
| | - Nikhila Krishnan
- BioInspired Institute, Syracuse University , Syracuse, NY, USA
- Department of Biology, Syracuse University , Syracuse, NY, USA
| | - Heidi Hehnly
- BioInspired Institute, Syracuse University , Syracuse, NY, USA
- Department of Biology, Syracuse University , Syracuse, NY, USA
| | - Alison Patteson
- Physics Department, Syracuse University , Syracuse, NY, USA
- BioInspired Institute, Syracuse University , Syracuse, NY, USA
| |
Collapse
|
3
|
De la Fuente IM, Carrasco-Pujante J, Camino-Pontes B, Fedetz M, Bringas C, Pérez-Samartín A, Pérez-Yarza G, López JI, Malaina I, Cortes JM. Systemic cellular migration: The forces driving the directed locomotion movement of cells. PNAS NEXUS 2024; 3:pgae171. [PMID: 38706727 PMCID: PMC11067954 DOI: 10.1093/pnasnexus/pgae171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 04/11/2024] [Indexed: 05/07/2024]
Abstract
Directional motility is an essential property of cells. Despite its enormous relevance in many fundamental physiological and pathological processes, how cells control their locomotion movements remains an unresolved question. Here, we have addressed the systemic processes driving the directed locomotion of cells. Specifically, we have performed an exhaustive study analyzing the trajectories of 700 individual cells belonging to three different species (Amoeba proteus, Metamoeba leningradensis, and Amoeba borokensis) in four different scenarios: in absence of stimuli, under an electric field (galvanotaxis), in a chemotactic gradient (chemotaxis), and under simultaneous galvanotactic and chemotactic stimuli. All movements were analyzed using advanced quantitative tools. The results show that the trajectories are mainly characterized by coherent integrative responses that operate at the global cellular scale. These systemic migratory movements depend on the cooperative nonlinear interaction of most, if not all, molecular components of cells.
Collapse
Affiliation(s)
- Ildefonso M De la Fuente
- Department of Mathematics, Faculty of Science and Technology, University of the Basque Country, UPV/EHU, Leioa 48940, Spain
- Department of Nutrition, CEBAS-CSIC Institute, Espinardo University Campus, Murcia 30100, Spain
| | - Jose Carrasco-Pujante
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country, UPV/EHU, Leioa 48940, Spain
| | | | - Maria Fedetz
- Department of Cell Biology and Immunology, Institute of Parasitology and Biomedicine “López-Neyra”, CSIC, Granada 18016, Spain
| | - Carlos Bringas
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country, UPV/EHU, Leioa 48940, Spain
| | - Alberto Pérez-Samartín
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country, UPV/EHU, Leioa 48940, Spain
| | - Gorka Pérez-Yarza
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country, UPV/EHU, Leioa 48940, Spain
| | - José I López
- Biobizkaia Health Research Institute, Barakaldo 48903, Spain
| | - Iker Malaina
- Department of Mathematics, Faculty of Science and Technology, University of the Basque Country, UPV/EHU, Leioa 48940, Spain
| | - Jesus M Cortes
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country, UPV/EHU, Leioa 48940, Spain
- Biobizkaia Health Research Institute, Barakaldo 48903, Spain
- IKERBASQUE: The Basque Foundation for Science, Bilbao 48009, Spain
| |
Collapse
|
4
|
Manifacier I, Carlin G, Liu D, Vassaux M, Pieuchot L, Luchnikov V, Anselme K, Milan JL. In silico analysis shows that dynamic changes in curvature guide cell migration over long distances. Biomech Model Mechanobiol 2024; 23:315-333. [PMID: 37875692 DOI: 10.1007/s10237-023-01777-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 09/24/2023] [Indexed: 10/26/2023]
Abstract
In vitro experiments have shown that cell scale curvatures influence cell migration; cells avoid convex hills and settle in concave valleys. However, it is not known whether dynamic changes in curvature can guide cell migration. This study extends a previous in-silico model to explore the effects over time of changing the substrate curvature on cell migration guidance. By simulating a dynamic surface curvature using traveling wave patterns, we investigate the influence of wave height and speed, and find that long-distance cell migration guidance can be achieved on specific wave patterns. We propose a mechanistic explanation of what we call dynamic curvotaxis and highlight those cellular features that may be involved. Our results open a new area of study for understanding cell mobility in dynamic environments, from single-cell in vitro experiments to multi-cellular in vivo mechanisms.
Collapse
Affiliation(s)
- Ian Manifacier
- Aix Marseille Univ, CNRS, ISM, Marseille, France
- APHM, Institute for Locomotion, Department of Orthopaedics and Traumatology, St Marguerite Hospital, Marseille, France
| | - Gildas Carlin
- Aix Marseille Univ, CNRS, ISM, Marseille, France
- APHM, Institute for Locomotion, Department of Orthopaedics and Traumatology, St Marguerite Hospital, Marseille, France
| | - Dongshu Liu
- Aix Marseille Univ, CNRS, ISM, Marseille, France
- APHM, Institute for Locomotion, Department of Orthopaedics and Traumatology, St Marguerite Hospital, Marseille, France
| | - Maxime Vassaux
- Univ Rennes, CNRS, IPR (Institut de Physique de Rennes) - UMR 6251, 35000, Rennes, France
| | - Laurent Pieuchot
- Université de Haute-Alsace, CNRS, IS2M UMR 7361, Mulhouse, 68100, France
| | - Valeriy Luchnikov
- Université de Haute-Alsace, CNRS, IS2M UMR 7361, Mulhouse, 68100, France
| | - Karine Anselme
- Université de Haute-Alsace, CNRS, IS2M UMR 7361, Mulhouse, 68100, France
| | - Jean-Louis Milan
- Aix Marseille Univ, CNRS, ISM, Marseille, France.
- APHM, Institute for Locomotion, Department of Orthopaedics and Traumatology, St Marguerite Hospital, Marseille, France.
| |
Collapse
|
5
|
Schmidt CJ, Stehbens SJ. Microtubule control of migration: Coordination in confinement. Curr Opin Cell Biol 2024; 86:102289. [PMID: 38041936 DOI: 10.1016/j.ceb.2023.102289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 11/08/2023] [Accepted: 11/09/2023] [Indexed: 12/04/2023]
Abstract
The microtubule cytoskeleton has a well-established, instrumental role in coordinating cell migration. Decades of research has focused on understanding how microtubules couple intracellular trafficking with cortical targeting and spatial organization of signaling to facilitate locomotion. Movement in physically challenging environments requires coordination of forces generated by the actin cytoskeleton to drive cell shape changes, with microtubules acting to spatially regulate contractility. Recent work has demonstrated that the mechanical properties of microtubules are adaptive to stress, leading to a new understanding of their roles in cell migration. Herein we review new developments in how microtubules sense and adapt to changes in the physical properties of their environment during migration. We frame our discussion around our current understanding of how microtubules target cell-matrix adhesions, and their role in the spatiotemporal coordination of signaling to form mechano feedback loops. We expand on how these mechanisms may influence cell morphology in confined three-dimensional settings, and the importance of locally tuning the mechanical stability of polymers in response to mechanical cues. Finally, we discuss new roles for Golgi-derived microtubules in mechanosensing, and how preferential motor use may influence polymer stability to resist the physical constraints cells experience in confined environments.
Collapse
Affiliation(s)
- Christanny J Schmidt
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, 4072, Australia; Institute for Molecular Bioscience, The University of Queensland, Brisbane, 4072, Australia
| | - Samantha J Stehbens
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, 4072, Australia; Institute for Molecular Bioscience, The University of Queensland, Brisbane, 4072, Australia.
| |
Collapse
|
6
|
Saldanha R, Tri Ho Thanh M, Krishnan N, Hehnly H, Patteson AE. Vimentin supports cell polarization by enhancing centrosome function and microtubule acetylation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.17.528977. [PMID: 36824848 PMCID: PMC9949120 DOI: 10.1101/2023.02.17.528977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Abstract
Cell polarity is important for controlling cell shape, motility, and cell division processes. Vimentin intermediate filaments are necessary for proper polarization of migrating fibroblasts and assembly of vimentin and microtubule networks is dynamically coordinated, but the precise details of how vimentin mediates cell polarity remain unclear. Here, we characterize the effects of vimentin on the structure and function of the centrosome and the stability of microtubule filaments in wild-type and vimentin-null mouse embryonic fibroblasts (mEFs). We find that vimentin mediates the structure of the pericentrosomal material, promotes centrosome-mediated microtubule regrowth, and increases the level of stable acetylated microtubules in the cell. Loss of vimentin also impairs centrosome repositioning during cell polarization and migration processes that occur during wound closure. Our results suggest that vimentin modulates centrosome structure and function as well as microtubule network stability, which has important implications for how cells establish proper cell polarization and persistent migration.
Collapse
|
7
|
Legátová A, Pelantová M, Rösel D, Brábek J, Škarková A. The emerging role of microtubules in invasion plasticity. Front Oncol 2023; 13:1118171. [PMID: 36860323 PMCID: PMC9969133 DOI: 10.3389/fonc.2023.1118171] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 01/31/2023] [Indexed: 02/17/2023] Open
Abstract
The ability of cells to switch between different invasive modes during metastasis, also known as invasion plasticity, is an important characteristic of tumor cells that makes them able to resist treatment targeted to a particular invasion mode. Due to the rapid changes in cell morphology during the transition between mesenchymal and amoeboid invasion, it is evident that this process requires remodeling of the cytoskeleton. Although the role of the actin cytoskeleton in cell invasion and plasticity is already quite well described, the contribution of microtubules is not yet fully clarified. It is not easy to infer whether destabilization of microtubules leads to higher invasiveness or the opposite since the complex microtubular network acts differently in diverse invasive modes. While mesenchymal migration typically requires microtubules at the leading edge of migrating cells to stabilize protrusions and form adhesive structures, amoeboid invasion is possible even in the absence of long, stable microtubules, albeit there are also cases of amoeboid cells where microtubules contribute to effective migration. Moreover, complex crosstalk of microtubules with other cytoskeletal networks participates in invasion regulation. Altogether, microtubules play an important role in tumor cell plasticity and can be therefore targeted to affect not only cell proliferation but also invasive properties of migrating cells.
Collapse
Affiliation(s)
- Anna Legátová
- Department of Cell Biology, Charles University, Prague, Czechia,Biotechnology and Biomedicine Centre of the Academy of Sciences and Charles University (BIOCEV), Vestec u Prahy, Czechia
| | - Markéta Pelantová
- Department of Cell Biology, Charles University, Prague, Czechia,Biotechnology and Biomedicine Centre of the Academy of Sciences and Charles University (BIOCEV), Vestec u Prahy, Czechia
| | - Daniel Rösel
- Department of Cell Biology, Charles University, Prague, Czechia,Biotechnology and Biomedicine Centre of the Academy of Sciences and Charles University (BIOCEV), Vestec u Prahy, Czechia
| | - Jan Brábek
- Department of Cell Biology, Charles University, Prague, Czechia,Biotechnology and Biomedicine Centre of the Academy of Sciences and Charles University (BIOCEV), Vestec u Prahy, Czechia
| | - Aneta Škarková
- Department of Cell Biology, Charles University, Prague, Czechia,Biotechnology and Biomedicine Centre of the Academy of Sciences and Charles University (BIOCEV), Vestec u Prahy, Czechia,*Correspondence: Aneta Škarková,
| |
Collapse
|
8
|
Abstract
The centrosome, consisting of centrioles and the associated pericentriolar material, is the main microtubule-organizing centre (MTOC) in animal cells. During most of interphase, the two centrosomes of a cell are joined together by centrosome cohesion into one MTOC. The most dominant element of centrosome cohesion is the centrosome linker, an interdigitating, fibrous network formed by the protein C-Nap1 anchoring a number of coiled-coil proteins including rootletin to the proximal end of centrioles. Alternatively, centrosomes can be kept together by the action of the minus end directed kinesin motor protein KIFC3 that works on interdigitating microtubules organized by both centrosomes and probably by the actin network. Although cells connect the two interphase centrosomes by several mechanisms into one MTOC, the general importance of centrosome cohesion, particularly for an organism, is still largely unclear. In this article, we review the functions of the centrosome linker and discuss how centrosome cohesion defects can lead to diseases.
Collapse
Affiliation(s)
- Hairuo Dang
- Zentrum für Molekulare Biologie der Universität Heidelberg, Deutsches Krebsforschungszentrum-ZMBH Allianz, and,Heidelberg Biosciences International Graduate School (HBIGS), Universität Heidelberg, Heidelberg 69120, Germany
| | - Elmar Schiebel
- Zentrum für Molekulare Biologie der Universität Heidelberg, Deutsches Krebsforschungszentrum-ZMBH Allianz, and
| |
Collapse
|
9
|
Langlois-Lemay L, D’Amours D. Moonlighting at the Poles: Non-Canonical Functions of Centrosomes. Front Cell Dev Biol 2022; 10:930355. [PMID: 35912107 PMCID: PMC9329689 DOI: 10.3389/fcell.2022.930355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 06/17/2022] [Indexed: 11/13/2022] Open
Abstract
Centrosomes are best known as the microtubule organizing centers (MTOCs) of eukaryotic cells. In addition to their classic role in chromosome segregation, centrosomes play diverse roles unrelated to their MTOC activity during cell proliferation and quiescence. Metazoan centrosomes and their functional doppelgängers from lower eukaryotes, the spindle pole bodies (SPBs), act as important structural platforms that orchestrate signaling events essential for cell cycle progression, cellular responses to DNA damage, sensory reception and cell homeostasis. Here, we provide a critical overview of the unconventional and often overlooked roles of centrosomes/SPBs in the life cycle of eukaryotic cells.
Collapse
Affiliation(s)
- Laurence Langlois-Lemay
- Department of Cellular and Molecular Medicine, Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON, Canada
| | | |
Collapse
|
10
|
Čada Š, Bryja V. Local Wnt signalling in the asymmetric migrating vertebrate cells. Semin Cell Dev Biol 2021; 125:26-36. [PMID: 34896020 DOI: 10.1016/j.semcdb.2021.11.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 11/18/2021] [Accepted: 11/19/2021] [Indexed: 11/27/2022]
Abstract
Wnt signalling is known to generate cellular asymmetry via Wnt/planar cell polarity pathway (Wnt/PCP). Wnt/PCP acts locally (i) to orient membrane polarity and asymmetric establishment of intercellular junctions via conserved set of PCP proteins most specifically represented by Vangl and Prickle, and (ii) to asymmetrically rearrange cytoskeletal structures via downstream effectors of Dishevelled (Dvl). This process is best described on stable phenotypes of epithelial cells. Here, however, we review the activity of Wnt signalling in migratory cells which experience the extensive rearrangements of cytoskeleton and consequently dynamic asymmetry, making the localised effects of Wnt signalling easier to distinguish. Firstly, we focused on migration of neuronal axons, which allows to study how the pre-existent cellular asymmetry can influence Wnt signalling outcome. Then, we reviewed the role of Wnt signalling in models of mesenchymal migration including neural crest, melanoma, and breast cancer cells. Last, we collected evidence for local Wnt signalling in amoeboid cells, especially lymphocytes. As the outcome of this review, we identify blank spots in our current understanding of this topic, propose models that synthesise the current observations and allow formulation of testable hypotheses for the future research.
Collapse
Affiliation(s)
- Štěpán Čada
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
| | - Vítězslav Bryja
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic; Department of Cytokinetics, Institute of Biophysics CAS, Královopolská 135, 61265 Brno, Czech Republic.
| |
Collapse
|
11
|
Stoiber P, Scribani Rossi P, Pokharel N, Germany JL, York EA, Schaus SE, Hansen U. Factor quinolinone inhibitors alter cell morphology and motility by destabilizing interphase microtubules. Sci Rep 2021; 11:23564. [PMID: 34876605 PMCID: PMC8651680 DOI: 10.1038/s41598-021-02962-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 11/18/2021] [Indexed: 11/17/2022] Open
Abstract
Factor quinolinone inhibitors are promising anti-cancer compounds, initially characterized as specific inhibitors of the oncogenic transcription factor LSF (TFCP2). These compounds exert anti-proliferative activity at least in part by disrupting mitotic spindles. Herein, we report additional interphase consequences of the initial lead compound, FQI1, in two telomerase immortalized cell lines. Within minutes of FQI1 addition, the microtubule network is disrupted, resulting in a substantial, although not complete, depletion of microtubules as evidenced both by microtubule sedimentation assays and microscopy. Surprisingly, this microtubule breakdown is quickly followed by an increase in tubulin acetylation in the remaining microtubules. The sudden breakdown and partial depolymerization of the microtubule network precedes FQI1-induced morphological changes. These involve rapid reduction of cell spreading of interphase fetal hepatocytes and increase in circularity of retinal pigment epithelial cells. Microtubule depolymerization gives rise to FH-B cell compaction, as pretreatment with taxol prevents this morphological change. Finally, FQI1 decreases the rate and range of locomotion of interphase cells, supporting an impact of FQI1-induced microtubule breakdown on cell motility. Taken together, our results show that FQI1 interferes with microtubule-associated functions in interphase, specifically cell morphology and motility.
Collapse
Affiliation(s)
- Patrick Stoiber
- grid.189504.10000 0004 1936 7558MCBB Graduate Program, Boston University, Boston, MA 02215 USA ,grid.189504.10000 0004 1936 7558Department of Biology, Boston University, Boston, MA 02215 USA
| | - Pietro Scribani Rossi
- grid.189504.10000 0004 1936 7558Department of Biology, Boston University, Boston, MA 02215 USA ,grid.7841.aPresent Address: Faculty of Medicine and Dentistry, Sapienza University of Rome, 00185 Rome, Italy
| | - Niranjana Pokharel
- grid.189504.10000 0004 1936 7558Department of Chemistry, Boston University, Boston, MA 02215 USA ,grid.189504.10000 0004 1936 7558Center for Molecular Discovery, Boston University, Boston, MA 02215 USA
| | - Jean-Luc Germany
- grid.189504.10000 0004 1936 7558Department of Biology, Boston University, Boston, MA 02215 USA
| | - Emily A. York
- grid.189504.10000 0004 1936 7558Department of Chemistry, Boston University, Boston, MA 02215 USA ,grid.189504.10000 0004 1936 7558Center for Molecular Discovery, Boston University, Boston, MA 02215 USA
| | - Scott E. Schaus
- grid.189504.10000 0004 1936 7558Department of Chemistry, Boston University, Boston, MA 02215 USA ,grid.189504.10000 0004 1936 7558Center for Molecular Discovery, Boston University, Boston, MA 02215 USA
| | - Ulla Hansen
- MCBB Graduate Program, Boston University, Boston, MA, 02215, USA. .,Department of Biology, Boston University, Boston, MA, 02215, USA.
| |
Collapse
|
12
|
Piemonte KM, Anstine LJ, Keri RA. Centrosome Aberrations as Drivers of Chromosomal Instability in Breast Cancer. Endocrinology 2021; 162:6381103. [PMID: 34606589 PMCID: PMC8557634 DOI: 10.1210/endocr/bqab208] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Indexed: 12/12/2022]
Abstract
Chromosomal instability (CIN), or the dynamic change in chromosome number and composition, has been observed in cancer for decades. Recently, this phenomenon has been implicated as facilitating the acquisition of cancer hallmarks and enabling the formation of aggressive disease. Hence, CIN has the potential to serve as a therapeutic target for a wide range of cancers. CIN in cancer often occurs as a result of disrupting key regulators of mitotic fidelity and faithful chromosome segregation. As a consequence of their essential roles in mitosis, dysfunctional centrosomes can induce and maintain CIN. Centrosome defects are common in breast cancer, a heterogeneous disease characterized by high CIN. These defects include amplification, structural defects, and loss of primary cilium nucleation. Recent studies have begun to illuminate the ability of centrosome aberrations to instigate genomic flux in breast cancer cells and the tumor evolution associated with aggressive disease and poor patient outcomes. Here, we review the role of CIN in breast cancer, the processes by which centrosome defects contribute to CIN in this disease, and the emerging therapeutic approaches that are being developed to capitalize upon such aberrations.
Collapse
Affiliation(s)
- Katrina M Piemonte
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
- Department of Cancer Biology, Cleveland Clinic Lerner Research Institute, Cleveland, OH 44195, USA
| | - Lindsey J Anstine
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
- Department of Cancer Biology, Cleveland Clinic Lerner Research Institute, Cleveland, OH 44195, USA
- Cleveland Clinic Lerner College of Medicine at Case Western Reserve University, Cleveland, OH 44195, USA
| | - Ruth A Keri
- Department of Cancer Biology, Cleveland Clinic Lerner Research Institute, Cleveland, OH 44195, USA
- Cleveland Clinic Lerner College of Medicine at Case Western Reserve University, Cleveland, OH 44195, USA
- Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
- Correspondence: Ruth A. Keri, PhD, Department of Cancer Biology, Cleveland Clinic Lerner Research Institute, 9500 Euclid Avenue, Cleveland, OH 44195, USA.
| |
Collapse
|
13
|
Chen TC, Chang SW. Moxifloxacin induces random migration in human corneal fibroblasts via the protein kinase C epsilon/zonula occludens-1 signaling pathway. Eur J Pharmacol 2021; 910:174414. [PMID: 34425101 DOI: 10.1016/j.ejphar.2021.174414] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 07/19/2021] [Accepted: 08/06/2021] [Indexed: 10/20/2022]
Abstract
Moxifloxacin (MOX) suppresses cell movement in human corneal fibroblasts (HCFs). Zonula occludens-1 (ZO-1) is localized to the leading edge of migrating HCFs. This study explored the role of ZO-1 in MOX-suppressed cell migration in HCFs. A single-cell trajectory analysis revealed that MOX negatively regulated the migratory properties of HCFs including migration distance, migration velocity, and directionality (P < 0.001, P < 0.001, and P = 0.018, respectively). MOX increased endogenous ZO-1 in HCFs in a concentration-dependent manner (P = 0.083, P = 0.005, and P = 0.001 at 10, 50, and 100 μg/ml, respectively), but decreased the phosphorylation of endogenous ZO-1 at serines, threonines, and tyrosines. In contrast, MOX did not alter the expression of protein kinase C epsilon (PKCε), Rac-1, Cdc42, and MRCKβ. However, MOX did also reduce the phosphorylation level of PKCε at serines and threonines (P < 0.001 at 100 μg/ml). In addition, MOX increased the phosphorylation level of Rac-1 in a concentration-dependent manner (P < 0.001 at 100 μg/ml). Compared with the mock cells, the directionality of cell movement increased significantly in ZO-1-expressing HCFs (P = 0.012) and decreased significantly in ZO-1-silenced HCFs (P = 0.002). The directionality did not change significantly in Rac-1-silenced HCFs. ZO-1-expressing HCFs moved faster than mock cells. PKCε, Cdc42, Rac-1, and phosphorylated Rac-1 were decreased in ZO-1-overexpressing HCFs, but increased in ZO-1-silenced HCFs. Finally, silencing ZO-1 blocked MOX hyperactivation of Rac-1. These suggest that MOX might trigger random migration in human corneal stromal cells through PKCε-modulated ZO-1 inactivation and Rac-1 hyperactivation.
Collapse
Affiliation(s)
- Tsan-Chi Chen
- Department of Ophthalmology, Far Eastern Memorial Hospital, New Taipei City, Taiwan
| | - Shu-Wen Chang
- Department of Ophthalmology, Far Eastern Memorial Hospital, New Taipei City, Taiwan; Department of Ophthalmology, National Taiwan University Hospital, Taipei, Taiwan.
| |
Collapse
|
14
|
Mastrogiovanni M, Di Bartolo V, Alcover A. Cell Polarity Regulators, Multifunctional Organizers of Lymphocyte Activation and Function. Biomed J 2021; 45:299-309. [PMID: 34626864 PMCID: PMC9250085 DOI: 10.1016/j.bj.2021.10.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/01/2021] [Accepted: 10/01/2021] [Indexed: 11/27/2022] Open
Abstract
Cell polarity regulators are ubiquitous, evolutionary conserved multifunctional proteins. They contain a variety of protein–protein interaction domains endowing them the capacity to interact with cytoskeleton structures, membrane components and multiple regulatory proteins. In this way, they act in complexes and are pivotal for cell growth and differentiation, tissue formation, stability and turnover, cell migration, wound healing, and others. Hence some of these proteins are tumor suppressors. These cellular processes rely on the establishment of cell polarity characterized by the asymmetric localization of proteins, RNAs, membrane domains, or organelles that together condition cell shape and function. Whether apparently stable, as in epithelia or neurons, or very dynamic, as in immune cells, cell polarity is an active process. It involves cytoskeleton reorganization and targeted intracellular traffic, and results in cellular events such as protein synthesis, secretion and assembly taking place at defined cell poles. Multiple polarity regulators orchestrate these processes. Immune cells are particularly versatile in rapidly polarizing and assuming different shapes, so to swiftly adopt specialized behaviors and functions. Polarity regulators act in various ways in different immune cell types and at their distinct differentiation states. Here we review how cell polarity regulators control different processes and functions along T lymphocyte physiology, including cell migration through different tissues, immunological synapse formation and effector functions.
Collapse
Affiliation(s)
- Marta Mastrogiovanni
- Lymphocyte Cell Biology Unit, Ligue Nationale Contre le Cancer, Équipe Labellisée Ligue 2018, Department of Immunology, Institut Pasteur, INSERM-U1224. F-75015 Paris, France; Sorbonne Université, Collège Doctoral, F-75005 Paris. France
| | - Vincenzo Di Bartolo
- Lymphocyte Cell Biology Unit, Ligue Nationale Contre le Cancer, Équipe Labellisée Ligue 2018, Department of Immunology, Institut Pasteur, INSERM-U1224. F-75015 Paris, France
| | - Andrés Alcover
- Lymphocyte Cell Biology Unit, Ligue Nationale Contre le Cancer, Équipe Labellisée Ligue 2018, Department of Immunology, Institut Pasteur, INSERM-U1224. F-75015 Paris, France.
| |
Collapse
|
15
|
Lu P, Lu Y. Born to Run? Diverse Modes of Epithelial Migration. Front Cell Dev Biol 2021; 9:704939. [PMID: 34540829 PMCID: PMC8448196 DOI: 10.3389/fcell.2021.704939] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 07/20/2021] [Indexed: 12/15/2022] Open
Abstract
Bundled with various kinds of adhesion molecules and anchored to the basement membrane, the epithelium has historically been considered as an immotile tissue and, to migrate, it first needs to undergo epithelial-mesenchymal transition (EMT). Since its initial description more than half a century ago, the EMT process has fascinated generations of developmental biologists and, more recently, cancer biologists as it is believed to be essential for not only embryonic development, organ formation, but cancer metastasis. However, recent progress shows that epithelium is much more motile than previously realized. Here, we examine the emerging themes in epithelial collective migration and how this has impacted our understanding of EMT.
Collapse
Affiliation(s)
- Pengfei Lu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Yunzhe Lu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| |
Collapse
|
16
|
Gupta S, Patteson AE, Schwarz JM. The role of vimentin-nuclear interactions in persistent cell motility through confined spaces. NEW JOURNAL OF PHYSICS 2021; 23:093042. [PMID: 35530563 PMCID: PMC9075336 DOI: 10.1088/1367-2630/ac2550] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The ability of cells to move through small spaces depends on the mechanical properties of the cellular cytoskeleton and on nuclear deformability. In mammalian cells, the cytoskeleton is composed of three interacting, semi-flexible polymer networks: actin, microtubules, and intermediate filaments (IF). Recent experiments of mouse embryonic fibroblasts with and without vimentin have shown that the IF vimentin plays a role in confined cell motility. Here, we develop a minimal model of a cell moving through a microchannel that incorporates explicit effects of actin and vimentin and implicit effects of microtubules. Specifically, the model consists of a cell with an actomyosin cortex and a deformable cell nucleus and mechanical linkages between the two. By decreasing the amount of vimentin, we find that the cell speed increases for vimentin-null cells compared to cells with vimentin. The loss of vimentin increases nuclear deformation and alters nuclear positioning in the cell. Assuming nuclear positioning is a read-out for cell polarity, we propose a new polarity mechanism which couples cell directional motion with cytoskeletal strength and nuclear positioning and captures the abnormally persistent motion of vimentin-null cells, as observed in experiments. The enhanced persistence indicates that the vimentin-null cells are more controlled by the confinement and so less autonomous, relying more heavily on external cues than their wild-type counterparts. Our modeling results present a quantitative interpretation for recent experiments and have implications for understanding the role of vimentin in the epithelial-mesenchymal transition.
Collapse
Affiliation(s)
- Sarthak Gupta
- Physics Department and BioInspired Institute, Syracuse University, Syracuse, NY USA
| | - Alison E Patteson
- Physics Department and BioInspired Institute, Syracuse University, Syracuse, NY USA
| | - J M Schwarz
- Physics Department and BioInspired Institute, Syracuse University, Syracuse, NY USA
- Indian Creek Farm, Ithaca, NY USA
| |
Collapse
|
17
|
Abstract
In the context of animal or plant development, we tend to think of cells as small, simple, building blocks, such that complex patterns or shapes can only be constructed from large numbers of cells, with cells in different parts of the organism taking on different fates. However, cells themselves are far from simple, and often take on complex shapes with a remarkable degree of intracellular patterning. How do these patterns arise? As in embryogenesis, the development of structure inside a cell can be broken down into a number of basic processes. For each part of the cell, morphogenetic processes create internal structures such as organelles, which might correspond to organs at the level of a whole organism. Given that mechanisms exist to generate parts, patterning processes are required to ensure that the parts are distributed in the correct arrangement relative to the rest of the cell. Such patterning processes make reference to global polarity axes, requiring mechanisms for axiation which, in turn, require processes to break symmetry. These fundamental processes of symmetry breaking, axiation, patterning, and morphogenesis have been extensively studied in developmental biology but less so at the subcellular level. This review will focus on developmental processes that give eukaryotic cells their complex structures, with a focus on cytoskeletal organization in free-living cells, ciliates in particular, in which these processes are most readily apparent.
Collapse
|
18
|
Keller-Pinter A, Gyulai-Nagy S, Becsky D, Dux L, Rovo L. Syndecan-4 in Tumor Cell Motility. Cancers (Basel) 2021; 13:cancers13133322. [PMID: 34282767 PMCID: PMC8268284 DOI: 10.3390/cancers13133322] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/25/2021] [Accepted: 06/27/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Cell migration is crucial fReaor metastasis formation and a hallmark of malignancy. The primary cause of high mortality among oncology patients is the ability of cancer cells to metastasize. To form metastasis, primary tumor cells must be intrinsically able to move. The transmembrane, heparan sulfate proteoglycan syndecan-4 (SDC4) exhibits multiple functions in signal transduction by regulating Rac1 GTPase activity and consequently actin remodeling, as well as regulating focal adhesion kinase, protein kinase C-alpha and the level of intracellular calcium. By affecting several signaling pathways and biological processes, SDC4 is involved in cell migration under physiological and pathological conditions as well. In this review, we discuss the SDC4-mediated cell migration focusing on the role of SDC4 in tumor cell movement. Abstract Syndecan-4 (SDC4) is a ubiquitously expressed, transmembrane proteoglycan bearing heparan sulfate chains. SDC4 is involved in numerous inside-out and outside-in signaling processes, such as binding and sequestration of growth factors and extracellular matrix components, regulation of the activity of the small GTPase Rac1, protein kinase C-alpha, the level of intracellular calcium, or the phosphorylation of focal adhesion kinase. The ability of this proteoglycan to link the extracellular matrix and actin cytoskeleton enables SDC4 to contribute to biological functions like cell adhesion and migration, cell proliferation, cytokinesis, cellular polarity, or mechanotransduction. The multiple roles of SDC4 in tumor pathogenesis and progression has already been demonstrated; therefore, the expression and signaling of SDC4 was investigated in several tumor types. SDC4 influences tumor progression by regulating cell proliferation as well as cell migration by affecting cell-matrix adhesion and several signaling pathways. Here, we summarize the general role of SDC4 in cell migration and tumor cell motility.
Collapse
Affiliation(s)
- Aniko Keller-Pinter
- Department of Biochemistry, Faculty of Medicine, University of Szeged, H-6720 Szeged, Hungary; (S.G.-N.); (D.B.); (L.D.)
- Correspondence:
| | - Szuzina Gyulai-Nagy
- Department of Biochemistry, Faculty of Medicine, University of Szeged, H-6720 Szeged, Hungary; (S.G.-N.); (D.B.); (L.D.)
| | - Daniel Becsky
- Department of Biochemistry, Faculty of Medicine, University of Szeged, H-6720 Szeged, Hungary; (S.G.-N.); (D.B.); (L.D.)
| | - Laszlo Dux
- Department of Biochemistry, Faculty of Medicine, University of Szeged, H-6720 Szeged, Hungary; (S.G.-N.); (D.B.); (L.D.)
| | - Laszlo Rovo
- Department of Oto-Rhino-Laryngology and Head-Neck Surgery, University of Szeged, H-6725 Szeged, Hungary;
| |
Collapse
|
19
|
Jimenez AJ, Schaeffer A, De Pascalis C, Letort G, Vianay B, Bornens M, Piel M, Blanchoin L, Théry M. Acto-myosin network geometry defines centrosome position. Curr Biol 2021; 31:1206-1220.e5. [DOI: 10.1016/j.cub.2021.01.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 11/20/2020] [Accepted: 01/04/2021] [Indexed: 10/22/2022]
|
20
|
Jaiswal S, Kasera H, Jain S, Khandelwal S, Singh P. Centrosome: A Microtubule Nucleating Cellular Machinery. J Indian Inst Sci 2021. [DOI: 10.1007/s41745-020-00213-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
21
|
Becsky D, Szabo K, Gyulai-Nagy S, Gajdos T, Bartos Z, Balind A, Dux L, Horvath P, Erdelyi M, Homolya L, Keller-Pinter A. Syndecan-4 Modulates Cell Polarity and Migration by Influencing Centrosome Positioning and Intracellular Calcium Distribution. Front Cell Dev Biol 2020; 8:575227. [PMID: 33178691 PMCID: PMC7593626 DOI: 10.3389/fcell.2020.575227] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 08/17/2020] [Indexed: 12/24/2022] Open
Abstract
Efficient cell migration requires cellular polarization, which is characterized by the formation of leading and trailing edges, appropriate positioning of the nucleus and reorientation of the Golgi apparatus and centrosomes toward the leading edge. Migration also requires the development of an asymmetrical front-to-rear calcium (Ca2+) gradient to regulate focal adhesion assembly and actomyosin contractility. Here we demonstrate that silencing of syndecan-4, a transmembrane heparan sulfate proteoglycan, interferes with the correct polarization of migrating mammalian myoblasts (i.e., activated satellite stem cells). In particular, syndecan-4 knockdown completely abolished the intracellular Ca2+ gradient, abrogated centrosome reorientation and thus decreased cell motility, demonstrating the role of syndecan-4 in cell polarity. Additionally, syndecan-4 exhibited a polarized distribution during migration. Syndecan-4 knockdown cells exhibited decreases in the total movement distance during directional migration, maximum and vectorial distances from the starting point, as well as average and maximum cell speeds. Super-resolution direct stochastic optical reconstruction microscopy images of syndecan-4 knockdown cells revealed nanoscale changes in the actin cytoskeletal architecture, such as decreases in the numbers of branches and individual branch lengths in the lamellipodia of the migrating cells. Given the crucial importance of myoblast migration during embryonic development and postnatal muscle regeneration, we conclude that our results could facilitate an understanding of these processes and the general role of syndecan-4 during cell migration.
Collapse
Affiliation(s)
- Daniel Becsky
- Department of Biochemistry, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Kitti Szabo
- Department of Biochemistry, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Szuzina Gyulai-Nagy
- Department of Biochemistry, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Tamas Gajdos
- Department of Optics and Quantum Electronics, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Zsuzsa Bartos
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences Center of Excellence, Budapest, Hungary
| | - Arpad Balind
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Laszlo Dux
- Department of Biochemistry, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Peter Horvath
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Miklos Erdelyi
- Department of Optics and Quantum Electronics, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Laszlo Homolya
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences Center of Excellence, Budapest, Hungary
| | - Aniko Keller-Pinter
- Department of Biochemistry, Faculty of Medicine, University of Szeged, Szeged, Hungary
| |
Collapse
|
22
|
Seetharaman S, Etienne-Manneville S. Cytoskeletal Crosstalk in Cell Migration. Trends Cell Biol 2020; 30:720-735. [DOI: 10.1016/j.tcb.2020.06.004] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 06/09/2020] [Accepted: 06/10/2020] [Indexed: 01/15/2023]
|
23
|
Burakov AV, Nadezhdina ES. Centering and Shifting of Centrosomes in Cells. Cells 2020; 9:E1351. [PMID: 32485978 PMCID: PMC7348834 DOI: 10.3390/cells9061351] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 05/24/2020] [Accepted: 05/27/2020] [Indexed: 12/16/2022] Open
Abstract
Centrosomes have a nonrandom localization in the cells: either they occupy the centroid of the zone free of the actomyosin cortex or they are shifted to the edge of the cell, where their presence is justified from a functional point of view, for example, to organize additional microtubules or primary cilia. This review discusses centrosome placement options in cultured and in situ cells. It has been proven that the central arrangement of centrosomes is due mainly to the pulling microtubules forces developed by dynein located on the cell cortex and intracellular vesicles. The pushing forces from dynamic microtubules and actomyosin also contribute, although the molecular mechanisms of their action have not yet been elucidated. Centrosomal displacement is caused by external cues, depending on signaling, and is drawn through the redistribution of dynein, the asymmetrization of microtubules through the capture of their plus ends, and the redistribution of actomyosin, which, in turn, is associated with basal-apical cell polarization.
Collapse
Affiliation(s)
- Anton V. Burakov
- A. N. Belozersky Institute of Physico-Chemical Biology, M. V. Lomonosov Moscow State University, 119991 Moscow, Russia;
| | - Elena S. Nadezhdina
- Institute of Protein Research of Russian Academy of Science, Pushchino, 142290 Moscow Region, Russia
| |
Collapse
|
24
|
Vaidžiulytė K, Coppey M, Schauer K. Intracellular organization in cell polarity - placing organelles into the polarity loop. J Cell Sci 2019; 132:132/24/jcs230995. [PMID: 31836687 DOI: 10.1242/jcs.230995] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Many studies have investigated the processes that support polarity establishment and maintenance in cells. On the one hand, polarity complexes at the cell cortex and their downstream signaling pathways have been assigned as major regulators of polarity. On the other hand, intracellular organelles and their polarized trafficking routes have emerged as important components of polarity. In this Review, we argue that rather than trying to identify the prime 'culprit', now it is time to consider all these players as a collective. We highlight that understanding the intimate coordination between the polarized cell cortex and the intracellular compass that is defined by organelle positioning is essential to capture the concept of polarity. After briefly reviewing how polarity emerges from a dynamic maintenance of cellular asymmetries, we highlight how intracellular organelles and their associated trafficking routes provide diverse feedback for dynamic cell polarity maintenance. We argue that the asymmetric organelle compass is an indispensable element of the polarity network.
Collapse
Affiliation(s)
- Kotryna Vaidžiulytė
- Cell Biology and Cancer Unit, Institut Curie, PSL Research University, Sorbonne Université, CNRS, Paris 75005, France.,Laboratoire Physico Chimie Curie, Institut Curie, PSL Research University, Sorbonne Université, CNRS, Paris 75005, France.,Faculty of Science and Engineering, Sorbonne Université, Paris 75005, France
| | - Mathieu Coppey
- Laboratoire Physico Chimie Curie, Institut Curie, PSL Research University, Sorbonne Université, CNRS, Paris 75005, France
| | - Kristine Schauer
- Cell Biology and Cancer Unit, Institut Curie, PSL Research University, Sorbonne Université, CNRS, Paris 75005, France
| |
Collapse
|
25
|
Generation and regulation of microtubule network asymmetry to drive cell polarity. Curr Opin Cell Biol 2019; 62:86-95. [PMID: 31739264 DOI: 10.1016/j.ceb.2019.10.004] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 09/30/2019] [Accepted: 10/14/2019] [Indexed: 01/19/2023]
Abstract
Microtubules control cell architecture by serving as a scaffold for intracellular transport, signaling, and organelle positioning. Microtubules are intrinsically polarized, and their orientation, density, and post-translational modifications both respond and contribute to cell polarity. Animal cells that can rapidly reorient their polarity axis, such as fibroblasts, immune cells, and cancer cells, contain radially organized microtubule arrays anchored at the centrosome and the Golgi apparatus, whereas stably polarized cells often acquire non-centrosomal microtubule networks attached to the cell cortex, nucleus, or other structures. Microtubule density, longevity, and post-translational modifications strongly depend on the dynamics of their plus ends. Factors controlling microtubule plus-end dynamics are often part of cortical assemblies that integrate cytoskeletal organization, cell adhesion, and secretion and are subject to microtubule-dependent feedback regulation. Finally, microtubules can mechanically contribute to cell asymmetry by promoting cell elongation, a property that might be important for cells with dense microtubule arrays growing in soft environments.
Collapse
|
26
|
Cheng HW, Hsiao CT, Chen YQ, Huang CM, Chan SI, Chiou A, Kuo JC. Centrosome guides spatial activation of Rac to control cell polarization and directed cell migration. Life Sci Alliance 2019; 2:2/1/e201800135. [PMID: 30737247 PMCID: PMC6369537 DOI: 10.26508/lsa.201800135] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 01/27/2019] [Accepted: 01/28/2019] [Indexed: 01/01/2023] Open
Abstract
The centrosome acts as a controller by balancing the formation of centrosomal and acentrosomal microtubules, the modulation of focal adhesion signaling and the activation of local Rac1 at the cell front, which then coordinates cell polarization during directed cell migration. Directed cell migration requires centrosome-mediated cell polarization and dynamical control of focal adhesions (FAs). To examine how FAs cooperate with centrosomes for directed cell migration, we used centrosome-deficient cells and found that loss of centrosomes enhanced the formation of acentrosomal microtubules, which failed to form polarized structures in wound-edge cells. In acentrosomal cells, we detected higher levels of Rac1-guanine nucleotide exchange factor TRIO (Triple Functional Domain Protein) on microtubules and FAs. Acentrosomal microtubules deliver TRIO to FAs for Rac1 regulation. Indeed, centrosome disruption induced excessive Rac1 activation around the cell periphery via TRIO, causing rapid FA turnover, a disorganized actin meshwork, randomly protruding lamellipodia, and loss of cell polarity. This study reveals the importance of centrosomes to balance the assembly of centrosomal and acentrosomal microtubules and to deliver microtubule-associated TRIO proteins to FAs at the cell front for proper spatial activation of Rac1, FA turnover, lamillipodial protrusion, and cell polarization, thereby allowing directed cell migration.
Collapse
Affiliation(s)
- Hung-Wei Cheng
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei, Taiwan
| | - Cheng-Te Hsiao
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Yin-Quan Chen
- Cancer Progression Research Center, National Yang-Ming University, Taipei, Taiwan.,Institute of Biophotonics, National Yang-Ming University, Taipei, Taiwan
| | - Chi-Ming Huang
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei, Taiwan
| | - Seng-I Chan
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei, Taiwan
| | - Arthur Chiou
- Institute of Biophotonics, National Yang-Ming University, Taipei, Taiwan
| | - Jean-Cheng Kuo
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei, Taiwan .,Cancer Progression Research Center, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
27
|
Abstract
For over a century, the centrosome has been an organelle more easily tracked than understood, and the study of its peregrinations within the cell remains a chief underpinning of its functional investigation. Increasing attention and new approaches have been brought to bear on mechanisms that control centrosome localization in the context of cleavage plane determination, ciliogenesis, directional migration, and immunological synapse formation, among other cellular and developmental processes. The Golgi complex, often linked with the centrosome, presents a contrasting case of a pleiomorphic organelle for which functional studies advanced somewhat more rapidly than positional tracking. However, Golgi orientation and distribution has emerged as an area of considerable interest with respect to polarized cellular function. This chapter will review our current understanding of the mechanism and significance of the positioning of these organelles.
Collapse
|
28
|
Nonmuscle myosin IIA and IIB differentially contribute to intrinsic and directed migration of human embryonic lung fibroblasts. Biochem Biophys Res Commun 2018; 498:25-31. [DOI: 10.1016/j.bbrc.2018.02.171] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Accepted: 02/22/2018] [Indexed: 11/19/2022]
|
29
|
Exposing Cell-Itary Confinement: Understanding the Mechanisms of Confined Single Cell Migration. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1092:139-157. [DOI: 10.1007/978-3-319-95294-9_8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|