1
|
Burge RJ, Jameson KH, Geoghegan V, Dowle AA, Mottram JC, Wilkinson AJ. Formation of functional E3 ligase complexes with UBC2 and UEV1 of Leishmania mexicana. Mol Biochem Parasitol 2024; 258:111619. [PMID: 38556171 DOI: 10.1016/j.molbiopara.2024.111619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/14/2024] [Accepted: 03/26/2024] [Indexed: 04/02/2024]
Abstract
In eukaryotic cells, molecular fate and cellular responses are shaped by multicomponent enzyme systems which reversibly attach ubiquitin and ubiquitin-like modifiers to target proteins. The extent of the ubiquitin proteasome system in Leishmania mexicana and its importance for parasite survival has recently been established through deletion mutagenesis and life-cycle phenotyping studies. The ubiquitin conjugating E2 enzyme UBC2, and the E2 enzyme variant UEV1, with which it forms a stable complex in vitro, were shown to be essential for the differentiation of promastigote parasites to the infectious amastigote form. To investigate further, we used immunoprecipitation of Myc-UBC2 or Myc-UEV1 to identify interacting proteins in L. mexicana promastigotes. The interactome of UBC2 comprises multiple ubiquitin-proteasome components including UEV1 and four RING E3 ligases, as well as potential substrates predicted to have roles in carbohydrate metabolism and intracellular trafficking. The smaller UEV1 interactome comprises six proteins, including UBC2 and shared components of the UBC2 interactome consistent with the presence of intracellular UBC2-UEV1 complexes. Recombinant RING1, RING2 and RING4 E3 ligases were shown to support ubiquitin transfer reactions involving the E1, UBA1a, and UBC2 to available substrate proteins or to unanchored ubiquitin chains. These studies define additional components of a UBC2-dependent ubiquitination pathway shown previously to be essential for promastigote to amastigote differentiation.
Collapse
Affiliation(s)
- Rebecca J Burge
- York Biomedical Research Institute, Department of Biology, University of York, York YO10 5DD, UK
| | - Katie H Jameson
- York Structural Biology Laboratory and York Biomedical Research Institute, Department of Chemistry, University of York, York YO10 5DD, UK
| | - Vincent Geoghegan
- York Biomedical Research Institute, Department of Biology, University of York, York YO10 5DD, UK
| | - Adam A Dowle
- Bioscience Technology Facility, Department of Biology, University of York, York YO10 5DD, UK
| | - Jeremy C Mottram
- York Biomedical Research Institute, Department of Biology, University of York, York YO10 5DD, UK.
| | - Anthony J Wilkinson
- York Structural Biology Laboratory and York Biomedical Research Institute, Department of Chemistry, University of York, York YO10 5DD, UK.
| |
Collapse
|
2
|
Abstract
Intercellular communication by Wnt proteins governs many essential processes during development, tissue homeostasis and disease in all metazoans. Many context-dependent effects are initiated in the Wnt-producing cells and depend on the export of lipidated Wnt proteins. Although much focus has been on understanding intracellular Wnt signal transduction, the cellular machinery responsible for Wnt secretion became better understood only recently. After lipid modification by the acyl-transferase Porcupine, Wnt proteins bind their dedicated cargo protein Evi/Wntless for transport and secretion. Evi/Wntless and Porcupine are conserved transmembrane proteins, and their 3D structures were recently determined. In this Review, we summarise studies and structural data highlighting how Wnts are transported from the ER to the plasma membrane, and the role of SNX3-retromer during the recycling of its cargo receptor Evi/Wntless. We also describe the regulation of Wnt export through a post-translational mechanism and review the importance of Wnt secretion for organ development and cancer, and as a future biomarker.
Collapse
Affiliation(s)
- Lucie Wolf
- German Cancer Research Center (DKFZ), Division of Signalling and Functional Genomics and Heidelberg University, BioQuant and Department of Cell and Molecular Biology, 69120 Heidelberg, Germany
| | - Michael Boutros
- German Cancer Research Center (DKFZ), Division of Signalling and Functional Genomics and Heidelberg University, BioQuant and Department of Cell and Molecular Biology, 69120 Heidelberg, Germany
| |
Collapse
|
3
|
Mutagenesis and structural modeling implicate RME-8 IWN domains as conformational control points. PLoS Genet 2022; 18:e1010296. [DOI: 10.1371/journal.pgen.1010296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 11/08/2022] [Accepted: 10/04/2022] [Indexed: 11/05/2022] Open
Abstract
After endocytosis, transmembrane cargo is differentially sorted into degradative or recycling pathways. This process is facilitated by recruitment into physically distinct degradative or recycling microdomains on the limiting membrane of individual endosomes. Endosomal sorting complexes required for transport (ESCRT) mark the degradative microdomain, while the recycling domain is marked by the retromer complex and associated proteins RME-8 and SNX-1. The separation of endosomal microdomains is also controlled by RME-8 and SNX-1, at least in part via removal of degradative component HRS/HGRS-1 from the recycling microdomain. This activity is likely due to recruitment and activation of chaperone Hsc70 on the endosome by the RME-8 DNAJ domain. To better understand the mechanism of RME-8 function we performed a new phylogenetic analysis of RME-8 and identified new conserved sequence features. In a complementary approach, we performed structure-function analysis that identified the C-terminus as important for microdomain localization and likely substrate binding, while N-terminal sequences beyond the known single N-terminal PH-like domain are important for endosome recruitment. Random mutagenesis identified IWN4, and by analogy IWN3, to be important for the autoinhibitory DNAJ domain binding, with IWN3 playing a critical role in HRS uncoating activity. Combining AlphaFold structural predictions with in vivo mutation analysis of RME-8, we propose a model whereby SNX-1 and the IWN domains control the conformation of RME-8 and hence the productive exposure of the DNAJ domain. Furthermore, we propose that the activation of RME-8 is cyclical, with SNX-1 acting as an activator and a target of RME-8 uncoating activity.
Collapse
|
4
|
Li X, Li J, Zhu D, Zhang N, Hao X, Zhang W, Zhang Q, Liu Y, Wu X, Tian Y. Protein disulfide isomerase PDI-6 regulates Wnt secretion to coordinate inter-tissue UPR mt activation and lifespan extension in C. elegans. Cell Rep 2022; 39:110931. [PMID: 35675782 DOI: 10.1016/j.celrep.2022.110931] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 03/02/2022] [Accepted: 05/18/2022] [Indexed: 11/15/2022] Open
Abstract
Coordination of inter-tissue stress signaling is essential for organismal fitness. Neuronal mitochondrial perturbations activate the mitochondrial unfolded-protein response (UPRmt) in the intestine via the mitokine Wnt signaling in Caenorhabditis elegans. Here, we found that the protein disulfide isomerase PDI-6 coordinates inter-tissue UPRmt signaling via regulating the Wnt ligand EGL-20. PDI-6 is expressed in the endoplasmic reticulum (ER) and interacts with EGL-20 through disulfide bonds that are essential for EGL-20 stability and secretion. pdi-6 deficiency results in misfolded EGL-20, which leads to its degradation via ER-associated protein degradation (ERAD) machinery. Expression of PDI-6 declines drastically with aging, and animals with pdi-6 deficiency have decreased lifespan. Overexpression of PDI-6 is sufficient to maintain Wnt/EGL-20 protein levels during aging, activating the UPRmt, and significantly extending lifespan in a Wnt- and UPRmt-dependent manner. Our study reveals that protein disulfide isomerase facilitates Wnt secretion to coordinate the inter-tissue UPRmt signaling and organismal aging.
Collapse
Affiliation(s)
- Xinyu Li
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100093, China
| | - Jiasheng Li
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100093, China
| | - Di Zhu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100093, China
| | - Ning Zhang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100093, China
| | - Xusheng Hao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100093, China
| | - Wenfeng Zhang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100093, China
| | - Qian Zhang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yangli Liu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xueying Wu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Ye Tian
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100093, China; Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China.
| |
Collapse
|
5
|
Wolf LM, Lambert AM, Haenlin J, Boutros M. EVI/WLS function is regulated by ubiquitination and linked to ER-associated degradation by ERLIN2. J Cell Sci 2021; 134:271857. [PMID: 34406391 PMCID: PMC8435288 DOI: 10.1242/jcs.257790] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 07/12/2021] [Indexed: 12/16/2022] Open
Abstract
WNT signalling is important for development in all metazoans and is associated with various human diseases. The ubiquitin–proteasome system (UPS) and regulatory endoplasmic reticulum-associated degradation (ERAD) have been implicated in the production of WNT proteins. Here, we investigated how the WNT secretory factor EVI (also known as WLS) is ubiquitylated, recognised by ERAD components and subsequently removed from the secretory pathway. We performed a focused immunoblot-based RNAi screen for factors that influence EVI/WLS protein stability. We identified the VCP-binding proteins FAF2 and UBXN4 as novel interaction partners of EVI/WLS and showed that ERLIN2 links EVI/WLS to the ubiquitylation machinery. Interestingly, we also found that EVI/WLS is ubiquitylated and degraded in cells irrespective of their level of WNT production. This K11, K48 and K63-linked ubiquitylation is mediated by the E2 ubiquitin-conjugating enzymes UBE2J2, UBE2K and UBE2N, but is independent of the E3 ubiquitin ligases HRD1 (also known as SYVN1) and GP78 (also known as AMFR). Taken together, our study identifies factors that link the UPS to the WNT secretory pathway and provides mechanistic details of the fate of an endogenous substrate of regulatory ERAD in mammalian cells. This article has an associated First Person interview with the first author of the paper. Summary: The WNT secretory factor EVI/WLS is ubiquitylated and linked to ER-associated degradation by multiple proteins, providing insight into the link between WNT signalling and the ubiquitin–proteasome system.
Collapse
Affiliation(s)
- Lucie M Wolf
- German Cancer Research Center (DKFZ), Division of Signalling and Functional Genomics and Heidelberg University, BioQuant & Department for Cell and Molecular Biology, Medical Faculty Mannheim, D-69120 Heidelberg, Germany
| | - Annika M Lambert
- German Cancer Research Center (DKFZ), Division of Signalling and Functional Genomics and Heidelberg University, BioQuant & Department for Cell and Molecular Biology, Medical Faculty Mannheim, D-69120 Heidelberg, Germany
| | - Julie Haenlin
- German Cancer Research Center (DKFZ), Division of Signalling and Functional Genomics and Heidelberg University, BioQuant & Department for Cell and Molecular Biology, Medical Faculty Mannheim, D-69120 Heidelberg, Germany
| | - Michael Boutros
- German Cancer Research Center (DKFZ), Division of Signalling and Functional Genomics and Heidelberg University, BioQuant & Department for Cell and Molecular Biology, Medical Faculty Mannheim, D-69120 Heidelberg, Germany
| |
Collapse
|
6
|
Redhai S, Boutros M. The Role of Organelles in Intestinal Function, Physiology, and Disease. Trends Cell Biol 2021; 31:485-499. [PMID: 33551307 DOI: 10.1016/j.tcb.2021.01.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 01/04/2021] [Accepted: 01/11/2021] [Indexed: 02/06/2023]
Abstract
The intestine maintains homeostasis by coordinating internal biological processes to adjust to fluctuating external conditions. The intestinal epithelium is continuously renewed and comprises multiple cell types, including absorptive cells, secretory cells, and resident stem cells. An important feature of this organ is its ability to coordinate many processes including cell proliferation, differentiation, regeneration, damage/stress response, immune activity, feeding behavior, and age-related changes by using conserved signaling pathways. However, the subcellular spatial organization of these signaling events and the organelles involved has only recently been studied in detail. Here we discuss how organelles of intestinal cells serve to initiate, mediate, and terminate signals, that are vital for homeostasis.
Collapse
Affiliation(s)
- Siamak Redhai
- German Cancer Research Center (DKFZ), Division Signaling and Functional Genomics, and Heidelberg University, BioQuant and Medical Faculty Mannheim, D-69120 Heidelberg, Germany.
| | - Michael Boutros
- German Cancer Research Center (DKFZ), Division Signaling and Functional Genomics, and Heidelberg University, BioQuant and Medical Faculty Mannheim, D-69120 Heidelberg, Germany.
| |
Collapse
|
7
|
Hanley SE, Cooper KF. Sorting Nexins in Protein Homeostasis. Cells 2020; 10:cells10010017. [PMID: 33374212 PMCID: PMC7823608 DOI: 10.3390/cells10010017] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/15/2020] [Accepted: 12/18/2020] [Indexed: 12/11/2022] Open
Abstract
Protein homeostasis is maintained by removing misfolded, damaged, or excess proteins and damaged organelles from the cell by three major pathways; the ubiquitin-proteasome system, the autophagy-lysosomal pathway, and the endo-lysosomal pathway. The requirement for ubiquitin provides a link between all three pathways. Sorting nexins are a highly conserved and diverse family of membrane-associated proteins that not only traffic proteins throughout the cells but also provide a second common thread between protein homeostasis pathways. In this review, we will discuss the connections between sorting nexins, ubiquitin, and the interconnected roles they play in maintaining protein quality control mechanisms. Underlying their importance, genetic defects in sorting nexins are linked with a variety of human diseases including neurodegenerative, cardiovascular diseases, viral infections, and cancer. This serves to emphasize the critical roles sorting nexins play in many aspects of cellular function.
Collapse
|
8
|
Shafaq-Zadah M, Dransart E, Johannes L. Clathrin-independent endocytosis, retrograde trafficking, and cell polarity. Curr Opin Cell Biol 2020; 65:112-121. [PMID: 32688213 PMCID: PMC7588825 DOI: 10.1016/j.ceb.2020.05.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/12/2020] [Accepted: 05/14/2020] [Indexed: 10/29/2022]
Abstract
Several mechanisms allow for cargo internalization into cells within membrane-bound endocytic carriers. How these internalization processes couple to specific pathways of intracellular distribution remains poorly explored. Here, we review uptake reactions that are independent of the conventional clathrin machinery. We discuss how these link to retrograde trafficking from endosomes to the Golgi apparatus and exemplify biological situations in which the polarized secretion capacity of the Golgi apparatus allows for retrograde cargoes to be delivered to specialized areas of the plasma membrane, such as the leading edge of migratory cells or the immunological synapse of immune cells. We also address the evidence that allows to position apicobasal polarity of epithelial cells in this context. The underlying theme is thereby the functional coupling between specific types of endocytosis to intracellular retrograde trafficking for protein cargoes that need to be localized in a highly polarized and dynamic manner to plasmalemmal subdomains.
Collapse
Affiliation(s)
- Massiullah Shafaq-Zadah
- Institut Curie, PSL Research University, Cellular and Chemical Biology Unit, INSERM U1143, CNRS UMR3666, 26 rue d'Ulm, 75248 Paris Cedex 05, France.
| | - Estelle Dransart
- Institut Curie, PSL Research University, Cellular and Chemical Biology Unit, INSERM U1143, CNRS UMR3666, 26 rue d'Ulm, 75248 Paris Cedex 05, France
| | - Ludger Johannes
- Institut Curie, PSL Research University, Cellular and Chemical Biology Unit, INSERM U1143, CNRS UMR3666, 26 rue d'Ulm, 75248 Paris Cedex 05, France.
| |
Collapse
|
9
|
Norris A, Grant BD. Endosomal microdomains: Formation and function. Curr Opin Cell Biol 2020; 65:86-95. [PMID: 32247230 PMCID: PMC7529669 DOI: 10.1016/j.ceb.2020.02.018] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/24/2020] [Accepted: 02/25/2020] [Indexed: 12/18/2022]
Abstract
It is widely recognized that after endocytosis, internalized cargo is delivered to endosomes that act as sorting stations. The limiting membrane of endosomes contain specialized subregions, or microdomains, that represent distinct functions of the endosome, including regions competing for cargo capture leading to degradation or recycling. Great progress has been made in defining the endosomal protein coats that sort cargo in these domains, including Retromer that recycles transmembrane cargo, and ESCRT (endosomal sorting complex required for transport) that degrades transmembrane cargo. In this review, we discuss recent work that is beginning to unravel how such coat complexes contribute to the creation and maintenance of endosomal microdomains. We highlight data that indicates that adjacent microdomains do not act independently but rather interact to cross-regulate. We posit that these interactions provide an agile means for the cell to adjust sorting in response to extracellular signals and intracellular metabolic cues.
Collapse
Affiliation(s)
- Anne Norris
- Rutgers University, Department of Molecular Biology and Biochemistry, Piscataway, NJ, 08854, USA
| | - Barth D Grant
- Rutgers University, Department of Molecular Biology and Biochemistry, Piscataway, NJ, 08854, USA.
| |
Collapse
|
10
|
Bustamante HA, Cereceda K, González AE, Valenzuela GE, Cheuquemilla Y, Hernández S, Arias-Muñoz E, Cerda-Troncoso C, Bandau S, Soza A, Kausel G, Kerr B, Mardones GA, Cancino J, Hay RT, Rojas-Fernandez A, Burgos PV. The Proteasomal Deubiquitinating Enzyme PSMD14 Regulates Macroautophagy by Controlling Golgi-to-ER Retrograde Transport. Cells 2020; 9:E777. [PMID: 32210007 PMCID: PMC7140897 DOI: 10.3390/cells9030777] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 03/16/2020] [Accepted: 03/19/2020] [Indexed: 12/15/2022] Open
Abstract
Ubiquitination regulates several biological processes, however the role of specific members of the ubiquitinome on intracellular membrane trafficking is not yet fully understood. Here, we search for ubiquitin-related genes implicated in protein membrane trafficking performing a High-Content siRNA Screening including 1187 genes of the human "ubiquitinome" using amyloid precursor protein (APP) as a reporter. We identified the deubiquitinating enzyme PSMD14, a subunit of the 19S regulatory particle of the proteasome, specific for K63-Ub chains in cells, as a novel regulator of Golgi-to-endoplasmic reticulum (ER) retrograde transport. Silencing or pharmacological inhibition of PSMD14 with Capzimin (CZM) caused a robust increase in APP levels at the Golgi apparatus and the swelling of this organelle. We showed that this phenotype is the result of rapid inhibition of Golgi-to-ER retrograde transport, a pathway implicated in the early steps of the autophagosomal formation. Indeed, we observed that inhibition of PSMD14 with CZM acts as a potent blocker of macroautophagy by a mechanism related to the retention of Atg9A and Rab1A at the Golgi apparatus. As pharmacological inhibition of the proteolytic core of the 20S proteasome did not recapitulate these effects, we concluded that PSMD14, and the K63-Ub chains, act as a crucial regulatory factor for macroautophagy by controlling Golgi-to-ER retrograde transport.
Collapse
Affiliation(s)
- Hianara A Bustamante
- Instituto de Fisiología, Facultad de Medicina, Universidad Austral de Chile, Valdivia 5110566, Chile; (H.A.B.); (A.E.G.); (G.A.M.)
| | - Karina Cereceda
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Lota 2465, Santiago 7510157, Chile; (K.C.); (S.H.); (E.A.-M.); (C.C.-T.); (A.S.); (B.K.); (J.C.)
| | - Alexis E González
- Instituto de Fisiología, Facultad de Medicina, Universidad Austral de Chile, Valdivia 5110566, Chile; (H.A.B.); (A.E.G.); (G.A.M.)
| | - Guillermo E Valenzuela
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5110566, Chile; (G.E.V.); (G.K.)
- Instituto de Medicina & Centro Interdisciplinario de Estudios del Sistema Nervioso (CISNe), Universidad Austral de Chile, Valdivia 5110566, Chile;
| | - Yorka Cheuquemilla
- Instituto de Medicina & Centro Interdisciplinario de Estudios del Sistema Nervioso (CISNe), Universidad Austral de Chile, Valdivia 5110566, Chile;
| | - Sergio Hernández
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Lota 2465, Santiago 7510157, Chile; (K.C.); (S.H.); (E.A.-M.); (C.C.-T.); (A.S.); (B.K.); (J.C.)
| | - Eloisa Arias-Muñoz
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Lota 2465, Santiago 7510157, Chile; (K.C.); (S.H.); (E.A.-M.); (C.C.-T.); (A.S.); (B.K.); (J.C.)
| | - Cristóbal Cerda-Troncoso
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Lota 2465, Santiago 7510157, Chile; (K.C.); (S.H.); (E.A.-M.); (C.C.-T.); (A.S.); (B.K.); (J.C.)
| | - Susanne Bandau
- Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, DD1 4HN, Dundee DD1 4HN UK; (S.B.); (R.T.H.)
| | - Andrea Soza
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Lota 2465, Santiago 7510157, Chile; (K.C.); (S.H.); (E.A.-M.); (C.C.-T.); (A.S.); (B.K.); (J.C.)
| | - Gudrun Kausel
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5110566, Chile; (G.E.V.); (G.K.)
| | - Bredford Kerr
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Lota 2465, Santiago 7510157, Chile; (K.C.); (S.H.); (E.A.-M.); (C.C.-T.); (A.S.); (B.K.); (J.C.)
| | - Gonzalo A Mardones
- Instituto de Fisiología, Facultad de Medicina, Universidad Austral de Chile, Valdivia 5110566, Chile; (H.A.B.); (A.E.G.); (G.A.M.)
- Centro Interdisciplinario de Estudios del Sistema Nervioso (CISNe), Universidad Austral de Chile, Valdivia 5110566, Chile
| | - Jorge Cancino
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Lota 2465, Santiago 7510157, Chile; (K.C.); (S.H.); (E.A.-M.); (C.C.-T.); (A.S.); (B.K.); (J.C.)
| | - Ronald T Hay
- Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, DD1 4HN, Dundee DD1 4HN UK; (S.B.); (R.T.H.)
| | - Alejandro Rojas-Fernandez
- Instituto de Medicina & Centro Interdisciplinario de Estudios del Sistema Nervioso (CISNe), Universidad Austral de Chile, Valdivia 5110566, Chile;
- Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, DD1 4HN, Dundee DD1 4HN UK; (S.B.); (R.T.H.)
| | - Patricia V Burgos
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Lota 2465, Santiago 7510157, Chile; (K.C.); (S.H.); (E.A.-M.); (C.C.-T.); (A.S.); (B.K.); (J.C.)
- Centro de Envejecimiento y Regeneración (CARE-UC), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 83330023, Chile
| |
Collapse
|
11
|
Tetraspanins TSP-12 and TSP-14 function redundantly to regulate the trafficking of the type II BMP receptor in Caenorhabditis elegans. Proc Natl Acad Sci U S A 2020; 117:2968-2977. [PMID: 31988138 DOI: 10.1073/pnas.1918807117] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Tetraspanins are a unique family of 4-pass transmembrane proteins that play important roles in a variety of cell biological processes. We have previously shown that 2 paralogous tetraspanins in Caenorhabditis elegans, TSP-12 and TSP-14, function redundantly to promote bone morphogenetic protein (BMP) signaling. The underlying molecular mechanisms, however, are not fully understood. In this study, we examined the expression and subcellular localization patterns of endogenously tagged TSP-12 and TSP-14 proteins. We found that TSP-12 and TSP-14 share overlapping expression patterns in multiple cell types, and that both proteins are localized on the cell surface and in various types of endosomes, including early, late, and recycling endosomes. Animals lacking both TSP-12 and TSP-14 exhibit reduced cell-surface levels of the BMP type II receptor DAF-4/BMPRII, along with impaired endosome morphology and mislocalization of DAF-4/BMPRII to late endosomes and lysosomes. These findings indicate that TSP-12 and TSP-14 are required for the recycling of DAF-4/BMPRII. Together with previous findings that the type I receptor SMA-6 is recycled via the retromer complex, our work demonstrates the involvement of distinct recycling pathways for the type I and type II BMP receptors and highlights the importance of tetraspanin-mediated intracellular trafficking in the regulation of BMP signaling in vivo. As TSP-12 and TSP-14 are conserved in mammals, our findings suggest that the mammalian TSP-12 and TSP-14 homologs may also function in regulating transmembrane protein recycling and BMP signaling.
Collapse
|
12
|
Serrano-Saiz E, Vogt MC, Levy S, Wang Y, Kaczmarczyk KK, Mei X, Bai G, Singson A, Grant BD, Hobert O. SLC17A6/7/8 Vesicular Glutamate Transporter Homologs in Nematodes. Genetics 2020; 214:163-178. [PMID: 31776169 PMCID: PMC6944403 DOI: 10.1534/genetics.119.302855] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 11/24/2019] [Indexed: 01/04/2023] Open
Abstract
Members of the superfamily of solute carrier (SLC) transmembrane proteins transport diverse substrates across distinct cellular membranes. Three SLC protein families transport distinct neurotransmitters into synaptic vesicles to enable synaptic transmission in the nervous system. Among them is the SLC17A6/7/8 family of vesicular glutamate transporters, which endows specific neuronal cell types with the ability to use glutamate as a neurotransmitter. The genome of the nematode Caenorhabditis elegans encodes three SLC17A6/7/8 family members, one of which, eat-4/VGLUT, has been shown to be involved in glutamatergic neurotransmission. Here, we describe our analysis of the two remaining, previously uncharacterized SLC17A6/7/8 family members, vglu-2 and vglu-3 These two genes directly neighbor one another and are the result of a recent gene duplication event in C. elegans, but not in other Caenorhabditis species. Compared to EAT-4, the VGLU-2 and VGLU-3 protein sequences display a more distant similarity to canonical, vertebrate VGLUT proteins. We tagged both genomic loci with gfp and detected no expression of vglu-3 at any stage of development in any cell type of both C. elegans sexes. In contrast, vglu-2::gfp is dynamically expressed in a restricted set of distinct cell types. Within the nervous system, vglu-2::gfp is exclusively expressed in a single interneuron class, AIA, where it localizes to vesicular structures in the soma, but not along the axon, suggesting that VGLU-2 may not be involved in synaptic transport of glutamate. Nevertheless, vglu-2 mutants are partly defective in the function of the AIA neuron in olfactory behavior. Outside the nervous system, VGLU-2 is expressed in collagen secreting skin cells where VGLU-2 most prominently localizes to early endosomes, and to a lesser degree to apical clathrin-coated pits, the trans-Golgi network, and late endosomes. On early endosomes, VGLU-2 colocalizes most strongly with the recycling promoting factor SNX-1, a retromer component. Loss of vglu-2 affects the permeability of the collagen-containing cuticle of the worm, and based on the function of a vertebrate VGLUT1 protein in osteoclasts, we speculate that vglu-2 may have a role in collagen trafficking in the skin. We conclude that C. elegans SLC17A6/7/8 family members have diverse functions within and outside the nervous system.
Collapse
Affiliation(s)
- Esther Serrano-Saiz
- Department of Biological Sciences, Columbia University, Howard Hughes Medical Institute, New York, New York 10027
- Centro de Biologia Molecular Severo Ochoa/Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Merly C Vogt
- Department of Biological Sciences, Columbia University, Howard Hughes Medical Institute, New York, New York 10027
| | - Sagi Levy
- Rockefeller University, New York, New York 10065
| | - Yu Wang
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, New Jersey 08854
| | - Karolina K Kaczmarczyk
- Department of Biological Sciences, Columbia University, Howard Hughes Medical Institute, New York, New York 10027
| | - Xue Mei
- Waksman Institute, Rutgers University, Piscataway, New Jersey 08854
| | - Ge Bai
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, New Jersey 08854
| | - Andrew Singson
- Waksman Institute, Rutgers University, Piscataway, New Jersey 08854
- Department of Genetics, Rutgers University, Piscataway, New Jersey 08854
| | - Barth D Grant
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, New Jersey 08854
| | - Oliver Hobert
- Department of Biological Sciences, Columbia University, Howard Hughes Medical Institute, New York, New York 10027
| |
Collapse
|