1
|
Li P, Bågenholm V, Hägglund P, Lindkvist-Petersson K, Wang K, Gourdon P. The structure and function of P5A-ATPases. Nat Commun 2024; 15:9605. [PMID: 39505844 PMCID: PMC11541931 DOI: 10.1038/s41467-024-53757-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 10/21/2024] [Indexed: 11/08/2024] Open
Abstract
Endoplasmic reticulum (ER) membrane resident P5A-ATPases broadly affect protein biogenesis and quality control, and yet their molecular function remains debated. Here, we report cryo-EM structures of a P5A-ATPase, CtSpf1, covering multiple transport intermediates of the E1 → E1-ATP → E1P-ADP → E1P → E2P → E2.Pi → E2 → E1 cycle. In the E2P and E2.Pi states a cleft spans the entire membrane, holding a polypeptide cargo molecule. The cargo includes an ER luminal extension, pinpointed as the C-terminus in the E2.Pi state, which reenters the membrane in E2P. The E1 structure harbors a cytosol-facing cavity that is blocked by an insertion we refer to as the Plug-domain. The Plug-domain is nestled to key ATPase features and is displaced in the E1P-ADP and E1P states. Collectively, our findings are compatible with a broad range of proteins as cargo, with the P5A-ATPases serving a role in membrane removal of helices, although insertion/secretion cannot be excluded, as well as with a mechanistic role of the Plug-domain.
Collapse
Affiliation(s)
- Ping Li
- Department of Experimental Medical Science, Lund University, Sölvegatan 19, SE-221 84, Lund, Sweden.
| | - Viktoria Bågenholm
- Department of Biomedical Sciences, University of Copenhagen, Nørre Allé 14, DK-2200, Copenhagen N, Denmark
| | - Per Hägglund
- Department of Biomedical Sciences, University of Copenhagen, Nørre Allé 14, DK-2200, Copenhagen N, Denmark
| | | | - Kaituo Wang
- Department of Biomedical Sciences, University of Copenhagen, Nørre Allé 14, DK-2200, Copenhagen N, Denmark
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Pontus Gourdon
- Department of Experimental Medical Science, Lund University, Sölvegatan 19, SE-221 84, Lund, Sweden.
- Department of Biomedical Sciences, University of Copenhagen, Nørre Allé 14, DK-2200, Copenhagen N, Denmark.
| |
Collapse
|
2
|
Palmgren M. P-type ATPases: Many more enigmas left to solve. J Biol Chem 2023; 299:105352. [PMID: 37838176 PMCID: PMC10654040 DOI: 10.1016/j.jbc.2023.105352] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/02/2023] [Accepted: 10/05/2023] [Indexed: 10/16/2023] Open
Abstract
P-type ATPases constitute a large ancient super-family of primary active pumps that have diverse substrate specificities ranging from H+ to phospholipids. The significance of these enzymes in biology cannot be overstated. They are structurally related, and their catalytic cycles alternate between high- and low-affinity conformations that are induced by phosphorylation and dephosphorylation of a conserved aspartate residue. In the year 1988, all P-type sequences available by then were analyzed and five major families, P1 to P5, were identified. Since then, a large body of knowledge has accumulated concerning the structure, function, and physiological roles of members of these families, but only one additional family, P6 ATPases, has been identified. However, much is still left to be learned. For each family a few remaining enigmas are presented, with the intention that they will stimulate interest in continued research in the field. The review is by no way comprehensive and merely presents personal views with a focus on evolution.
Collapse
Affiliation(s)
- Michael Palmgren
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Denmark.
| |
Collapse
|
3
|
Sim SI, Park E. P5-ATPases: Structure, substrate specificities, and transport mechanisms. Curr Opin Struct Biol 2023; 79:102531. [PMID: 36724561 DOI: 10.1016/j.sbi.2023.102531] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/30/2022] [Accepted: 12/19/2022] [Indexed: 02/01/2023]
Abstract
P5A- and P5B- ATPases, or collectively P5-ATPases, are eukaryotic-specific ATP-dependent transporters that are important for the function of the endoplasmic reticulum (ER) and endo-/lysosomes. However, their substrate specificities had remained enigmatic for many years. Recent cryo-electron microscopy (cryo-EM) and biochemical studies of P5-ATPases have revealed their substrate specificities and transport mechanisms, which were found to be markedly different from other members of the P-type ATPase superfamily. The P5A-ATPase extracts mistargeted or mis-inserted transmembrane helices from the ER membrane for protein quality control, while the P5B-ATPases mediate export of polyamines from late endo-/lysosomes into the cytosol. In this review, we discuss the mechanisms of their substrate recognition and transport based on the cryo-EM structures of the yeast and human P5-ATPases. We highlight how structural diversification of the transmembrane domain has enabled the P5-ATPase subfamily to adapt for transport of atypical substrates.
Collapse
Affiliation(s)
- Sue Im Sim
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Eunyong Park
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA; California Institute for Quantitative Biosciences, University of California, Berkeley, CA 94720, USA.
| |
Collapse
|
4
|
McKenna MJ, Shao S. The Endoplasmic Reticulum and the Fidelity of Nascent Protein Localization. Cold Spring Harb Perspect Biol 2023; 15:a041249. [PMID: 36041782 PMCID: PMC9979852 DOI: 10.1101/cshperspect.a041249] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
High-fidelity protein localization is essential to define the identities and functions of different organelles and to maintain cellular homeostasis. Accurate localization of nascent proteins requires specific protein targeting pathways as well as quality control (QC) mechanisms to remove mislocalized proteins. The endoplasmic reticulum (ER) is the first destination for approximately one-third of the eukaryotic proteome and a major site of protein biosynthesis and QC. In mammalian cells, trafficking from the ER provides nascent proteins access to the extracellular space and essentially every cellular membrane and organelle except for mitochondria and possibly peroxisomes. Here, we discuss the biosynthetic mechanisms that deliver nascent proteins to the ER and the QC mechanisms that interface with the ER to correct or degrade mislocalized proteins.
Collapse
Affiliation(s)
- Michael J McKenna
- Department of Cell Biology, Harvard Medical School, Blavatnik Institute, Boston, Massachusetts 02115, USA
| | - Sichen Shao
- Department of Cell Biology, Harvard Medical School, Blavatnik Institute, Boston, Massachusetts 02115, USA
| |
Collapse
|
5
|
Huang Z, Feng Z, Zou Y. New wine in old bottles: current progress on P5 ATPases. FEBS J 2022; 289:7304-7313. [PMID: 34449980 DOI: 10.1111/febs.16172] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 07/19/2021] [Accepted: 08/26/2021] [Indexed: 01/13/2023]
Abstract
P5 ATPases are evolutionarily conserved P-type transporters. Despite their important roles in the endoplasmic reticulum (ER) and in lysosomes, the substrate specificities and transporting mechanisms of P5 ATPases have remained mysterious. Recently, several studies have provided genetic, biochemical, and structural evidence to help elucidate the physiological functions and substrates of P5 ATPases. Here, we summarize this progress and discuss the potential transport mechanisms of the P5 ATPases-in particular, P5A ATPase-for further study.
Collapse
Affiliation(s)
- Zhiwen Huang
- School of Life Science and Technology, ShanghaiTech University, China
| | - Zhigang Feng
- School of Life Science and Technology, ShanghaiTech University, China
| | - Yan Zou
- School of Life Science and Technology, ShanghaiTech University, China
| |
Collapse
|
6
|
Ipsen JØ, Sørensen DM. ATP hydrolytic activity of purified Spf1p correlate with micellar lipid fluidity and is dependent on conserved residues in transmembrane helix M1. PLoS One 2022; 17:e0274908. [PMID: 36264897 PMCID: PMC9584430 DOI: 10.1371/journal.pone.0274908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 09/06/2022] [Indexed: 11/29/2022] Open
Abstract
P5A ATPases are expressed in the endoplasmic reticulum (ER) of all eukaryotic cells, and their disruption results in pleiotropic phenotypes related to severe ER stress. They were recently proposed to function in peptide translocation although their specificity have yet to be confirmed in reconstituted assays using the purified enzyme. A general theme for P-type ATPases is that binding and transport of substrates is coupled to hydrolysis of ATP in a conserved allosteric mechanism, however several independent reports have shown purified Spf1p to display intrinsic spontaneous ATP hydrolytic activity after purification. It has never been determined to what extend this spontaneous activity is caused by uncoupling of the enzyme. In this work we have purified a functional tagged version of the Saccharomyces cerevisiae P5A ATPase Spf1p and have observed that the intrinsic ATP hydrolytic activity of the purified and re-lipidated protein can be stimulated by specific detergents (C12E8, C12E10 and Tween20) in mixed lipid/detergent micelles in the absence of any apparent substrate. We further show that this increase in activity correlate with the reaction temperature and the anisotropic state of the mixed lipid/detergent micelles and further that this correlation relies on three highly conserved phenylalanine residues in M1. This suggests that at least part of the intrinsic ATP hydrolytic activity is allosterically coupled to movements in the TM domain in the purified preparations. It is suggested that free movement of the M1 helix represent an energetic constraint on catalysis and that this constraint likely is lost in the purified preparations resulting in protein with intrinsic spontaneous ATP hydrolytic activity. Removal of the N-terminal part of the protein apparently removes this activity.
Collapse
Affiliation(s)
- Johan Ørskov Ipsen
- Center for Membrane Pumps in Cells and Disease—PUMPKIN, Danish National Research Foundation, Copenhagen, Denmark
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Denmark
- Department of Geoscience and Natural Resource Management, University of Copenhagen, Frederiksberg C, Denmark
| | - Danny Mollerup Sørensen
- Center for Membrane Pumps in Cells and Disease—PUMPKIN, Danish National Research Foundation, Copenhagen, Denmark
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Denmark
- * E-mail:
| |
Collapse
|
7
|
Petrovich GD, Corradi GR, Adamo HP. The effect of metal ions on the Spf1p P5A-ATPase. High sensitivity to irreversible inhibition by zinc. Arch Biochem Biophys 2022; 732:109450. [DOI: 10.1016/j.abb.2022.109450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/26/2022] [Accepted: 10/27/2022] [Indexed: 11/05/2022]
|
8
|
Cebolla VL, Jarne C, Membrado L, Escuín JM, Vela J. Lipidomic studies based on high-performance thin-layer chromatography. JPC-J PLANAR CHROMAT 2022. [DOI: 10.1007/s00764-022-00171-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
9
|
Kulicke CA, De Zan E, Hein Z, Gonzalez-Lopez C, Ghanwat S, Veerapen N, Besra GS, Klenerman P, Christianson JC, Springer S, Nijman SM, Cerundolo V, Salio M. The P5-type ATPase ATP13A1 modulates major histocompatibility complex I-related protein 1 (MR1)-mediated antigen presentation. J Biol Chem 2022; 298:101542. [PMID: 34968463 PMCID: PMC8808182 DOI: 10.1016/j.jbc.2021.101542] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 12/20/2021] [Accepted: 12/22/2021] [Indexed: 11/08/2022] Open
Abstract
The monomorphic antigen-presenting molecule major histocompatibility complex-I-related protein 1 (MR1) presents small-molecule metabolites to mucosal-associated invariant T (MAIT) cells. The MR1-MAIT cell axis has been implicated in a variety of infectious and noncommunicable diseases, and recent studies have begun to develop an understanding of the molecular mechanisms underlying this specialized antigen presentation pathway. However, proteins regulating MR1 folding, loading, stability, and surface expression remain to be identified. Here, we performed a gene trap screen to discover novel modulators of MR1 surface expression through insertional mutagenesis of an MR1-overexpressing clone derived from the near-haploid human cell line HAP1 (HAP1.MR1). The most significant positive regulators identified included β2-microglobulin, a known regulator of MR1 surface expression, and ATP13A1, a P5-type ATPase in the endoplasmic reticulum (ER) not previously known to be associated with MR1-mediated antigen presentation. CRISPR/Cas9-mediated knockout of ATP13A1 in both HAP1.MR1 and THP-1 cell lines revealed a profound reduction in MR1 protein levels and a concomitant functional defect specific to MR1-mediated antigen presentation. Collectively, these data are consistent with the ER-resident ATP13A1 being a key posttranscriptional determinant of MR1 surface expression.
Collapse
Affiliation(s)
- Corinna A Kulicke
- MRC Human Immunology Unit, Radcliffe Department of Medicine, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom.
| | - Erica De Zan
- Nuffield Department of Medicine, Ludwig Institute for Cancer Research Ltd and Target Discovery Institute, University of Oxford, Oxford, United Kingdom
| | - Zeynep Hein
- Department of Life Sciences and Chemistry, Jacobs University, Bremen, Germany
| | - Claudia Gonzalez-Lopez
- MRC Human Immunology Unit, Radcliffe Department of Medicine, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Swapnil Ghanwat
- Department of Life Sciences and Chemistry, Jacobs University, Bremen, Germany
| | - Natacha Veerapen
- School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Gurdyal S Besra
- School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Paul Klenerman
- Peter Medawar Building, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom; Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - John C Christianson
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, University of Oxford, Oxford, United Kingdom
| | - Sebastian Springer
- Department of Life Sciences and Chemistry, Jacobs University, Bremen, Germany
| | - Sebastian M Nijman
- Nuffield Department of Medicine, Ludwig Institute for Cancer Research Ltd and Target Discovery Institute, University of Oxford, Oxford, United Kingdom
| | - Vincenzo Cerundolo
- MRC Human Immunology Unit, Radcliffe Department of Medicine, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Mariolina Salio
- MRC Human Immunology Unit, Radcliffe Department of Medicine, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
10
|
Guirao-Abad JP, Weichert M, Askew DS. Cell death induction in Aspergillus fumigatus: accentuating drug toxicity through inhibition of the unfolded protein response (UPR). CURRENT RESEARCH IN MICROBIAL SCIENCES 2022; 3:100119. [PMID: 35909601 PMCID: PMC9325865 DOI: 10.1016/j.crmicr.2022.100119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/25/2022] [Accepted: 02/17/2022] [Indexed: 01/18/2023] Open
Abstract
The UPR is an adaptive stress response network that is tightly linked to the ability of Aspergillus fumigatus, and other pathogenic fungi, to sustain viability in the presence of adverse environmental conditions, including the stress of infection. In this review, we summarize the evidence that supports the concept of targeting the A. fumigatus UPR as a strategy to reduce the ability of the fungus to withstand stress.
One of the most potent opportunistic fungal pathogens of humans is Aspergillus fumigatus, an environmental mold that causes a life-threatening pneumonia with a high rate of morbidity and mortality. Despite advances in therapy, issues of drug toxicity and antifungal resistance remain an obstacle to effective therapy. This underscores the need for more information on fungal pathways that could be pharmacologically manipulated to either reduce the viability of the fungus during infection, or to unleash the fungicidal potential of current antifungal drugs. In this review, we summarize the emerging evidence that the ability of A. fumigatus to sustain viability during stress relies heavily on an adaptive signaling pathway known as the unfolded protein response (UPR), thereby exposing a vulnerability in this fungus that has strong potential for future therapeutic intervention.
Collapse
|
11
|
Li T, Yang X, Feng Z, Nie W, Fang Z, Zou Y. P5A ATPase controls ER translocation of Wnt in neuronal migration. Cell Rep 2021; 37:109901. [PMID: 34706230 DOI: 10.1016/j.celrep.2021.109901] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 08/09/2021] [Accepted: 10/06/2021] [Indexed: 11/28/2022] Open
Abstract
The Wnt family contains conserved secretory proteins required for developmental patterning and tissue homeostasis. However, how Wnt is targeted to the endoplasmic reticulum (ER) for processing and secretion remains poorly understood. Here, we report that CATP-8/P5A ATPase directs neuronal migration non-cell autonomously in Caenorhabditis elegans by regulating EGL-20/Wnt biogenesis. CATP-8 likely functions as a translocase to translocate nascent EGL-20/Wnt polypeptide into the ER by interacting with the highly hydrophobic core region of EGL-20 signal sequence. Such regulation of Wnt biogenesis by P5A ATPase is common in C. elegans and conserved in human cells. These findings describe the physiological roles of P5A ATPase in neural development and identify Wnt proteins as direct substrates of P5A ATPase for ER translocation.
Collapse
Affiliation(s)
- Tingting Li
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoyan Yang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhigang Feng
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Wang Nie
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiyu Fang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yan Zou
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.
| |
Collapse
|
12
|
Pleiotropic Effects of the P5-Type ATPase SpfA on Stress Response Networks Contribute to Virulence in the Pathogenic Mold Aspergillus fumigatus. mBio 2021; 12:e0273521. [PMID: 34663092 PMCID: PMC8524344 DOI: 10.1128/mbio.02735-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Aspergillus fumigatus is a human-pathogenic mold that extracts nutrients from the environment or from host tissues by secreting hydrolytic enzymes. The ability of A. fumigatus to adjust secretion levels in proportion to demand relies on the assistance of the unfolded protein response (UPR), an adaptive stress response pathway that regulates the unique protein-folding environment of the endoplasmic reticulum (ER). The P5-type ATPase Spf1 has recently been implicated in a novel mechanism of ER homeostasis that involves correcting errors in ER-membrane protein targeting. However, the contribution of this protein to the biology of A. fumigatus is unknown. Here, we employed a gene knockout and RNA sequencing strategy to determine the functional role of the A. fumigatus gene coding for the orthologous P5 ATPase SpfA. The data reveal that the spfA gene is induced by ER stress in a UPR-dependent manner. In the absence of spfA, the A. fumigatus transcriptome shifts toward a profile of altered redox and lipid balance, in addition to a signature of ER stress that includes srcA, encoding a second P-type ATPase in the ER. A ΔspfA deletion mutant showed increased sensitivity to ER stress, oxidative stress, and antifungal drugs that target the cell wall or plasma membrane. The combined loss of spfA and srcA exacerbated these phenotypes and attenuated virulence in two animal infection models. These findings demonstrate that the ER-resident ATPases SpfA and SrcA act jointly to support diverse adaptive functions of the ER that are necessary for fitness in the host environment. IMPORTANCE The fungal UPR is an adaptive signaling pathway in the ER that buffers fluctuations in ER stress but also serves as a virulence regulatory hub in species of pathogenic fungi that rely on secretory pathway homeostasis for pathogenicity. This study demonstrates that the gene encoding the ER-localized P5-type ATPase SpfA is a downstream target of the UPR in the pathogenic mold A. fumigatus and that it works together with a second ER-localized P-type ATPase, SrcA, to support ER homeostasis, oxidative stress resistance, susceptibility to antifungal drugs, and virulence of A. fumigatus.
Collapse
|
13
|
Tang LTH, Trivedi M, Freund J, Salazar CJ, Rahman M, Ramirez-Suarez NJ, Lee G, Wang Y, Grant BD, Bülow HE. The CATP-8/P5A-type ATPase functions in multiple pathways during neuronal patterning. PLoS Genet 2021; 17:e1009475. [PMID: 34197450 PMCID: PMC8279360 DOI: 10.1371/journal.pgen.1009475] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 07/14/2021] [Accepted: 06/10/2021] [Indexed: 11/18/2022] Open
Abstract
The assembly of neuronal circuits involves the migrations of neurons from their place of birth to their final location in the nervous system, as well as the coordinated growth and patterning of axons and dendrites. In screens for genes required for patterning of the nervous system, we identified the catp-8/P5A-ATPase as an important regulator of neural patterning. P5A-ATPases are part of the P-type ATPases, a family of proteins known to serve a conserved function as transporters of ions, lipids and polyamines in unicellular eukaryotes, plants, and humans. While the function of many P-type ATPases is relatively well understood, the function of P5A-ATPases in metazoans remained elusive. We show here, that the Caenorhabditis elegans ortholog catp-8/P5A-ATPase is required for defined aspects of nervous system development. Specifically, the catp-8/P5A-ATPase serves functions in shaping the elaborately sculpted dendritic trees of somatosensory PVD neurons. Moreover, catp-8/P5A-ATPase is required for axonal guidance and repulsion at the midline, as well as embryonic and postembryonic neuronal migrations. Interestingly, not all axons at the midline require catp-8/P5A-ATPase, although the axons run in the same fascicles and navigate the same space. Similarly, not all neuronal migrations require catp-8/P5A-ATPase. A CATP-8/P5A-ATPase reporter is localized to the ER in most, if not all, tissues and catp-8/P5A-ATPase can function both cell-autonomously and non-autonomously to regulate neuronal development. Genetic analyses establish that catp-8/P5A-ATPase can function in multiple pathways, including the Menorin pathway, previously shown to control dendritic patterning in PVD, and Wnt signaling, which functions to control neuronal migrations. Lastly, we show that catp-8/P5A-ATPase is required for localizing select transmembrane proteins necessary for dendrite morphogenesis. Collectively, our studies suggest that catp-8/P5A-ATPase serves diverse, yet specific, roles in different genetic pathways and may be involved in the regulation or localization of transmembrane and secreted proteins to specific subcellular compartments.
Collapse
Affiliation(s)
- Leo T. H. Tang
- Department of Genetics Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Meera Trivedi
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Jenna Freund
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Christopher J. Salazar
- Department of Genetics Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Maisha Rahman
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Nelson J. Ramirez-Suarez
- Department of Genetics Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Garrett Lee
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Yu Wang
- Department of Molecular Biology & Biochemistry, Rutgers Center for Lipid Research, Rutgers University, Piscataway, New Jersey, United States of America
| | - Barth D. Grant
- Department of Molecular Biology & Biochemistry, Rutgers Center for Lipid Research, Rutgers University, Piscataway, New Jersey, United States of America
| | - Hannes E. Bülow
- Department of Genetics Albert Einstein College of Medicine, Bronx, New York, United States of America
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, United States of America
| |
Collapse
|
14
|
Dederer V, Lemberg MK. Transmembrane dislocases: a second chance for protein targeting. Trends Cell Biol 2021; 31:898-911. [PMID: 34147299 DOI: 10.1016/j.tcb.2021.05.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/11/2021] [Accepted: 05/14/2021] [Indexed: 12/31/2022]
Abstract
Precise distribution of proteins is essential to sustain the viability of cells. A complex network of protein synthesis and targeting factors cooperate with protein quality control systems to ensure protein homeostasis. Defective proteins are inevitably degraded by the ubiquitin-proteasome system and lysosomes. However, due to overlapping targeting information and limited targeting fidelity, certain proteins become mislocalized. In this review, we present the idea that transmembrane dislocases recognize and remove mislocalized membrane proteins from cellular organelles. This enables other targeting attempts and prevents degradation of mislocalized but otherwise functional proteins. These transmembrane dislocases can be found in the outer mitochondrial membrane (OMM) and endoplasmic reticulum (ER). We highlight common principles regarding client recognition and outline open questions in our understanding of transmembrane dislocases.
Collapse
Affiliation(s)
- Verena Dederer
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany; Current address: Institute for Pharmaceutical Biology and Buchmann Institute for Molecular Life Science, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany
| | - Marius K Lemberg
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany; Center for Biochemistry, Medical Faculty, University of Cologne, 50931 Cologne, Germany.
| |
Collapse
|
15
|
Grenon P, Corradi GR, Petrovich GD, Mazzitelli LR, Adamo HP. The Spf1p P5A-ATPase "arm-like" domain is not essential for ATP hydrolysis but its deletion impairs autophosphorylation. Biochem Biophys Res Commun 2021; 563:113-118. [PMID: 34087682 DOI: 10.1016/j.bbrc.2021.05.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 05/16/2021] [Indexed: 10/21/2022]
Abstract
The yeast Spf1p P5A-ATPase actively translocates membrane spanning peptides of mislocalized proteins from the endoplasmic reticulum. Loss of Spf1p function causes a pleiotropic ER stress-phenotype associated with alterations of homeostasis of metal ions, lipids, protein folding, glycosylation, and membrane insertion. A unique characteristic of P5A-ATPases is the presence of an extended insertion which was called the "arm-like" domain connecting the phosphorylation domain (P) with transmembrane segment M5 near the peptidyl-substrate binding pocket. Here we have constructed and characterized a Δarm mutant of Spf1p lacking a segment of 117 amino acids of the "arm-like" domain. The Δarm mutant was capable of hydrolyzing ATP at maximal rates of 50% of that of the wild type enzyme. With the non-nucleotide substrate analog pNPP, the hydrolytic activity of the mutant dropped to 10%. The mutant showed an apparent affinity for ATP similar to the wild type. When incubated with ATP the Δarm mutant produced a lower level of the catalytic phosphoenzyme in amounts proportionate to the ATPase activity. These results indicate that the "arm-like" domain is not essential for hydrolytic activity and suggest that it is needed for the stabilization of Spf1p in a phosphorylation-ready conformation.
Collapse
Affiliation(s)
- Paula Grenon
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Biológica, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad de Buenos Aires, Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Buenos Aires, Argentina
| | - Gerardo R Corradi
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Biológica, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad de Buenos Aires, Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Buenos Aires, Argentina
| | - Guido D Petrovich
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Biológica, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad de Buenos Aires, Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Buenos Aires, Argentina
| | - Luciana R Mazzitelli
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Biológica, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad de Buenos Aires, Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Buenos Aires, Argentina
| | - Hugo P Adamo
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Biológica, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad de Buenos Aires, Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Buenos Aires, Argentina.
| |
Collapse
|
16
|
Feng Z, Zhao Y, Li T, Nie W, Yang X, Wang X, Wu J, Liao J, Zou Y. CATP-8/P5A ATPase Regulates ER Processing of the DMA-1 Receptor for Dendritic Branching. Cell Rep 2021; 32:108101. [PMID: 32905774 DOI: 10.1016/j.celrep.2020.108101] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 06/05/2020] [Accepted: 08/11/2020] [Indexed: 10/23/2022] Open
Abstract
Dendrite morphogenesis is essential for a neuron to establish its receptive field and is, thus, the anatomical basis for the proper functioning of the nervous system. The molecular mechanisms governing dendrite branching are not fully understood. Using the multi-dendritic PVD neuron in the nematode Caenorhabditis elegans, we identify CATP-8/P5A ATPase as a key regulator of dendrite branching that controls the translocation of the DMA-1 receptor to the endoplasmic reticulum (ER). The specific signal peptide of DMA-1 and the ATPase activity of CATP-8 are essential for this process. Our results reveal that P5A ATPase may regulate protein translocation in the ER.
Collapse
Affiliation(s)
- Zhigang Feng
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yupeng Zhao
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Tingting Li
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Wang Nie
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xiaoyan Yang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xinjian Wang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Jianguo Wu
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Jun Liao
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yan Zou
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.
| |
Collapse
|
17
|
López-Marqués RL, Davis JA, Harper JF, Palmgren M. Dynamic membranes: the multiple roles of P4 and P5 ATPases. PLANT PHYSIOLOGY 2021; 185:619-631. [PMID: 33822217 PMCID: PMC8133672 DOI: 10.1093/plphys/kiaa065] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 10/24/2020] [Indexed: 05/31/2023]
Abstract
The lipid bilayer of biological membranes has a complex composition, including high chemical heterogeneity, the presence of nanodomains of specific lipids, and asymmetry with respect to lipid composition between the two membrane leaflets. In membrane trafficking, membrane vesicles constantly bud off from one membrane compartment and fuse with another, and both budding and fusion events have been proposed to require membrane lipid asymmetry. One mechanism for generating asymmetry in lipid bilayers involves the action of the P4 ATPase family of lipid flippases; these are biological pumps that use ATP as an energy source to flip lipids from one leaflet to the other. The model plant Arabidopsis (Arabidopsis thaliana) contains 12 P4 ATPases (AMINOPHOSPHOLIPID ATPASE1-12; ALA1-12), many of which are functionally redundant. Studies of P4 ATPase mutants have confirmed the essential physiological functions of these pumps and pleiotropic mutant phenotypes have been observed, as expected when genes required for basal cellular functions are disrupted. For instance, phenotypes associated with ala3 (dwarfism, pollen defects, sensitivity to pathogens and cold, and reduced polar cell growth) can be related to membrane trafficking problems. P5 ATPases are evolutionarily related to P4 ATPases, and may be the counterpart of P4 ATPases in the endoplasmic reticulum. The absence of P4 and P5 ATPases from prokaryotes and their ubiquitous presence in eukaryotes make these biological pumps a defining feature of eukaryotic cells. Here, we review recent advances in the field of plant P4 and P5 ATPases.
Collapse
Affiliation(s)
- Rosa L López-Marqués
- Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg, Denmark
| | - James A Davis
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Reno, NV 89557, USA
| | - Jeffrey F Harper
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Reno, NV 89557, USA
| | - Michael Palmgren
- Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg, Denmark
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan 528000, China
| |
Collapse
|
18
|
Laborenz J, Bykov YS, Knöringer K, Räschle M, Filker S, Prescianotto-Baschong C, Spang A, Tatsuta T, Langer T, Storchová Z, Schuldiner M, Herrmann JM. The ER protein Ema19 facilitates the degradation of nonimported mitochondrial precursor proteins. Mol Biol Cell 2021; 32:664-674. [PMID: 33596095 PMCID: PMC8108515 DOI: 10.1091/mbc.e20-11-0748] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
For the biogenesis of mitochondria, hundreds of proteins need to be targeted from the cytosol into the various compartments of this organelle. The intramitochondrial targeting routes these proteins take to reach their respective location in the organelle are well understood. However, the early targeting processes, from cytosolic ribosomes to the membrane of the organelle, are still largely unknown. In this study, we present evidence that an integral membrane protein of the endoplasmic reticulum (ER), Ema19, plays a role in this process. Mutants lacking Ema19 show an increased stability of mitochondrial precursor proteins, indicating that Ema19 promotes the proteolytic degradation of nonproductive precursors. The deletion of Ema19 improves the growth of respiration-deficient cells, suggesting that Ema19-mediated degradation can compete with productive protein import into mitochondria. Ema19 is the yeast representative of a conserved protein family. The human Ema19 homologue is known as sigma 2 receptor or TMEM97. Though its molecular function is not known, previous studies suggested a role of the sigma 2 receptor as a quality control factor in the ER, compatible with our observations about Ema19. More globally, our data provide an additional demonstration of the important role of the ER in mitochondrial protein targeting.
Collapse
Affiliation(s)
- Janina Laborenz
- Cell Biology, University of Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Yury S Bykov
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | | | - Markus Räschle
- Molecular Genetics, University of Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Sabine Filker
- Molecular Ecology, University of Kaiserslautern, 67663 Kaiserslautern, Germany
| | | | - Anne Spang
- Biozentrum, University of Basel, CH-4056 Basel, Switzerland
| | - Takashi Tatsuta
- Max Planck Institute for Biology of Ageing, 50931 Cologne, Germany
| | - Thomas Langer
- Max Planck Institute for Biology of Ageing, 50931 Cologne, Germany
| | - Zuzana Storchová
- Molecular Genetics, University of Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Maya Schuldiner
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | | |
Collapse
|
19
|
Petrovich GD, Corradi GR, Pavan CH, Noli Truant S, Adamo HP. Highly exposed segment of the Spf1p P5A-ATPase near transmembrane M5 detected by limited proteolysis. PLoS One 2021; 16:e0245679. [PMID: 33507968 PMCID: PMC7842927 DOI: 10.1371/journal.pone.0245679] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 01/05/2021] [Indexed: 11/20/2022] Open
Abstract
The yeast Spf1p protein is a primary transporter that belongs to group 5 of the large family of P-ATPases. Loss of Spf1p function produces ER stress with alterations of metal ion and sterol homeostasis and protein folding, glycosylation and membrane insertion. The amino acid sequence of Spf1p shows the characteristic P-ATPase domains A, N, and P and the transmembrane segments M1-M10. In addition, Spf1p exhibits unique structures at its N-terminus (N-T region), including two putative additional transmembrane domains, and a large insertion connecting the P domain with transmembrane segment M5 (D region). Here we used limited proteolysis to examine the structure of Spf1p. A short exposure of Spf1p to trypsin or proteinase K resulted in the cleavage at the N and C terminal regions of the protein and abrogated the formation of the catalytic phosphoenzyme and the ATPase activity. In contrast, limited proteolysis of Spf1p with chymotrypsin generated a large N-terminal fragment containing most of the M4-M5 cytosolic loop, and a minor fragment containing the C-terminal region. If lipids were present during chymotryptic proteolysis, phosphoenzyme formation and ATPase activity were preserved. ATP slowed Spf1p proteolysis without detectable changes of the generated fragments. The analysis of the proteolytic peptides by mass spectrometry and Edman degradation indicated that the preferential chymotryptic site was localized near the cytosolic end of M5. The susceptibility to proteolysis suggests an unexpected exposure of this region of Spf1p that may be an intrinsic feature of P5A-ATPases.
Collapse
Affiliation(s)
- Guido D. Petrovich
- Facultad de Farmacia y Bioquímica, Departamento de Química Biológica, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad de Buenos Aires, Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Gerardo R. Corradi
- Facultad de Farmacia y Bioquímica, Departamento de Química Biológica, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad de Buenos Aires, Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Carlos H. Pavan
- Facultad de Farmacia y Bioquímica, Departamento de Química Biológica, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad de Buenos Aires, Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Sofia Noli Truant
- Facultad de Farmacia y Bioquímica, Cátedra de Inmunología and Instituto de Estudios de la Inmunidad Humoral Prof. Dr. Ricardo A. Margni (IDEHU), UBA-CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Hugo P. Adamo
- Facultad de Farmacia y Bioquímica, Departamento de Química Biológica, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad de Buenos Aires, Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Universidad de Buenos Aires, Buenos Aires, Argentina
- * E-mail:
| |
Collapse
|
20
|
Cebolla VL, Jarne C, Vela J, Garriga R, Membrado L, Galbán J. Scanning densitometry and mass spectrometry for HPTLC analysis of lipids: The last 10 years. J LIQ CHROMATOGR R T 2021. [DOI: 10.1080/10826076.2020.1866600] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
| | - Carmen Jarne
- Instituto de Carboquímica, ICB-CSIC, Zaragoza, Spain
| | - Jesús Vela
- Departamento de Química Analítica, EINA, Universidad de Zaragoza, Zaragoza, Spain
| | - Rosa Garriga
- Departamento de Química Física, Facultad de Ciencias, Universidad de Zaragoza, Zaragoza, Spain
| | - Luis Membrado
- Instituto de Carboquímica, ICB-CSIC, Zaragoza, Spain
| | - Javier Galbán
- Departamento de Química Analítica, Facultad de Ciencias, Universidad de Zaragoza, Zaragoza, Spain
| |
Collapse
|
21
|
McKenna MJ, Sim SI, Ordureau A, Wei L, Harper JW, Shao S, Park E. The endoplasmic reticulum P5A-ATPase is a transmembrane helix dislocase. Science 2020; 369:eabc5809. [PMID: 32973005 PMCID: PMC8053355 DOI: 10.1126/science.abc5809] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 07/28/2020] [Indexed: 01/28/2023]
Abstract
Organelle identity depends on protein composition. How mistargeted proteins are selectively recognized and removed from organelles is incompletely understood. Here, we found that the orphan P5A-adenosine triphosphatase (ATPase) transporter ATP13A1 (Spf1 in yeast) directly interacted with the transmembrane segment (TM) of mitochondrial tail-anchored proteins. P5A-ATPase activity mediated the extraction of mistargeted proteins from the endoplasmic reticulum (ER). Cryo-electron microscopy structures of Saccharomyces cerevisiae Spf1 revealed a large, membrane-accessible substrate-binding pocket that alternately faced the ER lumen and cytosol and an endogenous substrate resembling an α-helical TM. Our results indicate that the P5A-ATPase could dislocate misinserted hydrophobic helices flanked by short basic segments from the ER. TM dislocation by the P5A-ATPase establishes an additional class of P-type ATPase substrates and may correct mistakes in protein targeting or topogenesis.
Collapse
Affiliation(s)
- Michael J McKenna
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Sue Im Sim
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Alban Ordureau
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Lianjie Wei
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - J Wade Harper
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Sichen Shao
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA.
| | - Eunyong Park
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA.
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
22
|
Corradi GR, Mazzitelli LR, Petrovich GD, Grenon P, Sørensen DM, Palmgren M, de Tezanos Pinto F, Adamo HP. Reduction of the P5A-ATPase Spf1p phosphoenzyme by a Ca2+-dependent phosphatase. PLoS One 2020; 15:e0232476. [PMID: 32353073 PMCID: PMC7192388 DOI: 10.1371/journal.pone.0232476] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 04/15/2020] [Indexed: 01/17/2023] Open
Abstract
P5 ATPases are eukaryotic pumps important for cellular metal ion, lipid and protein homeostasis; however, their transported substrate, if any, remains to be identified. Ca2+ was proposed to act as a ligand of P5 ATPases because it decreases the level of phosphoenzyme of the Spf1p P5A ATPase from Saccharomyces cerevisiae. Repeating previous purification protocols, we obtained a purified preparation of Spf1p that was close to homogeneity and exhibited ATP hydrolytic activity that was stimulated by the addition of CaCl2. Strikingly, a preparation of a catalytically dead mutant Spf1p (D487N) also exhibited Ca2+-dependent ATP hydrolytic activity. These results indicated that the Spf1p preparation contained a co-purifying protein capable of hydrolyzing ATP at a high rate. The activity was likely due to a phosphatase, since the protein i) was highly active when pNPP was used as substrate, ii) required Ca2+ or Zn2+ for activity, and iii) was strongly inhibited by molybdate, beryllium and other phosphatase substrates. Mass spectrometry identified the phosphatase Pho8p as a contaminant of the Spf1p preparation. Modification of the purification procedure led to a contaminant-free Spf1p preparation that was neither stimulated by Ca2+ nor inhibited by EGTA or molybdate. The phosphoenzyme levels of a contaminant-free Spf1p preparation were not affected by Ca2+. These results indicate that the reported effects of Ca2+ on Spf1p do not reflect the intrinsic properties of Spf1p but are mediated by the activity of the accompanying phosphatase.
Collapse
Affiliation(s)
- Gerardo R. Corradi
- Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad de Buenos Aires, Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Luciana R. Mazzitelli
- Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad de Buenos Aires, Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Guido D. Petrovich
- Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad de Buenos Aires, Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Paula Grenon
- Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad de Buenos Aires, Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Danny M. Sørensen
- Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Michael Palmgren
- Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Felicitas de Tezanos Pinto
- Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad de Buenos Aires, Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Hugo P. Adamo
- Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad de Buenos Aires, Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Universidad de Buenos Aires, Buenos Aires, Argentina
- * E-mail:
| |
Collapse
|
23
|
Omnus DJ, Cadou A, Thomas FB, Bader JM, Soh N, Chung GHC, Vaughan AN, Stefan CJ. A heat-sensitive Osh protein controls PI4P polarity. BMC Biol 2020; 18:28. [PMID: 32169085 PMCID: PMC7071650 DOI: 10.1186/s12915-020-0758-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 02/26/2020] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Phosphoinositide lipids provide spatial landmarks during polarized cell growth and migration. Yet how phosphoinositide gradients are oriented in response to extracellular cues and environmental conditions is not well understood. Here, we elucidate an unexpected mode of phosphatidylinositol 4-phosphate (PI4P) regulation in the control of polarized secretion. RESULTS We show that PI4P is highly enriched at the plasma membrane of growing daughter cells in budding yeast where polarized secretion occurs. However, upon heat stress conditions that redirect secretory traffic, PI4P rapidly increases at the plasma membrane in mother cells resulting in a more uniform PI4P distribution. Precise control of PI4P distribution is mediated through the Osh (oxysterol-binding protein homology) proteins that bind and present PI4P to a phosphoinositide phosphatase. Interestingly, Osh3 undergoes a phase transition upon heat stress conditions, resulting in intracellular aggregates and reduced cortical localization. Both the Osh3 GOLD and ORD domains are sufficient to form heat stress-induced aggregates, indicating that Osh3 is highly tuned to heat stress conditions. Upon loss of Osh3 function, the polarized distribution of both PI4P and the exocyst component Exo70 are impaired. Thus, an intrinsically heat stress-sensitive PI4P regulatory protein controls the spatial distribution of phosphoinositide lipid metabolism to direct secretory trafficking as needed. CONCLUSIONS Our results suggest that control of PI4P metabolism by Osh proteins is a key determinant in the control of polarized growth and secretion.
Collapse
Affiliation(s)
- Deike J Omnus
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London, WC1E 6BT, United Kingdom
- Present address: Science for Life Laboratory, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Angela Cadou
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London, WC1E 6BT, United Kingdom
| | - Ffion B Thomas
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London, WC1E 6BT, United Kingdom
| | - Jakob M Bader
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London, WC1E 6BT, United Kingdom
- Present address: Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Nathaniel Soh
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London, WC1E 6BT, United Kingdom
| | - Gary H C Chung
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London, WC1E 6BT, United Kingdom
| | - Andrew N Vaughan
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London, WC1E 6BT, United Kingdom
| | - Christopher J Stefan
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London, WC1E 6BT, United Kingdom.
| |
Collapse
|
24
|
Lange M, Peiter E. Calcium Transport Proteins in Fungi: The Phylogenetic Diversity of Their Relevance for Growth, Virulence, and Stress Resistance. Front Microbiol 2020; 10:3100. [PMID: 32047484 PMCID: PMC6997533 DOI: 10.3389/fmicb.2019.03100] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 12/20/2019] [Indexed: 12/26/2022] Open
Abstract
The key players of calcium (Ca2+) homeostasis and Ca2+ signal generation, which are Ca2+ channels, Ca2+/H+ antiporters, and Ca2+-ATPases, are present in all fungi. Their coordinated action maintains a low Ca2+ baseline, allows a fast increase in free Ca2+ concentration upon a stimulus, and terminates this Ca2+ elevation by an exponential decrease – hence forming a Ca2+ signal. In this respect, the Ca2+ signaling machinery is conserved in different fungi. However, does the similarity of the genetic inventory that shapes the Ca2+ peak imply that if “you’ve seen one, you’ve seen them all” in terms of physiological relevance? Individual studies have focused mostly on a single species, and mechanisms elucidated in few model organisms are usually extrapolated to other species. This mini-review focuses on the physiological relevance of the machinery that maintains Ca2+ homeostasis for growth, virulence, and stress responses. It reveals common and divergent functions of homologous proteins in different fungal species. In conclusion, for the physiological role of these Ca2+ transport proteins, “seen one,” in many cases, does not mean: “seen them all.”
Collapse
Affiliation(s)
- Mario Lange
- Plant Nutrition Laboratory, Institute of Agricultural and Nutritional Sciences, Faculty of Natural Sciences III, Martin Luther University of Halle-Wittenberg, Halle (Saale), Germany
| | - Edgar Peiter
- Plant Nutrition Laboratory, Institute of Agricultural and Nutritional Sciences, Faculty of Natural Sciences III, Martin Luther University of Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
25
|
Sundaramoorthy J, Park GT, Lee JD, Kim JH, Seo HS, Song JT. A P 3A-Type ATPase and an R2R3-MYB Transcription Factor Are Involved in Vacuolar Acidification and Flower Coloration in Soybean. FRONTIERS IN PLANT SCIENCE 2020; 11:580085. [PMID: 33424880 PMCID: PMC7793830 DOI: 10.3389/fpls.2020.580085] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 11/05/2020] [Indexed: 05/05/2023]
Abstract
The determination of flower color mainly depends on the anthocyanin biosynthesis pathway and vacuolar pH; however, unlike the former, the mechanism of vacuolar acidification in soybean remains uncharacterized at the molecular level. To investigate this mechanism, we isolated four recessive purple-blue EMS-induced flower mutants from the purple flower soybean cultivar, Pungsannamul. The petals of all the mutants had increased pH compared with those of wild Pungsannamul. One of the mutants had a single nucleotide substitution in GmPH4, a regulator gene encoding an MYB transcription factor, and the substitution resulted in a premature stop codon in its first exon. The other three mutants had nucleotide substitutions in GmPH5, a single new gene that we identified by physical mapping. It corresponds to Glyma.03G262600 in chromosome 3 and encodes a proton pump that belongs to the P3A-ATPase family. The substitutions resulted in a premature stop codon, which may be a defect in the ATP-binding capacity of GmPH5 and possibly a catalytic inefficiency of GmPH5. The result is consistent with their genetic recessiveness as well as the high pH of mutant petals, suggesting that GmPH5 is directly involved in vacuolar acidification. We also found that the expression of GmPH5 and several putative "acidifying" genes in the gmph4 mutant was remarkably reduced, indicating that GmPH4 may regulate the genes involved in determining the vacuolar pH of soybean petals.
Collapse
Affiliation(s)
| | - Gyu Tae Park
- School of Applied Biosciences, Kyungpook National University, Daegu, Korea
| | - Jeong-Dong Lee
- School of Applied Biosciences, Kyungpook National University, Daegu, Korea
| | - Jeong Hoe Kim
- Department of Biology, Kyungpook National University, Daegu, Korea
| | - Hak Soo Seo
- Department of Plant Bioscience, Seoul National University, Seoul, Korea
| | - Jong Tae Song
- School of Applied Biosciences, Kyungpook National University, Daegu, Korea
- *Correspondence: Jong Tae Song
| |
Collapse
|
26
|
Castells-Ballester J, Rinis N, Kotan I, Gal L, Bausewein D, Kats I, Zatorska E, Kramer G, Bukau B, Schuldiner M, Strahl S. Translational Regulation of Pmt1 and Pmt2 by Bfr1 Affects Unfolded Protein O-Mannosylation. Int J Mol Sci 2019; 20:ijms20246220. [PMID: 31835530 PMCID: PMC6940804 DOI: 10.3390/ijms20246220] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 12/05/2019] [Accepted: 12/06/2019] [Indexed: 12/15/2022] Open
Abstract
O-mannosylation is implicated in protein quality control in Saccharomyces cerevisiae due to the attachment of mannose to serine and threonine residues of un- or misfolded proteins in the endoplasmic reticulum (ER). This process also designated as unfolded protein O-mannosylation (UPOM) that ends futile folding cycles and saves cellular resources is mainly mediated by protein O-mannosyltransferases Pmt1 and Pmt2. Here we describe a genetic screen for factors that influence O-mannosylation in yeast, using slow-folding green fluorescent protein (GFP) as a reporter. Our screening identifies the RNA binding protein brefeldin A resistance factor 1 (Bfr1) that has not been linked to O-mannosylation and ER protein quality control before. We find that Bfr1 affects O-mannosylation through changes in Pmt1 and Pmt2 protein abundance but has no effect on PMT1 and PMT2 transcript levels, mRNA localization to the ER membrane or protein stability. Ribosome profiling reveals that Bfr1 is a crucial factor for Pmt1 and Pmt2 translation thereby affecting unfolded protein O-mannosylation. Our results uncover a new level of regulation of protein quality control in the secretory pathway.
Collapse
Affiliation(s)
- Joan Castells-Ballester
- Centre for Organismal Studies (COS), Glycobiology, Heidelberg University, D-69120 Heidelberg, Germany; (J.C.-B.); (N.R.); (D.B.); (E.Z.)
| | - Natalie Rinis
- Centre for Organismal Studies (COS), Glycobiology, Heidelberg University, D-69120 Heidelberg, Germany; (J.C.-B.); (N.R.); (D.B.); (E.Z.)
| | - Ilgin Kotan
- Center for Molecular Biology of Heidelberg University (ZMBH), German Cancer Research Center (DKFZ), ZMBH-DKFZ Alliance, D-69120 Heidelberg, Germany; (I.K.); (I.K.); (G.K.); (B.B.)
| | - Lihi Gal
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel; (L.G.); (M.S.)
| | - Daniela Bausewein
- Centre for Organismal Studies (COS), Glycobiology, Heidelberg University, D-69120 Heidelberg, Germany; (J.C.-B.); (N.R.); (D.B.); (E.Z.)
- spm—Safety Projects & More GmbH, D-69493 Hirschberg a. d. Bergstraße, Germany
| | - Ilia Kats
- Center for Molecular Biology of Heidelberg University (ZMBH), German Cancer Research Center (DKFZ), ZMBH-DKFZ Alliance, D-69120 Heidelberg, Germany; (I.K.); (I.K.); (G.K.); (B.B.)
| | - Ewa Zatorska
- Centre for Organismal Studies (COS), Glycobiology, Heidelberg University, D-69120 Heidelberg, Germany; (J.C.-B.); (N.R.); (D.B.); (E.Z.)
| | - Günter Kramer
- Center for Molecular Biology of Heidelberg University (ZMBH), German Cancer Research Center (DKFZ), ZMBH-DKFZ Alliance, D-69120 Heidelberg, Germany; (I.K.); (I.K.); (G.K.); (B.B.)
| | - Bernd Bukau
- Center for Molecular Biology of Heidelberg University (ZMBH), German Cancer Research Center (DKFZ), ZMBH-DKFZ Alliance, D-69120 Heidelberg, Germany; (I.K.); (I.K.); (G.K.); (B.B.)
| | - Maya Schuldiner
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel; (L.G.); (M.S.)
| | - Sabine Strahl
- Centre for Organismal Studies (COS), Glycobiology, Heidelberg University, D-69120 Heidelberg, Germany; (J.C.-B.); (N.R.); (D.B.); (E.Z.)
- Correspondence: ; Tel.: +49-6221-54-6286
| |
Collapse
|
27
|
Busby BP, Niktab E, Roberts CA, Sheridan JP, Coorey NV, Senanayake DS, Connor LM, Munkacsi AB, Atkinson PH. Genetic interaction networks mediate individual statin drug response in Saccharomyces cerevisiae. NPJ Syst Biol Appl 2019; 5:35. [PMID: 31602312 PMCID: PMC6776536 DOI: 10.1038/s41540-019-0112-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 08/20/2019] [Indexed: 01/19/2023] Open
Abstract
Eukaryotic genetic interaction networks (GINs) are extensively described in the Saccharomyces cerevisiae S288C model using deletion libraries, yet being limited to this one genetic background, not informative to individual drug response. Here we created deletion libraries in three additional genetic backgrounds. Statin response was probed with five queries against four genetic backgrounds. The 20 resultant GINs representing drug-gene and gene-gene interactions were not conserved by functional enrichment, hierarchical clustering, and topology-based community partitioning. An unfolded protein response (UPR) community exhibited genetic background variation including different betweenness genes that were network bottlenecks, and we experimentally validated this UPR community via measurements of the UPR that were differentially activated and regulated in statin-resistant strains relative to the statin-sensitive S288C background. These network analyses by topology and function provide insight into the complexity of drug response influenced by genetic background.
Collapse
Affiliation(s)
- Bede P. Busby
- Centre for Biodiscovery, School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
- European Molecular Biology Laboratory, Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Eliatan Niktab
- Centre for Biodiscovery, School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Christina A. Roberts
- Centre for Biodiscovery, School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Jeffrey P. Sheridan
- Centre for Biodiscovery, School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Namal V. Coorey
- Centre for Biodiscovery, School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Dinindu S. Senanayake
- Centre for Biodiscovery, School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Lisa M. Connor
- Centre for Biodiscovery, School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Andrew B. Munkacsi
- Centre for Biodiscovery, School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Paul H. Atkinson
- Centre for Biodiscovery, School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| |
Collapse
|
28
|
Qu Y, Wang J, Zhu X, Dong B, Liu X, Lu J, Lin F. The P5-type ATPase Spf1 is required for development and virulence of the rice blast fungus Pyricularia oryzae. Curr Genet 2019; 66:385-395. [PMID: 31471638 DOI: 10.1007/s00294-019-01030-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 08/18/2019] [Accepted: 08/21/2019] [Indexed: 10/26/2022]
Abstract
Pyricularia oryzae (synonym Magnaporthe oryzae) is a plant pathogen causing major yield losses in cultivated rice and wheat. The P-type ATPases play important roles in cellular processes of fungi, plants, and animals via transporting specific substrates through ATP hydrolysis. Here, we characterized the roles of a P5-ATPase, Spf1, in the development and virulence of P. oryzae. Deletion of SPF1 led to decreased hyphal growth and conidiation, delayed spore germination and appressorium formation, reduced penetration and invasive hyphal extension, and attenuated virulence. Appressorium turgor, however, was not affected by deletion of SPF1. The co-localization of Spf1-GFP and an endoplasmic reticulum (ER) marker protein, Lhs1-DsRed2, indicated that Spf1 is an ER-localized P5-ATPase. An ER stress factor, 0.5 μg/ml tunicamycin (TUNI), inhibited the growth of ∆spf1, but another ER stress factor, 5 mM dithiothreitol (DTT), promoted the growth of ∆spf1. Treatment with chemicals for oxidative stress (5 mM H2O2 and 0.8 mM paraquat) also promoted the growth of ∆spf1. Gene expression assays showed that unfolded protein response (UPR) components KAR2, OST1, PMT1, ERV29, PDI1, SCJ1, SEC61, a Ca2+ channel-related P-type ATPase gene PMR1, and a calcineurin-dependent transcription factor CRZ1 were significantly up-regulated in ∆spf1, suggesting activation of UPR in the mutant. These lines of experimental evidence indicate that SPF1 is involved in some basal ER mechanisms of P. oryzae including UPR pathway and responses to ER related stresses, therefore, affecting fungal development and virulence. However, the detailed mechanism between Spf1 and virulence still awaits future researches.
Collapse
Affiliation(s)
- Yingmin Qu
- State Key Laboratory for Rice Biology, Biotechnology Institute, Zhejiang University, Hangzhou, 310058, Zhejiang Province, China
| | - Jing Wang
- State Key Laboratory for Rice Biology, College of Life Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang Province, China
| | - Xueming Zhu
- State Key Laboratory for Rice Biology, Biotechnology Institute, Zhejiang University, Hangzhou, 310058, Zhejiang Province, China
| | - Bo Dong
- Markey Cancer Center University of Kentucky, Lexington, KY, 40536, USA
| | - Xiaohong Liu
- State Key Laboratory for Rice Biology, Biotechnology Institute, Zhejiang University, Hangzhou, 310058, Zhejiang Province, China
| | - Jianping Lu
- State Key Laboratory for Rice Biology, College of Life Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang Province, China.
| | - Fucheng Lin
- State Key Laboratory for Rice Biology, Biotechnology Institute, Zhejiang University, Hangzhou, 310058, Zhejiang Province, China.
| |
Collapse
|