1
|
Rundell TB, Baranski TJ. Insect Models to Study Human Lipid Metabolism Disorders. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024. [PMID: 39405006 DOI: 10.1007/5584_2024_827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/08/2024]
Abstract
Disorders of lipid metabolism such as obesity have become some of the most significant diseases of the twenty-first century. Despite these metabolic diseases affecting more than a third of the population in highly industrialized nations, the mechanisms underlying disease development remain poorly understood. Insect models, such as Drosophila melanogaster, offer a means of systematically examining conserved lipid metabolism and its pathology. Over the past several decades, Drosophila melanogaster has been used to greatly expand on our knowledge of metabolic disease, often taking advantage of the extensive genetic tools available to researchers. Additionally, Drosophila melanogaster has served and will continue to serve as a powerful tool for validating the results of genome-wide approaches to the study of diseases. This chapter explores the advancements of insect models in the study of lipid metabolism disorders as well as highlight opportunities for future areas of research.
Collapse
Affiliation(s)
- Thomas B Rundell
- Department of Biological Sciences, Binghamton University, Binghamton, NY, USA
| | - Thomas J Baranski
- Division of Endocrinology, Metabolism, and Lipid Research, Department of Medicine, Washington University School of Medicine, St Louis, MO, USA.
| |
Collapse
|
2
|
Luo Y, Takau A, Li J, Fan T, Hopkins BR, Le Y, Ramirez SR, Matsuo T, Kopp A. Regulatory Changes in the Fatty Acid Elongase eloF Underlie the Evolution of Sex-specific Pheromone Profiles in Drosophila prolongata. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.09.617394. [PMID: 39464098 PMCID: PMC11507777 DOI: 10.1101/2024.10.09.617394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Pheromones play a key role in regulating sexual behavior throughout the animal kingdom. In Drosophila and other insects, many cuticular hydrocarbons (CHCs) are sexually dimorphic, and some are known to perform pheromonal functions. However, the genetic control of sex-specific CHC production is not understood outside of the model species D. melanogaster. A recent evolutionary change is found in D. prolongata, which, compared to its closest relatives, shows greatly increased sexual dimorphism in both CHCs and the chemosensory system responsible for their perception. A key transition involves a male-specific increase in the proportion of long-chain CHCs. Perfuming D. prolongata females with the male-biased CHCs reduces copulation success, suggesting that these compounds function as sex pheromones. The evolutionary change in CHC profiles correlates with a male-specific increase in the expression of multiple genes involved in CHC biosynthesis, including fatty acid elongases and reductases and other key enzymes. In particular, elongase F, which is responsible for producing female-specific pheromones in D. melanogaster, is strongly upregulated in D. prolongata males compared both to females and to males of the sibling species. Induced mutations in eloF reduce the amount of long-chain CHCs, resulting in a partial feminization of pheromone profiles in D. prolongata males while having minimal effect in females. Transgenic experiments show that sex-biased expression of eloF is caused in part by a putative transposable element insertion in its regulatory region. These results reveal one of the genetic mechanisms responsible for a recent evolutionary change in sexual communication.
Collapse
Affiliation(s)
- Yige Luo
- Department of Evolution and Ecology, University of California, Davis
| | - Ayumi Takau
- Department of Agricultural and Environmental Biology, The University of Tokyo
| | - Jiaxun Li
- Department of Evolution and Ecology, University of California, Davis
| | - Tiezheng Fan
- Department of Evolution and Ecology, University of California, Davis
| | - Ben R Hopkins
- Department of Evolution and Ecology, University of California, Davis
| | - Yvonne Le
- Department of Evolution and Ecology, University of California, Davis
| | | | - Takashi Matsuo
- Department of Agricultural and Environmental Biology, The University of Tokyo
| | - Artyom Kopp
- Department of Evolution and Ecology, University of California, Davis
| |
Collapse
|
3
|
Weeks KL, Kiriazis H, Wadley GD, Masterman EI, Sergienko NM, Raaijmakers AJA, Trewin AJ, Harmawan CA, Yildiz GS, Liu Y, Drew BG, Gregorevic P, Delbridge LMD, McMullen JR, Bernardo BC. A gene therapy targeting medium-chain acyl-CoA dehydrogenase (MCAD) did not protect against diabetes-induced cardiac pathology. J Mol Med (Berl) 2024; 102:95-111. [PMID: 37987775 DOI: 10.1007/s00109-023-02397-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 10/31/2023] [Accepted: 11/09/2023] [Indexed: 11/22/2023]
Abstract
Diabetic cardiomyopathy describes heart disease in patients with diabetes who have no other cardiac conditions but have a higher risk of developing heart failure. Specific therapies to treat the diabetic heart are limited. A key mechanism involved in the progression of diabetic cardiomyopathy is dysregulation of cardiac energy metabolism. The aim of this study was to determine if increasing the expression of medium-chain acyl-coenzyme A dehydrogenase (MCAD; encoded by Acadm), a key regulator of fatty acid oxidation, could improve the function of the diabetic heart. Male mice were administered streptozotocin to induce diabetes, which led to diastolic dysfunction 8 weeks post-injection. Mice then received cardiac-selective adeno-associated viral vectors encoding MCAD (rAAV6:MCAD) or control AAV and were followed for 8 weeks. In the non-diabetic heart, rAAV6:MCAD increased MCAD expression (mRNA and protein) and increased Acadl and Acadvl, but an increase in MCAD enzyme activity was not detectable. rAAV6:MCAD delivery in the diabetic heart increased MCAD mRNA expression but did not significantly increase protein, activity, or improve diabetes-induced cardiac pathology or molecular metabolic and lipid markers. The uptake of AAV viral vectors was reduced in the diabetic versus non-diabetic heart, which may have implications for the translation of AAV therapies into the clinic. KEY MESSAGES: The effects of increasing MCAD in the diabetic heart are unknown. Delivery of rAAV6:MCAD increased MCAD mRNA and protein, but not enzyme activity, in the non-diabetic heart. Independent of MCAD enzyme activity, rAAV6:MCAD increased Acadl and Acadvl in the non-diabetic heart. Increasing MCAD cardiac gene expression alone was not sufficient to protect against diabetes-induced cardiac pathology. AAV transduction efficiency was reduced in the diabetic heart, which has clinical implications.
Collapse
Affiliation(s)
- Kate L Weeks
- Department of Anatomy and Physiology, University of Melbourne, Parkville, VIC, 3010, Australia
- Department of Cardiometabolic Health, University of Melbourne, Parkville, VIC, 3010, Australia
- Department of Diabetes, Central Clinical School, Monash University, Clayton, VIC, 3800, Australia
| | - Helen Kiriazis
- Department of Cardiometabolic Health, University of Melbourne, Parkville, VIC, 3010, Australia
- Baker Heart and Diabetes Institute, PO Box 6492, Melbourne, VIC, 3004, Australia
| | - Glenn D Wadley
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Burwood, VIC, 3125, Australia
| | - Emma I Masterman
- Baker Heart and Diabetes Institute, PO Box 6492, Melbourne, VIC, 3004, Australia
| | - Nicola M Sergienko
- Department of Diabetes, Central Clinical School, Monash University, Clayton, VIC, 3800, Australia
- Baker Heart and Diabetes Institute, PO Box 6492, Melbourne, VIC, 3004, Australia
| | - Antonia J A Raaijmakers
- Department of Anatomy and Physiology, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Adam J Trewin
- Department of Anatomy and Physiology, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Claudia A Harmawan
- Baker Heart and Diabetes Institute, PO Box 6492, Melbourne, VIC, 3004, Australia
| | - Gunes S Yildiz
- Baker Heart and Diabetes Institute, PO Box 6492, Melbourne, VIC, 3004, Australia
| | - Yingying Liu
- Baker Heart and Diabetes Institute, PO Box 6492, Melbourne, VIC, 3004, Australia
| | - Brian G Drew
- Department of Cardiometabolic Health, University of Melbourne, Parkville, VIC, 3010, Australia
- Department of Diabetes, Central Clinical School, Monash University, Clayton, VIC, 3800, Australia
- Baker Heart and Diabetes Institute, PO Box 6492, Melbourne, VIC, 3004, Australia
| | - Paul Gregorevic
- Department of Anatomy and Physiology, University of Melbourne, Parkville, VIC, 3010, Australia
- Centre for Muscle Research, University of Melbourne, Parkville, VIC, 3010, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, 3800, Australia
- Department of Neurology, University of Washington School of Medicine, Seattle, WA, 98195, USA
| | - Lea M D Delbridge
- Department of Anatomy and Physiology, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Julie R McMullen
- Department of Cardiometabolic Health, University of Melbourne, Parkville, VIC, 3010, Australia
- Department of Diabetes, Central Clinical School, Monash University, Clayton, VIC, 3800, Australia
- Baker Heart and Diabetes Institute, PO Box 6492, Melbourne, VIC, 3004, Australia
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Bianca C Bernardo
- Department of Diabetes, Central Clinical School, Monash University, Clayton, VIC, 3800, Australia.
- Baker Heart and Diabetes Institute, PO Box 6492, Melbourne, VIC, 3004, Australia.
- Department of Paediatrics, University of Melbourne, Parkville, VIC, 3010, Australia.
| |
Collapse
|
4
|
Zhao Y, Gao C, Liu L, Wang L, Song Z. The development and function of human monocyte-derived dendritic cells regulated by metabolic reprogramming. J Leukoc Biol 2023; 114:212-222. [PMID: 37232942 DOI: 10.1093/jleuko/qiad062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 04/15/2023] [Accepted: 04/28/2023] [Indexed: 05/27/2023] Open
Abstract
Human monocyte-derived dendritic cells (moDCs) that develop from monocytes play a key role in innate inflammatory responses as well as T cell priming. Steady-state moDCs regulate immunogenicity and tolerogenicity by changing metabolic patterns to participate in the body's immune response. Increased glycolytic metabolism after danger signal induction may strengthen moDC immunogenicity, whereas high levels of mitochondrial oxidative phosphorylation were associated with the immaturity and tolerogenicity of moDCs. In this review, we discuss what is currently known about differential metabolic reprogramming of human moDC development and distinct functional properties.
Collapse
Affiliation(s)
- Ying Zhao
- Department of Dermatology, Southwest Hospital, Army Medical University, 30 Gaotanyan Street, District Shapingba, Chongqing, 400038, China
| | - Cuie Gao
- Department of Dermatology, Southwest Hospital, Army Medical University, 30 Gaotanyan Street, District Shapingba, Chongqing, 400038, China
| | - Lu Liu
- Department of Dermatology, Southwest Hospital, Army Medical University, 30 Gaotanyan Street, District Shapingba, Chongqing, 400038, China
| | - Li Wang
- Institute of Immunology, College of Basic Medical Sciences, Army Medical University, Chongqing, China
| | - Zhiqiang Song
- Department of Dermatology, Southwest Hospital, Army Medical University, 30 Gaotanyan Street, District Shapingba, Chongqing, 400038, China
| |
Collapse
|
5
|
Fernandez-Acosta M, Romero JI, Bernabó G, Velázquez-Campos GM, Gonzalez N, Mares ML, Werbajh S, Avendaño-Vázquez LA, Rechberger GN, Kühnlein RP, Marino-Buslje C, Cantera R, Rezaval C, Ceriani MF. orsai, the Drosophila homolog of human ETFRF1, links lipid catabolism to growth control. BMC Biol 2022; 20:233. [PMID: 36266680 PMCID: PMC9585818 DOI: 10.1186/s12915-022-01417-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 09/26/2022] [Indexed: 11/24/2022] Open
Abstract
Background Lipid homeostasis is an evolutionarily conserved process that is crucial for energy production, storage and consumption. Drosophila larvae feed continuously to achieve the roughly 200-fold increase in size and accumulate sufficient reserves to provide all energy and nutrients necessary for the development of the adult fly. The mechanisms controlling this metabolic program are poorly understood. Results Herein we identified a highly conserved gene, orsai (osi), as a key player in lipid metabolism in Drosophila. Lack of osi function in the larval fat body, the regulatory hub of lipid homeostasis, reduces lipid reserves and energy output, evidenced by decreased ATP production and increased ROS levels. Metabolic defects due to reduced Orsai (Osi) in time trigger defective food-seeking behavior and lethality. Further, we demonstrate that downregulation of Lipase 3, a fat body-specific lipase involved in lipid catabolism in response to starvation, rescues the reduced lipid droplet size associated with defective orsai. Finally, we show that osi-related phenotypes are rescued through the expression of its human ortholog ETFRF1/LYRm5, known to modulate the entry of β-oxidation products into the electron transport chain; moreover, knocking down electron transport flavoproteins EtfQ0 and walrus/ETFA rescues osi-related phenotypes, further supporting this mode of action. Conclusions These findings suggest that Osi may act in concert with the ETF complex to coordinate lipid homeostasis in the fat body in response to stage-specific demands, supporting cellular functions that in turn result in an adaptive behavioral response. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-022-01417-w.
Collapse
Affiliation(s)
- Magdalena Fernandez-Acosta
- Laboratorio de Genética del Comportamiento, Fundación Instituto Leloir - Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA- CONICET), Buenos Aires, Argentina
| | - Juan I Romero
- Laboratorio de Genética del Comportamiento, Fundación Instituto Leloir - Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA- CONICET), Buenos Aires, Argentina
| | - Guillermo Bernabó
- Laboratorio de Genética del Comportamiento, Fundación Instituto Leloir - Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA- CONICET), Buenos Aires, Argentina.,Present Address: Innovid, Buenos Aires, Argentina
| | - Giovanna M Velázquez-Campos
- Laboratorio de Genética del Comportamiento, Fundación Instituto Leloir - Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA- CONICET), Buenos Aires, Argentina
| | - Nerina Gonzalez
- Laboratorio de Genética del Comportamiento, Fundación Instituto Leloir - Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA- CONICET), Buenos Aires, Argentina
| | - M Lucía Mares
- Laboratorio de Genética del Comportamiento, Fundación Instituto Leloir - Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA- CONICET), Buenos Aires, Argentina
| | - Santiago Werbajh
- Laboratorio de Genética del Comportamiento, Fundación Instituto Leloir - Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA- CONICET), Buenos Aires, Argentina.,Present Address: Fundación Cassará, Buenos Aires, Argentina
| | - L Amaranta Avendaño-Vázquez
- Laboratorio de Genética del Comportamiento, Fundación Instituto Leloir - Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA- CONICET), Buenos Aires, Argentina.,Present Address: IFIBYNE-CONICET, Buenos Aires, Argentina
| | - Gerald N Rechberger
- Institute for Molecular Biosciences, University of Graz, Graz, Austria.,BioTechMed-Graz, Graz, Austria.,Field of Excellence BioHealth - University of Graz, Graz, Austria
| | - Ronald P Kühnlein
- Institute for Molecular Biosciences, University of Graz, Graz, Austria.,BioTechMed-Graz, Graz, Austria.,Field of Excellence BioHealth - University of Graz, Graz, Austria
| | - Cristina Marino-Buslje
- Laboratorio de Bioinformática Estructural, Fundación Instituto Leloir - Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA- CONICET), Buenos Aires, Argentina
| | - Rafael Cantera
- Departamento de Biología del Neurodesarrollo, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay.,Zoology Department, Stockholm University, Stockholm, Sweden
| | - Carolina Rezaval
- Laboratorio de Genética del Comportamiento, Fundación Instituto Leloir - Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA- CONICET), Buenos Aires, Argentina.,Present Address: School of Biosciences, University of Birmingham, Birmingham, UK
| | - M Fernanda Ceriani
- Laboratorio de Genética del Comportamiento, Fundación Instituto Leloir - Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA- CONICET), Buenos Aires, Argentina.
| |
Collapse
|
6
|
Wang Y, Shen QL, Xin Q, Sun B, Zhang S, Fang QH, Shi YX, Niu WY, Lin JN, Li CJ. MCAD activation by empagliflozin promotes fatty acid oxidation and reduces lipid deposition in NASH. J Mol Endocrinol 2022; 69:415-430. [PMID: 35900373 DOI: 10.1530/jme-22-0022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 07/28/2022] [Indexed: 11/08/2022]
Abstract
Medium-chain acyl-CoA dehydrogenase (MCAD) is one of the significant enzymes involved in the β-oxidation of mitochondrial fatty acids. MCAD deficiency affects the β-oxidation of fatty acid and leads to lipid deposition in multiple organs, but little is known about its importance in nonalcoholic steatohepatitis (NASH). Empagliflozin is revealed to effectively improve NASH by increasing research, whereas the specific mechanism still has to be explored. Human liver tissues of patients with or without NASH were obtained for proteomic analysis to screen proteins of interest. db/db mice were given empagliflozin by gavage for 8 weeks. The expression of MCAD and signaling molecules involved in hepatic lipid metabolism was evaluated in human liver, mice and HL7702 cells. We found that the MCAD levels in the liver were significantly reduced in NASH patients compared to patients without NASH. Protein-protein interaction network analysis showed that MCAD was highly correlated with forkhead box A2 (FOXA2) and protein kinase AMP-activated catalytic subunit alpha (PRKAA). AMPK/FOXA2/MCAD signaling pathway was detected to be inhibited in the liver of NASH patients. Decreased expression of MCAD was also observed in the livers of db/db mice and hepatocyte treated with palmitic acid and glucose. Of note, empagliflozin could upregulate MCAD expression by activating AMPK/FOXA2 signaling pathway, reduce lipid deposition and improve NASH in vivo and in vitro. This research demonstrated that MCAD is a key player of hepatic lipid deposition and its targeting partially corrects NASH. MCAD thus may be a potential therapeutic target for the treatment of NASH.
Collapse
Affiliation(s)
- Yi Wang
- Department of Endocrinology, Health Management Center, Tianjin Union Medical Center, Nankai University Affiliated Hospital, Tianjin, China
| | - Qi-Ling Shen
- Department of Endocrinology, Health Management Center, Tianjin Union Medical Center, Nankai University Affiliated Hospital, Tianjin, China
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Qi Xin
- Department of Pathology, The Third Central Clinical College of Tianjin Medical University, Tianjin Third Central Hospital, Tianjin Key Laboratory of Artificial Cells, Tianjin, China
| | - Bei Sun
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Shi Zhang
- Department of Endocrinology, Health Management Center, Tianjin Union Medical Center, Nankai University Affiliated Hospital, Tianjin, China
| | - Qian-Hua Fang
- Department of Endocrinology, Health Management Center, Tianjin Union Medical Center, Nankai University Affiliated Hospital, Tianjin, China
| | - Ying-Xin Shi
- Department of Endocrinology, Health Management Center, Tianjin Union Medical Center, Nankai University Affiliated Hospital, Tianjin, China
| | - Wen-Yan Niu
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Jing-Na Lin
- Department of Endocrinology, Health Management Center, Tianjin Union Medical Center, Nankai University Affiliated Hospital, Tianjin, China
| | - Chun-Jun Li
- Department of Endocrinology, Health Management Center, Tianjin Union Medical Center, Nankai University Affiliated Hospital, Tianjin, China
| |
Collapse
|
7
|
Basu H, Pekkurnaz G, Falk J, Wei W, Chin M, Steen J, Schwarz TL. FHL2 anchors mitochondria to actin and adapts mitochondrial dynamics to glucose supply. J Cell Biol 2021; 220:212527. [PMID: 34342639 PMCID: PMC8340551 DOI: 10.1083/jcb.201912077] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 05/05/2021] [Accepted: 07/08/2021] [Indexed: 01/24/2023] Open
Abstract
Mitochondrial movement and distribution are fundamental to their function. Here we report a mechanism that regulates mitochondrial movement by anchoring mitochondria to the F-actin cytoskeleton. This mechanism is activated by an increase in glucose influx and the consequent O-GlcNAcylation of TRAK (Milton), a component of the mitochondrial motor-adaptor complex. The protein four and a half LIM domains protein 2 (FHL2) serves as the anchor. FHL2 associates with O-GlcNAcylated TRAK and is both necessary and sufficient to drive the accumulation of F-actin around mitochondria and to arrest mitochondrial movement by anchoring to F-actin. Disruption of F-actin restores mitochondrial movement that had been arrested by either TRAK O-GlcNAcylation or forced direction of FHL2 to mitochondria. This pathway for mitochondrial immobilization is present in both neurons and non-neuronal cells and can thereby adapt mitochondrial dynamics to changes in glucose availability.
Collapse
Affiliation(s)
- Himanish Basu
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA.,Division of Medical Sciences, Harvard Medical School, Boston, MA.,Department of Neurobiology, Harvard Medical School, Boston, MA
| | - Gulcin Pekkurnaz
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA.,Department of Neurobiology, Harvard Medical School, Boston, MA
| | - Jill Falk
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA.,Department of Neurobiology, Harvard Medical School, Boston, MA
| | - Wei Wei
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA
| | - Morven Chin
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA.,Division of Medical Sciences, Harvard Medical School, Boston, MA.,Department of Neurobiology, Harvard Medical School, Boston, MA
| | - Judith Steen
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA
| | - Thomas L Schwarz
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA.,Department of Neurobiology, Harvard Medical School, Boston, MA
| |
Collapse
|
8
|
Zhang HB, Cao Z, Qiao JX, Zhong ZQ, Pan CC, Liu C, Zhang LM, Wang YF. Metabolomics provide new insights into mechanisms of Wolbachia-induced paternal defects in Drosophila melanogaster. PLoS Pathog 2021; 17:e1009859. [PMID: 34383852 PMCID: PMC8384202 DOI: 10.1371/journal.ppat.1009859] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 08/24/2021] [Accepted: 08/01/2021] [Indexed: 12/22/2022] Open
Abstract
Wolbachia is a group of intracellular symbiotic bacteria that widely infect arthropods and nematodes. Wolbachia infection can regulate host reproduction with the most common phenotype in insects being cytoplasmic incompatibility (CI), which results in embryonic lethality when uninfected eggs fertilized with sperms from infected males. This suggests that CI-induced defects are mainly in paternal side. However, whether Wolbachia-induced metabolic changes play a role in the mechanism of paternal-linked defects in embryonic development is not known. In the current study, we first use untargeted metabolomics method with LC-MS to explore how Wolbachia infection influences the metabolite profiling of the insect hosts. The untargeted metabolomics revealed 414 potential differential metabolites between Wolbachia-infected and uninfected 1-day-old (1d) male flies. Most of the differential metabolites were significantly up-regulated due to Wolbachia infection. Thirty-four metabolic pathways such as carbohydrate, lipid and amino acid, and vitamin and cofactor metabolism were affected by Wolbachia infection. Then, we applied targeted metabolomics analysis with GC-MS and showed that Wolbachia infection resulted in an increased energy expenditure of the host by regulating glycometabolism and fatty acid catabolism, which was compensated by increased food uptake. Furthermore, overexpressing two acyl-CoA catabolism related genes, Dbi (coding for diazepam-binding inhibitor) or Mcad (coding for medium-chain acyl-CoA dehydrogenase), ubiquitously or specially in testes caused significantly decreased paternal-effect egg hatch rate. Oxidative stress and abnormal mitochondria induced by Wolbachia infection disrupted the formation of sperm nebenkern. These findings provide new insights into mechanisms of Wolbachia-induced paternal defects from metabolic phenotypes.
Collapse
Affiliation(s)
- Hua-Bao Zhang
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, P. R. China
| | - Zheng Cao
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, P. R. China
- University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Jun-Xue Qiao
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, P. R. China
| | - Zi-Qian Zhong
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, P. R. China
| | - Chen-Chen Pan
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, P. R. China
| | - Chen Liu
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, P. R. China
| | - Li-Min Zhang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, P. R. China
| | - Yu-Feng Wang
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, P. R. China
| |
Collapse
|
9
|
Hsieh CH, Li L, Vanhauwaert R, Nguyen KT, Davis MD, Bu G, Wszolek ZK, Wang X. Miro1 Marks Parkinson's Disease Subset and Miro1 Reducer Rescues Neuron Loss in Parkinson's Models. Cell Metab 2019; 30:1131-1140.e7. [PMID: 31564441 PMCID: PMC6893131 DOI: 10.1016/j.cmet.2019.08.023] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 06/07/2019] [Accepted: 08/28/2019] [Indexed: 12/31/2022]
Abstract
The identification of molecular targets and pharmacodynamic markers for Parkinson's disease (PD) will empower more effective clinical management and experimental therapies. Miro1 is localized on the mitochondrial surface and mediates mitochondrial motility. Miro1 is removed from depolarized mitochondria to facilitate their clearance via mitophagy. Here, we explore the clinical utility of Miro1 for detecting PD and for gauging potential treatments. We measure the Miro1 response to mitochondrial depolarization using biochemical assays in skin fibroblasts from a broad spectrum of PD patients and discover that more than 94% of the patients' fibroblast cell lines fail to remove Miro1 following depolarization. We identify a small molecule that can repair this defect of Miro1 in PD fibroblasts. Treating patient-derived neurons and fly models with this compound rescues the locomotor deficits and dopaminergic neurodegeneration. Our results indicate that tracking this Miro1 marker and engaging in Miro1-based therapies could open new avenues to personalized medicine.
Collapse
Affiliation(s)
- Chung-Han Hsieh
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Li Li
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Roeland Vanhauwaert
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | - Mary D Davis
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Guojun Bu
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | | | - Xinnan Wang
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
10
|
Basit F, de Vries IJM. Dendritic Cells Require PINK1-Mediated Phosphorylation of BCKDE1α to Promote Fatty Acid Oxidation for Immune Function. Front Immunol 2019; 10:2386. [PMID: 31681280 PMCID: PMC6803436 DOI: 10.3389/fimmu.2019.02386] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 09/23/2019] [Indexed: 01/16/2023] Open
Abstract
Dendritic cell (DCs) activation by Toll-like receptor (TLR) agonist induces robust metabolic rewiring toward glycolysis. Recent findings in the field identified mechanistic details governing these metabolic adaptations. However, it is unknown whether a switch to glycolysis from oxidative phosphorylation (OXPHOS) is a general characteristic of DCs upon pathogen encounter. Here we show that engagement of different TLR triggers differential metabolic adaptations in DCs. We demonstrate that LPS-mediated TLR4 stimulation induces glycolysis in DCs. Conversely, activation of TLR7/8 with protamine-RNA complex, pRNA, leads to an increase in OXPHOS. Mechanistically, we found that pRNA stimulation phosphorylates BCKDE1α in a PINK1-dependent manner. pRNA stimulation increased branched-chain amino acid levels and increased fatty acid oxidation. Increased FAO and OXPHOS are required for DC activation. PINK1 deficient DCs switch to glycolysis to maintain ATP levels and viability. Moreover, pharmacological induction of PINK1 kinase activity primed immunosuppressive DC for immunostimulatory function. Our findings provide novel insight into differential metabolic adaptations and reveal the important role of branched-chain amino acid in regulating immune response in DC.
Collapse
Affiliation(s)
- Farhan Basit
- Department of Tumor Immunology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Nijmegen, Netherlands
| | - I Jolanda M de Vries
- Department of Tumor Immunology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Nijmegen, Netherlands.,Department of Medical Oncology, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|