1
|
Yamagishi JF, Kaneko K. Universal Transitions between Growth and Dormancy via Intermediate Complex Formation. PHYSICAL REVIEW LETTERS 2024; 132:118401. [PMID: 38563921 DOI: 10.1103/physrevlett.132.118401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 01/30/2024] [Indexed: 04/04/2024]
Abstract
A simple cell model consisting of a catalytic reaction network with intermediate complex formation is numerically studied. As nutrients are depleted, the transition from the exponential growth phase to the growth-arrested dormant phase occurs along with hysteresis and a lag time for growth recovery. This transition is caused by the accumulation of intermediate complexes, leading to the jamming of reactions and the diversification of components. These properties are generic in random reaction networks, as supported by dynamical systems analyses of corresponding mean-field models.
Collapse
Affiliation(s)
- Jumpei F Yamagishi
- Department of Basic Science, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | - Kunihiko Kaneko
- Center for Complex Systems Biology, Universal Biology Institute, University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-0041, Japan
- Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, 2100 Copenhagen, Denmark
| |
Collapse
|
2
|
Opalek M, Tutaj H, Pirog A, Smug BJ, Rutkowska J, Wloch-Salamon D. A Systematic Review on Quiescent State Research Approaches in S. cerevisiae. Cells 2023; 12:1608. [PMID: 37371078 DOI: 10.3390/cells12121608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/02/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Quiescence, the temporary and reversible arrest of cell growth, is a fundamental biological process. However, the lack of standardization in terms of reporting the experimental details of quiescent cells and populations can cause confusion and hinder knowledge transfer. We employ the systematic review methodology to comprehensively analyze the diversity of approaches used to study the quiescent state, focusing on all published research addressing the budding yeast Saccharomyces cerevisiae. We group research articles into those that consider all cells comprising the stationary-phase (SP) population as quiescent and those that recognize heterogeneity within the SP by distinguishing phenotypically distinct subpopulations. Furthermore, we investigate the chronological age of the quiescent populations under study and the methods used to induce the quiescent state, such as gradual starvation or abrupt environmental change. We also assess whether the strains used in research are prototrophic or auxotrophic. By combining the above features, we identify 48 possible experimental setups that can be used to study quiescence, which can be misleading when drawing general conclusions. We therefore summarize our review by proposing guidelines and recommendations pertaining to the information included in research articles. We believe that more rigorous reporting on the features of quiescent populations will facilitate knowledge transfer within and between disciplines, thereby stimulating valuable scientific discussion.
Collapse
Affiliation(s)
- Monika Opalek
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, 30-387 Krakow, Poland
| | - Hanna Tutaj
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, 30-387 Krakow, Poland
| | - Adrian Pirog
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, 30-387 Krakow, Poland
| | - Bogna J Smug
- Malopolska Centre of Biotechnology, Jagiellonian University, 30-387 Krakow, Poland
| | - Joanna Rutkowska
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, 30-387 Krakow, Poland
| | - Dominika Wloch-Salamon
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, 30-387 Krakow, Poland
| |
Collapse
|
3
|
On the Ecological Significance of Phenotypic Heterogeneity in Microbial Populations Undergoing Starvation. Microbiol Spectr 2022; 10:e0045021. [PMID: 35019773 PMCID: PMC8754142 DOI: 10.1128/spectrum.00450-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To persist in variable environments, populations of microorganisms have to survive periods of starvation and be able to restart cell division in nutrient-rich conditions. Typically, starvation signals initiate a transition to a quiescent state in a fraction of individual cells, while the rest of the cells remain nonquiescent. It is widely believed that, while quiescent (Q) cells help the population to survive long starvation, the nonquiescent (NQ) cells are a side effect of imperfect transition. We analyzed the regrowth of starved monocultures of Q and NQ cells compared to that of mixed, heterogeneous cultures from simple and complex starvation environments. Our experiments, as well as mathematical modeling, demonstrate that Q monocultures benefit from better survival during long starvation and from a shorter lag phase after resupply of rich medium. However, when the starvation period is very short, the NQ monocultures outperform Q and mixed cultures due to their short lag phase. In addition, only NQ monocultures benefit from complex starvation environments, where nutrient recycling is possible. Our study suggests that phenotypic heterogeneity in starved populations could be a form of bet hedging that is adaptive when environmental determinants, such as the length of the starvation period, the length of the regrowth phase, and the complexity of the starvation environment, vary over time. IMPORTANCE Nongenetic cell heterogeneity is present in glucose-starved yeast populations in the form of quiescent (Q) and nonquiescent (NQ) phenotypes. There is evidence that Q cells help the population survive long starvation. However, the role of the NQ cell type is not known, and it has been speculated that the NQ phenotype is just a side effect of the imperfect transition to the Q phenotype. Here, we show that, in contrast, there are ecological scenarios in which NQ cells perform better than monocultures of Q cells or naturally occurring mixed populations containing both Q and NQ cells. NQ cells benefit when the starvation period is very short and environmental conditions allow nutrient recycling during starvation. Our experimental and mathematical modeling results suggest a novel hypothesis: the presence of both Q and NQ phenotypes within starved yeast populations may reflect a form of bet hedging where different phenotypes provide fitness advantages depending on the environmental conditions.
Collapse
|
4
|
Varahan S, Sinha V, Walvekar A, Krishna S, Laxman S. Resource plasticity-driven carbon-nitrogen budgeting enables specialization and division of labor in a clonal community. eLife 2020; 9:e57609. [PMID: 32876564 PMCID: PMC7467726 DOI: 10.7554/elife.57609] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 07/31/2020] [Indexed: 11/13/2022] Open
Abstract
Previously, we found that in glucose-limited Saccharomyces cerevisiae colonies, metabolic constraints drive cells into groups exhibiting gluconeogenic or glycolytic states. In that study, threshold amounts of trehalose - a limiting, produced carbon-resource, controls the emergence and self-organization of cells exhibiting the glycolytic state, serving as a carbon source that fuels glycolysis (Varahan et al., 2019). We now discover that the plasticity of use of a non-limiting resource, aspartate, controls both resource production and the emergence of heterogeneous cell states, based on differential metabolic budgeting. In gluconeogenic cells, aspartate is a carbon source for trehalose production, while in glycolytic cells using trehalose for carbon, aspartate is predominantly a nitrogen source for nucleotide synthesis. This metabolic plasticity of aspartate enables carbon-nitrogen budgeting, thereby driving the biochemical self-organization of distinct cell states. Through this organization, cells in each state exhibit true division of labor, providing growth/survival advantages for the whole community.
Collapse
Affiliation(s)
- Sriram Varahan
- InStem - Institute for Stem Cell Science and Regenerative MedicineBangaloreIndia
| | - Vaibhhav Sinha
- Simons Centre for the Study of Living Machines, National Center for Biological Sciences, Tata Institute for Fundamental ResearchBangaloreIndia
- Manipal Academy of Higher EducationManipalIndia
| | - Adhish Walvekar
- InStem - Institute for Stem Cell Science and Regenerative MedicineBangaloreIndia
| | - Sandeep Krishna
- Simons Centre for the Study of Living Machines, National Center for Biological Sciences, Tata Institute for Fundamental ResearchBangaloreIndia
| | - Sunil Laxman
- InStem - Institute for Stem Cell Science and Regenerative MedicineBangaloreIndia
| |
Collapse
|
5
|
Bruhn C, Ajazi A, Ferrari E, Lanz MC, Batrin R, Choudhary R, Walvekar A, Laxman S, Longhese MP, Fabre E, Smolka MB, Foiani M. The Rad53 CHK1/CHK2-Spt21 NPAT and Tel1 ATM axes couple glucose tolerance to histone dosage and subtelomeric silencing. Nat Commun 2020; 11:4154. [PMID: 32814778 PMCID: PMC7438486 DOI: 10.1038/s41467-020-17961-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 07/23/2020] [Indexed: 12/14/2022] Open
Abstract
The DNA damage response (DDR) coordinates DNA metabolism with nuclear and non-nuclear processes. The DDR kinase Rad53CHK1/CHK2 controls histone degradation to assist DNA repair. However, Rad53 deficiency causes histone-dependent growth defects in the absence of DNA damage, pointing out unknown physiological functions of the Rad53-histone axis. Here we show that histone dosage control by Rad53 ensures metabolic homeostasis. Under physiological conditions, Rad53 regulates histone levels through inhibitory phosphorylation of the transcription factor Spt21NPAT on Ser276. Rad53-Spt21 mutants display severe glucose dependence, caused by excess histones through two separable mechanisms: dampening of acetyl-coenzyme A-dependent carbon metabolism through histone hyper-acetylation, and Sirtuin-mediated silencing of starvation-induced subtelomeric domains. We further demonstrate that repression of subtelomere silencing by physiological Tel1ATM and Rpd3HDAC activities coveys tolerance to glucose restriction. Our findings identify DDR mutations, histone imbalances and aberrant subtelomeric chromatin as interconnected causes of glucose dependence, implying that DDR kinases coordinate metabolism and epigenetic changes.
Collapse
Affiliation(s)
- Christopher Bruhn
- The FIRC Institute of Molecular Oncology (IFOM), Via Adamello 16, 20139, Milan, Italy.
| | - Arta Ajazi
- The FIRC Institute of Molecular Oncology (IFOM), Via Adamello 16, 20139, Milan, Italy
| | - Elisa Ferrari
- The FIRC Institute of Molecular Oncology (IFOM), Via Adamello 16, 20139, Milan, Italy
| | - Michael Charles Lanz
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Renaud Batrin
- Université de Paris, Laboratoire Génomes, Biologie Cellulaire et Thérapeutiques, CNRS UMR7212, INSERM U944, Centre de Recherche St Louis, F-75010, Paris, France
| | - Ramveer Choudhary
- The FIRC Institute of Molecular Oncology (IFOM), Via Adamello 16, 20139, Milan, Italy
| | - Adhish Walvekar
- Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore, Karnataka, 560065, India
| | - Sunil Laxman
- Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore, Karnataka, 560065, India
| | - Maria Pia Longhese
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano-Bicocca, Edificio U3, Piazza della Scienza 2, 20126, Milan, Italy
| | - Emmanuelle Fabre
- Université de Paris, Laboratoire Génomes, Biologie Cellulaire et Thérapeutiques, CNRS UMR7212, INSERM U944, Centre de Recherche St Louis, F-75010, Paris, France
| | - Marcus Bustamente Smolka
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Marco Foiani
- The FIRC Institute of Molecular Oncology (IFOM), Via Adamello 16, 20139, Milan, Italy.
- Università degli Studi di Milano, Via Festa del Perdono 7, 20122, Milan, Italy.
| |
Collapse
|
6
|
Opalek M, Wloch-Salamon D. Aspects of Multicellularity in Saccharomyces cerevisiae Yeast: A Review of Evolutionary and Physiological Mechanisms. Genes (Basel) 2020; 11:genes11060690. [PMID: 32599749 PMCID: PMC7349301 DOI: 10.3390/genes11060690] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 06/22/2020] [Accepted: 06/22/2020] [Indexed: 12/11/2022] Open
Abstract
The evolutionary transition from single-celled to multicellular growth is a classic and intriguing problem in biology. Saccharomyces cerevisiae is a useful model to study questions regarding cell aggregation, heterogeneity and cooperation. In this review, we discuss scenarios of group formation and how this promotes facultative multicellularity in S. cerevisiae. We first describe proximate mechanisms leading to aggregation. These mechanisms include staying together and coming together, and can lead to group heterogeneity. Heterogeneity is promoted by nutrient limitation, structured environments and aging. We then characterize the evolutionary benefits and costs of facultative multicellularity in yeast. We summarize current knowledge and focus on the newest state-of-the-art discoveries that will fuel future research programmes aiming to understand facultative microbial multicellularity.
Collapse
|
7
|
Walvekar AS, Laxman S. Methionine at the Heart of Anabolism and Signaling: Perspectives From Budding Yeast. Front Microbiol 2019; 10:2624. [PMID: 31798560 PMCID: PMC6874139 DOI: 10.3389/fmicb.2019.02624] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 10/28/2019] [Indexed: 12/18/2022] Open
Abstract
Studies using a fungal model, Saccharomyces cerevisiae, have been instrumental in advancing our understanding of sulfur metabolism in eukaryotes. Sulfur metabolites, particularly methionine and its derivatives, induce anabolic programs in yeast, and drive various processes integral to metabolism (one-carbon metabolism, nucleotide synthesis, and redox balance). Thereby, methionine also connects these processes with autophagy and epigenetic regulation. The direct involvement of methionine-derived metabolites in diverse chemistries such as transsulfuration and methylation reactions comes from the elegant positioning and safe handling of sulfur through these molecules. In this mini-review, we highlight studies from yeast that reveal how this amino acid holds a unique position in both metabolism and cell signaling, and illustrate cell fate decisions that methionine governs. We further discuss the interconnections between sulfur and NADPH metabolism, and highlight critical nodes around methionine metabolism that are promising for antifungal drug development.
Collapse
Affiliation(s)
| | - Sunil Laxman
- Regulation of Cell Fate, Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore, India
| |
Collapse
|
8
|
Varahan S, Walvekar A, Sinha V, Krishna S, Laxman S. Metabolic constraints drive self-organization of specialized cell groups. eLife 2019; 8:e46735. [PMID: 31241462 PMCID: PMC6658198 DOI: 10.7554/elife.46735] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 06/19/2019] [Indexed: 12/30/2022] Open
Abstract
How phenotypically distinct states in isogenic cell populations appear and stably co-exist remains unresolved. We find that within a mature, clonal yeast colony developing in low glucose, cells arrange into metabolically disparate cell groups. Using this system, we model and experimentally identify metabolic constraints sufficient to drive such self-assembly. Beginning in a uniformly gluconeogenic state, cells exhibiting a contrary, high pentose phosphate pathway activity state, spontaneously appear and proliferate, in a spatially constrained manner. Gluconeogenic cells in the colony produce and provide a resource, which we identify as trehalose. Above threshold concentrations of external trehalose, cells switch to the new metabolic state and proliferate. A self-organized system establishes, where cells in this new state are sustained by trehalose consumption, which thereby restrains other cells in the trehalose producing, gluconeogenic state. Our work suggests simple physico-chemical principles that determine how isogenic cells spontaneously self-organize into structured assemblies in complimentary, specialized states.
Collapse
Affiliation(s)
- Sriram Varahan
- InStem - Institute for Stem Cell Science and Regenerative MedicineBangaloreIndia
| | - Adhish Walvekar
- InStem - Institute for Stem Cell Science and Regenerative MedicineBangaloreIndia
| | - Vaibhhav Sinha
- Simons Centre for the Study of Living MachinesNational Centre for Biological Sciences-Tata Institute of Fundamental ResearchBangaloreIndia
- Manipal Academy of Higher EducationManipalIndia
| | - Sandeep Krishna
- Simons Centre for the Study of Living MachinesNational Centre for Biological Sciences-Tata Institute of Fundamental ResearchBangaloreIndia
| | - Sunil Laxman
- InStem - Institute for Stem Cell Science and Regenerative MedicineBangaloreIndia
| |
Collapse
|
9
|
Walvekar AS, Srinivasan R, Gupta R, Laxman S. Methionine coordinates a hierarchically organized anabolic program enabling proliferation. Mol Biol Cell 2018; 29:3183-3200. [PMID: 30354837 PMCID: PMC6340205 DOI: 10.1091/mbc.e18-08-0515] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 10/12/2018] [Accepted: 10/19/2018] [Indexed: 12/21/2022] Open
Abstract
Methionine availability during overall amino acid limitation metabolically reprograms cells to support proliferation, the underlying basis for which remains unclear. Here we construct the organization of this methionine-mediated anabolic program using yeast. Combining comparative transcriptome analysis and biochemical and metabolic flux-based approaches, we discover that methionine rewires overall metabolic outputs by increasing the activity of a key regulatory node. This comprises the pentose phosphate pathway (PPP) coupled with reductive biosynthesis, the glutamate dehydrogenase (GDH)-dependent synthesis of glutamate/glutamine, and pyridoxal-5-phosphate (PLP)-dependent transamination capacity. This PPP-GDH-PLP node provides the required cofactors and/or substrates for subsequent rate-limiting reactions in the synthesis of amino acids and therefore nucleotides. These rate-limiting steps in amino acid biosynthesis are also induced in a methionine-dependent manner. This thereby results in a biochemical cascade establishing a hierarchically organized anabolic program. For this methionine-mediated anabolic program to be sustained, cells co-opt a "starvation stress response" regulator, Gcn4p. Collectively, our data suggest a hierarchical metabolic framework explaining how methionine mediates an anabolic switch.
Collapse
Affiliation(s)
- Adhish S. Walvekar
- Institute for Stem Cell biology and Regenerative Medicine (inStem), NCBS-TIFR campus, Bangalore 560065, India
| | - Rajalakshmi Srinivasan
- Institute for Stem Cell biology and Regenerative Medicine (inStem), NCBS-TIFR campus, Bangalore 560065, India
| | - Ritu Gupta
- Institute for Stem Cell biology and Regenerative Medicine (inStem), NCBS-TIFR campus, Bangalore 560065, India
| | - Sunil Laxman
- Institute for Stem Cell biology and Regenerative Medicine (inStem), NCBS-TIFR campus, Bangalore 560065, India
| |
Collapse
|