1
|
Alfonzo-Méndez MA, Strub MP, Taraska JW. Spatial and signaling overlap of growth factor receptor systems at clathrin-coated sites. Mol Biol Cell 2024; 35:ar138. [PMID: 39292879 PMCID: PMC11617105 DOI: 10.1091/mbc.e24-05-0226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/22/2024] [Accepted: 09/03/2024] [Indexed: 09/20/2024] Open
Abstract
Cellular communication is regulated at the plasma membrane by the interactions of receptor, adhesion, signaling, exocytic, and endocytic proteins. Yet, the composition and control of these complexes in response to external cues remain unclear. We use high-resolution and high-throughput fluorescence imaging to map the localization of growth factor receptors and related proteins at single clathrin-coated structures in human squamous HSC3 cells. We find distinct protein signatures between control cells and cells stimulated with growth factors. Clathrin sites at the plasma membrane are preloaded with some receptors but not others. Stimulation with epidermal growth factor induces capture and concentration of epidermal growth factor, fibroblast growth factor 1, and low-density lipoprotein receptor (EGFR, FGFR1, and LDLR). Regulatory proteins including ubiquitin ligase Cbl, the scaffold Grb2, and the mechanoenzyme dynamin2 are also recruited. Disrupting FGFR1 or EGFR activity with drugs prevents the recruitment of both EGFR and FGFR1. EGF was able to activate FGFR1 phosphorylation. Our data reveal novel coclustering and activation of receptors and regulatory factors at clathrin-coated sites in response to stimulation by a single growth factor, EGF or FGF. This behavior integrates growth factor signaling and allows for complex responses to extracellular cues and drugs at the plasma membrane of human cells.
Collapse
Affiliation(s)
- Marco A. Alfonzo-Méndez
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Marie-Paule Strub
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Justin W. Taraska
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
2
|
Alfonzo-Méndez MA, Strub MP, Taraska JW. Crosstalk of growth factor receptors at plasma membrane clathrin-coated sites. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.16.594559. [PMID: 38903101 PMCID: PMC11188102 DOI: 10.1101/2024.05.16.594559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Cellular communication is regulated at the plasma membrane by the interactions of receptor, adhesion, signaling, exocytic, and endocytic proteins. Yet, the composition and control of these nanoscale complexes in response to external cues remain unclear. Here, we use high-resolution and high-throughput fluorescence imaging to map the localization of growth factor receptors and related proteins at single clathrin-coated structures across the plasma membrane of human squamous HSC3 cells. We find distinct protein signatures between control cells and cells stimulated with ligands. Clathrin sites at the plasma membrane are preloaded with some receptors but not others. Stimulation with epidermal growth factor induces a capture and concentration of epidermal growth factor-, fibroblast growth factor-, and low-density lipoprotein-receptors (EGFR, FGFR, and LDLR). Regulatory proteins including ubiquitin ligase Cbl, the scaffold Grb2, and the mechanoenzyme dynamin2 are also recruited. Disrupting FGFR or EGFR individually with drugs prevents the recruitment of both EGFR and FGFR. Our data reveals novel crosstalk between multiple unrelated receptors and regulatory factors at clathrin-coated sites in response to stimulation by a single growth factor, EGF. This behavior integrates growth factor signaling and allows for complex responses to extracellular cues and drugs at the plasma membrane of human cells.
Collapse
Affiliation(s)
- Marco A. Alfonzo-Méndez
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Building 50, 50 South Drive, Bethesda, MD 20892
| | - Marie-Paule Strub
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Building 50, 50 South Drive, Bethesda, MD 20892
| | - Justin W. Taraska
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Building 50, 50 South Drive, Bethesda, MD 20892
| |
Collapse
|
3
|
Vassilopoulos S, Montagnac G. Clathrin assemblies at a glance. J Cell Sci 2024; 137:jcs261674. [PMID: 38668719 DOI: 10.1242/jcs.261674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024] Open
Abstract
Clathrin assembles into honeycomb-like lattices at the plasma membrane but also on internal membranes, such as at the Golgi and tubular endosomes. Clathrin assemblies primarily regulate the intracellular trafficking of different cargoes, but clathrin also has non-endocytic functions in cell adhesion through interactions with specific integrins, contributes to intraluminal vesicle formation by forming flat bilayered coats on endosomes and even assembles on kinetochore k-fibers during mitosis. In this Cell Science at a Glance article and the accompanying poster, we review our current knowledge on the different types of canonical and non-canonical membrane-associated clathrin assemblies in mammalian cells, as observed by thin-section or platinum replica electron microscopy in various cell types, and discuss how the structural plasticity of clathrin contributes to its functional diversity.
Collapse
Affiliation(s)
- Stéphane Vassilopoulos
- Sorbonne Université, Inserm U974, Institut de Myologie, Centre de Recherche en Myologie, 75013 Paris, France
| | - Guillaume Montagnac
- Inserm U1279, Gustave Roussy Institute, Université Paris-Saclay, 94800 Villejuif, France
| |
Collapse
|
4
|
Lukas F, Matthaeus C, López-Hernández T, Lahmann I, Schultz N, Lehmann M, Puchkov D, Pielage J, Haucke V, Maritzen T. Canonical and non-canonical integrin-based adhesions dynamically interconvert. Nat Commun 2024; 15:2093. [PMID: 38453931 PMCID: PMC10920918 DOI: 10.1038/s41467-024-46381-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 02/22/2024] [Indexed: 03/09/2024] Open
Abstract
Adhesions are critical for anchoring cells in their environment, as signaling platforms and for cell migration. In line with these diverse functions different types of cell-matrix adhesions have been described. Best-studied are the canonical integrin-based focal adhesions. In addition, non-canonical integrin adhesions lacking focal adhesion proteins have been discovered. These include reticular adhesions also known as clathrin plaques or flat clathrin lattices, that are enriched in clathrin and other endocytic proteins, as well as extensive adhesion networks and retraction fibers. How these different adhesion types that share a common integrin backbone are related and whether they can interconvert is unknown. Here, we identify the protein stonin1 as a marker for non-canonical αVβ5 integrin-based adhesions and demonstrate by live cell imaging that canonical and non-canonical adhesions can reciprocally interconvert by the selective exchange of components on a stable αVβ5 integrin scaffold. Hence, non-canonical adhesions can serve as points of origin for the generation of canonical focal adhesions.
Collapse
Affiliation(s)
- Fabian Lukas
- Department for Nanophysiology, RPTU Kaiserslautern-Landau, Paul-Ehrlich-Straße 23, 67663, Kaiserslautern, Germany
- Membrane Traffic and Cell Motility Group, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Roessle-Straße 10, 13125, Berlin, Germany
| | - Claudia Matthaeus
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, 50 South Drive, Building 50, Bethesda, MD, 20892, USA
- Department for Molecular Pharmacology and Cell Biology, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Roessle-Straße 10, 13125, Berlin, Germany
| | - Tania López-Hernández
- Department for Molecular Pharmacology and Cell Biology, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Roessle-Straße 10, 13125, Berlin, Germany
| | - Ines Lahmann
- Developmental Biology/Signal Transduction Group, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Straße 10, 13125, Berlin, Germany
| | - Nicole Schultz
- Department for Nanophysiology, RPTU Kaiserslautern-Landau, Paul-Ehrlich-Straße 23, 67663, Kaiserslautern, Germany
| | - Martin Lehmann
- Cellular Imaging Facility, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Roessle-Straße 10, 13125, Berlin, Germany
| | - Dmytro Puchkov
- Cellular Imaging Facility, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Roessle-Straße 10, 13125, Berlin, Germany
| | - Jan Pielage
- Department for Zoology and Neurobiology, RPTU Kaiserslautern-Landau, Erwin-Schrödinger-Straße 13, 67663, Kaiserslautern, Germany
| | - Volker Haucke
- Department for Molecular Pharmacology and Cell Biology, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Roessle-Straße 10, 13125, Berlin, Germany
- Faculty of Biology, Chemistry, Pharmacy, Freie Universität Berlin, 14195, Berlin, Germany
- NeuroCure Cluster of Excellence, Charité Universitätsmedizin Berlin, 10117, Berlin, Germany
| | - Tanja Maritzen
- Department for Nanophysiology, RPTU Kaiserslautern-Landau, Paul-Ehrlich-Straße 23, 67663, Kaiserslautern, Germany.
- Membrane Traffic and Cell Motility Group, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Roessle-Straße 10, 13125, Berlin, Germany.
| |
Collapse
|
5
|
Djakbarova U, Madraki Y, Chan ET, Wu T, Atreaga-Muniz V, Akatay AA, Kural C. Tension-induced adhesion mode switching: the interplay between focal adhesions and clathrin-containing adhesion complexes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.07.579324. [PMID: 38370749 PMCID: PMC10871318 DOI: 10.1101/2024.02.07.579324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Integrin-based adhesion complexes are crucial in various cellular processes, including proliferation, differentiation, and motility. While the dynamics of canonical focal adhesion complexes (FAs) have been extensively studied, the regulation and physiological implications of the recently identified clathrin-containing adhesion complexes (CCACs) are still not well understood. In this study, we investigated the spatiotemporal mechanoregulations of FAs and CCACs in a breast cancer model. Employing single-molecule force spectroscopy coupled with live-cell fluorescence microscopy, we discovered that FAs and CCACs are mutually exclusive and inversely regulated complexes. This regulation is orchestrated through the modulation of plasma membrane tension, in combination with distinct modes of actomyosin contractility that can either synergize with or counteract this modulation. Our findings indicate that increased membrane tension promotes the association of CCACs at integrin αVβ5 adhesion sites, leading to decreased cancer cell proliferation, spreading, and migration. Conversely, lower membrane tension promotes the formation of FAs, which correlates with the softer membranes observed in cancer cells, thus potentially facilitating cancer progression. Our research provides novel insights into the biomechanical regulation of CCACs and FAs, revealing their critical and contrasting roles in modulating cancer cell progression.
Collapse
Affiliation(s)
- Umida Djakbarova
- Department of Physics, The Ohio State University, Columbus, OH, 43210, USA
| | - Yasaman Madraki
- Department of Physics, The Ohio State University, Columbus, OH, 43210, USA
| | - Emily T. Chan
- Department of Physics, The Ohio State University, Columbus, OH, 43210, USA
- Interdisciplinary Biophysics Graduate Program, The Ohio State University, Columbus, OH 43210, USA
| | - Tianyao Wu
- Department of Physics, The Ohio State University, Columbus, OH, 43210, USA
- Interdisciplinary Biophysics Graduate Program, The Ohio State University, Columbus, OH 43210, USA
| | | | - A. Ata Akatay
- Department of Physics, The Ohio State University, Columbus, OH, 43210, USA
| | - Comert Kural
- Department of Physics, The Ohio State University, Columbus, OH, 43210, USA
- Interdisciplinary Biophysics Graduate Program, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
6
|
Rashid S, Dimitriadi M. Autophagy in spinal muscular atrophy: from pathogenic mechanisms to therapeutic approaches. Front Cell Neurosci 2024; 17:1307636. [PMID: 38259504 PMCID: PMC10801191 DOI: 10.3389/fncel.2023.1307636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 12/14/2023] [Indexed: 01/24/2024] Open
Abstract
Spinal muscular atrophy (SMA) is a devastating neuromuscular disorder caused by the depletion of the ubiquitously expressed survival motor neuron (SMN) protein. While the genetic cause of SMA has been well documented, the exact mechanism(s) by which SMN depletion results in disease progression remain elusive. A wide body of evidence has highlighted the involvement and dysregulation of autophagy in SMA. Autophagy is a highly conserved lysosomal degradation process which is necessary for cellular homeostasis; defects in the autophagic machinery have been linked with a wide range of neurodegenerative disorders, including amyotrophic lateral sclerosis, Alzheimer's disease and Parkinson's disease. The pathway is particularly known to prevent neurodegeneration and has been suggested to act as a neuroprotective factor, thus presenting an attractive target for novel therapies for SMA patients. In this review, (a) we provide for the first time a comprehensive summary of the perturbations in the autophagic networks that characterize SMA development, (b) highlight the autophagic regulators which may play a key role in SMA pathogenesis and (c) propose decreased autophagic flux as the causative agent underlying the autophagic dysregulation observed in these patients.
Collapse
Affiliation(s)
| | - Maria Dimitriadi
- School of Life and Medical Science, University of Hertfordshire, Hatfield, United Kingdom
| |
Collapse
|
7
|
Bitoun M. [The dynamin-2-gene related centronuclear myopathy]. Med Sci (Paris) 2023; 39 Hors série n° 1:6-10. [PMID: 37975763 DOI: 10.1051/medsci/2023130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023] Open
Abstract
Autosomal dominant centronuclear myopathy (AD-CNM) is a rare congenital myopathy characterized by muscle weakness and centrally located nuclei in muscle fibers in the absence of any regeneration. AD-CNM is due to mutations in the DNM2 gene encoding dynamin 2 (DNM2), a large GTPase involved in intracellular membrane trafficking and a regulator of actin and microtubule cytoskeletons. DNM2 mutations are associated with a broad clinical spectrum ranging from severe neonatal to less severe late-onset forms. The histopathological signature includes nuclear centralization, predominance and atrophy of type 1 myofibers and radiating sarcoplasmic strands. To explain the muscle dysfunction, several pathophysiological mechanisms affecting key mechanisms of muscle homeostasis have been identified. They include defects in excitation-contraction coupling, muscle regeneration, mitochondria or autophagy. Several therapeutic approaches are under development by modulating the expression of DNM2 in a pan-allelic manner or by allele-specific silencing targeting only the mutated allele, which open the era of clinical trials for this pathology.
Collapse
Affiliation(s)
- Marc Bitoun
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, UMRS974, Institut de Myologie, Groupe Hospitalier Pitié-Salpêtrière, 75013 Paris, France
| |
Collapse
|
8
|
Nawara TJ, Mattheyses AL. Imaging nanoscale axial dynamics at the basal plasma membrane. Int J Biochem Cell Biol 2023; 156:106349. [PMID: 36566777 PMCID: PMC10634635 DOI: 10.1016/j.biocel.2022.106349] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/16/2022] [Accepted: 12/21/2022] [Indexed: 12/24/2022]
Abstract
Understanding of how energetically unfavorable plasma membrane shapes form, especially in the context of dynamic processes in living cells or tissues like clathrin-mediated endocytosis is in its infancy. Even though cutting-edge microscopy techniques that bridge this gap exist, they remain underused in biomedical sciences. Here, we demystify the perceived complexity of these advanced microscopy approaches and demonstrate their power in resolving nanometer axial dynamics in living cells. Total internal reflection fluorescence microscopy based approaches are the main focus of this review. We present clathrin-mediated endocytosis as a model system when describing the principles, data acquisition requirements, data interpretation strategies, and limitations of the described techniques. We hope this standardized description will bring the approaches for measuring nanoscale axial dynamics closer to the potential users and help in choosing the right approach to the right question.
Collapse
Affiliation(s)
- Tomasz J Nawara
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Alexa L Mattheyses
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
9
|
Sterol-Sensing Domain (SSD)-Containing Proteins in Sterol Auxotrophic Phytophthora capsici Mediate Sterol Signaling and Play a Role in Asexual Reproduction and Pathogenicity. Microbiol Spectr 2023; 11:e0379722. [PMID: 36629430 PMCID: PMC9927452 DOI: 10.1128/spectrum.03797-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Phytophthora species are devastating filamentous plant pathogens that belong to oomycetes, a group of microorganisms similar to fungi in morphology but phylogenetically distinct. They are sterol auxotrophic, but nevertheless exploit exogenous sterols for growth and development. However, as for now the mechanisms underlying sterol utilization in Phytophthora are unknown. In this study, we identified four genes in Phytophthora capsici that encode proteins containing a sterol-sensing domain (SSD), a protein domain of around 180 amino acids comprising five transmembrane segments and known to feature in sterol signaling in animals. Using a modified CRISPR/Cas9 system, we successfully knocked out the four genes named PcSCP1 to PcSCP4 (for P. capsici SSD-containing protein 1 to 4), either individually or sequentially, thereby creating single, double, triple, and quadruple knockout transformants. Results showed that knocking out just one of the four PcSCPs was not sufficient to block sterol signaling. However, the quadruple "all-four" PcSCPs knockout transformants no longer responded to sterol treatment in asexual reproduction, in contrast to wild-type P. capsici that produced zoospores under sterol treatment. Apparently, the four PcSCPs play a key role in sterol signaling in P. capsici with functional redundancy. Transcriptome analysis indicated that the expression of a subset of genes is regulated by exogenous sterols via PcSCPs. Further investigations showed that sterols could stimulate zoospore differentiation via PcSCPs by controlling actin-mediated membrane trafficking. Moreover, the pathogenicity of the "all-four" PcSCPs knockout transformants was significantly decreased and many pathogenicity related genes were downregulated, implying that PcSCPs also contribute to plant-pathogen interaction. IMPORTANCE Phytophthora is an important genus of oomycetes that comprises many destructive plant pathogens. Due to the incompleteness of the sterol synthesis pathway, Phytophthora spp. do not possess the ability to produce sterols. Therefore, these sterol auxotrophic oomycetes need to recruit sterols from the environment such as host plants to support growth and development, which seems crucial during pathogen-plant interactions. However, the mechanisms underlying sterol utilization by Phytophthora spp. remain largely unknown. Here, we show that a family of sterol-sensing domain-containing proteins (SCPs) consisting of four members in P. capsici plays a key role in sterol signaling with functional redundancy. Moreover, these SCPs play a role in different biological processes, including asexual reproduction and pathogenicity. Our study overall revealed the multiple functions of PcSCPs and addressed the question of how exogenous sterols regulate the development of heterothallic Phytophthora spp. via SSD-containing proteins.
Collapse
|
10
|
Bruna-Gauchoux J, Montagnac G. Constraints and frustration in the clathrin-dependent endocytosis pathway. C R Biol 2022; 345:43-56. [PMID: 36847464 DOI: 10.5802/crbiol.88] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 09/05/2022] [Indexed: 11/24/2022]
Abstract
Clathrin-dependent endocytosis is the major pathway for the entry of most surface receptors and their ligands. It is controlled by clathrin-coated structures that are endowed with the ability to cluster receptors and locally bend the plasma membrane, leading to the formation of receptor-containing vesicles budding into the cytoplasm. This canonical role of clathrin-coated structures has been repeatedly demonstrated to play a fundamental role in a wide range of aspects of cell physiology. However, it is now clearly established that the ability of clathrin-coated structures to bend the membrane can be disrupted. In addition to chemical or genetic alterations, many environmental conditions can physically prevent or slow membrane deformation and/or budding of clathrin-coated structures. The resulting frustrated endocytosis is not only a passive consequence but serves very specific and important cellular functions. Here we provide a historical perspective as well as a definition of frustrated endocytosis in the clathrin pathway before describing its causes and many functional consequences.
Collapse
|
11
|
Yang C, Colosi P, Hugelier S, Zabezhinsky D, Lakadamyali M, Svitkina T. Actin polymerization promotes invagination of flat clathrin-coated lattices in mammalian cells by pushing at lattice edges. Nat Commun 2022; 13:6127. [PMID: 36253374 PMCID: PMC9576739 DOI: 10.1038/s41467-022-33852-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 10/05/2022] [Indexed: 12/24/2022] Open
Abstract
Clathrin-mediated endocytosis (CME) requires energy input from actin polymerization in mechanically challenging conditions. The roles of actin in CME are poorly understood due to inadequate knowledge of actin organization at clathrin-coated structures (CCSs). Using platinum replica electron microscopy of mammalian cells, we show that Arp2/3 complex-dependent branched actin networks, which often emerge from microtubule tips, assemble along the CCS perimeter, lack interaction with the apical clathrin lattice, and have barbed ends oriented toward the CCS. This structure is hardly compatible with the widely held "apical pulling" model describing actin functions in CME. Arp2/3 complex inhibition or epsin knockout produce large flat non-dynamic CCSs, which split into invaginating subdomains upon recovery from Arp2/3 inhibition. Moreover, epsin localization to CCSs depends on Arp2/3 activity. We propose an "edge pushing" model for CME, wherein branched actin polymerization promotes severing and invagination of flat CCSs in an epsin-dependent manner by pushing at the CCS boundary, thus releasing forces opposing the intrinsic curvature of clathrin lattices.
Collapse
Affiliation(s)
- Changsong Yang
- grid.25879.310000 0004 1936 8972Department of Biology, University of Pennsylvania, Philadelphia, PA USA
| | - Patricia Colosi
- grid.25879.310000 0004 1936 8972Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA
| | - Siewert Hugelier
- grid.25879.310000 0004 1936 8972Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA
| | - Daniel Zabezhinsky
- grid.25879.310000 0004 1936 8972Department of Biology, University of Pennsylvania, Philadelphia, PA USA
| | - Melike Lakadamyali
- grid.25879.310000 0004 1936 8972Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA
| | - Tatyana Svitkina
- grid.25879.310000 0004 1936 8972Department of Biology, University of Pennsylvania, Philadelphia, PA USA
| |
Collapse
|
12
|
Fujise K, Noguchi S, Takeda T. Centronuclear Myopathy Caused by Defective Membrane Remodelling of Dynamin 2 and BIN1 Variants. Int J Mol Sci 2022; 23:ijms23116274. [PMID: 35682949 PMCID: PMC9181712 DOI: 10.3390/ijms23116274] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 05/31/2022] [Accepted: 06/01/2022] [Indexed: 02/01/2023] Open
Abstract
Centronuclear myopathy (CNM) is a congenital myopathy characterised by centralised nuclei in skeletal myofibers. T-tubules, sarcolemmal invaginations required for excitation-contraction coupling, are disorganised in the skeletal muscles of CNM patients. Previous studies showed that various endocytic proteins are involved in T-tubule biogenesis and their dysfunction is tightly associated with CNM pathogenesis. DNM2 and BIN1 are two causative genes for CNM that encode essential membrane remodelling proteins in endocytosis, dynamin 2 and BIN1, respectively. In this review, we overview the functions of dynamin 2 and BIN1 in T-tubule biogenesis and discuss how their dysfunction in membrane remodelling leads to CNM pathogenesis.
Collapse
Affiliation(s)
- Kenshiro Fujise
- Departments of Neuroscience and Cell Biology, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06520-8001, USA;
| | - Satoru Noguchi
- National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Tokyo 187-8502, Japan;
| | - Tetsuya Takeda
- Department of Biochemistry, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Shikata-cho 2-5-1, Kita-ku, Okayama 700-8558, Japan
- Correspondence: ; Tel.: +81-86-235-7125; Fax: +81-86-235-7126
| |
Collapse
|
13
|
Zuidema A, Wang W, Kreft M, Bleijerveld OB, Hoekman L, Aretz J, Böttcher RT, Fässler R, Sonnenberg A. Molecular determinants of αVβ5 localization in flat clathrin lattices: Role of αVβ5 in cell adhesion and proliferation. J Cell Sci 2022; 135:275569. [PMID: 35532004 PMCID: PMC9234671 DOI: 10.1242/jcs.259465] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 04/20/2022] [Indexed: 11/20/2022] Open
Abstract
The vitronectin receptor integrin αVβ5 can reside in two distinct adhesion structures: focal adhesions (FAs) and flat clathrin lattices (FCLs). Here we investigated the mechanism that regulates the subcellular distribution of β5 in keratinocytes and show that β5 has approximately 7- and 5-fold higher affinity for the clathrin adaptors ARH and Numb, respectively, than for talin; all proteins that bind to the membrane-proximal NPxY motif of the β5 cytoplasmic domain. Using mass spectrometry, we identified β5 interactors including the Rho GEFs p115Rho-GEF and GEF-H1, and the serine protein kinase MARK2; depletion of which diminishes the clustering of β5 in FCLs. Substitution of two serines (S759/762) in the β5 cytoplasmic domain with phospho-mimetic glutamates causes a shift in the localization of β5 from FAs into FCLs without affecting the interactions with MARK2, p115Rho-GEF or GEF-H1. Instead, we demonstrate that changes in the actomyosin-based cellular contractility by ectopic expression of activated Rho or disruption of microtubules regulates β5 localization. Finally, we present evidence that β5 in either FAs or FCLs functions to promote adhesion to vitronectin, cell spreading, and proliferation.
Collapse
Affiliation(s)
- Alba Zuidema
- Division of Cell Biology I, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam 1066 CX, The Netherlands
| | - Wei Wang
- Division of Cell Biology I, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam 1066 CX, The Netherlands
| | - Maaike Kreft
- Division of Cell Biology I, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam 1066 CX, The Netherlands
| | | | - Liesbeth Hoekman
- Proteomics Facility, The Netherlands Cancer Institute, The Netherlands
| | - Jonas Aretz
- Department of Molecular Medicine, Max Planck Institute of Biochemistry, The Netherlands
| | - Ralph T. Böttcher
- Department of Molecular Medicine, Max Planck Institute of Biochemistry, The Netherlands
| | - Reinhard Fässler
- Department of Molecular Medicine, Max Planck Institute of Biochemistry, The Netherlands
| | - Arnoud Sonnenberg
- Division of Cell Biology I, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam 1066 CX, The Netherlands
| |
Collapse
|
14
|
Abouelezz A, Almeida-Souza L. The mammalian endocytic cytoskeleton. Eur J Cell Biol 2022; 101:151222. [DOI: 10.1016/j.ejcb.2022.151222] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 03/31/2022] [Accepted: 04/01/2022] [Indexed: 12/27/2022] Open
|
15
|
Alfonzo-Méndez MA, Sochacki KA, Strub MP, Taraska JW. Dual clathrin and integrin signaling systems regulate growth factor receptor activation. Nat Commun 2022; 13:905. [PMID: 35173166 PMCID: PMC8850434 DOI: 10.1038/s41467-022-28373-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 01/18/2022] [Indexed: 12/20/2022] Open
Abstract
The crosstalk between growth factor and adhesion receptors is key for cell growth and migration. In pathological settings, these receptors are drivers of cancer. Yet, how growth and adhesion signals are spatially organized and integrated is poorly understood. Here we use quantitative fluorescence and electron microscopy to reveal a mechanism where flat clathrin lattices partition and activate growth factor signals via a coordinated response that involves crosstalk between epidermal growth factor receptor (EGFR) and the adhesion receptor β5-integrin. We show that ligand-activated EGFR, Grb2, Src, and β5-integrin are captured by clathrin coated-structures at the plasma membrane. Clathrin structures dramatically grow in response to EGF into large flat plaques and provide a signaling platform that link EGFR and β5-integrin through Src-mediated phosphorylation. Disrupting this EGFR/Src/β5-integrin axis prevents both clathrin plaque growth and dampens receptor signaling. Our study reveals a reciprocal regulation between clathrin lattices and two different receptor systems to coordinate and enhance signaling. These findings have broad implications for the regulation of growth factor signaling, adhesion, and endocytosis.
Collapse
Affiliation(s)
- Marco A Alfonzo-Méndez
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, 50 South Drive, Building 50, Bethesda, MD, 20892, USA
| | - Kem A Sochacki
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, 50 South Drive, Building 50, Bethesda, MD, 20892, USA
| | - Marie-Paule Strub
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, 50 South Drive, Building 50, Bethesda, MD, 20892, USA
| | - Justin W Taraska
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, 50 South Drive, Building 50, Bethesda, MD, 20892, USA.
| |
Collapse
|
16
|
Abstract
The cytoskeleton is a complex of detergent-insoluble components of the cytoplasm playing critical roles in cell motility, shape generation, and mechanical properties of a cell. Fibrillar polymers-actin filaments, microtubules, and intermediate filaments-are major constituents of the cytoskeleton, which constantly change their organization during cellular activities. The actin cytoskeleton is especially polymorphic, as actin filaments can form multiple higher-order assemblies performing different functions. Structural information about cytoskeleton organization is critical for understanding its functions and mechanisms underlying various forms of cellular activity. Because of the nanometer-scale thickness of cytoskeletal fibers, electron microscopy (EM) is a key tool to determine the structure of the cytoskeleton.This article describes application of rotary shadowing (or platinum replica ) EM (PREM) for visualization of the cytoskeleton . The procedure is applicable to thin cultured cells growing on glass coverslips and consists of detergent extraction (or mechanical "unroofing") of cells to expose their cytoskeleton , chemical fixation to provide stability, ethanol dehydration and critical point drying to preserve three-dimensionality, rotary shadowing with platinum to create contrast, and carbon coating to stabilize replicas. This technique provides easily interpretable three-dimensional images, in which individual cytoskeletal fibers are clearly resolved and individual proteins can be identified by immunogold labeling. More importantly, PREM is easily compatible with live cell imaging, so that one can correlate the dynamics of a cell or its components, e.g., expressed fluorescent proteins, with high-resolution structural organization of the cytoskeleton in the same cell.
Collapse
Affiliation(s)
- Tatyana Svitkina
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
17
|
Moulay G, Bitoun M, Furling D, Vassilopoulos S. [How alternative splicing contributes to clathrin's structural plasticity]. Med Sci (Paris) 2021; 37:1186-1188. [PMID: 34928228 DOI: 10.1051/medsci/2021178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Gilles Moulay
- Sorbonne Université, Inserm, Association Institut de myologie, Centre de recherche en myologie, UMRS 974, 47 boulevard de l'Hôpital, 75013 Paris, France
| | - Marc Bitoun
- Sorbonne Université, Inserm, Association Institut de myologie, Centre de recherche en myologie, UMRS 974, 47 boulevard de l'Hôpital, 75013 Paris, France
| | - Denis Furling
- Sorbonne Université, Inserm, Association Institut de myologie, Centre de recherche en myologie, UMRS 974, 47 boulevard de l'Hôpital, 75013 Paris, France
| | - Stéphane Vassilopoulos
- Sorbonne Université, Inserm, Association Institut de myologie, Centre de recherche en myologie, UMRS 974, 47 boulevard de l'Hôpital, 75013 Paris, France
| |
Collapse
|
18
|
Gómez-Oca R, Cowling BS, Laporte J. Common Pathogenic Mechanisms in Centronuclear and Myotubular Myopathies and Latest Treatment Advances. Int J Mol Sci 2021; 22:11377. [PMID: 34768808 PMCID: PMC8583656 DOI: 10.3390/ijms222111377] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 10/18/2021] [Indexed: 01/18/2023] Open
Abstract
Centronuclear myopathies (CNM) are rare congenital disorders characterized by muscle weakness and structural defects including fiber hypotrophy and organelle mispositioning. The main CNM forms are caused by mutations in: the MTM1 gene encoding the phosphoinositide phosphatase myotubularin (myotubular myopathy), the DNM2 gene encoding the mechanoenzyme dynamin 2, the BIN1 gene encoding the membrane curvature sensing amphiphysin 2, and the RYR1 gene encoding the skeletal muscle calcium release channel/ryanodine receptor. MTM1, BIN1, and DNM2 proteins are involved in membrane remodeling and trafficking, while RyR1 directly regulates excitation-contraction coupling (ECC). Several CNM animal models have been generated or identified, which confirm shared pathological anomalies in T-tubule remodeling, ECC, organelle mispositioning, protein homeostasis, neuromuscular junction, and muscle regeneration. Dynamin 2 plays a crucial role in CNM physiopathology and has been validated as a common therapeutic target for three CNM forms. Indeed, the promising results in preclinical models set up the basis for ongoing clinical trials. Another two clinical trials to treat myotubular myopathy by MTM1 gene therapy or tamoxifen repurposing are also ongoing. Here, we review the contribution of the different CNM models to understanding physiopathology and therapy development with a focus on the commonly dysregulated pathways and current therapeutic targets.
Collapse
Affiliation(s)
- Raquel Gómez-Oca
- Department of Translational Medicine and Neurogenetics, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 67400 Illkirch, France;
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, 67400 Illkirch, France
- Centre National de la Recherche Scientifique (CNRS), UMR7104, 67400 Illkirch, France
- Strasbourg University, 67081 Strasbourg, France
- Dynacure, 67400 Illkirch, France;
| | | | - Jocelyn Laporte
- Department of Translational Medicine and Neurogenetics, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 67400 Illkirch, France;
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, 67400 Illkirch, France
- Centre National de la Recherche Scientifique (CNRS), UMR7104, 67400 Illkirch, France
- Strasbourg University, 67081 Strasbourg, France
| |
Collapse
|
19
|
Akisaka T. Platinum replicas of broken-open osteoclasts imaged by transmission electron microscopy. J Oral Biosci 2021; 63:307-318. [PMID: 34628004 DOI: 10.1016/j.job.2021.09.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/02/2021] [Accepted: 09/18/2021] [Indexed: 10/24/2022]
Abstract
BACKGROUND Preserving the cellular structure at the highest possible resolution is a prerequisite for morphological studies to deepen our understanding of cellular functions. A revival of interest in rapid-freezing methods combined with breaking-open techniques has taken place with the development of effective and informative approaches in platinum replica electron microscopy, thus providing new approaches to address unresolved issues in cell biology. HIGHLIGHT The images produced with platinum replicas revealed 3D structures of the cell interior: (1) cell membranes associated with highly organized cytoskeletons, including podosomes or geodomes, (2) heterogeneous clathrin assemblies and membrane skeletons on the inner side of the membrane, and (3) organization of the cytoskeleton after detergent extraction. CONCLUSION In this review, I will focus on the platinum replica method after brokenopen cells have been broken open with mechanical shearing or detergent extraction. Often forgotten nowadays is the use of platinum replicas with stereomicroscopic observations for transmission electron microscopy study; these "old-fashioned" imaging techniques, combined with the breaking-open technique represent a highly informative approach to deepen our understanding of the organization of the cell interior. These are still being pursued to answer outstanding biological questions.
Collapse
Affiliation(s)
- Toshitaka Akisaka
- Department of Oral Anatomy and Neurobiology, Graduate School of Dentistry, Osaka University, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
20
|
Djakbarova U, Madraki Y, Chan ET, Kural C. Dynamic interplay between cell membrane tension and clathrin-mediated endocytosis. Biol Cell 2021; 113:344-373. [PMID: 33788963 PMCID: PMC8898183 DOI: 10.1111/boc.202000110] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 03/08/2021] [Accepted: 03/19/2021] [Indexed: 12/26/2022]
Abstract
Deformability of the plasma membrane, the outermost surface of metazoan cells, allows cells to be dynamic, mobile and flexible. Factors that affect this deformability, such as tension on the membrane, can regulate a myriad of cellular functions, including membrane resealing, cell motility, polarisation, shape maintenance, membrane area control and endocytic vesicle trafficking. This review focuses on mechanoregulation of clathrin-mediated endocytosis (CME). We first delineate the origins of cell membrane tension and the factors that yield to its spatial and temporal fluctuations within cells. We then review the recent literature demonstrating that tension on the membrane is a fast-acting and reversible regulator of CME. Finally, we discuss tension-based regulation of endocytic clathrin coat formation during physiological processes.
Collapse
Affiliation(s)
| | - Yasaman Madraki
- Department of Physics, The Ohio State University, Columbus, OH 43210, USA
| | - Emily T. Chan
- Interdiscipiinary Biophysics Graduate Program, The Ohio State University, Columbus, OH 43210, USA
- Molecular Biophysics Training Program, The Ohio State University, Columbus, OH 43210, USA
| | - Comert Kural
- Department of Physics, The Ohio State University, Columbus, OH 43210, USA
- Interdiscipiinary Biophysics Graduate Program, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
21
|
Liu CCS, Cheung PW, Dinesh A, Baylor N, Paunescu TC, Nair AV, Bouley R, Brown D. Actin-related protein 2/3 complex plays a critical role in the aquaporin-2 exocytotic pathway. Am J Physiol Renal Physiol 2021; 321:F179-F194. [PMID: 34180716 PMCID: PMC8424666 DOI: 10.1152/ajprenal.00015.2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The trafficking of proteins such as aquaporin-2 (AQP2) in the exocytotic pathway requires an active actin cytoskeleton network, but the mechanism is incompletely understood. Here, we show that the actin-related protein (Arp)2/3 complex, a key factor in actin filament branching and polymerization, is involved in the shuttling of AQP2 between the trans-Golgi network (TGN) and the plasma membrane. Arp2/3 inhibition (using CK-666) or siRNA knockdown blocks vasopressin-induced AQP2 membrane accumulation and induces the formation of distinct AQP2 perinuclear patches positive for markers of TGN-derived clathrin-coated vesicles. After a 20°C cold block, AQP2 formed perinuclear patches due to continuous endocytosis coupled with inhibition of exit from TGN-associated vesicles. Upon rewarming, AQP2 normally leaves the TGN and redistributes into the cytoplasm, entering the exocytotic pathway. Inhibition of Arp2/3 blocked this process and trapped AQP2 in clathrin-positive vesicles. Taken together, these results suggest that Arp2/3 is essential for AQP2 trafficking, specifically for its delivery into the post-TGN exocytotic pathway to the plasma membrane.NEW & NOTEWORTHY Aquaporin-2 (AQP2) undergoes constitutive recycling between the cytoplasm and plasma membrane, with an intricate balance between endocytosis and exocytosis. By inhibiting the actin-related protein (Arp)2/3 complex, we prevented AQP2 from entering the exocytotic pathway at the post-trans-Golgi network level and blocked AQP2 membrane accumulation. Arp2/3 inhibition, therefore, enables us to separate and target the exocytotic process, while not affecting endocytosis, thus allowing us to envisage strategies to modulate AQP2 trafficking and treat water balance disorders.
Collapse
Affiliation(s)
- Chen-Chung Steven Liu
- Program in Membrane Biology and Division of Nephrology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Pui Wen Cheung
- Program in Membrane Biology and Division of Nephrology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Anupama Dinesh
- Program in Membrane Biology and Division of Nephrology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Noah Baylor
- Program in Membrane Biology and Division of Nephrology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Theodor C. Paunescu
- Program in Membrane Biology and Division of Nephrology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Anil V. Nair
- Program in Membrane Biology and Division of Nephrology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Richard Bouley
- Program in Membrane Biology and Division of Nephrology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Dennis Brown
- Program in Membrane Biology and Division of Nephrology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
22
|
Tenner B, Zhang JZ, Kwon Y, Pessino V, Feng S, Huang B, Mehta S, Zhang J. FluoSTEPs: Fluorescent biosensors for monitoring compartmentalized signaling within endogenous microdomains. SCIENCE ADVANCES 2021; 7:7/21/eabe4091. [PMID: 34020947 PMCID: PMC8139597 DOI: 10.1126/sciadv.abe4091] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 04/01/2021] [Indexed: 05/10/2023]
Abstract
Growing evidence suggests that many essential intracellular signaling events are compartmentalized within kinetically distinct microdomains in cells. Genetically encoded fluorescent biosensors are powerful tools to dissect compartmentalized signaling, but current approaches to probe these microdomains typically rely on biosensor fusion and overexpression of critical regulatory elements. Here, we present a novel class of biosensors named FluoSTEPs (fluorescent sensors targeted to endogenous proteins) that combine self-complementing split green fluorescent protein, CRISPR-mediated knock-in, and fluorescence resonance energy transfer biosensor technology to probe compartmentalized signaling dynamics in situ. We designed FluoSTEPs for simultaneously highlighting endogenous microdomains and reporting domain-specific, real-time signaling events including kinase activities, guanosine triphosphatase activation, and second messenger dynamics in live cells. A FluoSTEP for 3',5'-cyclic adenosine monophosphate (cAMP) revealed distinct cAMP dynamics within clathrin microdomains in response to stimulation of G protein-coupled receptors, showcasing the utility of FluoSTEPs in probing spatiotemporal regulation within endogenous signaling architectures.
Collapse
Affiliation(s)
- Brian Tenner
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, USA
- Department of Biophysics and Biophysical Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jason Z Zhang
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, USA
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Yonghoon Kwon
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Veronica Pessino
- Graduate Program of Biophysics, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Siyu Feng
- The UC Berkeley-UCSF Graduate Program in Bioengineering, San Francisco, CA 94143, USA
| | - Bo Huang
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94143, USA
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94143, USA
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - Sohum Mehta
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, USA.
| | - Jin Zhang
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, USA.
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
23
|
Sochacki KA, Heine BL, Haber GJ, Jimah JR, Prasai B, Alfonzo-Méndez MA, Roberts AD, Somasundaram A, Hinshaw JE, Taraska JW. The structure and spontaneous curvature of clathrin lattices at the plasma membrane. Dev Cell 2021; 56:1131-1146.e3. [PMID: 33823128 PMCID: PMC8081270 DOI: 10.1016/j.devcel.2021.03.017] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 01/19/2021] [Accepted: 03/11/2021] [Indexed: 01/10/2023]
Abstract
Clathrin-mediated endocytosis is the primary pathway for receptor and cargo internalization in eukaryotic cells. It is characterized by a polyhedral clathrin lattice that coats budding membranes. The mechanism and control of lattice assembly, curvature, and vesicle formation at the plasma membrane has been a matter of long-standing debate. Here, we use platinum replica and cryoelectron microscopy and tomography to present a structural framework of the pathway. We determine the shape and size parameters common to clathrin-mediated endocytosis. We show that clathrin sites maintain a constant surface area during curvature across multiple cell lines. Flat clathrin is present in all cells and spontaneously curves into coated pits without additional energy sources or recruited factors. Finally, we attribute curvature generation to loosely connected and pentagon-containing flat lattices that can rapidly curve when a flattening force is released. Together, these data present a universal mechanistic model of clathrin-mediated endocytosis.
Collapse
Affiliation(s)
- Kem A Sochacki
- Biochemistry and Biophysics Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Bridgette L Heine
- Biochemistry and Biophysics Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Gideon J Haber
- Biochemistry and Biophysics Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - John R Jimah
- Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Bijeta Prasai
- Biochemistry and Biophysics Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Marco A Alfonzo-Méndez
- Biochemistry and Biophysics Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Aleah D Roberts
- Biochemistry and Biophysics Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Agila Somasundaram
- Biochemistry and Biophysics Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jenny E Hinshaw
- Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Justin W Taraska
- Biochemistry and Biophysics Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
24
|
Wu M, Wu X. A kinetic view of clathrin assembly and endocytic cargo sorting. Curr Opin Cell Biol 2021; 71:130-138. [PMID: 33865229 DOI: 10.1016/j.ceb.2021.02.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 02/10/2021] [Accepted: 02/12/2021] [Indexed: 01/30/2023]
Abstract
Specificity and sensitivity in biochemical reactions can be achieved through regulation of equilibrium binding affinity or through proofreading mechanisms that allow for the dissociation of unwanted intermediates. In this essay, we aim to provide our perspectives on how the concept of kinetic proofreading might apply in the context of cargo sorting in clathrin-mediated endocytosis.
Collapse
Affiliation(s)
- Min Wu
- Department of Cell Biology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06520-8002, USA.
| | - Xudong Wu
- Howard Hughes Medical Institute and Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA, 02115, USA
| |
Collapse
|
25
|
Moulay G, Lainé J, Lemaître M, Nakamori M, Nishino I, Caillol G, Mamchaoui K, Julien L, Dingli F, Loew D, Bitoun M, Leterrier C, Furling D, Vassilopoulos S. Alternative splicing of clathrin heavy chain contributes to the switch from coated pits to plaques. J Cell Biol 2021; 219:151930. [PMID: 32642759 PMCID: PMC7480091 DOI: 10.1083/jcb.201912061] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 04/14/2020] [Accepted: 05/15/2020] [Indexed: 12/18/2022] Open
Abstract
Clathrin function directly derives from its coat structure, and while endocytosis is mediated by clathrin-coated pits, large plaques contribute to cell adhesion. Here, we show that the alternative splicing of a single exon of the clathrin heavy chain gene (CLTC exon 31) helps determine the clathrin coat organization. Direct genetic control was demonstrated by forced CLTC exon 31 skipping in muscle cells that reverses the plasma membrane content from clathrin plaques to pits and by promoting exon inclusion that stimulated flat plaque assembly. Interestingly, mis-splicing of CLTC exon 31 found in the severe congenital form of myotonic dystrophy was associated with reduced plaques in patient myotubes. Moreover, forced exclusion of this exon in WT mice muscle induced structural disorganization and reduced force, highlighting the contribution of this splicing event for the maintenance of tissue homeostasis. This genetic control on clathrin assembly should influence the way we consider how plasticity in clathrin-coated structures is involved in muscle development and maintenance.
Collapse
Affiliation(s)
- Gilles Moulay
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Association Institut de Myologie, Centre de Recherche en Myologie, UMRS 974, Paris, France
| | - Jeanne Lainé
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Association Institut de Myologie, Centre de Recherche en Myologie, UMRS 974, Paris, France.,Sorbonne Université, Department of Physiology, Pitié-Salpêtrière Hospital, Paris, France
| | - Mégane Lemaître
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Phénotypage du petit animal - UMS 28, Paris, France
| | - Masayuki Nakamori
- Department of Neurology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Ichizo Nishino
- Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Ghislaine Caillol
- Aix Marseille Université, Centre National de la Recherche Scientifique, NeuroCyto, Marseille, France
| | - Kamel Mamchaoui
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Association Institut de Myologie, Centre de Recherche en Myologie, UMRS 974, Paris, France
| | - Laura Julien
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Association Institut de Myologie, Centre de Recherche en Myologie, UMRS 974, Paris, France
| | - Florent Dingli
- Institut Curie, PSL Research University, Centre de Recherche, Laboratoire de Spectrométrie de Masse Protéomique, Paris, France
| | - Damarys Loew
- Institut Curie, PSL Research University, Centre de Recherche, Laboratoire de Spectrométrie de Masse Protéomique, Paris, France
| | - Marc Bitoun
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Association Institut de Myologie, Centre de Recherche en Myologie, UMRS 974, Paris, France
| | - Christophe Leterrier
- Aix Marseille Université, Centre National de la Recherche Scientifique, NeuroCyto, Marseille, France
| | - Denis Furling
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Association Institut de Myologie, Centre de Recherche en Myologie, UMRS 974, Paris, France
| | - Stéphane Vassilopoulos
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Association Institut de Myologie, Centre de Recherche en Myologie, UMRS 974, Paris, France
| |
Collapse
|
26
|
F Almeida C, Bitoun M, Vainzof M. Satellite cells deficiency and defective regeneration in dynamin 2-related centronuclear myopathy. FASEB J 2021; 35:e21346. [PMID: 33715228 DOI: 10.1096/fj.202001313rrr] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 11/23/2020] [Accepted: 12/21/2020] [Indexed: 11/11/2022]
Abstract
Dynamin 2 (DNM2) is a ubiquitously expressed protein involved in many functions related to trafficking and remodeling of membranes and cytoskeleton dynamics. Mutations in the DNM2 gene cause the autosomal dominant centronuclear myopathy (AD-CNM), characterized mainly by muscle weakness and central nuclei. Several defects have been identified in the KI-Dnm2R465W/+ mouse model of the disease to explain the muscle phenotype, including reduction of the satellite cell pool in muscle, but the functional consequences of this depletion have not been characterized until now. Satellite cells (SC) are the main source for muscle growth and regeneration of mature tissue. Here, we investigated muscle regeneration in the KI-Dnm2R465W/+ mouse model for AD-CNM. We found a reduced number of Pax7-positive SCs, which were also less activated after induced muscle injury. The muscles of the KI-Dnm2R465W/+ mouse regenerated more slowly and less efficiently than wild-type ones, formed fewer new myofibers, and did not recover its normal mass 15 days after injury. Altogether, our data provide evidence that the muscle regeneration is impaired in the KI-Dnm2R465W/+ mouse and contribute with one more layer to the comprehension of the disease, by identifying a new pathomechanism linked to DNM2 mutations which may be involved in the muscle-specific impact occurring in AD-CNM.
Collapse
Affiliation(s)
- Camila F Almeida
- Laboratory of Muscle Proteins and Comparative Histopathology, Human Genome and Stem Cell Research Center, Biosciences Institute, University of São Paulo, São Paulo, Brazil.,INSERM, Institute of Myology, Centre of Research in Myology, UMRS 974, Sorbonne Université, Paris, France
| | - Marc Bitoun
- INSERM, Institute of Myology, Centre of Research in Myology, UMRS 974, Sorbonne Université, Paris, France
| | - Mariz Vainzof
- Laboratory of Muscle Proteins and Comparative Histopathology, Human Genome and Stem Cell Research Center, Biosciences Institute, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
27
|
Akisaka T, Yoshida A. Surface distribution of heterogenous clathrin assemblies in resorbing osteoclasts. Exp Cell Res 2020; 399:112433. [PMID: 33359468 DOI: 10.1016/j.yexcr.2020.112433] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 12/06/2020] [Accepted: 12/12/2020] [Indexed: 01/04/2023]
Abstract
Osteoclasts seeded on either glass coverslips or apatite pellets have at least two morphologically distinct substrate adhesion sites: actin-based adhesion structures including podosome belts and sealing zones, and adjacent clathrin sheets. Clathrin-coated structures are exclusively localized at the podosome belts and sealing zone, in both of which the plasma membrane forms a tight attachment to the substrate surface. When cultured on apatite osteoclasts can degrade the apatite leading to the formation of resorption lacunae. The sealing zone divides the ventral membrane into different domains, outside and inside of the sealing zones. The former facing the smooth-surfaced intact apatite contains relatively solitary or networks of larger flat clathrin structures; and the latter, facing the rough-surfaced degraded apatite in the resorption lacunae contain clathrin in various shapes and sizes. Clathrin assemblies on the membrane domain facing not only a resorption lacuna, or trails but also intact apatite indeed were observed to be heterogeneous in size and intensity, suggesting that they appeared to follow variations in the surface topography of the apatite surface. These results provide a detailed insight into the flat clathrin sheets that have been suggested to be the sites of adhesion and mechanosensing in co-operation with podosomes.
Collapse
Affiliation(s)
- Toshitaka Akisaka
- Department of Oral Anatomy and Neurobiology, Graduate School of Dentistry, Osaka University, Japan.
| | - Atsushi Yoshida
- Department of Oral Anatomy and Neurobiology, Graduate School of Dentistry, Osaka University, Japan.
| |
Collapse
|
28
|
Pelletier L, Petiot A, Brocard J, Giannesini B, Giovannini D, Sanchez C, Travard L, Chivet M, Beaufils M, Kutchukian C, Bendahan D, Metzger D, Franzini Armstrong C, Romero NB, Rendu J, Jacquemond V, Fauré J, Marty I. In vivo RyR1 reduction in muscle triggers a core-like myopathy. Acta Neuropathol Commun 2020; 8:192. [PMID: 33176865 PMCID: PMC7657350 DOI: 10.1186/s40478-020-01068-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 10/27/2020] [Indexed: 12/16/2022] Open
Abstract
Mutations in the RYR1 gene, encoding the skeletal muscle calcium channel RyR1, lead to congenital myopathies, through expression of a channel with abnormal permeability and/or in reduced amount, but the direct functional whole organism consequences of exclusive reduction in RyR1 amount have never been studied. We have developed and characterized a mouse model with inducible muscle specific RYR1 deletion. Tamoxifen-induced recombination in the RYR1 gene at adult age resulted in a progressive reduction in the protein amount reaching a stable level of 50% of the initial amount, and was associated with a progressive muscle weakness and atrophy. Measurement of calcium fluxes in isolated muscle fibers demonstrated a reduction in the amplitude of RyR1-related calcium release mirroring the reduction in the protein amount. Alterations in the muscle structure were observed, with fibers atrophy, abnormal mitochondria distribution and membrane remodeling. An increase in the expression level of many proteins was observed, as well as an inhibition of the autophagy process. This model demonstrates that RyR1 reduction is sufficient to recapitulate most features of Central Core Disease, and accordingly similar alterations were observed in muscle biopsies from Dusty Core Disease patients (a subtype of Central Core Disease), pointing to common pathophysiological mechanisms related to RyR1 reduction.
Collapse
|
29
|
Integrins Control Vesicular Trafficking; New Tricks for Old Dogs. Trends Biochem Sci 2020; 46:124-137. [PMID: 33020011 PMCID: PMC7531435 DOI: 10.1016/j.tibs.2020.09.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 08/24/2020] [Accepted: 09/04/2020] [Indexed: 02/07/2023]
Abstract
Integrins are transmembrane receptors that transduce biochemical and mechanical signals across the plasma membrane and promote cell adhesion and migration. In addition, integrin adhesion complexes are functionally and structurally linked to components of the intracellular trafficking machinery and accumulating data now reveal that they are key regulators of endocytosis and exocytosis in a variety of cell types. Here, we highlight recent insights into integrin control of intracellular trafficking in processes such as degranulation, mechanotransduction, cell–cell communication, antibody production, virus entry, Toll-like receptor signaling, autophagy, and phagocytosis, as well as the release and uptake of extracellular vesicles. We discuss the underlying molecular mechanisms and the implications for a range of pathophysiological contexts, including hemostasis, immunity, tissue repair, cancer, and viral infection. Integrin adhesion complexes control polarized targeting of the intracellular trafficking machinery via microtubules. Integrin adhesions are exocytic hubs for a variety of vesicles, including lytic and dense granules, lysosome-related organelles, and biosynthetic vesicles. Integrin-dependent adhesion and signaling is required for degranulation of platelets and leukocytes and controls hemostasis and immunity. Specialized adhesion complexes containing integrin αvβ5 and clathrin are sites of frustrated endocytosis and hubs for mechanotransduction. Integrin control of endocytosis regulates Toll-like receptor signaling and autophagy in immune cells. Integrins control intercellular communication and viral transfer through extracellular vesicles.
Collapse
|
30
|
Seetharaman S, Etienne-Manneville S. Cytoskeletal Crosstalk in Cell Migration. Trends Cell Biol 2020; 30:720-735. [DOI: 10.1016/j.tcb.2020.06.004] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 06/09/2020] [Accepted: 06/10/2020] [Indexed: 01/15/2023]
|
31
|
Zuidema A, Wang W, Sonnenberg A. Crosstalk between Cell Adhesion Complexes in Regulation of Mechanotransduction. Bioessays 2020; 42:e2000119. [PMID: 32830356 DOI: 10.1002/bies.202000119] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/27/2020] [Indexed: 01/03/2023]
Abstract
Physical forces regulate numerous biological processes during development, physiology, and pathology. Forces between the external environment and intracellular actin cytoskeleton are primarily transmitted through integrin-containing focal adhesions and cadherin-containing adherens junctions. Crosstalk between these complexes is well established and modulates the mechanical landscape of the cell. However, integrins and cadherins constitute large families of adhesion receptors and form multiple complexes by interacting with different ligands, adaptor proteins, and cytoskeletal filaments. Recent findings indicate that integrin-containing hemidesmosomes oppose force transduction and traction force generation by focal adhesions. The cytolinker plectin mediates this crosstalk by coupling intermediate filaments to the actin cytoskeleton. Similarly, cadherins in desmosomes might modulate force generation by adherens junctions. Moreover, mechanotransduction can be influenced by podosomes, clathrin lattices, and tetraspanin-enriched microdomains. This review discusses mechanotransduction by multiple integrin- and cadherin-based cell adhesion complexes, which together with the associated cytoskeleton form an integrated network that allows cells to sense, process, and respond to their physical environment.
Collapse
Affiliation(s)
- Alba Zuidema
- Division of Cell Biology I, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam, 1066 CX, The Netherlands
| | - Wei Wang
- Division of Cell Biology I, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam, 1066 CX, The Netherlands
| | - Arnoud Sonnenberg
- Division of Cell Biology I, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam, 1066 CX, The Netherlands
| |
Collapse
|
32
|
Unconventional roles for membrane traffic proteins in response to muscle membrane stress. Curr Opin Cell Biol 2020; 65:42-49. [DOI: 10.1016/j.ceb.2020.02.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 02/10/2020] [Accepted: 02/15/2020] [Indexed: 12/19/2022]
|
33
|
Baschieri F, Porshneva K, Montagnac G. Frustrated clathrin-mediated endocytosis – causes and possible functions. J Cell Sci 2020; 133:133/11/jcs240861. [DOI: 10.1242/jcs.240861] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
ABSTRACT
Clathrin-mediated endocytosis is the main entry route for most cell surface receptors and their ligands. It is regulated by clathrin-coated structures that are endowed with the ability to cluster receptors and to locally bend the plasma membrane, resulting in the formation of receptor-containing vesicles that bud into the cytoplasm. This canonical role of clathrin-coated structures has been shown to play a fundamental part in many different aspects of cell physiology. However, it has recently become clear that the ability of clathrin-coated structures to deform membranes can be perturbed. In addition to chemical or genetic alterations, numerous environmental conditions can physically prevent or slow down membrane bending and/or budding at clathrin-coated structures. The resulting ‘frustrated endocytosis’ is emerging as not merely a passive consequence, but one that actually fulfils some very specific and important cellular functions. In this Review, we provide an historical and defining perspective on frustrated endocytosis in the clathrin pathway of mammalian cells, before discussing its causes and highlighting the possible functional consequences in physiology and diseases.
Collapse
Affiliation(s)
- Francesco Baschieri
- Inserm U1279, Gustave Roussy Institute, Université Paris-Saclay, Villejuif 94805, France
| | - Kseniia Porshneva
- Inserm U1279, Gustave Roussy Institute, Université Paris-Saclay, Villejuif 94805, France
| | - Guillaume Montagnac
- Inserm U1279, Gustave Roussy Institute, Université Paris-Saclay, Villejuif 94805, France
| |
Collapse
|
34
|
Cell matrix adhesion in cell migration. Essays Biochem 2020; 63:535-551. [PMID: 31444228 DOI: 10.1042/ebc20190012] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 07/22/2019] [Accepted: 08/06/2019] [Indexed: 02/06/2023]
Abstract
The ability of cells to migrate is a fundamental physiological process involved in embryonic development, tissue homeostasis, immune surveillance and wound healing. In order for cells to migrate, they must interact with their environment using adhesion receptors, such as integrins, and form specialized adhesion complexes that mediate responses to different extracellular cues. In this review, we discuss the role of integrin adhesion complexes (IACs) in cell migration, highlighting the layers of regulation that are involved, including intracellular signalling cascades, mechanosensing and reciprocal feedback to the extracellular environment. We also discuss the role of IACs in extracellular matrix remodeling and how they impact upon cell migration.
Collapse
|
35
|
Rausch V, Hansen CG. The Hippo Pathway, YAP/TAZ, and the Plasma Membrane. Trends Cell Biol 2019; 30:32-48. [PMID: 31806419 DOI: 10.1016/j.tcb.2019.10.005] [Citation(s) in RCA: 163] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 10/13/2019] [Accepted: 10/14/2019] [Indexed: 12/14/2022]
Abstract
The plasma membrane allows the cell to sense and adapt to changes in the extracellular environment by relaying external inputs via intracellular signaling networks. One central cellular signaling pathway is the Hippo pathway, which regulates homeostasis and plays chief roles in carcinogenesis and regenerative processes. Recent studies have found that mechanical stimuli and diffusible chemical components can regulate the Hippo pathway primarily through receptors embedded in the plasma membrane. Morphologically defined structures within the plasma membrane, such as cellular junctions, focal adhesions, primary cilia, caveolae, clathrin-coated pits, and plaques play additional key roles. Here, we discuss recent evidence highlighting the importance of these specialized plasma membrane domains in cellular feedback via the Hippo pathway.
Collapse
Affiliation(s)
- Valentina Rausch
- Centre for Inflammation Research, University of Edinburgh, Queen's Medical Research Institute, Edinburgh bioQuarter, 47 Little France Crescent, Edinburgh EH16 4TJ, UK; Institute for Regeneration and Repair, University of Edinburgh, Edinburgh bioQuarter, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Carsten G Hansen
- Centre for Inflammation Research, University of Edinburgh, Queen's Medical Research Institute, Edinburgh bioQuarter, 47 Little France Crescent, Edinburgh EH16 4TJ, UK; Institute for Regeneration and Repair, University of Edinburgh, Edinburgh bioQuarter, 5 Little France Drive, Edinburgh EH16 4UU, UK.
| |
Collapse
|
36
|
Endocytic Adaptor Proteins in Health and Disease: Lessons from Model Organisms and Human Mutations. Cells 2019; 8:cells8111345. [PMID: 31671891 PMCID: PMC6912373 DOI: 10.3390/cells8111345] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 10/24/2019] [Accepted: 10/25/2019] [Indexed: 12/11/2022] Open
Abstract
Cells need to exchange material and information with their environment. This is largely achieved via cell-surface receptors which mediate processes ranging from nutrient uptake to signaling responses. Consequently, their surface levels have to be dynamically controlled. Endocytosis constitutes a powerful mechanism to regulate the surface proteome and to recycle vesicular transmembrane proteins that strand at the plasma membrane after exocytosis. For efficient internalization, the cargo proteins need to be linked to the endocytic machinery via adaptor proteins such as the heterotetrameric endocytic adaptor complex AP-2 and a variety of mostly monomeric endocytic adaptors. In line with the importance of endocytosis for nutrient uptake, cell signaling and neurotransmission, animal models and human mutations have revealed that defects in these adaptors are associated with several diseases ranging from metabolic disorders to encephalopathies. This review will discuss the physiological functions of the so far known adaptor proteins and will provide a comprehensive overview of their links to human diseases.
Collapse
|
37
|
Lock JG, Baschieri F, Jones MC, Humphries JD, Montagnac G, Strömblad S, Humphries MJ. Clathrin-containing adhesion complexes. J Cell Biol 2019; 218:2086-2095. [PMID: 31208994 PMCID: PMC6605790 DOI: 10.1083/jcb.201811160] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 05/28/2019] [Accepted: 05/29/2019] [Indexed: 12/27/2022] Open
Abstract
An understanding of the mechanisms whereby cell adhesion complexes (ACs) relay signals bidirectionally across the plasma membrane is necessary to interpret the role of adhesion in regulating migration, differentiation, and growth. A range of AC types has been defined, but to date all have similar compositions and are dependent on a connection to the actin cytoskeleton. Recently, a new class of AC has been reported that normally lacks association with both the cytoskeleton and integrin-associated adhesome components, but is rich in components of the clathrin-mediated endocytosis machinery. The characterization of this new type of adhesion structure, which is emphasized by mitotic cells and cells in long-term culture, identifies a hitherto underappreciated link between the adhesion machinery and clathrin structures at the plasma membrane. While this discovery has implications for how ACs are assembled and disassembled, it raises many other issues. Consequently, to increase awareness within the field, and stimulate research, we explore a number of the most significant questions below.
Collapse
Affiliation(s)
- John G Lock
- Department of Pathology, School of Medical Sciences, University of New South Wales, Sydney, Australia
| | - Francesco Baschieri
- Institut National de la Santé et de la Recherche Médicale U1170, Gustave Roussy Institute, Université Paris-Saclay, Villejuif, France
| | - Matthew C Jones
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Jonathan D Humphries
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Guillaume Montagnac
- Institut National de la Santé et de la Recherche Médicale U1170, Gustave Roussy Institute, Université Paris-Saclay, Villejuif, France
| | - Staffan Strömblad
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Martin J Humphries
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| |
Collapse
|