1
|
Cao X, Yan L, Hong L. Ion channel mutations and cancer. Biochem Biophys Rep 2025; 42:101990. [PMID: 40236296 PMCID: PMC11999617 DOI: 10.1016/j.bbrep.2025.101990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 03/24/2025] [Accepted: 03/25/2025] [Indexed: 04/17/2025] Open
Abstract
Cancer is characterized by uncontrolled growth and spread of abnormal cells, driven by genetic, environmental, and lifestyle factors. Genetic mutations contribute to hallmark processes of cancer progression such as sustained proliferation, apoptosis resistance, and immune evasion. Ion channels are pore-forming transmembrane proteins that regulate ion transport across cellular membranes, influencing various cellular functions. Recent studies have indicated the emerging roles of ion channel proteins in cancer. Ion channels are critical for cellular processes like proliferation, apoptosis, migration, and angiogenesis, and dysregulation of ion channels by genetic mutations disrupts these processes, enabling tumor growth, invasion, and metastasis. Ion channel gene mutations have been associated with various cancer subtypes. These ion channel mutations either dysregulate ion channel activity associated with intracellular signaling pathways in cell survival and division, or influence the tumor microenvironment by modifying pH, oxygenation, or ion concentrations, which might facilitate tumor growth and gene expression and contribute to oncogenesis. In the present review, we discuss ion channel regulation of cancer biology and summarize recent studies in ion channel mutations associated with cancer.
Collapse
Affiliation(s)
- Xinyu Cao
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, 60612, USA
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Liang Yan
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Liang Hong
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, 60612, USA
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL, 60612, USA
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL, 60612, USA
| |
Collapse
|
2
|
O'Donnell BL, Stefan D, Chiu YH, Zeitz MJ, Tang J, Johnston D, Leighton SE, Van Kessel C, Barr K, Gyenis L, Freeman TJ, Kelly JJ, Sayedyahossein S, Isakson BE, Litchfield DW, Roth K, Smyth JW, Hebb M, Ronald J, Bayliss DA, Penuela S. Novel Pannexin 1 isoform is increased in cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.09.09.612143. [PMID: 39314291 PMCID: PMC11419113 DOI: 10.1101/2024.09.09.612143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Pannexin 1 (PANX1) is upregulated in many cancers, where its channel activity and signalling promote tumorigenic properties. Here, we report that potential internal translation start sites exist in mouse and human PANX1 which have implications in trafficking and protein interaction. Using mouse PANX1 constructs for each internal methionine (M) we saw that the shorter PANX1 isoforms were glycosylated, able to traffic to the cell surface and PANX1-M37 formed channels which could be activated by C-terminus cleavage or α1-adrenoceptor stimulation. Furthermore, we report a novel ∼25 kDa isoform of human PANX1 (hPANX1-25K) which lacks the N-terminus and was detected in several human cancer cell lines including melanoma, osteosarcoma, breast cancer, and glioblastoma multiforme. This isoform was increased upon hPANX1 CRISPR/Cas9 deletion targeting the first exon near M1, and using Expasy PeptideCutter we did not find any evidence of hPANX1 cleavage sites which would produce a 25 kDa fragment, suggesting a potential alternative translation initiation site as the source of hPANX1-25K. hPANX1-25K was confirmed to be a hPANX1 isoform via mass spectrometry, can be N-linked glycosylated at multiple sites including the canonical N255 and novel N338 and N394 residues, and can interact with both β-catenin and full length hPANX1. Using cell surface biotinylation and immunocytochemistry, we also determined hPANX1-25K exhibits a predominantly intracellular localization. hPANX1-25K is prevalent throughout melanoma progression, and its levels are increased in squamous cell carcinoma cells and patient-derived tumours, compared to keratinocytes and patient-matched normal skin, indicating that it may be differentially regulated in normal and cancer cells.
Collapse
|
3
|
Tichauer JE, Rovegno M. Role of astrocytes connexins - pannexins in acute brain injury. Neurotherapeutics 2025; 22:e00523. [PMID: 39848901 PMCID: PMC11840357 DOI: 10.1016/j.neurot.2025.e00523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 12/31/2024] [Accepted: 01/02/2025] [Indexed: 01/25/2025] Open
Abstract
Acute brain injuries (ABIs) encompass a broad spectrum of primary injuries such as ischemia, hypoxia, trauma, and hemorrhage that converge into secondary injury where some mechanisms show common determinants. In this regard, astroglial connexin and pannexin channels have been shown to play an important role. These channels are transmembrane proteins sharing similar topology and form gateways between adjacent cells named gap junctions (GJs) and pores into unopposed membranes named hemichannels (HCs). In astrocytes, GJs and HCs enable intercellular communication and have active participation in normal brain physiological processes, such as calcium waves, synapsis modulation, regional blood flow regulation, and homeostatic control of the extracellular environment, among others. However, after acute brain injury, astrocytes can change their phenotype and modify the activity of both channels and hemichannels, which can result in the amplification of danger signals, increased mediators of inflammation, and neuronal death, contributing to the expansion of brain damage and neurological deterioration. This is known as secondary brain damage. In this review, we discussed the main biological mechanism of secondary brain damage with a particular focus on astroglial connexin and pannexin participation during acute brain injuries.
Collapse
Affiliation(s)
- Juan E Tichauer
- Departamento de Medicina Intensiva, Facultad de Medicina, Pontificia Universidad Católica de Chile, Chile.
| | - Maximiliano Rovegno
- Departamento de Medicina Intensiva, Facultad de Medicina, Pontificia Universidad Católica de Chile, Chile.
| |
Collapse
|
4
|
Henze E, Ehrlich JJ, Robertson JL, Gelsleichter E, Kawate T. The C-terminal activating domain promotes pannexin 1 channel opening. Proc Natl Acad Sci U S A 2024; 121:e2411898121. [PMID: 39671183 DOI: 10.1073/pnas.2411898121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 11/15/2024] [Indexed: 12/14/2024] Open
Abstract
Pannexin 1 (Panx1) constitutes a large pore channel responsible for the release of adenosine triphosphate (ATP) from apoptotic cells. Strong evidence indicates that caspase-mediated cleavage of the C-terminus promotes the opening of the Panx1 channel by unplugging the pore. However, this simple pore-plugging mechanism alone cannot account for the observation that a Panx1 construct ending before the caspase cleavage site remains closed. Here, we show that a helical region located immediately before the caspase cleavage site, referred to as the "C-terminal activating domain (CAD)", plays a pivotal role in facilitating Panx1 activation. Electrophysiology and mutagenesis studies uncovered that two conserved leucine residues within the CAD play a pivotal role. Cryoelectron microscopy (Cryo-EM) analysis of the construct ending before reaching the CAD demonstrated that the N terminus extends into an intracellular pocket. In contrast, the construct including the CAD revealed that this domain occupies the intracellular pocket, causing the N terminus to flip upward within the pore. Analysis of electrostatic free energy landscape in the closed conformation indicated that the intracellular side of the ion permeation pore may be occupied by anions like ATP, creating an electrostatic barrier for anions attempting to permeate the pore. When the N terminus flips up, it diminishes the positively charged surface, thereby reducing the drive to accumulate anions inside the pore. This dynamic change in the electrostatic landscape likely contributes to the selection of permeant ions. Collectively, these experiments put forth a mechanism in which C-terminal cleavage liberates the CAD, causing the repositioning of the N terminus to promote Panx1 channel opening.
Collapse
Affiliation(s)
- Erik Henze
- Department of Molecular Medicine, Cornell University, Ithaca, NY 14853
| | | | - Janice L Robertson
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110
| | - Eric Gelsleichter
- Department of Molecular Medicine, Cornell University, Ithaca, NY 14853
| | - Toshimitsu Kawate
- Department of Molecular Medicine, Cornell University, Ithaca, NY 14853
| |
Collapse
|
5
|
O'Donnell BL, Johnston D, Bhatt A, Kardan Z, Stefan D, Bysice A, Sayedyahossein S, Dagnino L, Cecchini M, Loganathan SK, Roth K, Penuela S. Pannexin 1 and pannexin 3 differentially regulate the cancer cell properties of cutaneous squamous cell carcinoma. J Physiol 2024. [PMID: 39560179 DOI: 10.1113/jp286172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 10/23/2024] [Indexed: 11/20/2024] Open
Abstract
Pannexin (PANX) channels are present in skin and facilitate the movement of signalling molecules during cellular communication. PANX1 and PANX3 function in skin homeostasis and keratinocyte differentiation but were previously reduced in a small cohort of human cutaneous squamous cell carcinoma (cSCC) tumours compared to normal epidermis. In our study we used SCC-13 cells, limited publicly available RNA-seq data and a larger cohort of cSCC patient-matched samples to analyse PANX1 and PANX3 expression and determine the association between their dysregulation and the malignant properties of cSCC. In a bioinformatics analysis, PANX1 transcripts were increased in cSCC and head and neck SCC tumours compared to normal tissues, but PANX3 mRNA showed no differences. However, in our own cohort PANX3 transcripts were decreased in cSCC compared to patient-matched aged skin, whereas PANX1 protein was upregulated in cSCC. PANX1 localized to all regions within the cSCC tumour microenvironment, and increased levels were associated with larger tumour dimensions. To investigate PANX1 function in SCC-13 cells, we deleted PANX1 via CRISPR/Cas9 and treated with PANX1 inhibitors, which markedly reduced cell growth and migration. To assess PANX3 function in cutaneous carcinogenesis, we employed the 7,12-dimethylbenz(a)anthracene/12-otetradecanoylphorbol-13-acetate (DMBA/TPA) model using our global Panx3 knockout (KO) mice, where 60% of wild-type and 100% of KO mice formed precancerous papillomas. Average papilloma volumes at endpoint were significantly increased in KO mice and showed moderate evidence of increases in KO mice over time. Collectively, these findings suggest PANX1 and PANX3 dysregulation may have potential tumour-promoting and tumour-suppressive effects for keratinocyte transformation, respectively. KEY POINTS: Pannexin 1 (PANX1) and pannexin 3 (PANX3) are channel-forming proteins which are critical in the normal maintenance and function of keratinocytes in the skin but may become altered in cutaneous squamous cell carcinoma (cSCC) tumours. In this study we used a combination of culture models, mouse models and patient-derived tissues. We found PANX1 levels are increased in cSCC tumours and present in all tumour regions, functioning to promote cSCC cell growth and migration. Conversely, PANX3 levels are decreased in cSCC tumours, and this protein reduces the incidence and growth of precancerous lesions. Taken together our data indicate that in cSCC these pannexin family members seem to have opposite effects, in either promoting or restricting cancer cell properties. These results help us to better understand the mechanisms of malignant transformation of keratinocytes and offer a new potential therapeutic target for the treatment of advanced cSCC.
Collapse
Affiliation(s)
- Brooke L O'Donnell
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Danielle Johnston
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Ayushi Bhatt
- Faculty of Medicine, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Zahra Kardan
- Department of Surgical and Interventional Sciences, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec, Canada
| | - Dan Stefan
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Andrew Bysice
- Department of Otolaryngology - Head and Neck Surgery, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Samar Sayedyahossein
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Lina Dagnino
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
- Division of Experimental Oncology, Department of Oncology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Matthew Cecchini
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Sampath Kumar Loganathan
- Department of Surgical and Interventional Sciences, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec, Canada
- Departments of Otolaryngology - Head and Neck Surgery, Biochemistry and Experimental Medicine, Rosalind and Moris Goodman Cancer Research Institute, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec, Canada
| | - Kathryn Roth
- Department of Otolaryngology - Head and Neck Surgery, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
- London Regional Cancer Program, London Health Sciences Centre, London, Ontario, Canada
| | - Silvia Penuela
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
- Division of Experimental Oncology, Department of Oncology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
6
|
Henze E, Ehrlich JJ, Robertson JL, Kawate T. The C-terminal activating domain promotes Panx1 channel opening. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.13.598903. [PMID: 38915727 PMCID: PMC11195165 DOI: 10.1101/2024.06.13.598903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Pannexin 1 (Panx1) constitutes a large pore channel responsible for the release of ATP from apoptotic cells. Strong evidence indicates that caspase-mediated cleavage of the C-terminus promotes the opening of the Panx1 channel by unplugging the pore. However, this simple pore-plugging mechanism alone cannot account for the observation that a Panx1 construct ending before the caspase cleavage site remains closed. Here, we show that a helical region located immediately before the caspase cleavage site, referred to as the "C-terminal activating domain (CAD)," plays a pivotal role in facilitating Panx1 activation. Electrophysiology and mutagenesis studies uncovered that two conserved leucine residues within the CAD plays a pivotal role. Cryo-EM analysis of the construct ending before reaching the CAD demonstrated that the N-terminus extends into an intracellular pocket. In contrast, the construct including the CAD revealed that this domain occupies the intracellular pocket, causing the N-terminus to flip upward within the pore. Analysis of electrostatic free energy landscape in the closed conformation indicated that the intracellular side of the ion permeation pore may be occupied by anions like ATP, creating an electrostatic barrier for anions attempting to permeate the pore. When the N-terminus flips up, it diminishes the positively charged surface, thereby reducing the drive to accumulate anions inside the pore. This dynamic change in the electrostatic landscape likely contributes to the selection of permeant ions. Collectively, these experiments put forth a novel mechanism in which C-terminal cleavage liberates the CAD, causing the repositioning of the N-terminus to promote Panx1 channel opening.
Collapse
Affiliation(s)
- Erik Henze
- Department of Molecular Medicine, Cornell University, Ithaca, NY 14853, USA
| | | | - Janice L. Robertson
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Toshimitsu Kawate
- Department of Molecular Medicine, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
7
|
Ruan Z, Lee J, Li Y, Du J, Lü W. Human pannexin 1 channel is not phosphorylated by Src tyrosine kinase at Tyr199 and Tyr309. eLife 2024; 13:RP95118. [PMID: 38780416 PMCID: PMC11115448 DOI: 10.7554/elife.95118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024] Open
Abstract
Protein phosphorylation is one of the major molecular mechanisms regulating protein activity and function throughout the cell. Pannexin 1 (PANX1) is a large-pore channel permeable to ATP and other cellular metabolites. Its tyrosine phosphorylation and subsequent activation have been found to play critical roles in diverse cellular conditions, including neuronal cell death, acute inflammation, and smooth muscle contraction. Specifically, the non-receptor kinase Src has been reported to phosphorylate Tyr198 and Tyr308 of mouse PANX1 (equivalent to Tyr199 and Tyr309 of human PANX1), resulting in channel opening and ATP release. Although the Src-dependent PANX1 activation mechanism has been widely discussed in the literature, independent validation of the tyrosine phosphorylation of PANX1 has been lacking. Here, we show that commercially available antibodies against the two phosphorylation sites mentioned above-which were used to identify endogenous PANX1 phosphorylation at these two sites-are nonspecific and should not be used to interpret results related to PANX1 phosphorylation. We further provide evidence that neither tyrosine residue is a major phosphorylation site for Src kinase in heterologous expression systems. We call on the field to re-examine the existing paradigm of tyrosine phosphorylation-dependent activation of the PANX1 channel.
Collapse
Affiliation(s)
- Zheng Ruan
- Department of Structural Biology, Van Andel InstituteGrand RapidsUnited States
| | - Junuk Lee
- Department of Structural Biology, Van Andel InstituteGrand RapidsUnited States
| | - Yangyang Li
- Department of Structural Biology, Van Andel InstituteGrand RapidsUnited States
| | - Juan Du
- Department of Structural Biology, Van Andel InstituteGrand RapidsUnited States
| | - Wei Lü
- Department of Structural Biology, Van Andel InstituteGrand RapidsUnited States
| |
Collapse
|
8
|
Ruan Z, Lee J, Li Y, Du J, Lü W. Human Pannexin 1 Channel is NOT Phosphorylated by Src Tyrosine Kinase at Tyr199 and Tyr309. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.10.557063. [PMID: 38168229 PMCID: PMC10760007 DOI: 10.1101/2023.09.10.557063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Protein phosphorylation is one of the major molecular mechanisms regulating protein activity and function throughout the cell. Pannexin 1 (PANX1) is a large-pore channel permeable to ATP and other cellular metabolites. Its tyrosine phosphorylation and subsequent activation have been found to play critical roles in diverse cellular conditions, including neuronal cell death, acute inflammation, and smooth muscle contraction. Specifically, the non-receptor kinase Src has been reported to phosphorylate Tyr198 and Tyr308 of mouse PANX1 (equivalent to Tyr199 and Tyr309 of human PANX1), resulting in channel opening and ATP release. Although the Src-dependent PANX1 activation mechanism has been widely discussed in the literature, independent validation of the tyrosine phosphorylation of PANX1 has been lacking. Here, we show that commercially available antibodies against the two phosphorylation sites mentioned above-which were used to identify endogenous PANX1 phosphorylation at these two sites-are nonspecific and should not be used to interpret results related to PANX1 phosphorylation. We further provide evidence that neither tyrosine residue is a major phosphorylation site for Src kinase in heterologous expression systems. We call on the field to re-examine the existing paradigm of tyrosine phosphorylation-dependent activation of the PANX1 channel.
Collapse
Affiliation(s)
- Zheng Ruan
- Department of Structural Biology, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Junuk Lee
- Department of Structural Biology, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Yangyang Li
- Department of Structural Biology, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Juan Du
- Department of Structural Biology, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Wei Lü
- Department of Structural Biology, Van Andel Institute, Grand Rapids, MI 49503, USA
| |
Collapse
|
9
|
O'Donnell BL, Penuela S. Skin in the game: pannexin channels in healthy and cancerous skin. Biochem J 2023; 480:1929-1949. [PMID: 38038973 DOI: 10.1042/bcj20230176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/15/2023] [Accepted: 11/20/2023] [Indexed: 12/02/2023]
Abstract
The skin is a highly organized tissue composed of multiple layers and cell types that require coordinated cell to cell communication to maintain tissue homeostasis. In skin cancer, this organized structure and communication is disrupted, prompting the malignant transformation of healthy cells into melanoma, basal cell carcinoma or squamous cell carcinoma tumours. One such family of channel proteins critical for cellular communication is pannexins (PANX1, PANX2, PANX3), all of which are present in the skin. These heptameric single-membrane channels act as conduits for small molecules and ions like ATP and Ca2+ but have also been shown to have channel-independent functions through their interacting partners or action in signalling pathways. Pannexins have diverse roles in the skin such as in skin development, aging, barrier function, keratinocyte differentiation, inflammation, and wound healing, which were discovered through work with pannexin knockout mice, organotypic epidermis models, primary cells, and immortalized cell lines. In the context of cutaneous cancer, PANX1 is present at high levels in melanoma tumours and functions in melanoma carcinogenesis, and both PANX1 and PANX3 expression is altered in non-melanoma skin cancer. PANX2 has thus far not been implicated in any skin cancer. This review will discuss pannexin isoforms, structure, trafficking, post-translational modifications, interactome, and channel activity. We will also outline the expression, localization, and function of pannexin channels within the diverse cell types of the epidermis, dermis, hypodermis, and adnexal structures of the skin, and how these properties are exploited or abrogated in instances of skin cancer.
Collapse
Affiliation(s)
- Brooke L O'Donnell
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada N6A 5C1
| | - Silvia Penuela
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada N6A 5C1
- Department of Oncology, Division of Experimental Oncology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada N6A 5C1
| |
Collapse
|
10
|
Langlois S, St-Pierre ME, Holland SH, Xiang X, Freeman E, Mohamed H, Dural AC, Hammad A, Karami S, van de Panne C, Cowan KN. Inhibition of PANX1 Channels Reduces the Malignant Properties of Human High-Risk Neuroblastoma. J Cancer 2023; 14:689-706. [PMID: 37056395 PMCID: PMC10088893 DOI: 10.7150/jca.79552] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 03/03/2023] [Indexed: 04/15/2023] Open
Abstract
Pannexin 1 (PANX1) is expressed in many tissue types including tissues of neural origin. Neuroblastoma (NB) is a neural crest-derived malignancy mainly occurring in children. The majority of NB patients present with high-risk disease for which current therapies are ineffective. Here, we show that while PANX1 is expressed in NB of all stages, high PANX1 expression in high-risk NB is associated with a reduced survival probability. PANX1 channel inhibition using probenecid (PBN) or carbenoxolone (CBX) reduced the proliferation of our panel of high-risk NB cell lines. We show that expression of the Y10F PANX1 mutant, which cannot be phosphorylated on tyrosine 10 and acts in a dominant-negative manner, curtailed NB cell proliferation. Furthermore, PBN and CBX treatment halted the growth of NB spheroids and in some cases triggered the regression of established NB spheroids. Finally, both drugs reduced the progression of high-risk NB in vivo. Together our data indicate that PANX1 channels regulate human NB malignant properties and that the use of PBN or CBX may provide a new therapeutic approach for high-risk NB.
Collapse
Affiliation(s)
- Stéphanie Langlois
- Molecular Biomedicine Program, Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
- Department of Surgery, Children's Hospital of Eastern Ontario, University of Ottawa, Ottawa, Ontario, Canada
| | - Marie-Eve St-Pierre
- Molecular Biomedicine Program, Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
| | - Stephen H. Holland
- Molecular Biomedicine Program, Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Xiao Xiang
- Molecular Biomedicine Program, Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Emily Freeman
- Molecular Biomedicine Program, Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Hisham Mohamed
- Department of Surgery, Children's Hospital of Eastern Ontario, University of Ottawa, Ottawa, Ontario, Canada
| | - Ahmet Cem Dural
- Molecular Biomedicine Program, Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
- Department of Surgery, Children's Hospital of Eastern Ontario, University of Ottawa, Ottawa, Ontario, Canada
| | - Ahmed Hammad
- Molecular Biomedicine Program, Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
- Department of Surgery, Children's Hospital of Eastern Ontario, University of Ottawa, Ottawa, Ontario, Canada
| | - Sanaz Karami
- Molecular Biomedicine Program, Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
| | - Chloé van de Panne
- Molecular Biomedicine Program, Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
| | - Kyle N. Cowan
- Molecular Biomedicine Program, Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Department of Surgery, Children's Hospital of Eastern Ontario, University of Ottawa, Ottawa, Ontario, Canada
- ✉ Corresponding author: Dr. Kyle N. Cowan, Children's Hospital of Eastern Ontario, Pediatric General Surgery, 401 Smyth Rd, Room 3370, Ottawa, Ontario, K1H 8L1, Canada; E-mail: ; Phone: +1 613-737-7600 (ext. 2675); Fax: 613-738-4849
| |
Collapse
|
11
|
Wakefield B, Penuela S. Potential Implications of Exercise Training on Pannexin Expression and Function. J Vasc Res 2022; 60:114-124. [PMID: 36366809 DOI: 10.1159/000527240] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 09/14/2022] [Indexed: 09/05/2023] Open
Abstract
Pannexins (PANX1, 2, 3) are channel-forming glycoproteins that are expressed throughout the cardiovascular and musculoskeletal system. The canonical function of these proteins is to release nucleotides that act as purinergic signalling at the cell membrane or Ca2+ channels at the endoplasmic reticulum membrane. These two forms of signalling are essential for autocrine and paracrine signalling in health, and alterations in this signalling have been implicated in the pathogenesis of many diseases. Many musculoskeletal and cardiovascular diseases are largely the result of a lack of physical activity which causes altered gene expression. Considering exercise training has been shown to alter a wide array of gene expression in musculoskeletal tissues, understanding the interaction between exercise training, gene function and expression in relevant diseases is warranted. With regards to pannexins, multiple publications have shown that exercise training can influence pannexin expression and may influence the significance of its function in certain diseases. This review further discusses the potential interaction between exercise training and pannexin biology in relevant tissues and disease models. We propose that exercise training in relevant animal and human models will provide a more comprehensive understanding of the implications of pannexin biology in disease.
Collapse
Affiliation(s)
- Brent Wakefield
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
- Western's Bone and Joint Institute, The Dr. Sandy Kirkley Centre for Musculoskeletal Research, University Hospital, London, Ontario, Canada
| | - Silvia Penuela
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
- Western's Bone and Joint Institute, The Dr. Sandy Kirkley Centre for Musculoskeletal Research, University Hospital, London, Ontario, Canada
- Department of Oncology, Division of Experimental Oncology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
12
|
Abstract
Pannexin-1 (Panx1) channels contribute to neurological disorders, including stroke and epilepsy, where their function has been linked to N-methyl D-aspartate (NMDA) receptors (NMDARs). We discovered that Ca2+ entry via NMDARs recruits endoplasmic reticulum–resident STIM proteins to activate Panx1 by binding to a hydrophobic region localized to the Panx1 N terminus. Using loss-of-function approaches, combined with molecular replacement and use of a STIM/Panx1 function–blocking antibody, we demonstrate that disrupting the STIM/Panx1 interaction prevents Panx1 activation by NMDARs, but not by hypotonic stimuli. Thus, our findings serve as a basis for the design of modality-specific inhibitors against STIM-dependent Panx1 activation that will aid in understanding the multimodal functions of Panx1 and their contribution to physiology and pathology. Pannexin-1 (Panx1) is a large-pore ion and solute permeable channel highly expressed in the nervous system, where it subserves diverse processes, including neurite outgrowth, dendritic spine formation, and N-methyl D-aspartate (NMDA) receptor (NMDAR)-dependent plasticity. Moreover, Panx1 dysregulation contributes to neurological disorders, including neuropathic pain, epilepsy, and excitotoxicity. Despite progress in understanding physiological and pathological functions of Panx1, the mechanisms that regulate its activity, including its ion and solute permeability, remain poorly understood. In this study, we identify endoplasmic reticulum (ER)-resident stromal interaction molecules (STIM1/2), which are Ca2+ sensors that communicate events within the ER to plasma membrane channels, as binding and signaling partners of Panx1. We demonstrate that Panx1 is activated to its large-pore configuration in response to stimuli that recruit STIM1/2 and map the interaction interface to a hydrophobic region within the N terminus of Panx1. We further characterize a Panx1 N terminus–recognizing antibody as a function-blocking tool able to prevent large-pore Panx1 activation by STIM1/2. Using either the function-blocking antibody or re-expression of Panx1 deletion mutants in Panx1 knockout (KO) neurons, we show that STIM recruitment couples Ca2+ entry via NMDARs to Panx1 activation, thereby identifying a model of NMDAR-STIM-Panx1 signaling in neurons. Our study highlights a previously unrecognized and important role of the Panx1 N terminus in regulating channel activation and membrane localization. Considering past work demonstrating an intimate functional relation between NMDARs and Panx1, our study opens avenues for understanding activation modality and context-specific functions of Panx1, including functions linked to diverse STIM-regulated cellular responses.
Collapse
|
13
|
Koval M, Cwiek A, Carr T, Good ME, Lohman AW, Isakson BE. Pannexin 1 as a driver of inflammation and ischemia-reperfusion injury. Purinergic Signal 2021; 17:521-531. [PMID: 34251590 PMCID: PMC8273370 DOI: 10.1007/s11302-021-09804-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 06/24/2021] [Indexed: 02/06/2023] Open
Abstract
Pannexin 1 (Panx1) is a ubiquitously expressed protein forming large conductance channels that are central to many distinct inflammation and injury responses. There is accumulating evidence showing ATP released from Panx1 channels, as well as metabolites, provide effective paracrine and autocrine signaling molecules that regulate different elements of the injury response. As channels with a broad range of permselectivity, Panx1 channels mediate the secretion and uptake of multiple solutes, ranging from calcium to bacterial derived molecules. In this review, we describe how Panx1 functions in response to different pro-inflammatory stimuli, focusing mainly on signaling coordinated by the vasculature. How Panx1 mediates ATP release by injured cells is also discussed. The ability of Panx1 to serve as a central component of many diverse physiologic responses has proven to be critically dependent on the context of expression, post-translational modification, interacting partners, and the mode of stimulation.
Collapse
Affiliation(s)
- Michael Koval
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University School of Medicine, 205 Whitehead Building, 615 Michael Street, Atlanta, GA, 30322, USA.
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA.
| | - Aleksandra Cwiek
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Thomas Carr
- Department of Cell Biology and Anatomy, University of Calgary Cumming School of Medicine, Calgary, AB, Canada
- Hotchkiss Brain Institute and Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Miranda E Good
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA, USA
| | - Alexander W Lohman
- Department of Cell Biology and Anatomy, University of Calgary Cumming School of Medicine, Calgary, AB, Canada
- Hotchkiss Brain Institute and Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Brant E Isakson
- Robert M. Berne Cardiovascular Research Center, School of Medicine, University of Virginia, PO Box 801394, Charlottesville, VA, 22908, USA.
- Department of Molecular Physiology and Biophysics, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA.
| |
Collapse
|
14
|
Bao L, Sun K, Zhang X. PANX1 is a potential prognostic biomarker associated with immune infiltration in pancreatic adenocarcinoma: A pan-cancer analysis. Channels (Austin) 2021; 15:680-696. [PMID: 34796785 PMCID: PMC8632293 DOI: 10.1080/19336950.2021.2004758] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Pannexin 1 (PANX1) channel is a critical ATP-releasing pathway that modulates tumor immunity, progression, and prognosis. However, the roles of PANX1 in different cancers remain unclear. We analyzed the expression of PANX1 in human pan-cancer in the Oncomine and GEPIA2.0 databases. The prognostic value of PANX1 expression was determined using Kaplan-Meier plotter and OncoLnc tools. The correlation between PANX1 and tumor-infiltrating immune cells was investigated using the TIMER 2.0. In addition, the relationship between PANX1 and immunomodulators was explored using TISIDB. Finally, gene set enrichment analysis (GSEA) was performed utilizing LinkedOmics. The results indicated that PANX1 was overexpressed in most cancers compared to normal tissues. The high expression of PANX1 was associated with poor prognosis in multiple tumors, especially in pancreatic adenocarcinoma (PAAD). In addition, PANX1 was correlated with a variety of immunomodulators, such as CD274, IL10, CD276, IL2RA, TAP1, and TAP2. PANX1 expression level was significantly related to infiltration of multiple immune cells in many cancers, including cancer associated fibroblast, macrophage, and neutrophil cells. Further analysis revealed that PANX1 was significantly associated with T cells CD8+ (rho = 0.524, P = 1.94e-13) and Myeloid dendritic cell (rho = 0.564, P = 9.45e-16). GSEA results showed that PANX1 was closely associated with leukocyte cell-cell adhesion, endoplasmic reticulum lumen, ECM-receptor interaction, and Focal adhesion pathways in PAAD. PANX1 expression was higher in pan-cancer samples than in normal tissues. The high expression of PANX1 was associated with poor outcome and immune infiltration in multiple cancers, especially in PAAD.
Collapse
Affiliation(s)
- Lingling Bao
- Department of Hematology and Oncology, Beilun District People's Hospital, Ningbo, Zhejiang, China
| | - Kai Sun
- Liuzhou People's Hospital, Liuzhou, Guangxi, China
| | - Xuede Zhang
- Department of Hematology and Oncology, Beilun District People's Hospital, Ningbo, Zhejiang, China
| |
Collapse
|
15
|
Laird DW, Penuela S. Pannexin biology and emerging linkages to cancer. Trends Cancer 2021; 7:1119-1131. [PMID: 34389277 DOI: 10.1016/j.trecan.2021.07.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/16/2021] [Accepted: 07/20/2021] [Indexed: 12/18/2022]
Abstract
Pannexins are a family of glycoproteins that comprises three members, PANX1, PANX2, and PANX3. The widely expressed and interrogated PANX1 forms heptameric membrane channels that primarily serve to connect the cytoplasm to the extracellular milieu by being selectively permeable to small signaling molecules when activated. Apart from notable exceptions, PANX1 in many tumor cells appears to facilitate tumor growth and metastasis, suggesting that pannexin-blocking therapeutics may have utility in cancer. Attenuation of PANX1 function must also consider the fact that PANX1 is found in stromal cells of the tumor microenvironment (TME), including immune cells. This review highlights the key discoveries of the past 5 years that suggest pannexins facilitate, or in some cases inhibit, tumor cell growth and metastasis via direct protein interactions and through the regulated efflux of signaling molecules.
Collapse
Affiliation(s)
- Dale W Laird
- Department of Anatomy and Cell Biology, and Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada.
| | - Silvia Penuela
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada; Department of Oncology, Divisions of Experimental Oncology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| |
Collapse
|
16
|
Purinergic signaling in nervous system health and disease: Focus on pannexin 1. Pharmacol Ther 2021; 225:107840. [PMID: 33753132 DOI: 10.1016/j.pharmthera.2021.107840] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/03/2021] [Indexed: 02/06/2023]
Abstract
Purinergic signaling encompasses the cycle of adenosine 5' triphosphate (ATP) release and its metabolism into nucleotide and nucleoside derivatives, the direct release of nucleosides, and subsequent receptor-triggered downstream intracellular pathways. Since the discovery of nerve terminal and glial ATP release into the neuropil, purinergic signaling has been implicated in the modulation of nervous system development, function, and disease. In this review, we detail our current understanding of the roles of the pannexin 1 (PANX1) ATP-release channel in neuronal development and plasticity, glial signaling, and neuron-glial-immune interactions. We additionally provide an overview of PANX1 structure, activation, and permeability to orientate readers and highlight recent research developments. We identify areas of convergence between PANX1 and purinergic receptor actions. Additional highlights include data on PANX1's participation in the pathophysiology of nervous system developmental, degenerative, and inflammatory disorders. Our aim in combining this knowledge is to facilitate the movement of our current understanding of PANX1 in the context of other nervous system purinergic signaling mechanisms one step closer to clinical translation.
Collapse
|