1
|
Springer CS, Pike MM, Barbara TM. A Futile Cycle?: Tissue Homeostatic Trans-Membrane Water Co-Transport: Kinetics, Thermodynamics, Metabolic Consequences. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.17.589812. [PMID: 38659823 PMCID: PMC11042311 DOI: 10.1101/2024.04.17.589812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
The phenomenon of active trans-membrane water cycling (AWC) has emerged in little over a decade. Here, we consider H2O transport across cell membranes from the origins of its study. Historically, trans-membrane water transport processes were classified into: A) compensating bidirectional fluxes ("exchange"), and B) unidirectional flux ("net flow") categories. Recent literature molecular structure determinations and molecular dynamic (MD) simulations indicate probably all the many different hydrophilic substrate membrane co-transporters have membrane-spanning hydrophilic pathways and co-transport water along with their substrates, and that they individually catalyze category A and/or B water flux processes, although usually not simultaneously. The AWC name signifies that, integrated over the all the cell's co-transporters, the rate of homeostatic, bidirectional trans-cytolemmal water exchange (category A) is synchronized with the metabolic rate of the crucial Na+,K+-ATPase (NKA) enzyme. A literature survey indicates the stoichiometric (category B) water/substrate ratios of individual co-transporters are often very large. The MD simulations also suggest how different co-transporter reactions can be kinetically coupled molecularly. Is this (Na+,K+-ATPase rate-synchronized) cycling futile, or is it consequential? Conservatively representative literature metabolomic and proteinomic results enable comprehensive free energy analyses of the many transport reactions with known water stoichiometries. Free energy calculations, using literature intracellular pressure (Pi) values reveals there is an outward trans-membrane H2O barochemical gradient of magnitude comparable to that of the well-known inward Na+ electrochemical gradient. For most co-influxers, these gradients are finely balanced to maintain intracellular metabolite concentration values near their consuming enzyme Michaelis constants. The thermodynamic analyses include glucose, glutamate-, gamma-aminobutyric acid (GABA), and lactate- transporters. 2%-4% Pi alterations can lead to disastrous concentration levels. For the neurotransmitters glutamate- and GABA, very small astrocytic Pi changes can allow/disallow synaptic transmission. Unlike the Na+ and K+ electrochemical steady-states, the H2O barochemical steady-state is in (or near) chemical equilibrium. The analyses show why the presence of aquaporins (AQPs) does not dissipate the trans-membrane pressure gradient. A feedback loop inherent in the opposing Na+ electrochemical and H2O barochemical gradients regulates AQP-catalyzed water flux as an integral AWC aspect. These results also require a re-consideration of the underlying nature of Pi. Active trans-membrane water cycling is not futile, but is inherent to the cell's "NKA system" - a new, fundamental aspect of biology.
Collapse
Affiliation(s)
- Charles S Springer
- Advanced Imaging Research Center
- Department of Chemical Physiology and Biochemistry
- Department of Biomedical Engineering
- Brenden-Colson Center for Pancreatic Care
- Knight Cancer Institute, Oregon Health & Science University; Portland, Oregon
| | - Martin M Pike
- Advanced Imaging Research Center
- Department of Biomedical Engineering
- Knight Cancer Institute, Oregon Health & Science University; Portland, Oregon
| | | |
Collapse
|
2
|
Chen J, Yan D, Chen Y. Understanding the driving force for cell migration plasticity. Biophys J 2023; 122:3570-3576. [PMID: 37041746 PMCID: PMC10541478 DOI: 10.1016/j.bpj.2023.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/22/2023] [Accepted: 04/07/2023] [Indexed: 04/13/2023] Open
Abstract
Cell migration is a complex phenomenon. Not only do different cells migrate in different default modes, but the same cell can also change its migration mode to adapt to different terrains. This complexity has riddled cell biologists and biophysicists for decades in that, despite the development of many powerful tools over the past 30 years, how cells move is still being actively investigated. This is because we have yet to fully understand the mystery of cell migration plasticity, particularly the reciprocal relation between force generation and migration mode transition. Herein we explore the future directions, in terms of measurement platforms and imaging-based techniques, to facilitate the undertaking of elucidating the relation between force generation machinery and migration mode transition. By briefly reviewing the evolution of the platforms and techniques developed in the past, we propose the desirable features to be added to achieve high measurement accuracy and improved temporal and spatial resolution, permitting us to unveil the mystery of cell migration plasticity.
Collapse
Affiliation(s)
- Junjie Chen
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland; Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland; Center for Cell Dynamics, Johns Hopkins University, Baltimore, Maryland
| | - Daniel Yan
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland; Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland; Center for Cell Dynamics, Johns Hopkins University, Baltimore, Maryland
| | - Yun Chen
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland; Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland; Center for Cell Dynamics, Johns Hopkins University, Baltimore, Maryland.
| |
Collapse
|
3
|
Cowan JM, Duggan JJ, Hewitt BR, Petrie RJ. Non-muscle myosin II and the plasticity of 3D cell migration. Front Cell Dev Biol 2022; 10:1047256. [PMID: 36438570 PMCID: PMC9691290 DOI: 10.3389/fcell.2022.1047256] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 10/31/2022] [Indexed: 09/08/2024] Open
Abstract
Confined cells migrating through 3D environments are also constrained by the laws of physics, meaning for every action there must be an equal and opposite reaction for cells to achieve motion. Fascinatingly, there are several distinct molecular mechanisms that cells can use to move, and this is reflected in the diverse ways non-muscle myosin II (NMII) can generate the mechanical forces necessary to sustain 3D cell migration. This review summarizes the unique modes of 3D migration, as well as how NMII activity is regulated and localized within each of these different modes. In addition, we highlight tropomyosins and septins as two protein families that likely have more secrets to reveal about how NMII activity is governed during 3D cell migration. Together, this information suggests that investigating the mechanisms controlling NMII activity will be helpful in understanding how a single cell transitions between distinct modes of 3D migration in response to the physical environment.
Collapse
Affiliation(s)
| | | | | | - Ryan J. Petrie
- Department of Biology, Drexel University, Philadelphia, PA, United States
| |
Collapse
|
4
|
Choudhury MI, Benson MA, Sun SX. Trans-epithelial fluid flow and mechanics of epithelial morphogenesis. Semin Cell Dev Biol 2022; 131:146-159. [PMID: 35659163 DOI: 10.1016/j.semcdb.2022.05.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/22/2022] [Accepted: 05/23/2022] [Indexed: 12/14/2022]
Abstract
Active fluid transport across epithelial monolayers is emerging as a major driving force of tissue morphogenesis in a variety of healthy and diseased systems, as well as during embryonic development. Cells use directional transport of ions and osmotic gradients to drive fluid flow across the cell surface, in the process also building up fluid pressure. The basic physics of this process is described by the osmotic engine model, which also underlies actin-independent cell migration. Recently, the trans-epithelial fluid flux and the hydraulic pressure gradient have been explicitly measured for a variety of cellular and tissue model systems across various species. For the kidney, it was shown that tubular epithelial cells behave as active mechanical fluid pumps: the trans-epithelial fluid flux depends on the hydraulic pressure difference across the epithelial layer. When a stall pressure is reached, the fluid flux vanishes. Hydraulic forces generated from active fluid pumping are important in tissue morphogenesis and homeostasis, and could also underlie multiple morphogenic events seen in other developmental contexts. In this review, we highlight findings that examined the role of trans-epithelial fluid flux and hydraulic pressure gradient in driving tissue-scale morphogenesis. We also review organ pathophysiology due to impaired fluid pumping and the loss of hydraulic pressure sensing at the cellular scale. Finally, we draw an analogy between cellular fluidic pumps and a connected network of water pumps in a city. The dynamics of fluid transport in an active and adaptive network is determined globally at the systemic level, and transport in such a network is best when each pump is operating at its optimal efficiency.
Collapse
Affiliation(s)
- Mohammad Ikbal Choudhury
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218, United States; Institute of NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, United States; Department of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, United States
| | - Morgan A Benson
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, United States; Institute of NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, United States
| | - Sean X Sun
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218, United States; Institute of NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, United States; Center for Cell Dynamics, Johns Hopkins University, Baltimore, MD 21218, United States.
| |
Collapse
|
5
|
Maity D, Bera K, Li Y, Ge Z, Ni Q, Konstantopoulos K, Sun SX. Extracellular Hydraulic Resistance Enhances Cell Migration. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2200927. [PMID: 36031406 PMCID: PMC9561764 DOI: 10.1002/advs.202200927] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 08/03/2022] [Indexed: 06/15/2023]
Abstract
Cells migrating in vivo encounter microenvironments with varying physical properties. One such physical variable is the fluid viscosity surrounding the cell. Increased viscosity is expected to increase the hydraulic resistance experienced by the cell and decrease cell speed. The authors demonstrate that contrary to this expected result, cells migrate faster in high viscosity media on 2-dimensional substrates. Both actin dynamics and water dynamics driven by ion channel activity are examined. Results show that cells increase in area in high viscosity and actomyosin dynamics remain similar. Inhibiting ion channel fluxes in high viscosity media results in a large reduction in cell speed, suggesting that water flux contributes to the observed speed increase. Moreover, inhibiting actin-dependent vesicular trafficking that transports ion channels to the cell boundary changes ion channel spatial positioning and reduces cell speed in high viscosity media. Cells also display altered Ca2+ activity in high viscosity media, and when cytoplasmic Ca2+ is sequestered, cell speed reduction and altered ion channel positioning are observed. Taken together, it is found that the cytoplasmic actin-phase and water-phase are coupled to drive cell migration in high viscosity media, in agreement with physical modeling that also predicts the observed cell speedup in high viscosity environments.
Collapse
Affiliation(s)
- Debonil Maity
- Department of Chemical and Biomolecular EngineeringJohns Hopkins UniversityBaltimoreMDUSA
- Institute of NanoBioTechnology (INBT)Johns Hopkins UniversityBaltimoreMDUSA
| | - Kaustav Bera
- Department of Chemical and Biomolecular EngineeringJohns Hopkins UniversityBaltimoreMDUSA
- Institute of NanoBioTechnology (INBT)Johns Hopkins UniversityBaltimoreMDUSA
| | - Yizeng Li
- Department of Biomedical EngineeringBinghamton University, State University of New YorkBinghamtonNYUSA
| | - Zhuoxu Ge
- Institute of NanoBioTechnology (INBT)Johns Hopkins UniversityBaltimoreMDUSA
- Department of Mechanical EngineeringJohns Hopkins UniversityBaltimoreMDUSA
| | - Qin Ni
- Institute of NanoBioTechnology (INBT)Johns Hopkins UniversityBaltimoreMDUSA
- Department of Mechanical EngineeringJohns Hopkins UniversityBaltimoreMDUSA
| | - Konstantinos Konstantopoulos
- Department of Chemical and Biomolecular EngineeringJohns Hopkins UniversityBaltimoreMDUSA
- Institute of NanoBioTechnology (INBT)Johns Hopkins UniversityBaltimoreMDUSA
| | - Sean X. Sun
- Institute of NanoBioTechnology (INBT)Johns Hopkins UniversityBaltimoreMDUSA
- Department of Mechanical EngineeringJohns Hopkins UniversityBaltimoreMDUSA
- Center for Cell DynamicsJohns Hopkins School of MedicineJohns Hopkins UniversityBaltimoreMDUSA
| |
Collapse
|
6
|
Marks PC, Hewitt BR, Baird MA, Wiche G, Petrie RJ. Plectin linkages are mechanosensitive and required for the nuclear piston mechanism of three-dimensional cell migration. Mol Biol Cell 2022; 33:ar104. [PMID: 35857713 DOI: 10.1091/mbc.e21-08-0414] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Cells migrating through physiologically relevant three-dimensional (3D) substrates such as cell-derived matrix (CDM) use actomyosin and vimentin intermediate filaments to pull the nucleus forward and pressurize the front of the cell as part of the nuclear piston mechanism of 3D migration. In this study, we tested the role of the cytoskeleton cross-linking protein plectin in facilitating the movement of the nucleus through 3D matrices. We find that the interaction of F-actin and vimentin filaments in cells on 2D glass and in 3D CDM requires actomyosin contractility. Plectin also facilitated these interactions and interacts with vimentin in response to NMII contractility and substrate stiffness, suggesting that the association of plectin and vimentin is mechanosensitive. We find that this mechanosensitive plectin complex slows down 2D migration but is critical for pulling the nucleus forward and generating compartmentalized intracellular pressure in 3D CDM, as well as low-pressure lamellipodial migration in 3D collagen. Finally, plectin expression helped to polarize NMII to in front of the nucleus and to localize the vimentin network around the nucleus. Together, our data suggest that plectin cross-links vimentin and actomyosin filaments, organizes the vimentin network, and polarizes NMII to facilitate the nuclear piston mechanism of 3D cell migration.
Collapse
Affiliation(s)
- Pragati C Marks
- Department of Biology, Drexel University, Philadelphia, PA 19104
| | - Breanne R Hewitt
- Department of Biology, Drexel University, Philadelphia, PA 19104
| | - Michelle A Baird
- Cell and Developmental Biology Center, National Heart Lung and Blood Institute, NIH, Bethesda, MD 20892
| | - Gerhard Wiche
- Department of Biochemistry and Cell Biology, Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
| | - Ryan J Petrie
- Department of Biology, Drexel University, Philadelphia, PA 19104
| |
Collapse
|
7
|
Reindl T, Giese S, Greve JN, Reinke PY, Chizhov I, Latham SL, Mulvihill DP, Taft MH, Manstein DJ. Distinct actin–tropomyosin cofilament populations drive the functional diversification of cytoskeletal myosin motor complexes. iScience 2022; 25:104484. [PMID: 35720262 PMCID: PMC9204724 DOI: 10.1016/j.isci.2022.104484] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 05/02/2022] [Accepted: 05/24/2022] [Indexed: 11/02/2022] Open
Abstract
The effects of N-terminal acetylation of the high molecular weight tropomyosin isoforms Tpm1.6 and Tpm2.1 and the low molecular weight isoforms Tpm1.12, Tpm3.1, and Tpm4.2 on the actin affinity and the thermal stability of actin-tropomyosin cofilaments are described. Furthermore, we show how the exchange of cytoskeletal tropomyosin isoforms and their N-terminal acetylation affects the kinetic and chemomechanical properties of cytoskeletal actin-tropomyosin-myosin complexes. Our results reveal the extent to which the different actin-tropomyosin-myosin complexes differ in their kinetic and functional properties. The maximum sliding velocity of the actin filament as well as the optimal motor density for continuous unidirectional movement, parameters that were previously considered to be unique and invariant properties of each myosin isoform, are shown to be influenced by the exchange of the tropomyosin isoform and the N-terminal acetylation of tropomyosin. Tpm diversity is largely determined by sequences contributing to the overlap region Global sequence differences are of greater importance than variable exon 6 usage Tpm isoforms confer distinctly altered properties to cytoskeletal myosin motors Cytoskeletal myosins are differentially affected by N-terminal acetylation of Tpm
Collapse
|
8
|
Bjørge IM, Correia CR, Mano JF. Hipster microcarriers: exploring geometrical and topographical cues of non-spherical microcarriers in biomedical applications. MATERIALS HORIZONS 2022; 9:908-933. [PMID: 34908074 DOI: 10.1039/d1mh01694f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Structure and organisation are key aspects of the native tissue environment, which ultimately condition cell fate via a myriad of processes, including the activation of mechanotransduction pathways. By modulating the formation of integrin-mediated adhesions and consequently impacting cell contractility, engineered geometrical and topographical cues may be introduced to activate downstream signalling and ultimately control cell morphology, proliferation, and differentiation. Microcarriers appear as attractive vehicles for cell-based tissue engineering strategies aiming to modulate this 3D environment, but also as vehicles for cell-free applications, given the ease in tuning their chemical and physical properties. In this review, geometry and topography are highlighted as two preponderant features in actively regulating interactions between cells and the extracellular matrix. While most studies focus on the 2D environment, we focus on how the incorporation of these strategies in 3D systems could be beneficial. The techniques applied to design 3D microcarriers with unique geometries and surface topographical cues are covered, as well as specific tissue engineering approaches employing these microcarriers. In fact, successfully achieving a functional histoarchitecture may depend on a combination of fine-tuned geometrically shaped microcarriers presenting intricately tailored topographical cues. Lastly, we pinpoint microcarrier geometry as a key player in cell-free biomaterial-based strategies, and its impact on drug release kinetics, the production of steerable microcarriers to target tumour cells, and as protein or antibody biosensors.
Collapse
Affiliation(s)
- Isabel M Bjørge
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Aveiro, Portugal.
| | - Clara R Correia
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Aveiro, Portugal.
| | - João F Mano
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Aveiro, Portugal.
| |
Collapse
|
9
|
Marks P, Petrie R. Push or pull: how cytoskeletal crosstalk facilitates nuclear movement through 3D environments. Phys Biol 2021; 19. [PMID: 34936999 DOI: 10.1088/1478-3975/ac45e3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 12/22/2021] [Indexed: 11/11/2022]
Abstract
As cells move from two-dimensional (2D) surfaces into complex 3D environments, the nucleus becomes a barrier to movement due to its size and rigidity. Therefore, moving the nucleus is a key step in 3D cell migration. In this review, we discuss how coordination between cytoskeletal and nucleoskeletal networks is required to pull the nucleus forward through complex 3D spaces. We summarize recent migration models which utilize unique molecular crosstalk to drive nuclear migration through different 3D environments. In addition, we speculate about the role of proteins that indirectly crosslink cytoskeletal networks and the role of 3D focal adhesions and how these protein complexes may drive 3D nuclear migration.
Collapse
Affiliation(s)
- Pragati Marks
- Department of Biology, Drexel University, 3245 CHESTNUT ST, PISB 401M1, PHILADELPHIA, Philadelphia, 19104-2816, UNITED STATES
| | - Ryan Petrie
- Department of Biology, Drexel University, 3245 Chestnut Street, PISB 419, Philadelphia, Philadelphia, Pennsylvania, 19104-2816, UNITED STATES
| |
Collapse
|
10
|
Lou Y, Jiang Y, Liang Z, Liu B, Li T, Zhang D. Role of RhoC in cancer cell migration. Cancer Cell Int 2021; 21:527. [PMID: 34627249 PMCID: PMC8502390 DOI: 10.1186/s12935-021-02234-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 09/27/2021] [Indexed: 12/20/2022] Open
Abstract
Migration is one of the five major behaviors of cells. Although RhoC-a classic member of the Rho gene family-was first identified in 1985, functional RhoC data have only been widely reported in recent years. Cell migration involves highly complex signaling mechanisms, in which RhoC plays an essential role. Cell migration regulated by RhoC-of which the most well-known function is its role in cancer metastasis-has been widely reported in breast, gastric, colon, bladder, prostate, lung, pancreatic, liver, and other cancers. Our review describes the role of RhoC in various types of cell migration. The classic two-dimensional cell migration cycle constitutes cell polarization, adhesion regulation, cell contraction and tail retraction, most of which are modulated by RhoC. In the three-dimensional cell migration model, amoeboid migration is the most classic and well-studied model. Here, RhoC modulates the formation of membrane vesicles by regulating myosin II, thereby affecting the rate and persistence of amoeba-like migration. To the best of our knowledge, this review is the first to describe the role of RhoC in all cell migration processes. We believe that understanding the detail of RhoC-regulated migration processes will help us better comprehend the mechanism of cancer metastasis. This will contribute to the study of anti-metastatic treatment approaches, aiding in the identification of new intervention targets for therapeutic or genetic transformational purposes.
Collapse
Affiliation(s)
- Yingyue Lou
- Department of Plastic and Reconstructive Surgery, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Yuhan Jiang
- Department of Plastic and Reconstructive Surgery, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Zhen Liang
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Bingzhang Liu
- Department of Plastic and Reconstructive Surgery, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Tian Li
- Department of Plastic and Reconstructive Surgery, The First Hospital of Jilin University, Changchun, Jilin, China.
| | - Duo Zhang
- Department of Plastic and Reconstructive Surgery, The First Hospital of Jilin University, Changchun, Jilin, China.
| |
Collapse
|
11
|
Jones TM, Marks PC, Cowan JM, Kainth DK, Petrie RJ. Cytoplasmic pressure maintains epithelial integrity and inhibits cell motility. Phys Biol 2021; 18:10.1088/1478-3975/ac267a. [PMID: 34521072 PMCID: PMC8591555 DOI: 10.1088/1478-3975/ac267a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 09/14/2021] [Indexed: 11/11/2022]
Abstract
Cytoplasmic pressure, a function of actomyosin contractility and water flow, can regulate cellular morphology and dynamics. In mesenchymal cells, cytoplasmic pressure powers cell protrusion through physiological three-dimensional extracellular matrices. However, the role of intracellular pressure in epithelial cells is relatively unclear. Here we find that high cytoplasmic pressure is necessary to maintain barrier function, one of the hallmarks of epithelial homeostasis. Further, our data show that decreased cytoplasmic pressure facilitates lamellipodia formation during the epithelial to mesenchymal transition (EMT). Critically, activation of the actin nucleating protein Arp2/3 is required for the reduction in cytoplasmic pressure and lamellipodia formation in response to treatment with hepatocyte growth factor (HGF) to induce EMT. Thus, elevated cytoplasmic pressure functions to maintain epithelial tissue integrity, while reduced cytoplasmic pressure triggers lamellipodia formation and motility during HGF-dependent EMT.
Collapse
Affiliation(s)
- Tia M. Jones
- Department of Biology, Drexel University, Philadelphia, PA 19104
| | - Pragati C. Marks
- Department of Biology, Drexel University, Philadelphia, PA 19104
| | - James M. Cowan
- Department of Biology, Drexel University, Philadelphia, PA 19104
| | | | - Ryan J. Petrie
- Department of Biology, Drexel University, Philadelphia, PA 19104
| |
Collapse
|
12
|
Wang X, Li L, Shao Y, Wei J, Song R, Zheng S, Li Y, Song F. Effects of the Laplace pressure on the cells during cytokinesis. iScience 2021; 24:102945. [PMID: 34458697 PMCID: PMC8377492 DOI: 10.1016/j.isci.2021.102945] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 04/28/2021] [Accepted: 07/29/2021] [Indexed: 11/29/2022] Open
Abstract
The Laplace pressure is one of the most fundamental regulators that determine cell shape and function, and thus has been receiving widespread attention. Here, we systemically investigate the effect of the Laplace pressure on the shape and function of the cells during cytokinesis. We find that the Laplace pressure during cytokinesis can directly control the distribution and size of cell blebbing and adjust the symmetry of cell division by virtue of changing the characteristics of cell blebbing. Further, we demonstrate that the Laplace pressure changes the structural uniformity of cell boundary to regulate the symmetry of cell division. Our findings provide further insights as to the important role of the Laplace pressure in regulating the symmetry of cell division during cytokinesis.
Collapse
Affiliation(s)
- Xiaohuan Wang
- State Key Laboratory of Nonlinear Mechanics and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Long Li
- State Key Laboratory of Nonlinear Mechanics and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
| | - Yingfeng Shao
- State Key Laboratory of Nonlinear Mechanics and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
| | - Jiachen Wei
- State Key Laboratory of Nonlinear Mechanics and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
| | - Ruopu Song
- School of Life Science and Health, Northeastern University, Shenyang 110169, China
| | - Songjie Zheng
- State Key Laboratory of Nonlinear Mechanics and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuqiao Li
- State Key Laboratory of Nonlinear Mechanics and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fan Song
- State Key Laboratory of Nonlinear Mechanics and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
13
|
Bradbury P, Nader CP, Cidem A, Rutting S, Sylvester D, He P, Rezcallah MC, O'Neill GM, Ammit AJ. Tropomyosin 2.1 collaborates with fibronectin to promote TGF-β 1-induced contraction of human lung fibroblasts. Respir Res 2021; 22:129. [PMID: 33910572 PMCID: PMC8080347 DOI: 10.1186/s12931-021-01730-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 04/22/2021] [Indexed: 12/20/2022] Open
Abstract
Many lung diseases are characterized by fibrosis, leading to impaired tissue patency and reduced lung function. Development of fibrotic tissue depends on two-way interaction between the cells and the extra-cellular matrix (ECM). Concentration-dependent increased stiffening of the ECM is sensed by the cells, which in turn increases intracellular contraction and pulling on the matrix causing matrix reorganization and further stiffening. It is generally accepted that the inflammatory cytokine growth factor β1 (TGF-β1) is a major driver of lung fibrosis through the stimulation of ECM production. However, TGF-β1 also regulates the expression of members of the tropomyosin (Tm) family of actin associating proteins that mediate ECM reorganization through intracellular-generated forces. Thus, TGF-β1 may mediate the bi-directional signaling between cells and the ECM that promotes tissue fibrosis. Using combinations of cytokine stimulation, mRNA, protein profiling and cellular contractility assays with human lung fibroblasts, we show that concomitant induction of key Tm isoforms and ECM by TGF-β1, significantly accelerates fibrotic phenotypes. Knocking down Tpm2.1 reduces fibroblast-mediated collagen gel contraction. Collectively, the data suggest combined ECM secretion and actin cytoskeleton contractility primes the tissue for enhanced fibrosis. Our study suggests that Tms are at the nexus of inflammation and tissue stiffening. Small molecules targeting specific Tm isoforms have recently been designed; thus targeting Tpm2.1 may represent a novel therapeutic target in lung fibrosis.
Collapse
Affiliation(s)
- Peta Bradbury
- Woolcock Emphysema Centre, Woolcock Institute of Medical Research, University of Sydney, Sydney, NSW, Australia.,School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
| | - Cassandra P Nader
- Woolcock Emphysema Centre, Woolcock Institute of Medical Research, University of Sydney, Sydney, NSW, Australia
| | - Aylin Cidem
- Woolcock Emphysema Centre, Woolcock Institute of Medical Research, University of Sydney, Sydney, NSW, Australia
| | - Sandra Rutting
- Respiratory Cellular and Molecular Biology, Woolcock Institute of Medical Research, University of Sydney, Sydney, NSW, Australia.,Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and University of Newcastle, Newcastle, Australia
| | - Dianne Sylvester
- Children's Cancer Research Unit, Kids Research Institute, Children's Hospital at Westmead, Sydney, NSW, Australia.,Children's Hospital at Westmead Clinical School, Sydney, Australia
| | - Patrick He
- Woolcock Emphysema Centre, Woolcock Institute of Medical Research, University of Sydney, Sydney, NSW, Australia.,School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
| | - Maria C Rezcallah
- Woolcock Emphysema Centre, Woolcock Institute of Medical Research, University of Sydney, Sydney, NSW, Australia.,School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
| | - Geraldine M O'Neill
- Children's Cancer Research Unit, Kids Research Institute, Children's Hospital at Westmead, Sydney, NSW, Australia.,Children's Hospital at Westmead Clinical School, Sydney, Australia.,School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Alaina J Ammit
- Woolcock Emphysema Centre, Woolcock Institute of Medical Research, University of Sydney, Sydney, NSW, Australia. .,School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia.
| |
Collapse
|
14
|
Morales X, Cortés-Domínguez I, Ortiz-de-Solorzano C. Modeling the Mechanobiology of Cancer Cell Migration Using 3D Biomimetic Hydrogels. Gels 2021; 7:17. [PMID: 33673091 PMCID: PMC7930983 DOI: 10.3390/gels7010017] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/29/2021] [Accepted: 02/09/2021] [Indexed: 02/06/2023] Open
Abstract
Understanding how cancer cells migrate, and how this migration is affected by the mechanical and chemical composition of the extracellular matrix (ECM) is critical to investigate and possibly interfere with the metastatic process, which is responsible for most cancer-related deaths. In this article we review the state of the art about the use of hydrogel-based three-dimensional (3D) scaffolds as artificial platforms to model the mechanobiology of cancer cell migration. We start by briefly reviewing the concept and composition of the extracellular matrix (ECM) and the materials commonly used to recreate the cancerous ECM. Then we summarize the most relevant knowledge about the mechanobiology of cancer cell migration that has been obtained using 3D hydrogel scaffolds, and relate those discoveries to what has been observed in the clinical management of solid tumors. Finally, we review some recent methodological developments, specifically the use of novel bioprinting techniques and microfluidics to create realistic hydrogel-based models of the cancer ECM, and some of their applications in the context of the study of cancer cell migration.
Collapse
Affiliation(s)
| | | | - Carlos Ortiz-de-Solorzano
- IDISNA, Ciberonc and Solid Tumors and Biomarkers Program, Center for Applied Medical Research, University of Navarra, 31008 Pamplona, Spain; (X.M.); (I.C.-D.)
| |
Collapse
|
15
|
Patel S, McKeon D, Sao K, Yang C, Naranjo NM, Svitkina TM, Petrie RJ. Myosin II and Arp2/3 cross-talk governs intracellular hydraulic pressure and lamellipodia formation. Mol Biol Cell 2021; 32:579-589. [PMID: 33502904 PMCID: PMC8101460 DOI: 10.1091/mbc.e20-04-0227] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Human fibroblasts can switch between lamellipodia-dependent and -independent migration mechanisms on two-dimensional surfaces and in three-dimensional (3D) matrices. RhoA GTPase activity governs the switch from low-pressure lamellipodia to high-pressure lobopodia in response to the physical structure of the 3D matrix. Inhibiting actomyosin contractility in these cells reduces intracellular pressure and reverts lobopodia to lamellipodial protrusions via an unknown mechanism. To test the hypothesis that high pressure physically prevents lamellipodia formation, we manipulated pressure by activating RhoA or changing the osmolarity of the extracellular environment and imaged cell protrusions. We find RhoA activity inhibits Rac1-mediated lamellipodia formation through two distinct pathways. First, RhoA boosts intracellular pressure by increasing actomyosin contractility and water influx but acts upstream of Rac1 to inhibit lamellipodia formation. Increasing osmotic pressure revealed a second RhoA pathway, which acts through nonmuscle myosin II (NMII) to disrupt lamellipodia downstream from Rac1 and elevate pressure. Interestingly, Arp2/3 inhibition triggered a NMII-dependent increase in intracellular pressure, along with lamellipodia disruption. Together, these results suggest that actomyosin contractility and water influx are coordinated to increase intracellular pressure, and RhoA signaling can inhibit lamellipodia formation via two distinct pathways in high-pressure cells.
Collapse
Affiliation(s)
- Shivani Patel
- Department of Biology, Drexel University, Philadelphia, PA 19104
| | - Donna McKeon
- Department of Biology, Drexel University, Philadelphia, PA 19104
| | - Kimheak Sao
- Department of Biology, Drexel University, Philadelphia, PA 19104
| | - Changsong Yang
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104
| | - Nicole M Naranjo
- Department of Biology, Drexel University, Philadelphia, PA 19104
| | - Tatyana M Svitkina
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104
| | - Ryan J Petrie
- Department of Biology, Drexel University, Philadelphia, PA 19104
| |
Collapse
|
16
|
Thanuthanakhun N, Kino-Oka M, Borwornpinyo S, Ito Y, Kim MH. The impact of culture dimensionality on behavioral epigenetic memory contributing to pluripotent state of iPS cells. J Cell Physiol 2020; 236:4985-4996. [PMID: 33305410 DOI: 10.1002/jcp.30211] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 11/24/2020] [Accepted: 11/25/2020] [Indexed: 12/12/2022]
Abstract
Three-dimensional (3D) culture platforms have been explored to establish physiologically relevant cell culture environment and permit expansion scalability; however, little is known about the mechanisms underlying the regulation of pluripotency of human induced pluripotent stem cells (hiPSCs). This study elucidated epigenetic modifications contributing to pluripotency of hiPSCs in response to 3D culture. Unlike two-dimensional (2D) monolayer cultures, 3D cultured cells aggregated with each other to form ball-like aggregates. 2D cultured cells expressed elevated levels of Rac1 and RhoA; however, Rac1 level was significantly lower while RhoA level was persisted in 3D aggregates. Compared with 2D monolayers, the 3D aggregates also exhibited significantly lower myosin phosphorylation. Histone methylation analysis revealed remarkable H3K4me3 upregulation and H3K27me3 maintenance throughout the duration of 3D culture; in addition, we observed the existence of naïve pluripotency signatures in cells grown in 3D culture. These results demonstrated that hiPSCs adapted to 3D culture through alteration of the Rho-Rho kinase-phospho-myosin pathway, influencing the epigenetic modifications and transcriptional expression of pluripotency-associated factors. These results may help design culture environments for stable and high-quality hiPSCs.
Collapse
Affiliation(s)
- Naruchit Thanuthanakhun
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Osaka, Japan
| | - Masahiro Kino-Oka
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Osaka, Japan
| | - Suparerk Borwornpinyo
- Department of Biotechnology, Faculty of Science, Mahidol University, Ratchathewi, Bangkok, Thailand
| | - Yuzuru Ito
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | - Mee-Hae Kim
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
17
|
Li Y, Konstantopoulos K, Zhao R, Mori Y, Sun SX. The importance of water and hydraulic pressure in cell dynamics. J Cell Sci 2020; 133:133/20/jcs240341. [PMID: 33087485 DOI: 10.1242/jcs.240341] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
All mammalian cells live in the aqueous medium, yet for many cell biologists, water is a passive arena in which proteins are the leading players that carry out essential biological functions. Recent studies, as well as decades of previous work, have accumulated evidence to show that this is not the complete picture. Active fluxes of water and solutes of water can play essential roles during cell shape changes, cell motility and tissue function, and can generate significant mechanical forces. Moreover, the extracellular resistance to water flow, known as the hydraulic resistance, and external hydraulic pressures are important mechanical modulators of cell polarization and motility. For the cell to maintain a consistent chemical environment in the cytoplasm, there must exist an intricate molecular system that actively controls the cell water content as well as the cytoplasmic ionic content. This system is difficult to study and poorly understood, but ramifications of which may impact all aspects of cell biology from growth to metabolism to development. In this Review, we describe how mammalian cells maintain the cytoplasmic water content and how water flows across the cell surface to drive cell movement. The roles of mechanical forces and hydraulic pressure during water movement are explored.
Collapse
Affiliation(s)
- Yizeng Li
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA.,Department of Mechanical Engineering, Kennesaw State University. Marietta, GA 30060, USA
| | - Konstantinos Konstantopoulos
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA.,Institute of NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Runchen Zhao
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA.,Institute of NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Yoichiro Mori
- Department of Mathematics and Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sean X Sun
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA .,Institute of NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, USA.,Center for Cell Dynamics, Johns Hopkins University, Baltimore, MD 21218, USA
| |
Collapse
|
18
|
Bareja I, Wioland H, Janco M, Nicovich PR, Jégou A, Romet-Lemonne G, Walsh J, Böcking T. Dynamics of Tpm1.8 domains on actin filaments with single-molecule resolution. Mol Biol Cell 2020; 31:2452-2462. [PMID: 32845787 PMCID: PMC7851853 DOI: 10.1091/mbc.e19-10-0586] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 08/19/2020] [Accepted: 08/21/2020] [Indexed: 01/28/2023] Open
Abstract
Tropomyosins regulate the dynamics and functions of the actin cytoskeleton by forming long chains along the two strands of actin filaments that act as gatekeepers for the binding of other actin-binding proteins. The fundamental molecular interactions underlying the binding of tropomyosin to actin are still poorly understood. Using microfluidics and fluorescence microscopy, we observed the binding of the fluorescently labeled tropomyosin isoform Tpm1.8 to unlabeled actin filaments in real time. This approach, in conjunction with mathematical modeling, enabled us to quantify the nucleation, assembly, and disassembly kinetics of Tpm1.8 on single filaments and at the single-molecule level. Our analysis suggests that Tpm1.8 decorates the two strands of the actin filament independently. Nucleation of a growing tropomyosin domain proceeds with high probability as soon as the first Tpm1.8 molecule is stabilized by the addition of a second molecule, ultimately leading to full decoration of the actin filament. In addition, Tpm1.8 domains are asymmetrical, with enhanced dynamics at the edge oriented toward the barbed end of the actin filament. The complete description of Tpm1.8 kinetics on actin filaments presented here provides molecular insight into actin-tropomyosin filament formation and the role of tropomyosins in regulating actin filament dynamics.
Collapse
Affiliation(s)
- Ilina Bareja
- EMBL Australia Node in Single Molecule Science and ARC Centre of Excellence in Advanced Molecular Imaging, School of Medical Sciences, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Hugo Wioland
- Université de Paris, CNRS, Institut Jacques Monod, 75006 Paris, France
| | - Miro Janco
- EMBL Australia Node in Single Molecule Science and ARC Centre of Excellence in Advanced Molecular Imaging, School of Medical Sciences, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Philip R. Nicovich
- EMBL Australia Node in Single Molecule Science and ARC Centre of Excellence in Advanced Molecular Imaging, School of Medical Sciences, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Antoine Jégou
- Université de Paris, CNRS, Institut Jacques Monod, 75006 Paris, France
| | | | - James Walsh
- EMBL Australia Node in Single Molecule Science and ARC Centre of Excellence in Advanced Molecular Imaging, School of Medical Sciences, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Till Böcking
- EMBL Australia Node in Single Molecule Science and ARC Centre of Excellence in Advanced Molecular Imaging, School of Medical Sciences, UNSW Sydney, Sydney, NSW 2052, Australia
| |
Collapse
|
19
|
Tang VW. Collagen, stiffness, and adhesion: the evolutionary basis of vertebrate mechanobiology. Mol Biol Cell 2020; 31:1823-1834. [PMID: 32730166 PMCID: PMC7525820 DOI: 10.1091/mbc.e19-12-0709] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/11/2020] [Accepted: 05/28/2020] [Indexed: 01/09/2023] Open
Abstract
The emergence of collagen I in vertebrates resulted in a dramatic increase in the stiffness of the extracellular environment, supporting long-range force propagation and the development of low-compliant tissues necessary for the development of vertebrate traits including pressurized circulation and renal filtration. Vertebrates have also evolved integrins that can bind to collagens, resulting in the generation of higher tension and more efficient force transmission in the extracellular matrix. The stiffer environment provides an opportunity for the vertebrates to create new structures such as the stress fibers, new cell types such as endothelial cells, new developmental processes such as neural crest delamination, and new tissue organizations such as the blood-brain barrier. Molecular players found only in vertebrates allow the modification of conserved mechanisms as well as the design of novel strategies that can better serve the physiological needs of the vertebrates. These innovations collectively contribute to novel morphogenetic behaviors and unprecedented increases in the complexities of tissue mechanics and functions.
Collapse
Affiliation(s)
- Vivian W. Tang
- Department of Cell and Developmental Biology, University of Illinois, Urbana–Champaign, Urbana, IL 61801
| |
Collapse
|
20
|
Affiliation(s)
- Edna C Hardeman
- School of Medical Sciences, University of New South Wales, Sydney, Australia.
| | - Peter W Gunning
- School of Medical Sciences, University of New South Wales, Sydney, Australia
| |
Collapse
|
21
|
Mistriotis P, Wisniewski EO, Bera K, Keys J, Li Y, Tuntithavornwat S, Law RA, Perez-Gonzalez NA, Erdogmus E, Zhang Y, Zhao R, Sun SX, Kalab P, Lammerding J, Konstantopoulos K. Confinement hinders motility by inducing RhoA-mediated nuclear influx, volume expansion, and blebbing. J Cell Biol 2019; 218:4093-4111. [PMID: 31690619 PMCID: PMC6891075 DOI: 10.1083/jcb.201902057] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 05/28/2019] [Accepted: 09/18/2019] [Indexed: 11/22/2022] Open
Abstract
Cells migrate in vivo through complex confining microenvironments, which induce significant nuclear deformation that may lead to nuclear blebbing and nuclear envelope rupture. While actomyosin contractility has been implicated in regulating nuclear envelope integrity, the exact mechanism remains unknown. Here, we argue that confinement-induced activation of RhoA/myosin-II contractility, coupled with LINC complex-dependent nuclear anchoring at the cell posterior, locally increases cytoplasmic pressure and promotes passive influx of cytoplasmic constituents into the nucleus without altering nuclear efflux. Elevated nuclear influx is accompanied by nuclear volume expansion, blebbing, and rupture, ultimately resulting in reduced cell motility. Moreover, inhibition of nuclear efflux is sufficient to increase nuclear volume and blebbing on two-dimensional surfaces, and acts synergistically with RhoA/myosin-II contractility to further augment blebbing in confinement. Cumulatively, confinement regulates nuclear size, nuclear integrity, and cell motility by perturbing nuclear flux homeostasis via a RhoA-dependent pathway.
Collapse
Affiliation(s)
- Panagiotis Mistriotis
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD.,Johns Hopkins Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD
| | - Emily O Wisniewski
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD.,Johns Hopkins Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD
| | - Kaustav Bera
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD.,Johns Hopkins Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD
| | - Jeremy Keys
- Meinig School of Biomedical Engineering and Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY
| | - Yizeng Li
- Johns Hopkins Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD.,Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD.,Department of Mechanical Engineering, Kennesaw State University, Marietta, GA
| | - Soontorn Tuntithavornwat
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD.,Johns Hopkins Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD
| | - Robert A Law
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD.,Johns Hopkins Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD
| | - Nicolas A Perez-Gonzalez
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD.,Johns Hopkins Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD
| | - Eda Erdogmus
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD
| | - Yuqi Zhang
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD.,Johns Hopkins Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD
| | - Runchen Zhao
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD.,Johns Hopkins Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD
| | - Sean X Sun
- Johns Hopkins Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD.,Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD.,Johns Hopkins Physical Sciences-Oncology Center, Johns Hopkins University, Baltimore, MD.,Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD
| | - Petr Kalab
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD.,Johns Hopkins Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD
| | - Jan Lammerding
- Meinig School of Biomedical Engineering and Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY
| | - Konstantinos Konstantopoulos
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD .,Johns Hopkins Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD.,Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD.,Johns Hopkins Physical Sciences-Oncology Center, Johns Hopkins University, Baltimore, MD.,Department of Oncology, Johns Hopkins University, Baltimore, MD
| |
Collapse
|
22
|
Impact of the actin cytoskeleton on cell development and function mediated via tropomyosin isoforms. Semin Cell Dev Biol 2019; 102:122-131. [PMID: 31630997 DOI: 10.1016/j.semcdb.2019.10.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 10/03/2019] [Accepted: 10/04/2019] [Indexed: 01/07/2023]
Abstract
The physiological function of actin filaments is challenging to dissect because of the pleiotropic impact of global disruption of the actin cytoskeleton. Tropomyosin isoforms have provided a unique opportunity to address this issue. A substantial fraction of actin filaments in animal cells consist of co-polymers of actin with specific tropomyosin isoforms which determine the functional capacity of the filament. Genetic manipulation of the tropomyosins has revealed isoform specific roles and identified the physiological function of the different actin filament types based on their tropomyosin isoform composition. Surprisingly, there is remarkably little redundancy between the tropomyosins resulting in highly penetrant impacts of both ectopic overexpression and knockout of isoforms. The physiological roles of the tropomyosins cover a broad range from development and morphogenesis to cell migration and specialised tissue function and human diseases.
Collapse
|
23
|
Meiring JCM, Bryce NS, Cagigas ML, Benda A, Whan RM, Ariotti N, Parton RG, Stear JH, Hardeman EC, Gunning PW. Colocation of Tpm3.1 and myosin IIa heads defines a discrete subdomain in stress fibres. J Cell Sci 2019; 132:jcs.228916. [DOI: 10.1242/jcs.228916] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 07/06/2019] [Indexed: 01/06/2023] Open
Abstract
Co-polymers of tropomyosin and actin make up a major fraction of the actin cytoskeleton. Tropomyosin isoforms determine the function of an actin filament by selectively enhancing or inhibiting the association of other actin binding proteins, altering the stability of an actin filament and regulating myosin activity in an isoform specific manner. Previous work has implicated specific roles for at least 5 different tropomyosin isoforms in stress fibres, as depletion of any of these 5 isoforms results in a loss of stress fibres. Despite this, most models of stress fibres continue to exclude tropomyosins. In this study we investigate tropomyosin organisation in stress fibres using super resolution light microscopy and electron microscopy with genetically tagged, endogenous tropomyosin. We show that tropomyosin isoforms are organised in subdomains within the overall domain of stress fibres. Tpm3.1/3.2 co-localises with non-muscle myosin IIa/IIb heads and are in register but do not overlap with non-muscle myosin IIa/IIb tails. Furthermore, perturbation of Tpm3.1/3.2 results in decreased myosin IIa in stress fibres, which is consistent with a role for Tpm3.1 in maintaining myosin IIa localisation in stress fibres.
Collapse
Affiliation(s)
- Joyce C. M. Meiring
- School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Nicole S. Bryce
- School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Maria Lastra Cagigas
- School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Aleš Benda
- Biomedical Imaging Facility, Mark Wainwright Analytical Centre, University of New South Wales, Sydney, NSW 2052, Australia
| | - Renee M. Whan
- Biomedical Imaging Facility, Mark Wainwright Analytical Centre, University of New South Wales, Sydney, NSW 2052, Australia
| | - Nicholas Ariotti
- School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
- Electron Microscope Unit, Mark Wainwright Analytical Centre, University of New South Wales, Sydney, NSW 2052, Australia
| | - Robert G. Parton
- Cell Biology and Molecular Medicine Division, Institute for Molecular Bioscience, University of Queensland, St Lucia, QLD 4072, Australia
- Centre for Microscopy and Microanalysis, University of Queensland, St Lucia, QLD 4072, Australia
| | - Jeffrey H. Stear
- School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Edna C. Hardeman
- School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Peter W. Gunning
- School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|