1
|
Wan KY. Biophysics of protist behaviour. Curr Biol 2024; 34:R981-R986. [PMID: 39437740 DOI: 10.1016/j.cub.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Protists, an umbrella term first coined by Ernst Haeckel in 1866, are a vast collection of (primarily unicellular) eukaryotes that are "neither animals nor plants". This basic definition by exclusion has been exercised for centuries, even though recent advances have led to more rigorous taxonomic assignment of various protist groups. Pioneering comparative phylogenetic approaches have been applied to these organisms to reconstruct the deep branches of the eukaryotic tree, revealing essential clues about early eukaryotic evolution. Protists, including amoebae, flagellates, ciliates, and algae, are also vital constituents of global ecosystems, where they appear at the base of food chains, control the relative abundance of other microbes, and participate in global biogeochemical recycling. Due to their typically small size and lack of nervous systems, protists are often associated with the unfortunate label 'primitive'. Yet they exhibit remarkable behavioural sophistication and are able to feed, predate, navigate and interact with their surroundings. Unlike macroscopic animals, many protists reside in a non-intuitive physical regime where viscous forces dominate over inertia, and where they use diverse propulsion and navigation strategies. Interdisciplinary research into these cell-scale phenomena, characterised by a complex interplay of physical forces and mechanical constraints, has significantly advanced the emerging fields of active matter, microhydrodynamics, and non-equilibrium statistical physics. This primer discusses the biophysics of protist behaviour, with a focus on locomotion and feeding. I will highlight the most extensively studied principles and describe some more esoteric behaviours that have not yet been systematically explored.
Collapse
Affiliation(s)
- Kirsty Y Wan
- Living Systems Institute, University of Exeter, Stocker Road, Exeter EX4 4QD, UK; Department of Mathematics and Statistics, University of Exeter, Stocker Road, Exeter EX4 4QD, UK.
| |
Collapse
|
2
|
Cheng Z, Vilfan A, Wang Y, Golestanian R, Meng F. Near-field hydrodynamic interactions determine travelling wave directions of collectively beating cilia. J R Soc Interface 2024; 21:20240221. [PMID: 39106950 PMCID: PMC11303030 DOI: 10.1098/rsif.2024.0221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/27/2024] [Accepted: 06/27/2024] [Indexed: 08/09/2024] Open
Abstract
Cilia can beat collectively in the form of a metachronal wave, and we investigate how near-field hydrodynamic interactions between cilia can influence the collective response of the beating cilia. Based on the theoretical framework developed in the work of Meng et al. (Meng et al. 2021 Proc. Natl Acad. Sci. USA 118, e2102828118), we find that the first harmonic mode in the driving force acting on each individual cilium can determine the direction of the metachronal wave after considering the finite size of the beating trajectories, which is confirmed by our agent-based numerical simulations. The stable wave patterns, e.g. the travelling direction, can be controlled by the driving forces acting on the cilia, based on which one can change the flow field generated by the cilia. This work can not only help to understand the role of the hydrodynamic interactions in the collective behaviours of cilia, but can also guide future designs of artificial cilia beating in the desired dynamic mode.
Collapse
Affiliation(s)
- Ziqi Cheng
- CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing100190, People’s Republic of China
- School of Physical Sciences, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing100049, People’s Republic of China
| | - Andrej Vilfan
- Max Planck Institute for Dynamics and Self-Organization (MPIDS), 37077 Göttingen, Germany
- Jožef Stefan Institute, 1000 Ljubljana, Slovenia
| | - Yanting Wang
- CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing100190, People’s Republic of China
- School of Physical Sciences, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing100049, People’s Republic of China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang325000, People’s Republic of China
| | - Ramin Golestanian
- Max Planck Institute for Dynamics and Self-Organization (MPIDS), 37077 Göttingen, Germany
- Rudolf Peierls Centre for Theoretical Physics, University of Oxford, OxfordOX1 3PU, UK
| | - Fanlong Meng
- CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing100190, People’s Republic of China
- School of Physical Sciences, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing100049, People’s Republic of China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang325000, People’s Republic of China
| |
Collapse
|
3
|
Xia Y, Hu Z, Wei D, Chen K, Peng Y, Yang M. Biomimetic Synchronization in Biciliated Robots. PHYSICAL REVIEW LETTERS 2024; 133:048302. [PMID: 39121428 DOI: 10.1103/physrevlett.133.048302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 04/15/2024] [Accepted: 06/10/2024] [Indexed: 08/11/2024]
Abstract
Direct mechanical coupling is known to be critical for establishing synchronization among cilia. However, the actual role of the connections is still elusive-partly because controlled experiments in living samples are challenging. Here, we employ an artificial ciliary system to address this issue. Two cilia are formed by chains of self-propelling robots and anchored to a shared base so that they are purely mechanically coupled. The system mimics biological ciliary beating but allows fine control over the beating dynamics. With different schemes of mechanical coupling, artificial cilia exhibit rich motility patterns. Particularly, their synchronous beating display two distinct modes-analogous to those observed in C. reinhardtii, the biciliated model organism for studying synchronization. Close examination suggests that the system evolves towards the most dissipative mode. Using this guideline in both simulations and experiments, we are able to direct the system into a desired state by altering the modes' respective dissipation. Our results have significant implications in understanding the synchronization of cilia.
Collapse
Affiliation(s)
| | | | - Da Wei
- Beijing National Laboratory for Condensed Matter Physics and Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Ke Chen
- Beijing National Laboratory for Condensed Matter Physics and Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| | | | - Mingcheng Yang
- Beijing National Laboratory for Condensed Matter Physics and Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| |
Collapse
|
4
|
Zhang KS, Rodriguez R, Tang SKY. SMORES: a simple microfluidic operating room for the examination and surgery of Stentor coeruleus. Sci Rep 2024; 14:8684. [PMID: 38622246 PMCID: PMC11018760 DOI: 10.1038/s41598-024-59286-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 04/09/2024] [Indexed: 04/17/2024] Open
Abstract
Ciliates are powerful unicellular model organisms that have been used to elucidate fundamental biological processes. However, the high motility of ciliates presents a major challenge in studies using live-cell microscopy and microsurgery. While various immobilization methods have been developed, they are physiologically disruptive to the cell and incompatible with microscopy and/or microsurgery. Here, we describe a Simple Microfluidic Operating Room for the Examination and Surgery of Stentor coeruleus (SMORES). SMORES uses Quake valve-based microfluidics to trap, compress, and perform surgery on Stentor as our model ciliate. Compared with previous methods, immobilization by physical compression in SMORES is more effective and uniform. The mean velocity of compressed cells is 24 times less than that of uncompressed cells. The compression is minimally disruptive to the cell and is easily applied or removed using a 3D-printed pressure rig. We demonstrate cell immobilization for up to 2 h without sacrificing cell viability. SMORES is compatible with confocal microscopy and is capable of media exchange for pharmacokinetic studies. Finally, the modular design of SMORES allows laser ablation or mechanical dissection of a cell into many cell fragments at once. These capabilities are expected to enable biological studies previously impossible in ciliates and other motile species.
Collapse
Affiliation(s)
- Kevin S Zhang
- Department of Mechanical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Ramon Rodriguez
- Department of Biology, Stanford University, Stanford, CA, 94305, USA
| | - Sindy K Y Tang
- Department of Mechanical Engineering, Stanford University, Stanford, CA, 94305, USA.
| |
Collapse
|
5
|
Laeverenz-Schlogelhofer H, Wan KY. Bioelectric control of locomotor gaits in the walking ciliate Euplotes. Curr Biol 2024; 34:697-709.e6. [PMID: 38237598 DOI: 10.1016/j.cub.2023.12.051] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/20/2023] [Accepted: 12/18/2023] [Indexed: 02/29/2024]
Abstract
Diverse animal species exhibit highly stereotyped behavioral actions and locomotor sequences as they explore their natural environments. In many such cases, the neural basis of behavior is well established, where dedicated neural circuitry contributes to the initiation and regulation of certain response sequences. At the microscopic scale, single-celled eukaryotes (protists) also exhibit remarkably complex behaviors and yet are completely devoid of nervous systems. Here, to address the question of how single cells control behavior, we study locomotor patterning in the exemplary hypotrich ciliate Euplotes, a highly polarized cell, which actuates a large number of leg-like appendages called cirri (each a bundle of ∼25-50 cilia) to swim in fluids or walk on surfaces. As it navigates its surroundings, a walking Euplotes cell is routinely observed to perform side-stepping reactions, one of the most sophisticated maneuvers ever observed in a single-celled organism. These are spontaneous and stereotyped reorientation events involving a transient and fast backward motion followed by a turn. Combining high-speed imaging with simultaneous time-resolved electrophysiological recordings, we show that this complex coordinated motion sequence is tightly regulated by rapid membrane depolarization events, which orchestrate the activity of different cirri on the cell. Using machine learning and computer vision methods, we map detailed measurements of cirri dynamics to the cell's membrane bioelectrical activity, revealing a differential response in the front and back cirri. We integrate these measurements with a minimal model to understand how Euplotes-a unicellular organism-manipulates its membrane potential to achieve real-time control over its motor apparatus.
Collapse
Affiliation(s)
| | - Kirsty Y Wan
- Living Systems Institute, University of Exeter, Stocker Road, Exeter EX4 4QD, UK.
| |
Collapse
|
6
|
Zhang KS, Rodriguez R, Tang SK. SMORES: A Simple Microfluidic Operating Room for the Examination and Surgery of Stentor coeruleus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.05.578956. [PMID: 38370688 PMCID: PMC10871274 DOI: 10.1101/2024.02.05.578956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Ciliates are powerful unicellular model organisms that have been used to elucidate fundamental biological processes. However, the high motility of ciliates presents a major challenge in studies using live-cell microscopy and microsurgery. While various immobilization methods have been developed, they are physiologically disruptive to the cell and incompatible with microscopy and/or microsurgery. Here, we describe a Simple Microfluidic Operating Room for the Examination and Surgery of Stentor coeruleus (SMORES). SMORES uses Quake valve-based microfluidics to trap, compress, and perform surgery on Stentor as our model ciliate. Compared with previous methods, immobilization by physical compression in SMORES is more effective and uniform. The mean velocity of compressed cells is 24 times less than that of uncompressed cells. The compression is minimally disruptive to the cell and is easily applied or removed using a 3D-printed pressure rig. We demonstrate cell immobilization for up to 2 hours without sacrificing cell viability. SMORES is compatible with confocal microscopy and is capable of media exchange for pharmacokinetic studies. Finally, the modular design of SMORES allows laser ablation or mechanical dissection of a cell into many cell fragments at once. These capabilities are expected to enable biological studies previously impossible in ciliates and other motile species.
Collapse
Affiliation(s)
- Kevin S. Zhang
- Department of Mechanical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Ramon Rodriguez
- Department of Biology, Stanford University, Stanford, CA, 94305, USA
| | - Sindy K.Y. Tang
- Department of Mechanical Engineering, Stanford University, Stanford, CA, 94305, USA
| |
Collapse
|
7
|
Wan KY, Poon RN. Mechanisms and functions of multiciliary coordination. Curr Opin Cell Biol 2024; 86:102286. [PMID: 38035649 DOI: 10.1016/j.ceb.2023.102286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/20/2023] [Accepted: 11/02/2023] [Indexed: 12/02/2023]
Abstract
Ciliated organisms are present in virtually every branch of the eukaryotic tree of life. In diverse systems, cilia operate in a coordinated manner to drive fluid flows, or even propel entire organisms. How do groups of motile cilia coordinate their activity within a cell or across a tissue to fulfil essential functions of life? In this review, we highlight the latest developments in our understanding of the mechanisms and functions of multiciliary coordination in diverse systems. We explore new and emerging trends in bioimaging, analytical, and computational methods, which together with their application in new model systems, have conspired to deliver important insights into one of the most fundamental questions in cellular dynamics.
Collapse
Affiliation(s)
- Kirsty Y Wan
- Living Systems Institute, University of Exeter, Stocker Road, EX4 4QD, UK.
| | - Rebecca N Poon
- Living Systems Institute, University of Exeter, Stocker Road, EX4 4QD, UK
| |
Collapse
|
8
|
Larson BT. Perspectives on Principles of Cellular Behavior from the Biophysics of Protists. Integr Comp Biol 2023; 63:1405-1421. [PMID: 37496203 PMCID: PMC10755178 DOI: 10.1093/icb/icad106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 07/14/2023] [Accepted: 07/17/2023] [Indexed: 07/28/2023] Open
Abstract
Cells are the fundamental unit of biological organization. Although it may be easy to think of them as little more than the simple building blocks of complex organisms such as animals, single cells are capable of behaviors of remarkable apparent sophistication. This is abundantly clear when considering the diversity of form and function among the microbial eukaryotes, the protists. How might we navigate this diversity in the search for general principles of cellular behavior? Here, we review cases in which the intensive study of protists from the perspective of cellular biophysics has driven insight into broad biological questions of morphogenesis, navigation and motility, and decision making. We argue that applying such approaches to questions of evolutionary cell biology presents rich, emerging opportunities. Integrating and expanding biophysical studies across protist diversity, exploiting the unique characteristics of each organism, will enrich our understanding of general underlying principles.
Collapse
Affiliation(s)
- Ben T Larson
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94158, USA
| |
Collapse
|
9
|
Hickey DJ, Golestanian R, Vilfan A. Nonreciprocal interactions give rise to fast cilium synchronization in finite systems. Proc Natl Acad Sci U S A 2023; 120:e2307279120. [PMID: 37756336 PMCID: PMC10556628 DOI: 10.1073/pnas.2307279120] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 08/14/2023] [Indexed: 09/29/2023] Open
Abstract
Motile cilia beat in an asymmetric fashion in order to propel the surrounding fluid. When many cilia are located on a surface, their beating can synchronize such that their phases form metachronal waves. Here, we computationally study a model where each cilium is represented as a spherical particle, moving along a tilted trajectory with a position-dependent active driving force and a position-dependent internal drag coefficient. The model thus takes into account all the essential broken symmetries of the ciliary beat. We show that taking into account the near-field hydrodynamic interactions, the effective coupling between cilia even over an entire beating cycle can become nonreciprocal: The phase of a cilium is more strongly affected by an adjacent cilium on one side than by a cilium at the same distance in the opposite direction. As a result, synchronization starts from a seed at the edge of a group of cilia and propagates rapidly across the system, leading to a synchronization time that scales proportionally to the linear dimension of the system. We show that a ciliary carpet is characterized by three different velocities: the velocity of fluid transport, the phase velocity of metachronal waves, and the group velocity of order propagation. Unlike in systems with reciprocal coupling, boundary effects are not detrimental for synchronization, but rather enable the formation of the initial seed.
Collapse
Affiliation(s)
- David J. Hickey
- Department of Living Matter Physics, Max Planck Institute for Dynamics and Self-Organization, 37077Göttingen, Germany
| | - Ramin Golestanian
- Department of Living Matter Physics, Max Planck Institute for Dynamics and Self-Organization, 37077Göttingen, Germany
- Rudolf Peierls Centre for Theoretical Physics, University of Oxford, OxfordOX1 3PU, United Kingdom
| | - Andrej Vilfan
- Department of Living Matter Physics, Max Planck Institute for Dynamics and Self-Organization, 37077Göttingen, Germany
- Department of Condensed Matter Physics, Jožef Stefan Institute, 1000Ljubljana, Slovenia
| |
Collapse
|
10
|
Junker AD, Woodhams LG, Soh AWJ, O’Toole ET, Bayly PV, Pearson CG. Basal bodies bend in response to ciliary forces. Mol Biol Cell 2022; 33:ar146. [PMID: 36287828 PMCID: PMC9727800 DOI: 10.1091/mbc.e22-10-0468-t] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Motile cilia beat with an asymmetric waveform consisting of a power stroke that generates a propulsive force and a recovery stroke that returns the cilium back to the start. Cilia are anchored to the cell cortex by basal bodies (BBs) that are directly coupled to the ciliary doublet microtubules (MTs). We find that, consistent with ciliary forces imposing on BBs, bending patterns in BB triplet MTs are responsive to ciliary beating. BB bending varies as environmental conditions change the ciliary waveform. Bending occurs where striated fibers (SFs) attach to BBs and mutants with short SFs that fail to connect to adjacent BBs exhibit abnormal BB bending, supporting a model in which SFs couple ciliary forces between BBs. Finally, loss of the BB stability protein Poc1, which helps interconnect BB triplet MTs, prevents the normal distributed BB and ciliary bending patterns. Collectively, BBs experience ciliary forces and manage mechanical coupling of these forces to their surrounding cellular architecture for normal ciliary beating.
Collapse
Affiliation(s)
- Anthony D. Junker
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Louis G. Woodhams
- Department of Mechanical Engineering and Material Science, Washington University in St. Louis, St. Louis, MO 63130
| | - Adam W. J. Soh
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Eileen T. O’Toole
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO 80302
| | - Philip V. Bayly
- Department of Mechanical Engineering and Material Science, Washington University in St. Louis, St. Louis, MO 63130
| | - Chad G. Pearson
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045,*Address correspondence to: Chad G. Pearson ()
| |
Collapse
|