1
|
Taghizadeh-Hesary F, Ghadyani M, Kashanchi F, Behnam B. Exploring TSGA10 Function: A Crosstalk or Controlling Mechanism in the Signaling Pathway of Carcinogenesis? Cancers (Basel) 2024; 16:3044. [PMID: 39272902 PMCID: PMC11393850 DOI: 10.3390/cancers16173044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/18/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024] Open
Abstract
Cancer-specific antigens have been a significant area of focus in cancer treatment since their discovery in the mid-twentieth century. Cancer germline antigens are a class of antigens specifically overexpressed in germline tissues and cancer cells. Among these, TSGA10 (testis-specific gene antigen 10) is of great interest because of its crucial impact on cancer progression. Early studies explored TSGA10 expression in a variety of cancer types. More recent studies revealed that TSGA10 can suppress tumor progression by blocking cancer cell metabolism, angiogenesis, and metastasis. An open question regarding the TSGA10 is why cancer cells must express a protein that prevents their progression. To answer this question, we conducted a comprehensive review to engage the TSGA10 in the context of the current understanding of "malignant transformation". This review demonstrated that TSGA10 expression level in cancer cells depends on the cancer stage across malignant transformation. In addition, we evaluated how TSGA10 expression can prevent the "cancer hallmarks". Given this information, TSGA10 can be of great interest in developing effective targeted anti-cancer therapies.
Collapse
Affiliation(s)
- Farzad Taghizadeh-Hesary
- ENT and Head and Neck Research Center and Department, The Five Senses Health Institute, School of Medicine, Iran University of Medical Sciences, Tehran 14496-14535, Iran
| | - Mobina Ghadyani
- Chester Medical School, University of Chester, Chester CH2 1BR, UK
| | - Fatah Kashanchi
- Laboratory of Molecular Virology, George Mason University, Manassas, VA 20110, USA
| | - Babak Behnam
- Avicenna Biotech Research, Germantown, MD 20871, USA
| |
Collapse
|
2
|
Martinez A, Stemm-Wolf AJ, Sheridan RM, Taliaferro MJ, Pearson CG. The Unkempt RNA binding protein reveals a local translation program in centriole overduplication. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.29.605660. [PMID: 39131325 PMCID: PMC11312568 DOI: 10.1101/2024.07.29.605660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Excess centrosomes cause defects in mitosis, cell-signaling, and cell migration, and therefore their assembly is tightly regulated. Plk4 controls centriole duplication at the heart of centrosome assembly, and elevation of Plk4 promotes centrosome amplification (CA), a founding event of tumorigenesis. Here, we investigate the transcriptional consequences of elevated Plk4 and find Unkempt, a gene encoding an RNA binding protein with roles in translational regulation, to be one of only two upregulated mRNAs. Unk protein localizes to centrosomes and Cep131-positive centriolar satellites and is required for Plk4-induced centriole overduplication in an RNA-binding dependent manner. Translation is enriched at centrosomes and centriolar satellites with Unk and Cep131 promoting this localized translation. A transient centrosomal downregulation of translation occurs early in Plk4-induced CA. CNOT9, an Unk interactor and component of the translational inhibitory CCR4-NOT complex, localizes to centrosomes at this time. In summary, centriolar satellites and Unk promote local translation as part of a translational program that ensures centriole duplication.
Collapse
Affiliation(s)
- Abraham Martinez
- Department of Cell and Developmental Biology, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045
| | - Alexander J. Stemm-Wolf
- Department of Cell and Developmental Biology, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045
| | - Ryan M. Sheridan
- RNA Bioscience Initiative (RBI), University of Colorado, Anschutz Medical Campus, Aurora CO 80045
| | - Matthew J. Taliaferro
- RNA Bioscience Initiative (RBI), University of Colorado, Anschutz Medical Campus, Aurora CO 80045
- Department of Biochemistry and Molecular Genetics, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045
| | - Chad G. Pearson
- Department of Cell and Developmental Biology, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045
| |
Collapse
|
3
|
Qiao P, Zhang C, Shi Y, Du H. The role of alternative polyadenylation in breast cancer. Front Genet 2024; 15:1377275. [PMID: 38939531 PMCID: PMC11208690 DOI: 10.3389/fgene.2024.1377275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 05/24/2024] [Indexed: 06/29/2024] Open
Abstract
Breast cancer (BC), as a highly prevalent malignant tumor worldwide, is still unclear in its pathogenesis and has poor therapeutic outcomes. Alternative polyadenylation (APA) is a post-transcriptional regulatory mechanism widely found in eukaryotes. Precursor mRNA (pre-mRNA) undergoes the APA process to generate multiple mRNA isoforms with different coding regions or 3'UTRs, thereby greatly increasing the diversity and complexity of the eukaryotic transcriptome and proteome. Studies have shown that APA is involved in the progression of various diseases, including cancer, and plays a crucial role. Therefore, clarifying the biological mechanisms of APA and its regulators in breast cancer will help to comprehensively understand the pathogenesis of breast cancer and provide new ideas for its prevention and treatment.
Collapse
Affiliation(s)
- Ping Qiao
- Department of Laboratory, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Caihong Zhang
- Department of Laboratory, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Yingxu Shi
- Department of Laboratory, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Hua Du
- Department of Pathology, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
- College of Basic Medicine, Inner Mongolia Medical University, Hohhot, China
| |
Collapse
|
4
|
Laporte MH, Gambarotto D, Bertiaux É, Bournonville L, Louvel V, Nunes JM, Borgers S, Hamel V, Guichard P. Time-series reconstruction of the molecular architecture of human centriole assembly. Cell 2024; 187:2158-2174.e19. [PMID: 38604175 PMCID: PMC11060037 DOI: 10.1016/j.cell.2024.03.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/21/2023] [Accepted: 03/19/2024] [Indexed: 04/13/2024]
Abstract
Centriole biogenesis, as in most organelle assemblies, involves the sequential recruitment of sub-structural elements that will support its function. To uncover this process, we correlated the spatial location of 24 centriolar proteins with structural features using expansion microscopy. A time-series reconstruction of protein distributions throughout human procentriole assembly unveiled the molecular architecture of the centriole biogenesis steps. We found that the process initiates with the formation of a naked cartwheel devoid of microtubules. Next, the bloom phase progresses with microtubule blade assembly, concomitantly with radial separation and rapid cartwheel growth. In the subsequent elongation phase, the tubulin backbone grows linearly with the recruitment of the A-C linker, followed by proteins of the inner scaffold (IS). By following six structural modules, we modeled 4D assembly of the human centriole. Collectively, this work provides a framework to investigate the spatial and temporal assembly of large macromolecules.
Collapse
Affiliation(s)
- Marine H Laporte
- University of Geneva, Department of Molecular and Cellular Biology, Faculty of Sciences, Geneva, Switzerland
| | - Davide Gambarotto
- University of Geneva, Department of Molecular and Cellular Biology, Faculty of Sciences, Geneva, Switzerland
| | - Éloïse Bertiaux
- University of Geneva, Department of Molecular and Cellular Biology, Faculty of Sciences, Geneva, Switzerland
| | - Lorène Bournonville
- University of Geneva, Department of Molecular and Cellular Biology, Faculty of Sciences, Geneva, Switzerland
| | - Vincent Louvel
- University of Geneva, Department of Molecular and Cellular Biology, Faculty of Sciences, Geneva, Switzerland
| | - José M Nunes
- University of Geneva, Department of Genetic and evolution, Faculty of Sciences, Geneva, Switzerland
| | - Susanne Borgers
- University of Geneva, Department of Molecular and Cellular Biology, Faculty of Sciences, Geneva, Switzerland
| | - Virginie Hamel
- University of Geneva, Department of Molecular and Cellular Biology, Faculty of Sciences, Geneva, Switzerland.
| | - Paul Guichard
- University of Geneva, Department of Molecular and Cellular Biology, Faculty of Sciences, Geneva, Switzerland.
| |
Collapse
|
5
|
Cheng T, Mariappan A, Langner E, Shim K, Gopalakrishnan J, Mahjoub MR. Inhibiting centrosome clustering reduces cystogenesis and improves kidney function in autosomal dominant polycystic kidney disease. JCI Insight 2024; 9:e172047. [PMID: 38385746 DOI: 10.1172/jci.insight.172047] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 01/17/2024] [Indexed: 02/23/2024] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is a monogenic disorder accounting for approximately 5% of patients with renal failure, yet therapeutics for the treatment of ADPKD remain limited. ADPKD tissues display abnormalities in the biogenesis of the centrosome, a defect that can cause genome instability, aberrant ciliary signaling, and secretion of pro-inflammatory factors. Cystic cells form excess centrosomes via a process termed centrosome amplification (CA), which causes abnormal multipolar spindle configurations, mitotic catastrophe, and reduced cell viability. However, cells with CA can suppress multipolarity via "centrosome clustering," a key mechanism by which cells circumvent apoptosis. Here, we demonstrate that inhibiting centrosome clustering can counteract the proliferation of renal cystic cells with high incidences of CA. Using ADPKD human cells and mouse models, we show that preventing centrosome clustering with 2 inhibitors, CCB02 and PJ34, blocks cyst initiation and growth in vitro and in vivo. Inhibiting centrosome clustering activates a p53-mediated surveillance mechanism leading to apoptosis, reduced cyst expansion, decreased interstitial fibrosis, and improved kidney function. Transcriptional analysis of kidneys from treated mice identified pro-inflammatory signaling pathways implicated in CA-mediated cystogenesis and fibrosis. Our results demonstrate that centrosome clustering is a cyst-selective target for the improvement of renal morphology and function in ADPKD.
Collapse
Affiliation(s)
- Tao Cheng
- Department of Medicine, Nephrology Division, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Aruljothi Mariappan
- Institute of Human Genetics, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Ewa Langner
- Department of Medicine, Nephrology Division, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Kyuhwan Shim
- Department of Medicine, Nephrology Division, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Jay Gopalakrishnan
- Institute of Human Genetics, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
- Institute of Human Genetics, Jena University Hospital, Friedrich Schiller University, Jena, Jena, Germany
| | - Moe R Mahjoub
- Department of Medicine, Nephrology Division, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
6
|
Yang G, Zhou J, Guo Z, Fan L, Chen B, Zhang D, Wen H. miR-26b Targets CEP135 Gene to Regulate Nasopharyngeal Carcinoma Proliferation and Migration by NF-κB Pathway. Mol Biotechnol 2023; 65:1857-1868. [PMID: 36820950 PMCID: PMC10518290 DOI: 10.1007/s12033-023-00691-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 02/07/2023] [Indexed: 02/24/2023]
Abstract
To screen microRNAs (miRNAs) and analyze their role in the nasopharyngeal carcinoma (NPC) development through differential analysis and cytological validation of the nasopharyngeal carcinoma dataset. The Gene Expression Omnibus (GEO) database of NPC-related data were utilized to screen for differential miRNAs, downstream target genes and relevant pathways, and the relationships among them were verified by luciferase reporter assay and cell co-culture. To analyze the function of miRNAs and downstream target genes, a series of mimics, inhibitors or Small interfering RNAs (siRNAs) targeting the downstream target genes were transfected into NPC cells or normal epithelial cells by cell transfection techniques. Cell Counting Kit-8 (CCK8), Transwell, Enzyme-linked immunosorbent assay (ELISA) apoptosis, and western blotting were adopted to determine the changes in cell activity, invasiveness, and apoptosis after differential miRNA and target gene overexpression or downregulation. Differential analysis of miRNA dataset showed that the expression of miR-26b was significantly downregulated in NPC, in agreement with the validation results of nasopharyngeal carcinoma cell lines. And downregulation of miR-26b expression in normal nasopharyngeal epithelial cells transformed the cells to tumors. CEP135 was identified as the miR-26b downstream target gene by mRNA dataset analysis, and a luciferase reporter test revealed a direct targeting link between the two. Upregulation of CEP135 levels in nasopharyngeal cancer cell lines increased cell activity, accelerated cell migration, and inhibited apoptosis. The Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis revealed that CEP135 exerted the above effects on cells via the NF-κB pathway, and co-culture with NF-κB pathway blockers reversed cell biological behavior to the level of the control group. MiR-26b downregulation leads to CEP135 overexpression and NF-κB pathway activation in NPC, which enhances proliferation, migration, and prevents apoptosis of nasopharyngeal carcinoma cells. Therefore, the study further clarifies the biological behavior mechanism of NPC and suggests new therapeutic options for NPC.
Collapse
Affiliation(s)
- Guangrun Yang
- Department of Radiotherapy, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar City, China
| | - Jiafu Zhou
- Department of Otolaryngology, The Third Affiliated Hospital of Qiqihar Medical University, Tiefeng District, 27 Taishun Street, Qiqihar City 161000, China
| | - Zhong Guo
- Department of Otolaryngology, The Third Affiliated Hospital of Qiqihar Medical University, Tiefeng District, 27 Taishun Street, Qiqihar City 161000, China
| | - Lixia Fan
- Department of Otolaryngology, The Third Affiliated Hospital of Qiqihar Medical University, Tiefeng District, 27 Taishun Street, Qiqihar City 161000, China
| | - Bowen Chen
- Department of Otolaryngology, The Third Affiliated Hospital of Qiqihar Medical University, Tiefeng District, 27 Taishun Street, Qiqihar City 161000, China
| | - Dapeng Zhang
- Department of Otolaryngology, The Third Affiliated Hospital of Qiqihar Medical University, Tiefeng District, 27 Taishun Street, Qiqihar City 161000, China
| | - Haitao Wen
- Department of Otolaryngology, The Third Affiliated Hospital of Qiqihar Medical University, Tiefeng District, 27 Taishun Street, Qiqihar City 161000, China.
| |
Collapse
|
7
|
Wang Y, Risteski P, Yang Y, Chen H, Droby G, Walens A, Jayaprakash D, Troester M, Herring L, Chernoff J, Tolić I, Bowser J, Vaziri C. The TRIM69-MST2 signaling axis regulates centrosome dynamics and chromosome segregation. Nucleic Acids Res 2023; 51:10568-10589. [PMID: 37739411 PMCID: PMC10602929 DOI: 10.1093/nar/gkad766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 08/30/2023] [Accepted: 09/10/2023] [Indexed: 09/24/2023] Open
Abstract
Stringent control of centrosome duplication and separation is important for preventing chromosome instability. Structural and numerical alterations in centrosomes are hallmarks of neoplastic cells and contribute to tumorigenesis. We show that a Centrosome Amplification 20 (CA20) gene signature is associated with high expression of the Tripartite Motif (TRIM) family member E3 ubiquitin ligase, TRIM69. TRIM69-ablation in cancer cells leads to centrosome scattering and chromosome segregation defects. We identify Serine/threonine-protein kinase 3 (MST2) as a new direct binding partner of TRIM69. TRIM69 redistributes MST2 to the perinuclear cytoskeleton, promotes its association with Polo-like kinase 1 (PLK1) and stimulates MST2 phosphorylation at S15 (a known PLK1 phosphorylation site that is critical for centrosome disjunction). TRIM69 also promotes microtubule bundling and centrosome segregation that requires PRC1 and DYNEIN. Taken together, we identify TRIM69 as a new proximal regulator of distinct signaling pathways that regulate centrosome dynamics and promote bipolar mitosis.
Collapse
Affiliation(s)
- Yilin Wang
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Patrik Risteski
- Division of Molecular Biology, Ruđer Boskovic Institute, Bijenicka cesta 54, 10000 Zagreb, Croatia
| | - Yang Yang
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Huan Chen
- Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Gaith Droby
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Andrea Walens
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Deepika Jayaprakash
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
- Oral and Craniofacial Biomedicine Program, Adam’s School of Dentistry, University of North Carolina at Chapel Hill, NC 27599, USA
| | - Melissa Troester
- Department of Epidemiology, Gillings School of Global Public Health and UNC Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Laura Herring
- Department of Pharmacology, UNC Proteomics Core Facility, University of North Carolina, Chapel Hill, NC 27599, USA
| | | | - Iva M Tolić
- Division of Molecular Biology, Ruđer Boskovic Institute, Bijenicka cesta 54, 10000 Zagreb, Croatia
| | - Jessica Bowser
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Cyrus Vaziri
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
8
|
Zhang G, Tai P, Fang J, Chen A, Chen X, Cao K. Molecular subtypes based on centrosome-related genes can predict prognosis and therapeutic responsiveness in patients with low-grade gliomas. Front Oncol 2023; 13:1157115. [PMID: 37051542 PMCID: PMC10083401 DOI: 10.3389/fonc.2023.1157115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 03/07/2023] [Indexed: 03/29/2023] Open
Abstract
BackgroundAbnormalities in centrosome regulatory genes can induce chromosome instability, cell differentiation errors, and tumorigenesis. However, a limited number of comprehensive analyses of centrosome-related genes have been performed in low-grade gliomas (LGG).MethodsLGG data were extracted from The Cancer Genome Atlas (TCGA) and Chinese Glioma Genome Atlas (CGGA) databases. The ConsensusClusterPlus” R package was used for unsupervised clustering. We constructed a centrosome-related genes (CRGs) signature using a random forest model, lasso Cox model, and multivariate Cox model, and quantified the centrosome-related risk score (centS). The prognostic prediction efficacy of centS was evaluated using a Receiver Operating Characteristic (ROC) curve. Immune cell infiltration and genomic mutational landscapes were evaluated using the ESTIMATE algorithm, single-sample Gene Set Enrichment Analysis (ssGSEA) algorithm, and “maftools” R package, respectively. Differences in clinical features, isocitrate dehydrogenase (IDH) mutation, 1p19q codeletion, O6-methylguanine-DNA methyltransferase promoter (MGMTp) methylation, and response to antitumor therapy between the high- and low-centS groups were explored. “pRRophetic” R packages were used for temozolomide (TMZ) sensitivity analysis. qRT-PCR verified the differential expression of the centrosomal gene team, the core of which is CEP135, between LGG cells and normal cells.ResultsTwo distinct CRG-based clusters were identified using consensus unsupervised clustering analysis. The prognosis, biological characteristics, and immune cell infiltration of the two clusters differed significantly. A well-performing centS signature was developed to predict the prognosis of patients with LGG based on 12 potential CRGs. We found that patients in the high-centS group showed poorer prognosis and lower proportion of IDH mutation and 1p19q codeletion compared to those in the low-centS group. Furthermore, patients in the high-centS group showed higher sensitivity to TMZ, higher tumor mutation burden, and immune cell infiltration. Finally, we identified a centrosomal gene team whose core was CEP135, and verified their differential expression between LGG cells and normal glial cells.ConclusionOur findings reveal a novel centrosome-related signature for predicting the prognosis and therapeutic responsiveness of patients with LGG. This may be helpful for the accurate clinical treatment of LGG.
Collapse
|
9
|
Mkrtchyan GV, Veviorskiy A, Izumchenko E, Shneyderman A, Pun FW, Ozerov IV, Aliper A, Zhavoronkov A, Scheibye-Knudsen M. High-confidence cancer patient stratification through multiomics investigation of DNA repair disorders. Cell Death Dis 2022; 13:999. [PMID: 36435816 PMCID: PMC9701218 DOI: 10.1038/s41419-022-05437-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 11/10/2022] [Accepted: 11/11/2022] [Indexed: 11/28/2022]
Abstract
Multiple cancer types have limited targeted therapeutic options, in part due to incomplete understanding of the molecular processes underlying tumorigenesis and significant intra- and inter-tumor heterogeneity. Identification of novel molecular biomarkers stratifying cancer patients with different survival outcomes may provide new opportunities for target discovery and subsequent development of tailored therapies. Here, we applied the artificial intelligence-driven PandaOmics platform ( https://pandaomics.com/ ) to explore gene expression changes in rare DNA repair-deficient disorders and identify novel cancer targets. Our analysis revealed that CEP135, a scaffolding protein associated with early centriole biogenesis, is commonly downregulated in DNA repair diseases with high cancer predisposition. Further screening of survival data in 33 cancers available at TCGA database identified sarcoma as a cancer type where lower survival was significantly associated with high CEP135 expression. Stratification of cancer patients based on CEP135 expression enabled us to examine therapeutic targets that could be used for the improvement of existing therapies against sarcoma. The latter was based on application of the PandaOmics target-ID algorithm coupled with in vitro studies that revealed polo-like kinase 1 (PLK1) as a potential therapeutic candidate in sarcoma patients with high CEP135 levels and poor survival. While further target validation is required, this study demonstrated the potential of in silico-based studies for a rapid biomarker discovery and target characterization.
Collapse
Affiliation(s)
- Garik V Mkrtchyan
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | | | - Evgeny Izumchenko
- Department of Medicine, Section of Hematology and Oncology, University of Chicago, Chicago, IL, USA
| | | | | | | | | | | | - Morten Scheibye-Knudsen
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
10
|
Noga A, Horii M, Goto Y, Toyooka K, Ishikawa T, Hirono M. Bld10p/Cep135 determines the number of triplets in the centriole independently of the cartwheel. EMBO J 2022; 41:e104582. [PMID: 36093892 PMCID: PMC9574746 DOI: 10.15252/embj.2020104582] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 08/06/2022] [Accepted: 08/22/2022] [Indexed: 09/14/2023] Open
Abstract
The conserved nine-fold structural symmetry of the centriole is thought to be generated by cooperation between two mechanisms, one dependent on and the other independent of the cartwheel, a sub-centriolar structure consisting of a hub and nine spokes. However, the molecular entity of the cartwheel-independent mechanism has not been elucidated. Here, using Chlamydomonas reinhardtii mutants, we show that Bld10p/Cep135, a conserved centriolar protein that connects cartwheel spokes and triplet microtubules, plays a central role in this mechanism. Using immunoelectron microscopy, we localized hemagglutinin epitopes attached to distinct regions of Bld10p along two lines that connect adjacent triplets. Consistently, conventional and cryo-electron microscopy identified crosslinking structures at the same positions. In centrioles formed in the absence of the cartwheel, truncated Bld10p was found to significantly reduce the inter-triplet distance and frequently form eight-microtubule centrioles. These results suggest that the newly identified crosslinks are comprised of part of Bld10p/Cep135. We propose that Bld10p determines the inter-triplet distance in the centriole and thereby regulates the number of triplets in a cartwheel-independent manner.
Collapse
Affiliation(s)
- Akira Noga
- Department of Frontier BioscienceHosei UniversityTokyoJapan
- Department of Biological SciencesUniversity of TokyoTokyoJapan
- Division of Biology and ChemistryPaul Scherrer InstituteVilligenSwitzerland
| | - Mao Horii
- Department of Biological SciencesUniversity of TokyoTokyoJapan
| | - Yumi Goto
- RIKEN Center for Sustainable Resource ScienceYokohamaJapan
| | | | - Takashi Ishikawa
- Division of Biology and ChemistryPaul Scherrer InstituteVilligenSwitzerland
- Department of BiologyETH ZurichZurichSwitzerland
| | | |
Collapse
|
11
|
Stemm-Wolf AJ, O’Toole ET, Sheridan RM, Morgan JT, Pearson CG. The SON RNA splicing factor is required for intracellular trafficking structures that promote centriole assembly and ciliogenesis. Mol Biol Cell 2021; 32:ar4. [PMID: 34406792 PMCID: PMC8684746 DOI: 10.1091/mbc.e21-06-0305] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/16/2021] [Accepted: 07/23/2021] [Indexed: 11/11/2022] Open
Abstract
Control of centrosome assembly is critical for cell division, intracellular trafficking, and cilia. Regulation of centrosome number occurs through the precise duplication of centrioles that reside in centrosomes. Here we explored transcriptional control of centriole assembly and find that the RNA splicing factor SON is specifically required for completing procentriole assembly. Whole genome mRNA sequencing identified genes whose splicing and expression are affected by the reduction of SON, with an enrichment in genes involved in the microtubule (MT) cytoskeleton, centrosome, and centriolar satellites. SON is required for the proper splicing and expression of CEP131, which encodes a major centriolar satellite protein and is required to organize the trafficking and MT network around the centrosomes. This study highlights the importance of the distinct MT trafficking network that is intimately associated with nascent centrioles and is responsible for procentriole development and efficient ciliogenesis.
Collapse
Affiliation(s)
- Alexander J. Stemm-Wolf
- Department of Cell and Developmental Biology, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045
| | | | - Ryan M. Sheridan
- RNA Biosciences Initiative (RBI), University of Colorado, Anschutz Medical Campus, Aurora, CO 80045
| | - Jacob T. Morgan
- Department of Cell and Developmental Biology, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045
| | - Chad G. Pearson
- Department of Cell and Developmental Biology, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045
| |
Collapse
|
12
|
Mohanan NK, Shaji F, Koshre GR, Laishram RS. Alternative polyadenylation: An enigma of transcript length variation in health and disease. WILEY INTERDISCIPLINARY REVIEWS-RNA 2021; 13:e1692. [PMID: 34581021 DOI: 10.1002/wrna.1692] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/16/2021] [Accepted: 08/24/2021] [Indexed: 12/19/2022]
Abstract
Alternative polyadenylation (APA) is a molecular mechanism during a pre-mRNA processing that involves usage of more than one polyadenylation site (PA-site) generating transcripts of varying length from a single gene. The location of a PA-site affects transcript length and coding potential of an mRNA contributing to both mRNA and protein diversification. This variation in the transcript length affects mRNA stability and translation, mRNA subcellular and tissue localization, and protein function. APA is now considered as an important regulatory mechanism in the pathophysiology of human diseases. An important consequence of the changes in the length of 3'-untranslated region (UTR) from disease-induced APA is altered protein expression. Yet, the relationship between 3'-UTR length and protein expression remains a paradox in a majority of diseases. Here, we review occurrence of APA, mechanism of PA-site selection, and consequences of transcript length variation in different diseases. Emerging evidence reveals coordinated involvement of core RNA processing factors including poly(A) polymerases in the PA-site selection in diseases-associated APAs. Targeting such APA regulators will be therapeutically significant in combating drug resistance in cancer and other complex diseases. This article is categorized under: RNA Processing > 3' End Processing RNA in Disease and Development > RNA in Disease Translation > Regulation.
Collapse
Affiliation(s)
- Neeraja K Mohanan
- Cardiovascular and Diabetes Biology Group, Rajiv Gandhi Centre for Biotechnology, Trivandrum, India
- Manipal Academy of Higher Education, Manipal, India
| | - Feba Shaji
- Cardiovascular and Diabetes Biology Group, Rajiv Gandhi Centre for Biotechnology, Trivandrum, India
- Regional Centre for Biotechnology, Faridabad, India
| | - Ganesh R Koshre
- Cardiovascular and Diabetes Biology Group, Rajiv Gandhi Centre for Biotechnology, Trivandrum, India
- Manipal Academy of Higher Education, Manipal, India
| | - Rakesh S Laishram
- Cardiovascular and Diabetes Biology Group, Rajiv Gandhi Centre for Biotechnology, Trivandrum, India
| |
Collapse
|
13
|
Gu C, Wang W, Tang X, Xu T, Zhang Y, Guo M, Wei R, Wang Y, Jurczyszyn A, Janz S, Beksac M, Zhan F, Seckinger A, Hose D, Pan J, Yang Y. CHEK1 and circCHEK1_246aa evoke chromosomal instability and induce bone lesion formation in multiple myeloma. Mol Cancer 2021; 20:84. [PMID: 34090465 PMCID: PMC8178856 DOI: 10.1186/s12943-021-01380-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 05/27/2021] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Multiple myeloma (MM) is still incurable and characterized by clonal expansion of plasma cells in the bone marrow (BM). Therefore, effective therapeutic interventions must target both myeloma cells and the BM niche. METHODS Cell proliferation, drug resistance, and chromosomal instability (CIN) induced by CHEK1 were confirmed by Giemsa staining, exon sequencing, immunofluorescence and xenograft model in vivo. Bone lesion was evaluated by Tartrate-resistant acid phosphatase (TRAP) staining. The existence of circCHEK1_246aa was evaluated by qPCR, Sanger sequencing and Mass Spectrometer. RESULTS We demonstrated that CHEK1 expression was significantly increased in human MM samples relative to normal plasma cells, and that in MM patients, high CHEK1 expression was associated with poor outcomes. Increased CHEK1 expression induced MM cellular proliferation and evoked drug-resistance in vitro and in vivo. CHEK1-mediated increases in cell proliferation and drug resistance were due in part to CHEK1-induced CIN. CHEK1 activated CIN, partly by phosphorylating CEP170. Interestingly, CHEK1 promoted osteoclast differentiation by upregulating NFATc1 expression. Intriguingly, we discovered that MM cells expressed circCHEK1_246aa, a circular CHEK1 RNA, which encoded and was translated to the CHEK1 kinase catalytic center. Transfection of circCHEK1_246aa increased MM CIN and osteoclast differentiation similarly to CHEK1 overexpression, suggesting that MM cells could secrete circCHEK1_246aa in the BM niche to increase the invasive potential of MM cells and promote osteoclast differentiation. CONCLUSIONS Our findings suggest that targeting the enzymatic catalytic center encoded by CHEK1 mRNA and circCHEK1_246aa is a promising therapeutic modality to target both MM cells and BM niche.
Collapse
Affiliation(s)
- Chunyan Gu
- Nanjing Hospital of Chinese Medicine affiliated to Nanjing University of Chinese Medicine, Nanjing, China.,School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, China
| | - Wang Wang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, China
| | - Xiaozhu Tang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, China
| | - Tingting Xu
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, China
| | - Yanxin Zhang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, China
| | - Mengjie Guo
- Nanjing Hospital of Chinese Medicine affiliated to Nanjing University of Chinese Medicine, Nanjing, China.,School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, China
| | - Rongfang Wei
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, China
| | - Yajun Wang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, China
| | - Artur Jurczyszyn
- Department of Hematology, Jagiellonian University Medical College, Cracow, Poland
| | - Siegfried Janz
- Division of Hematology and Oncology, Medical College of Wisconsin, Milwaukee, USA
| | - Meral Beksac
- Department of Hematology, School of Medicine, Ankara University, Ankara, Turkey
| | - Fenghuang Zhan
- Myeloma Center, University of Arkansas for Medical Sciences, Little Rock, USA
| | - Anja Seckinger
- Laboratory of Hematology and Immunology & Labor für Myelomforschung, Vrije Universiteit Brussel (VUB), Jette, Belgium
| | - Dirk Hose
- Laboratory of Hematology and Immunology & Labor für Myelomforschung, Vrije Universiteit Brussel (VUB), Jette, Belgium
| | - Jingxuan Pan
- Nanjing Hospital of Chinese Medicine affiliated to Nanjing University of Chinese Medicine, Nanjing, China. .,State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, 54 South Xianlie Road, Guangzhou, 510060, China.
| | - Ye Yang
- Nanjing Hospital of Chinese Medicine affiliated to Nanjing University of Chinese Medicine, Nanjing, China. .,School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, China.
| |
Collapse
|
14
|
Mittal K, Kaur J, Jaczko M, Wei G, Toss MS, Rakha EA, Janssen EAM, Søiland H, Kucuk O, Reid MD, Gupta MV, Aneja R. Centrosome amplification: a quantifiable cancer cell trait with prognostic value in solid malignancies. Cancer Metastasis Rev 2021; 40:319-339. [PMID: 33106971 PMCID: PMC7897259 DOI: 10.1007/s10555-020-09937-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 10/12/2020] [Indexed: 02/07/2023]
Abstract
Numerical and/or structural centrosome amplification (CA) is a hallmark of cancers that is often associated with the aberrant tumor karyotypes and poor clinical outcomes. Mechanistically, CA compromises mitotic fidelity and leads to chromosome instability (CIN), which underlies tumor initiation and progression. Recent technological advances in microscopy and image analysis platforms have enabled better-than-ever detection and quantification of centrosomal aberrancies in cancer. Numerous studies have thenceforth correlated the presence and the degree of CA with indicators of poor prognosis such as higher tumor grade and ability to recur and metastasize. We have pioneered a novel semi-automated pipeline that integrates immunofluorescence confocal microscopy with digital image analysis to yield a quantitative centrosome amplification score (CAS), which is a summation of the severity and frequency of structural and numerical centrosome aberrations in tumor samples. Recent studies in breast cancer show that CA increases across the disease progression continuum, while normal breast tissue exhibited the lowest CA, followed by cancer-adjacent apparently normal, ductal carcinoma in situ and invasive tumors, which showed the highest CA. This finding strengthens the notion that CA could be evolutionarily favored and can promote tumor progression and metastasis. In this review, we discuss the prevalence, extent, and severity of CA in various solid cancer types, the utility of quantifying amplified centrosomes as an independent prognostic marker. We also highlight the clinical feasibility of a CA-based risk score for predicting recurrence, metastasis, and overall prognosis in patients with solid cancers.
Collapse
Affiliation(s)
- Karuna Mittal
- Department of Biology, Georgia State University, 100 Piedmont Ave, Atlanta, GA, 30303, USA
| | - Jaspreet Kaur
- Department of Biology, Georgia State University, 100 Piedmont Ave, Atlanta, GA, 30303, USA
| | - Meghan Jaczko
- Department of Biology, Georgia State University, 100 Piedmont Ave, Atlanta, GA, 30303, USA
| | - Guanhao Wei
- Department of Biology, Georgia State University, 100 Piedmont Ave, Atlanta, GA, 30303, USA
| | - Michael S Toss
- Department of Pathology, University of Nottingham and Nottingham University Hospitals, Nottingham, UK
| | - Emad A Rakha
- Department of Pathology, University of Nottingham and Nottingham University Hospitals, Nottingham, UK
| | | | - Håvard Søiland
- Department of Breast and Endocrine Surgery, Stavanger University Hospital, Stavanger, Norway
| | - Omer Kucuk
- Winship Cancer Institute, Department of Hematology and Medical Oncology, Emory University Hospital, Atlanta, GA, USA
| | | | | | - Ritu Aneja
- Department of Biology, Georgia State University, 100 Piedmont Ave, Atlanta, GA, 30303, USA.
| |
Collapse
|
15
|
Sankaran DG, Stemm-Wolf AJ, McCurdy BL, Hariharan B, Pearson CG. A semi-automated machine learning-aided approach to quantitative analysis of centrosomes and microtubule organization. J Cell Sci 2020; 133:jcs243543. [PMID: 32591487 PMCID: PMC7406313 DOI: 10.1242/jcs.243543] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 06/18/2020] [Indexed: 12/18/2022] Open
Abstract
Microtubules (MTs) promote important cellular functions including migration, intracellular trafficking, and chromosome segregation. The centrosome, comprised of two centrioles surrounded by the pericentriolar material (PCM), is the cell's central MT-organizing center. Centrosomes in cancer cells are commonly numerically amplified. However, the question of how the amplification of centrosomes alters MT organization capacity is not well studied. We developed a quantitative image-processing and machine learning-aided approach for the semi-automated analysis of MT organization. We designed a convolutional neural network-based approach for detecting centrosomes, and an automated pipeline for analyzing MT organization around centrosomes, encapsulated in a semi-automatic graphical tool. Using this tool, we find that breast cancer cells with supernumerary centrosomes not only have more PCM protein per centrosome, which gradually increases with increasing centriole numbers, but also exhibit expansion in PCM size. Furthermore, cells with amplified centrosomes have more growing MT ends, higher MT density and altered spatial distribution of MTs around amplified centrosomes. Thus, the semi-automated approach developed here enables rapid and quantitative analyses revealing important facets of centrosomal aberrations.
Collapse
Affiliation(s)
- Divya Ganapathi Sankaran
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, 2801 East 17th Avenue, Aurora, CO 80045-2537, USA
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Alexander J Stemm-Wolf
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, 2801 East 17th Avenue, Aurora, CO 80045-2537, USA
| | - Bailey L McCurdy
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, 2801 East 17th Avenue, Aurora, CO 80045-2537, USA
| | - Bharath Hariharan
- Department of Computer Science, Cornell University, Ithaca, NY 14853, USA
| | - Chad G Pearson
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, 2801 East 17th Avenue, Aurora, CO 80045-2537, USA
| |
Collapse
|
16
|
Park EM, Scott PM, Clutario K, Cassidy KB, Zhan K, Gerber SA, Holland AJ. WBP11 is required for splicing the TUBGCP6 pre-mRNA to promote centriole duplication. J Cell Biol 2020; 219:133543. [PMID: 31874114 PMCID: PMC7039186 DOI: 10.1083/jcb.201904203] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 09/24/2019] [Accepted: 10/22/2019] [Indexed: 12/15/2022] Open
Abstract
Centriole duplication occurs once in each cell cycle to maintain centrosome number. A previous genome-wide screen revealed that depletion of 14 RNA splicing factors leads to a specific defect in centriole duplication, but the cause of this deficit remains unknown. Here, we identified an additional pre-mRNA splicing factor, WBP11, as a novel protein required for centriole duplication. Loss of WBP11 results in the retention of ∼200 introns, including multiple introns in TUBGCP6, a central component of the γ-TuRC. WBP11 depletion causes centriole duplication defects, in part by causing a rapid decline in the level of TUBGCP6. Several additional splicing factors that are required for centriole duplication interact with WBP11 and are required for TUBGCP6 expression. These findings provide insight into how the loss of a subset of splicing factors leads to a failure of centriole duplication. This may have clinical implications because mutations in some spliceosome proteins cause microcephaly and/or growth retardation, phenotypes that are strongly linked to centriole defects.
Collapse
Affiliation(s)
- Elizabeth M Park
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Phillip M Scott
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Kevin Clutario
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Katelyn B Cassidy
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Lebanon, NH
| | - Kevin Zhan
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Scott A Gerber
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Lebanon, NH.,Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Lebanon, NH.,Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, NH
| | - Andrew J Holland
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD
| |
Collapse
|
17
|
Zhou X, Zhi Y, Yu J, Xu D. The Yin and Yang of Autosomal Recessive Primary Microcephaly Genes: Insights from Neurogenesis and Carcinogenesis. Int J Mol Sci 2020; 21:ijms21051691. [PMID: 32121580 PMCID: PMC7084222 DOI: 10.3390/ijms21051691] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 02/23/2020] [Accepted: 02/26/2020] [Indexed: 12/26/2022] Open
Abstract
The stem cells of neurogenesis and carcinogenesis share many properties, including proliferative rate, an extensive replicative potential, the potential to generate different cell types of a given tissue, and an ability to independently migrate to a damaged area. This is also evidenced by the common molecular principles regulating key processes associated with cell division and apoptosis. Autosomal recessive primary microcephaly (MCPH) is a neurogenic mitotic disorder that is characterized by decreased brain size and mental retardation. Until now, a total of 25 genes have been identified that are known to be associated with MCPH. The inactivation (yin) of most MCPH genes leads to neurogenesis defects, while the upregulation (yang) of some MCPH genes is associated with different kinds of carcinogenesis. Here, we try to summarize the roles of MCPH genes in these two diseases and explore the underlying mechanisms, which will help us to explore new, attractive approaches to targeting tumor cells that are resistant to the current therapies.
Collapse
Affiliation(s)
- Xiaokun Zhou
- College of Biological Science and Engineering, Institute of Life Sciences, Fuzhou University, Fuzhou 350108, China; (X.Z.); (Y.Z.); (J.Y.)
| | - Yiqiang Zhi
- College of Biological Science and Engineering, Institute of Life Sciences, Fuzhou University, Fuzhou 350108, China; (X.Z.); (Y.Z.); (J.Y.)
| | - Jurui Yu
- College of Biological Science and Engineering, Institute of Life Sciences, Fuzhou University, Fuzhou 350108, China; (X.Z.); (Y.Z.); (J.Y.)
| | - Dan Xu
- College of Biological Science and Engineering, Institute of Life Sciences, Fuzhou University, Fuzhou 350108, China; (X.Z.); (Y.Z.); (J.Y.)
- Fujian Key Laboratory of Molecular Neurology, Institute of Neuroscience, Fujian Medical University, Fuzhou 350005, China
- Correspondence: ; Tel.: +86-17085937559
| |
Collapse
|
18
|
ZO-2 Is a Master Regulator of Gene Expression, Cell Proliferation, Cytoarchitecture, and Cell Size. Int J Mol Sci 2019; 20:ijms20174128. [PMID: 31450555 PMCID: PMC6747478 DOI: 10.3390/ijms20174128] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 08/08/2019] [Accepted: 08/10/2019] [Indexed: 12/13/2022] Open
Abstract
ZO-2 is a cytoplasmic protein of tight junctions (TJs). Here, we describe ZO-2 involvement in the formation of the apical junctional complex during early development and in TJ biogenesis in epithelial cultured cells. ZO-2 acts as a scaffold for the polymerization of claudins at TJs and plays a unique role in the blood–testis barrier, as well as at TJs of the human liver and the inner ear. ZO-2 movement between the cytoplasm and nucleus is regulated by nuclear localization and exportation signals and post-translation modifications, while ZO-2 arrival at the cell border is triggered by activation of calcium sensing receptors and corresponding downstream signaling. Depending on its location, ZO-2 associates with junctional proteins and the actomyosin cytoskeleton or a variety of nuclear proteins, playing a role as a transcriptional repressor that leads to inhibition of cell proliferation and transformation. ZO-2 regulates cell architecture through modulation of Rho proteins and its absence induces hypertrophy due to inactivation of the Hippo pathway and activation of mTOR and S6K. The interaction of ZO-2 with viral oncoproteins and kinases and its silencing in diverse carcinomas reinforce the view of ZO-2 as a tumor regulator protein.
Collapse
|