1
|
Goupil E, Lacroix L, Brière J, Guga S, Saba-El-Leil MK, Meloche S, Labbé JC. OSGN-1 is a conserved flavin-containing monooxygenase required to stabilize the intercellular bridge in late cytokinesis. Proc Natl Acad Sci U S A 2024; 121:e2308570121. [PMID: 38442170 PMCID: PMC10945809 DOI: 10.1073/pnas.2308570121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 01/24/2024] [Indexed: 03/07/2024] Open
Abstract
Cytokinesis is the last step of cell division and is regulated by the small GTPase RhoA. RhoA activity is required for all steps of cytokinesis, including prior to abscission when daughter cells are ultimately physically separated. Like germ cells in all animals, the Caenorhabditis elegans embryonic germline founder cell initiates cytokinesis but does not complete abscission, leaving a stable intercellular bridge between the two daughter cells. Here, we identify and characterize C. elegans OSGN-1 as a cytokinetic regulator that promotes RhoA activity during late cytokinesis. Sequence analyses and biochemical reconstitutions reveal that OSGN-1 is a flavin-containing monooxygenase (MO). Genetic analyses indicate that the MO activity of OSGN-1 is required to maintain active RhoA at the end of cytokinesis in the germline founder cell and to stabilize the intercellular bridge. Deletion of OSGIN1 in human cells results in an increase in binucleation as a result of cytokinetic furrow regression, and this phenotype can be rescued by expressing a catalytically active form of C. elegans OSGN-1, indicating that OSGN-1 and OSGIN1 are functional orthologs. We propose that OSGN-1 and OSGIN1 are conserved MO enzymes required to maintain RhoA activity at the intercellular bridge during late cytokinesis and thus favor its stability, enabling proper abscission in human cells and bridge stabilization in C. elegans germ cells.
Collapse
Affiliation(s)
- Eugénie Goupil
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QCH3C 3J7, Canada
| | - Léa Lacroix
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QCH3C 3J7, Canada
| | - Jonathan Brière
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QCH3C 3J7, Canada
| | - Sandra Guga
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QCH3C 3J7, Canada
| | - Marc K. Saba-El-Leil
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QCH3C 3J7, Canada
| | - Sylvain Meloche
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QCH3C 3J7, Canada
- Department of Pharmacology and Physiology, Université de Montréal, Montréal, QCH3C 3J7, Canada
| | - Jean-Claude Labbé
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QCH3C 3J7, Canada
- Department of Pathology and Cell Biology, Université de Montréal, Montréal, QCH3C 3J7, Canada
| |
Collapse
|
2
|
Perry JA, Werner ME, Rivenbark L, Maddox AS. Caenorhabditis elegans septins contribute to the development and structure of the oogenic germline. Cytoskeleton (Hoboken) 2023; 80:215-227. [PMID: 37265173 PMCID: PMC10524836 DOI: 10.1002/cm.21763] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 04/27/2023] [Accepted: 05/04/2023] [Indexed: 06/03/2023]
Abstract
Oocytes must be exceptionally large cells in order to support embryonic development. Throughout animal phylogeny, a specialized cell called a syncytium, wherein many nuclei share a continuous cytoplasm, achieves oogenesis. The syncytial nature of germline architecture is key to its function and depends on conserved components of the cortical cytoskeleton. Septins form non-polar cytoskeletal polymers that associate with membranes. In the syncytial germline of the nematode Caenorhabditis elegans, septins are highly enriched on the cortex and generally required for fertility, but the role of septins in the germline is poorly understood. We report that the C. elegans septins, UNC-59 and UNC-61, are important for germline extension during development, the maintenance of its syncytial architecture, and production of oocytes. While much of our findings substantiate the idea that the two C. elegans septins act together, we also found evidence that they have distinct functions. Loss of UNC-61 perturbed germline extension during germline development, while the loss of UNC-59 function severely affected germline architecture in adult hermaphrodites. Consultation of clustering results from a large-scale high-throughput screen suggested that septins are involved in germ cell proliferation and/or differentiation. In sum, our findings implicate a conserved cytoskeletal component in the complex architecture of a germline syncytium.
Collapse
Affiliation(s)
- Jenna A Perry
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Michael E Werner
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Larry Rivenbark
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Amy Shaub Maddox
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
3
|
Albarqi MMY, Ryder SP. The role of RNA-binding proteins in orchestrating germline development in Caenorhabditis elegans. Front Cell Dev Biol 2023; 10:1094295. [PMID: 36684428 PMCID: PMC9846511 DOI: 10.3389/fcell.2022.1094295] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 12/19/2022] [Indexed: 01/06/2023] Open
Abstract
RNA passed from parents to progeny controls several aspects of early development. The germline of the free-living nematode Caenorhabditis elegans contains many families of evolutionarily conserved RNA-binding proteins (RBPs) that target the untranslated regions of mRNA transcripts to regulate their translation and stability. In this review, we summarize what is known about the binding specificity of C. elegans germline RNA-binding proteins and the mechanisms of mRNA regulation that contribute to their function. We examine the emerging role of miRNAs in translational regulation of germline and embryo development. We also provide an overview of current technology that can be used to address the gaps in our understanding of RBP regulation of mRNAs. Finally, we present a hypothetical model wherein multiple 3'UTR-mediated regulatory processes contribute to pattern formation in the germline to ensure the proper and timely localization of germline proteins and thus a functional reproductive system.
Collapse
|
4
|
Gerhold AR, Labbé JC, Singh R. Uncoupling cell division and cytokinesis during germline development in metazoans. Front Cell Dev Biol 2022; 10:1001689. [PMID: 36407108 PMCID: PMC9669650 DOI: 10.3389/fcell.2022.1001689] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022] Open
Abstract
The canonical eukaryotic cell cycle ends with cytokinesis, which physically divides the mother cell in two and allows the cycle to resume in the newly individualized daughter cells. However, during germline development in nearly all metazoans, dividing germ cells undergo incomplete cytokinesis and germ cells stay connected by intercellular bridges which allow the exchange of cytoplasm and organelles between cells. The near ubiquity of incomplete cytokinesis in animal germ lines suggests that this is an ancient feature that is fundamental for the development and function of this tissue. While cytokinesis has been studied for several decades, the mechanisms that enable regulated incomplete cytokinesis in germ cells are only beginning to emerge. Here we review the current knowledge on the regulation of germ cell intercellular bridge formation, focusing on findings made using mouse, Drosophila melanogaster and Caenorhabditis elegans as experimental systems.
Collapse
Affiliation(s)
- Abigail R. Gerhold
- Department of Biology, McGill University, Montréal, QC, Canada
- *Correspondence: Abigail R. Gerhold, ; Jean-Claude Labbé,
| | - Jean-Claude Labbé
- Institute for Research in Immunology and Cancer (IRIC), Montréal, QC, Canada
- Department of Pathology and Cell Biology, Université de Montréal, Succ. Centre-ville, Montréal, QC, Canada
- *Correspondence: Abigail R. Gerhold, ; Jean-Claude Labbé,
| | - Ramya Singh
- Department of Biology, McGill University, Montréal, QC, Canada
- Institute for Research in Immunology and Cancer (IRIC), Montréal, QC, Canada
| |
Collapse
|
5
|
Ozugergin I, Mastronardi K, Law C, Piekny A. Diverse mechanisms regulate contractile ring assembly for cytokinesis in the two-cell Caenorhabditis elegans embryo. J Cell Sci 2022; 135:jcs258921. [PMID: 35022791 PMCID: PMC10660071 DOI: 10.1242/jcs.258921] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 12/29/2021] [Indexed: 11/20/2022] Open
Abstract
Cytokinesis occurs at the end of mitosis as a result of the ingression of a contractile ring that cleaves the daughter cells. The core machinery regulating this crucial process is conserved among metazoans. Multiple pathways control ring assembly, but their contribution in different cell types is not known. We found that in the Caenorhabditis elegans embryo, AB and P1 cells fated to be somatic tissue and germline, respectively, have different cytokinesis kinetics supported by distinct myosin levels and organization. Through perturbation of RhoA or polarity regulators and the generation of tetraploid strains, we found that ring assembly is controlled by multiple fate-dependent factors that include myosin levels, and mechanisms that respond to cell size. Active Ran coordinates ring position with the segregating chromatids in HeLa cells by forming an inverse gradient with importins that control the cortical recruitment of anillin. We found that the Ran pathway regulates anillin in AB cells but functions differently in P1 cells. We propose that ring assembly delays in P1 cells caused by low myosin and Ran signaling coordinate the timing of ring closure with their somatic neighbors. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Imge Ozugergin
- Department of Biology, Concordia University, Montreal, H4B 1R6, Canada
| | | | - Chris Law
- Department of Biology, Concordia University, Montreal, H4B 1R6, Canada
| | - Alisa Piekny
- Department of Biology, Concordia University, Montreal, H4B 1R6, Canada
| |
Collapse
|
6
|
From primordial germ cells to spermatids in Caenorhabditis elegans. Semin Cell Dev Biol 2021; 127:110-120. [PMID: 34930663 DOI: 10.1016/j.semcdb.2021.12.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/17/2021] [Accepted: 12/07/2021] [Indexed: 12/24/2022]
Abstract
Development of a syncytial germline for gamete formation requires complex regulation of cytokinesis and cytoplasmic remodeling. Recently, several uncovered cellular events have been investigated in the Caenorhabditis elegans (C. elegans) germline. In these cellular processes, the factors involved in contractility are highly conserved with those of mitosis and meiosis. However, the underlying regulatory mechanisms are far more complicated than previously thought, likely due to the single syncytial germline structure. In this review, we highlight how the proteins involved in contractility ensure faithful cell division in different cellular contexts and how they contribute to maintaining intercellular bridge stability. In addition, we discuss the current understanding of the cellular events of cytokinesis and cytoplasmic remodeling during the development of the C. elegans germline, including progenitor germ cells, germ cells, and spermatocytes. Comparisons are made with relevant systems in Drosophila melanogaster (D. melanogaster) and other animal models.
Collapse
|
7
|
Bauer J, Poupart V, Goupil E, Nguyen KCQ, Hall DH, Labbé JC. The initial expansion of the C. elegans syncytial germ line is coupled to incomplete primordial germ cell cytokinesis. Development 2021; 148:dev199633. [PMID: 34195824 PMCID: PMC8327289 DOI: 10.1242/dev.199633] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 06/25/2021] [Indexed: 01/06/2023]
Abstract
The C. elegans germline is organized as a syncytium in which each germ cell possesses an intercellular bridge that is maintained by a stable actomyosin ring and connected to a common pool of cytoplasm, termed the rachis. How germ cells undergo cytokinesis while maintaining this syncytial architecture is not completely understood. Here, we use live imaging to characterize primordial germ cell (PGC) division in C. elegans first-stage larvae. We show that each PGC possesses a stable intercellular bridge that connects it to a common pool of cytoplasm, which we term the proto-rachis. We further show that the first PGC cytokinesis is incomplete and that the stabilized cytokinetic ring progressively moves towards the proto-rachis and eventually integrates with it. Our results support a model in which the initial expansion of the C. elegans syncytial germline occurs by incomplete cytokinesis, where one daughter germ cell inherits the actomyosin ring that was newly formed by stabilization of the cytokinetic ring, while the other inherits the pre-existing stable actomyosin ring. We propose that such a mechanism of iterative cytokinesis incompletion underpins C. elegans germline expansion and maintenance.
Collapse
Affiliation(s)
- Jack Bauer
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, C.P. 6128, Succ. Centre-ville, Montréal, QC H3C 3J7, Canada
| | - Vincent Poupart
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, C.P. 6128, Succ. Centre-ville, Montréal, QC H3C 3J7, Canada
| | - Eugénie Goupil
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, C.P. 6128, Succ. Centre-ville, Montréal, QC H3C 3J7, Canada
| | - Ken C. Q. Nguyen
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - David H. Hall
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Jean-Claude Labbé
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, C.P. 6128, Succ. Centre-ville, Montréal, QC H3C 3J7, Canada
- Department of Pathology and Cell Biology, Université de Montréal, C.P. 6128, Succ. Centre-ville, Montréal, QC H3C 3J7, Canada
| |
Collapse
|
8
|
Bauer J, Lacroix L, Labbé JC. The primordial germ line is refractory to perturbations of actomyosin regulator function in C. elegans L1 larvae. MICROPUBLICATION BIOLOGY 2021; 2021. [PMID: 34377962 PMCID: PMC8339912 DOI: 10.17912/micropub.biology.000432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 07/13/2021] [Accepted: 07/22/2021] [Indexed: 11/06/2022]
Abstract
Cytokinesis, the separation of daughter cells at the end of mitosis, relies on the coordinated activity of several regulators of actomyosin assembly and contractility (Green et al. 2012). These include the small GTPase RhoA (RHO-1) and its guanine-nucleotide exchange factor Ect2 (ECT-2), the scaffold protein Anillin (ANI-1), the non-muscle myosin II (NMY-2), the formin CYK-1 and the centralspindlin complex components ZEN-4 and CYK-4. These regulators were also shown to be required for maintenance of C. elegans germline syncytial organization by stabilizing intercellular bridges in embryos and adults (Amini et al. 2014; Goupil et al. 2017; Green et al. 2011; Priti et al. 2018; Zhou et al. 2013). We recently demonstrated that many of these regulators are enriched at intercellular bridges in the small rachis (proto-rachis) of L1-stage larvae (Bauer et al. 2021). We sought to assess whether these contractility regulators are functionally required for stability of intercellular bridges and maintenance of the primordial germ line syncytial architecture in L1-stage C. elegans animals. Here we report that temperature-sensitive alleles, RNAi-mediated depletion and latrunculin A treatment are largely ineffective to perturb actomyosin function in the L1-stage primordial germ line.
Collapse
Affiliation(s)
- Jack Bauer
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, C.P. 6128, Succ. Centre-ville, Montréal, QC, H3C 3J7, Canada
| | - Léa Lacroix
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, C.P. 6128, Succ. Centre-ville, Montréal, QC, H3C 3J7, Canada
| | - Jean-Claude Labbé
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, C.P. 6128, Succ. Centre-ville, Montréal, QC, H3C 3J7, Canada.,Department of Pathology and Cell Biology, Université de Montréal, C.P. 6128, Succ. Centre-ville, Montréal, QC, H3C 3J7, Canada
| |
Collapse
|
9
|
Maniscalco C, Hall AE, Nance J. An interphase contractile ring reshapes primordial germ cells to allow bulk cytoplasmic remodeling. J Cell Biol 2020; 219:132628. [PMID: 31819975 PMCID: PMC7041695 DOI: 10.1083/jcb.201906185] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 10/18/2019] [Accepted: 11/04/2019] [Indexed: 01/04/2023] Open
Abstract
Some cells discard undesired inherited components in bulk by forming large compartments that are subsequently eliminated. Caenorhabditis elegans primordial germ cells (PGCs) jettison mitochondria and cytoplasm by forming a large lobe that is cannibalized by intestinal cells. Although PGCs are nonmitotic, we find that lobe formation is driven by constriction of a contractile ring and requires the RhoGEF ECT-2, a RhoA activator also essential for cytokinesis. Whereas centralspindlin activates ECT-2 to promote cytokinetic contractile ring formation, we show that the ECT-2 regulator NOP-1, but not centralspindlin, is essential for PGC lobe formation. We propose that lobe contractile ring formation is locally inhibited by the PGC nucleus, which migrates to one side of the cell before the cytokinetic ring assembles on the opposite cortex. Our findings reveal how components of the cytokinetic contractile ring are reemployed during interphase to create compartments used for cellular remodeling, and they reveal differences in the spatial cues that dictate where the contractile ring will form.
Collapse
Affiliation(s)
- Chelsea Maniscalco
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY
| | - Allison E Hall
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY
| | - Jeremy Nance
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY.,Department of Cell Biology, New York University School of Medicine, New York, NY
| |
Collapse
|
10
|
Castillo-Badillo JA, Bandi AC, Harlalka S, Gautam N. SRRF-Stream Imaging of Optogenetically Controlled Furrow Formation Shows Localized and Coordinated Endocytosis and Exocytosis Mediating Membrane Remodeling. ACS Synth Biol 2020; 9:902-919. [PMID: 32155337 DOI: 10.1021/acssynbio.9b00521] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Cleavage furrow formation during cytokinesis involves extensive membrane remodeling. In the absence of methods to exert dynamic control over these processes, it has been a challenge to examine the basis of this remodeling. Here we used a subcellular optogenetic approach to induce this at will and found that furrow formation is mediated by actomyosin contractility, retrograde plasma membrane flow, localized decrease in membrane tension, and endocytosis. FRAP, 4-D imaging, and inhibition or upregulation of endocytosis or exocytosis show that ARF6 and Exo70 dependent localized exocytosis supports a potential model for intercellular bridge elongation. TIRF and Super Resolution Radial Fluctuation (SRRF) stream microscopy show localized VAMP2-mediated exocytosis and incorporation of membrane lipids from vesicles into the plasma membrane at the front edge of the nascent daughter cell. Thus, spatially separated but coordinated plasma membrane depletion and addition are likely contributors to membrane remodeling during cytokinetic processes.
Collapse
|
11
|
Syncytial germline architecture is actively maintained by contraction of an internal actomyosin corset. Nat Commun 2018; 9:4694. [PMID: 30410005 PMCID: PMC6224597 DOI: 10.1038/s41467-018-07149-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 10/09/2018] [Indexed: 01/13/2023] Open
Abstract
Syncytial architecture is an evolutionarily-conserved feature of the germline of many species and plays a crucial role in their fertility. However, the mechanism supporting syncytial organization is largely unknown. Here, we identify a corset-like actomyosin structure within the syncytial germline of Caenorhabditis elegans, surrounding the common rachis. Using laser microsurgery, we demonstrate that actomyosin contractility within this structure generates tension both in the plane of the rachis surface and perpendicular to it, opposing membrane tension. Genetic and pharmacological perturbations, as well as mathematical modeling, reveal a balance of forces within the gonad and show how changing the tension within the actomyosin corset impinges on syncytial germline structure, leading, in extreme cases, to sterility. Thus, our work highlights a unique tissue-level cytoskeletal structure, and explains the critical role of actomyosin contractility in the preservation of a functional germline. Germline cells in many species are fused to form a syncytium but the mechanics behind the maintenance of these structures are poorly defined. Here, the authors propose an inner contractile actomyosin corset provides a supportive framework to maintain germline architecture in C. elegans.
Collapse
|
12
|
Seidel HS, Smith TA, Evans JK, Stamper JQ, Mast TG, Kimble J. C. elegans germ cells divide and differentiate in a folded tissue. Dev Biol 2018; 442:173-187. [DOI: 10.1016/j.ydbio.2018.07.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Revised: 07/08/2018] [Accepted: 07/16/2018] [Indexed: 12/18/2022]
|
13
|
Lee KY, Green RA, Gutierrez E, Gomez-Cavazos JS, Kolotuev I, Wang S, Desai A, Groisman A, Oegema K. CYK-4 functions independently of its centralspindlin partner ZEN-4 to cellularize oocytes in germline syncytia. eLife 2018; 7:36919. [PMID: 29989548 PMCID: PMC6056237 DOI: 10.7554/elife.36919] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 07/09/2018] [Indexed: 12/15/2022] Open
Abstract
Throughout metazoans, germ cells undergo incomplete cytokinesis to form syncytia connected by intercellular bridges. Gamete formation ultimately requires bridge closure, yet how bridges are reactivated to close is not known. The most conserved bridge component is centralspindlin, a complex of the Rho family GTPase-activating protein (GAP) CYK-4/MgcRacGAP and the microtubule motor ZEN-4/kinesin-6. Here, we show that oocyte production by the syncytial Caenorhabditis elegans germline requires CYK-4 but not ZEN-4, which contrasts with cytokinesis, where both are essential. Longitudinal imaging after conditional inactivation revealed that CYK-4 activity is important for oocyte cellularization, but not for the cytokinesis-like events that generate syncytial compartments. CYK-4’s lipid-binding C1 domain and the GTPase-binding interface of its GAP domain were both required to target CYK-4 to intercellular bridges and to cellularize oocytes. These results suggest that the conserved C1-GAP region of CYK-4 constitutes a targeting module required for closure of intercellular bridges in germline syncytia.
Collapse
Affiliation(s)
- Kian-Yong Lee
- Ludwig Institute for Cancer Research, Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, United States
| | - Rebecca A Green
- Ludwig Institute for Cancer Research, Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, United States
| | - Edgar Gutierrez
- Department of Physics, University of California, San Diego, La Jolla, United States
| | - J Sebastian Gomez-Cavazos
- Ludwig Institute for Cancer Research, Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, United States
| | - Irina Kolotuev
- Microscopy Rennes Imaging Center and Biosit, University of Rennes 1, Rennes, France
| | - Shaohe Wang
- Ludwig Institute for Cancer Research, Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, United States
| | - Arshad Desai
- Ludwig Institute for Cancer Research, Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, United States
| | - Alex Groisman
- Department of Physics, University of California, San Diego, La Jolla, United States
| | - Karen Oegema
- Ludwig Institute for Cancer Research, Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, United States
| |
Collapse
|