Sharma P, Gayen D. Plant protease as regulator and signaling molecule for enhancing environmental stress-tolerance.
PLANT CELL REPORTS 2021;
40:2081-2095. [PMID:
34173047 DOI:
10.1007/s00299-021-02739-9]
[Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/16/2021] [Indexed: 06/13/2023]
Abstract
Proteases are ubiquitous in prokaryotes and eukaryotes. Plant proteases are key regulators of various physiological processes, including protein homeostasis, organelle development, senescence, seed germination, protein processing, environmental stress response, and programmed cell death. Proteases are involved in the breakdown of peptide bonds resulting in irreversible posttranslational modification of the protein. Proteases act as signaling molecules that specifically regulate cellular function by cleaving and triggering receptor molecules. Peptides derived from proteolysis regulate ROS signaling under oxidative stress in the plant. It degrades misfolded and abnormal proteins into amino acids to repair the cell damage and regulates the biological process in response to environmental stress. Proteases modulate the biogenesis of phytohormones which control plant growth, development, and environmental stresses. Protein homeostasis, the overall balance between protein synthesis and proteolysis, is required for plant growth and development. Abiotic and biotic stresses are major factors that negatively impact cellular survivability, biomass production, and reduced crop yield potentials. Therefore, the identification of various stress-responsive proteases and their molecular functions may elucidate valuable information for the development of stress-resilient crops with higher yield potentials. However, the understanding of molecular mechanisms of plant protease remains unexplored. This review provides an overview of proteases related to development, signaling, and growth regulation to acclimatize environmental stress in plants.
Collapse