1
|
Liu J, Song J, Gao D, Li Y, Guo T, Yuan W, Chen M, Chen L, Zhang Y, Ma Q, Cui M, Song X, Wang R, Jiang J, Zou Z, Dong Y, Ma J. Exploring the associations between phthalate exposure and cardiometabolic risk factors clustering among children: The potential mediating role of insulin-resistant-related genes DNA methylation. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132578. [PMID: 37741207 DOI: 10.1016/j.jhazmat.2023.132578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/02/2023] [Accepted: 09/17/2023] [Indexed: 09/25/2023]
Abstract
The relationship between childhood phthalates (PAEs) exposure, DNA methylation, and cardiometabolic risk (CMR) factors is not well understood. Children were included from a longitudinal cohort 2018-2020 in Xiamen, China. A nest case-control study was additionally conducted, and methylation in lysyl oxidase-like 3 (LOXL3) and solute Carrier Family 6 Member 19 (SLC6A19) were measured. Generalized linear models were used to estimate the associations between PAEs exposure and CMR factors, and mediation analyses of DNA methylation were conducted. The longitudinal study included 835 children aged 7-11 years, and the nest case-control study included 120 cases and 120 controls. Exposure to higher PAEs was correlated with increased CMR scores at baseline (β = 0.299, 95 %CI = 0.114, 0.485) and the final visit (β = 0.202, 95 %CI = 0.008, 0.397). In nest case-control study, higher mono-n-butyl phthalate (MnBP) exposure was related with elevated triglycerides (TG) (β = 0.283, 95 %CI = 0.025, 0.540). A decrement of methylation of CpG 33.34 of LOXL3 was found in response to MnBP exposure (β = -0.014, 95 %CI = -0.027, -0.001). Furthermore, increased methylation of LOXL3_CpG 33.34 and SLC6A19_CpG 11.12 was related to reduced TG. De-methylation of LOXL3_CpG 33.34 and SLC6A19_CpG 11.12 could mediate MnBP-TG pathways. Childhood exposure to PAEs was associated with increased CMR scores, and mediation of PAE exposure on childhood cardiometabolic health by LOXL3 and SLC6A19 de-methylation was observed.
Collapse
Affiliation(s)
- Jieyu Liu
- Institute of Child and Adolescent Health, School of Public Health, Peking University, National Health Commission Key Laboratory of Reproductive Health, Beijing, China
| | - Jieyun Song
- Institute of Child and Adolescent Health, School of Public Health, Peking University, National Health Commission Key Laboratory of Reproductive Health, Beijing, China
| | - Di Gao
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, China
| | - Yanhui Li
- School of Nursing, Peking University, Beijing, China
| | - Tongjun Guo
- Institute of Child and Adolescent Health, School of Public Health, Peking University, National Health Commission Key Laboratory of Reproductive Health, Beijing, China
| | - Wen Yuan
- Institute of Child and Adolescent Health, School of Public Health, Peking University, National Health Commission Key Laboratory of Reproductive Health, Beijing, China
| | - Manman Chen
- Institute of Child and Adolescent Health, School of Public Health, Peking University, National Health Commission Key Laboratory of Reproductive Health, Beijing, China
| | - Li Chen
- Institute of Child and Adolescent Health, School of Public Health, Peking University, National Health Commission Key Laboratory of Reproductive Health, Beijing, China
| | - Yi Zhang
- Institute of Child and Adolescent Health, School of Public Health, Peking University, National Health Commission Key Laboratory of Reproductive Health, Beijing, China
| | - Qi Ma
- Institute of Child and Adolescent Health, School of Public Health, Peking University, National Health Commission Key Laboratory of Reproductive Health, Beijing, China
| | - Mengjie Cui
- Institute of Child and Adolescent Health, School of Public Health, Peking University, National Health Commission Key Laboratory of Reproductive Health, Beijing, China
| | - Xinli Song
- Institute of Child and Adolescent Health, School of Public Health, Peking University, National Health Commission Key Laboratory of Reproductive Health, Beijing, China
| | - Ruolin Wang
- Institute of Child and Adolescent Health, School of Public Health, Peking University, National Health Commission Key Laboratory of Reproductive Health, Beijing, China
| | - Jianuo Jiang
- Institute of Child and Adolescent Health, School of Public Health, Peking University, National Health Commission Key Laboratory of Reproductive Health, Beijing, China
| | - Zhiyong Zou
- Institute of Child and Adolescent Health, School of Public Health, Peking University, National Health Commission Key Laboratory of Reproductive Health, Beijing, China
| | - Yanhui Dong
- Institute of Child and Adolescent Health, School of Public Health, Peking University, National Health Commission Key Laboratory of Reproductive Health, Beijing, China.
| | - Jun Ma
- Institute of Child and Adolescent Health, School of Public Health, Peking University, National Health Commission Key Laboratory of Reproductive Health, Beijing, China.
| |
Collapse
|
2
|
Jing J, Guo J, Dai R, Zhu C, Zhang Z. Targeting gut microbiota and immune crosstalk: potential mechanisms of natural products in the treatment of atherosclerosis. Front Pharmacol 2023; 14:1252907. [PMID: 37719851 PMCID: PMC10504665 DOI: 10.3389/fphar.2023.1252907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 08/21/2023] [Indexed: 09/19/2023] Open
Abstract
Atherosclerosis (AS) is a chronic inflammatory reaction that primarily affects large and medium-sized arteries. It is a major cause of cardiovascular disease and peripheral arterial occlusive disease. The pathogenesis of AS involves specific structural and functional alterations in various populations of vascular cells at different stages of the disease. The immune response is involved throughout the entire developmental stage of AS, and targeting immune cells presents a promising avenue for its treatment. Over the past 2 decades, studies have shown that gut microbiota (GM) and its metabolites, such as trimethylamine-N-oxide, have a significant impact on the progression of AS. Interestingly, it has also been reported that there are complex mechanisms of action between GM and their metabolites, immune responses, and natural products that can have an impact on AS. GM and its metabolites regulate the functional expression of immune cells and have potential impacts on AS. Natural products have a wide range of health properties, and researchers are increasingly focusing on their role in AS. Now, there is compelling evidence that natural products provide an alternative approach to improving immune function in the AS microenvironment by modulating the GM. Natural product metabolites such as resveratrol, berberine, curcumin, and quercetin may improve the intestinal microenvironment by modulating the relative abundance of GM, which in turn influences the accumulation of GM metabolites. Natural products can delay the progression of AS by regulating the metabolism of GM, inhibiting the migration of monocytes and macrophages, promoting the polarization of the M2 phenotype of macrophages, down-regulating the level of inflammatory factors, regulating the balance of Treg/Th17, and inhibiting the formation of foam cells. Based on the above, we describe recent advances in the use of natural products that target GM and immune cells crosstalk to treat AS, which may bring some insights to guide the treatment of AS.
Collapse
Affiliation(s)
- Jinpeng Jing
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jing Guo
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Rui Dai
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Chaojun Zhu
- Institute of TCM Ulcers, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Surgical Department of Traditional Chinese Medicine, Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zhaohui Zhang
- Institute of TCM Ulcers, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Surgical Department of Traditional Chinese Medicine, Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
3
|
Shen W, Shao W, Wang Q, Wang B, Zhao G, Gu A, Jiang Z, Hu H. Dietary diosgenin transcriptionally down-regulated intestinal NPC1L1 expression to prevent cholesterol gallstone formation in mice. J Biomed Sci 2023; 30:44. [PMID: 37370162 DOI: 10.1186/s12929-023-00933-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 05/25/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND Cholesterol gallstone disease is a common disease. Reducing cholesterol burden is important to prevent/treat gallstone. In this study, we investigated the application of diosgenin (DG) to prevent the formation of gallstone in mice. METHODS Adult male C57BL/6J mice were fed with the lithogenic diet (LD) only or LD supplemented with DG or ezetimibe for 8 weeks. Incidences of gallstone formation were documented. Intestine and liver tissues were collected to measure the lipid contents and expression of genes in cholesterol metabolism. Caco2 cells were treated with DG to monitor the regulation on cholesterol absorption and the transcriptional regulation of Npc1l1 gene. Changes of gut microbiota by DG was analyzed. Intraperitoneal injection of LPS on mice was performed to verify its effects on STAT3 activation and Npc1l1 expression in the small intestine. RESULTS LD led to 100% formation of gallstones in mice. In comparison, dietary DG or ezetimibe supplementary completely prevents gallstones formation. DG inhibited intestinal cholesterol absorption in mice as well as in Caco2 cells by down-regulation of Npc1l1 expression. DG could directly inhibit phosphorylation of STAT3 and its transcriptional regulation of Npc1l1 expression. Furthermore, DG could modulate gut microbiota profiles and LPS mediated STAT3 activation and Npc1l1 expression. CONCLUSION Our results demonstrated that dietary DG could inhibit intestinal cholesterol absorption through decreasing NPC1L1 expression to prevent cholesterol gallstone formation.
Collapse
Affiliation(s)
- Weiyi Shen
- Center of Gallstone Disease, Shanghai East Hospital, and Institution of Gallstone Disease, School of Medicine, Tongji University, Shanghai, China
| | - Wentao Shao
- Center of Gallstone Disease, Shanghai East Hospital, and Institution of Gallstone Disease, School of Medicine, Tongji University, Shanghai, China
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
- Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Center for Global Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Qihan Wang
- Center of Gallstone Disease, Shanghai East Hospital, and Institution of Gallstone Disease, School of Medicine, Tongji University, Shanghai, China
| | - Bo Wang
- Center of Gallstone Disease, Shanghai East Hospital, and Institution of Gallstone Disease, School of Medicine, Tongji University, Shanghai, China
| | - Gang Zhao
- Center of Gallstone Disease, Shanghai East Hospital, and Institution of Gallstone Disease, School of Medicine, Tongji University, Shanghai, China
| | - Aihua Gu
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China.
- Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Center for Global Health, Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Zhaoyan Jiang
- Center of Gallstone Disease, Shanghai East Hospital, and Institution of Gallstone Disease, School of Medicine, Tongji University, Shanghai, China.
| | - Hai Hu
- Center of Gallstone Disease, Shanghai East Hospital, and Institution of Gallstone Disease, School of Medicine, Tongji University, Shanghai, China.
| |
Collapse
|
4
|
Markin AM, Markina YV, Bogatyreva AI, Tolstik TV, Chakal DA, Breshenkov DG, Charchyan ER. The Role of Cytokines in Cholesterol Accumulation in Cells and Atherosclerosis Progression. Int J Mol Sci 2023; 24:ijms24076426. [PMID: 37047399 PMCID: PMC10094347 DOI: 10.3390/ijms24076426] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/21/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023] Open
Abstract
Atherosclerosis is the most common cardiovascular disease and is the number one cause of death worldwide. Today, atherosclerosis is a multifactorial chronic inflammatory disease with an autoimmune component, accompanied by the accumulation of cholesterol in the vessel wall and the formation of atherosclerotic plaques, endothelial dysfunction, and chronic inflammation. In the process of accumulation of atherogenic lipids, cells of the immune system, such as monocytes, macrophages, dendritic cells, etc., play an important role, producing and/or activating the production of various cytokines—interferons, interleukins, chemokines. In this review, we have tried to summarize the most important cytokines involved in the processes of atherogenesis.
Collapse
|
5
|
Quantitative Proteomic Analysis Reveals the Mechanisms of Sinapine Alleviate Macrophage Foaming. Molecules 2023; 28:molecules28052012. [PMID: 36903257 PMCID: PMC10003987 DOI: 10.3390/molecules28052012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/18/2023] [Accepted: 02/19/2023] [Indexed: 02/25/2023] Open
Abstract
Rapeseed polyphenols have cardiovascular protective effects. Sinapine, one main rapeseed polyphenol, possesses antioxidative, anti-inflammatory, and antitumor properties. However, no research has been published about the role of sinapine in alleviating macrophage foaming. This study aimed to reveal the macrophage foaming alleviation mechanism of sinapine by applying quantitative proteomics and bioinformatics analyses. A new approach was developed to retrieve sinapine from rapeseed meals by using hot-alcohol-reflux-assisted sonication combined with anti-solvent precipitation. The sinapine yield of the new approach was significantly higher than in traditional methods. Proteomics was performed to investigate the effects of sinapine on foam cells, and it showed that sinapine can alleviate foam cell formation. Moreover, sinapine suppressed CD36 expression, enhanced the CDC42 expression, and activated the JAK2 and the STAT3 in the foam cells. These findings suggest that the action of sinapine on foam cells inhibits cholesterol uptake, activates cholesterol efflux, and converts macrophages from pro-inflammatory M1 to anti-inflammatory M2. This study confirms the abundance of sinapine in rapeseed oil by-products and elucidates the biochemical mechanisms of sinapine that alleviates macrophage foaming, which may provide new perspectives for reprocessing rapeseed oil by-products.
Collapse
|
6
|
Zhang W, He J, Liu M, Huang M, Chen Q, Dong J, Zhang H, Xie T, Yuan J, Zha L. Genetic Analysis Reveals Different Mechanisms of IL-5 Involved in the Development of CAD in a Chinese Han Population. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:1700857. [PMID: 36760349 PMCID: PMC9904894 DOI: 10.1155/2023/1700857] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 10/13/2022] [Accepted: 11/24/2022] [Indexed: 02/04/2023]
Abstract
Background Coronary artery disease (CAD) is a complex disease and the leading cause of death worldwide. It is caused by genetic and environmental factors or their interactions. Candidate gene association studies are an important genetic strategy for the study of complex diseases, and multiple variants of inflammatory cytokines have been found to be associated with CAD using this method. Interleukin-5 (IL-5) is an important inflammatory immune response factor that plays a role in a various inflammatory disease. Clinical tests and animal experiments indicated that IL-5 is involved in CAD development, but the exact mechanisms are unclear. This study investigated the genetic relationship between the single nucleotide polymorphisms (SNPs) in IL5 and CAD. Materials and Methods Based on the Chinese Han population, we collected 1,824 patients with CAD and 1,920 control subjects and performed a two-stage case-control association analysis for three SNPs in IL5 (rs2057687, rs78546665, and rs2069812) using the high resolution melt (HRM) technology. Logistic regression analyses were applied to adjust for traditional risk factors for CAD and to perform haplotype and gene interaction analyses. Multiple linear regression analyses were used to study relationships between the selected SNPs and serum lipid levels. Results In this study, two-stage case-control association analysis revealed that the allele and genotype frequency distributions of the three IL5 SNPs were not statistically significant between the case and control groups. In addition, none of the IL5 haplotypes were associated with CAD. Further stratified analyses were conducted by sex, age, hypertension, and disease status, respectively, and the results revealed that the rs2057687 and rs2069812 of IL5 were associated with CAD in the male group (p adj = 0.025, OR, 0.77 (95% CI, 0.62-0.97); p adj = 0.016, OR, 0.82 (95% CI, 0.70-0.97), respectively); the rs2057687 and rs78546665 of IL5 were associated with late-onset CAD (p adj = 0.039, OR, 0.78 (95% CI, 0.62-0.99); p adj = 0.036, OR, 1.46 (95% CI, 1.02-1.53), respectively); the rs2069812 of IL5 was associated with CAD in the hypertension group (p adj = 0.036, OR, 0.84 (95% CI, 0.71-0.99)); and none of the SNPs in IL5 were associated with different CAD states (anatomical CAD and clinical CAD). In addition, the association between SNPs and the serum lipid levels indicated that rs78546665 was positively correlated with triglyceride levels (p = 0.012). Finally, SNP-SNP interaction analyses revealed that interactions of rs2057687 and rs2069812 were associated with CAD (p adj = 0.046, OR, 0.77 (95% CI, 0.13-4.68)). Conclusion This study suggested that the common variants of IL5 might play a role in CAD by affecting the risk factors for CAD and through SNP-SNP interactions, which provides a new target for specific treatment of CAD patients and a theoretical basis for personalized medicine.
Collapse
Affiliation(s)
- Wenjuan Zhang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Department of Geriatrics, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Junyi He
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Meilin Liu
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Mingkai Huang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Qianwen Chen
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Maternal and Child Health Hospital, Wuhan 430070, China
| | - Jiangtao Dong
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Hongsong Zhang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Tian Xie
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jing Yuan
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Lingfeng Zha
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
7
|
Cai Y, Wang Z, Li L, He L, Wu X, Zhang M, Zhu P. Neuropeptide Y regulates cholesterol uptake and efflux in macrophages and promotes foam cell formation. J Cell Mol Med 2022; 26:5391-5402. [PMID: 36172879 PMCID: PMC9639043 DOI: 10.1111/jcmm.17561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 08/12/2022] [Accepted: 09/07/2022] [Indexed: 11/30/2022] Open
Abstract
The dysregulation of lipid metabolic pathways (cholesterol uptake and efflux) in macrophages results in the formation of lipid‐dense macrophages, named foam cells, that participate in plaque formation. NPY binding to NPY receptors in macrophages can modulate cell functions and affect the process of atherosclerotic plaques. The present study aimed to determine whether NPY affects the formation of macrophage‐derived foam cells and its underlying mechanisms in macrophages. THP‐1‐derived macrophages were incubated with oxidized low‐density lipoprotein (ox‐LDL) and treated with different concentrations of NPY. We analysed the relative levels of proteins related to cholesterol uptake and efflux. We found that NPY effectively increased cholesterol uptake and intracellular cholesterol content via the Y1 and Y5 receptors, and this effect was blocked by Y1 and Y5 antagonists. Mechanistically, NPY enhanced the expression of SRA and CD36 via the PKC/PPARγ pathways, promoting macrophage cholesterol uptake. Moreover, NPY significantly decreased cholesterol efflux to the extracellular cholesterol acceptors ApoA1 and HDL in macrophages. NPY mediated decreases in ABCA1, ABCG1 and SR‐BI expression through the inhibition of the JAK/STAT3 pathways. Our results suggest that NPY binding to the Y1 and Y5 receptors enhances foam cell formation by regulating cholesterol uptake and efflux in macrophages.
Collapse
Affiliation(s)
- Yu Cai
- Department of Rehabilitation, Wuhan Fourth Hospital, Wuhan, China
| | - Zhengchao Wang
- Department of Orthopedics, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Lun Li
- Department of Cardiology, Wuhan Fourth Hospital, Wuhan, China
| | - Li He
- Department of Cardiology, Wuhan Fourth Hospital, Wuhan, China
| | - Xinying Wu
- Department of Cardiology, Wuhan Fourth Hospital, Wuhan, China
| | - Mingjing Zhang
- Department of Cardiology, Wuhan Fourth Hospital, Wuhan, China
| | - Pengfei Zhu
- Department of Cardiology, Wuhan Fourth Hospital, Wuhan, China
| |
Collapse
|
8
|
Yang L, Song Z, Pan Y, Zhao T, Shi Y, Xing J, Ju A, Zhou L, Ye L. PM 2.5 promoted lipid accumulation in macrophage via inhibiting JAK2/STAT3 signaling pathways and aggravating the inflammatory reaction. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 226:112872. [PMID: 34624536 DOI: 10.1016/j.ecoenv.2021.112872] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/01/2021] [Accepted: 10/03/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Abnormal lipid accumulation in macrophages may lead to macrophages foaming, which is the most important pathological process of atherosclerosis. Atmospheric PM2.5 could enter the blood circulation and further affect the lipid metabolism of macrophages. But the underlying mechanism is not unclear. This study was undertaken to clarify the effect of PM2.5 on lipid metabolism in macrophages, and to explore the role of inflammatory reaction and JAK2/STAT3 signaling pathway in this process. METHOD Macrophages derived from THP-1 cells were exposed to PM2.5 (0,100,200,400 μg/mL) for 6 h and 12 h. STAT3 agonist ColivelinTFA is used to specifically excite STAT3. The survival rate of macrophages was detected by CCK-8. The lipid levels in macrophages were detected by colorimetry. The levels of inflammatory factors secreted by macrophages were detected by ELISA. Q-PCR was used to detect the mRNA expression levels, and Western Blot was used to detect the protein expression levels of JAK2/STAT3 pathway genes. RESULT The survival rate of macrophages was reduced by PM2.5, and the levels of TG, T-CHO and LDL-C of macrophages exposed to PM2.5 were increased. PM2.5 led to the increasing level of IL-6 and the decreasing level of IL-4, and the JAK2/STAT3 signaling pathway was inhibited by PM2.5. Colivelin TFA significantly decreased the increasing levels of TG, T-CHO and LDL-C levels, and increased the decreasing mRNA levels of IL-4, and LPL induced by PM2.5 (p < 0.05). DISCUSSION PM2.5 could cause the lipid accumulation of macrophages by inhibiting the JAK2/STAT3 signaling pathway, and inflammatory responses may be involved in this process.
Collapse
Affiliation(s)
- Liwei Yang
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China.
| | - Zikai Song
- Department of Cardiology, the First Hospital of Jilin University, Changchun, China.
| | - Yang Pan
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China; The Provincial Center for Disease Control and Prevention (Jilin Provincial Institute of Public Health), Changchun, China.
| | - Tianyang Zhao
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China.
| | - Yanbin Shi
- Jilin Cancer Hospital, Changchun, China.
| | - Jiqiang Xing
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China.
| | - Aipeng Ju
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China.
| | - Liting Zhou
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China.
| | - Lin Ye
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China.
| |
Collapse
|
9
|
Effects of allyl isothiocyanate on the expression, function, and its mechanism of ABCA1 and ABCG1 in pulmonary of COPD rats. Int Immunopharmacol 2021; 101:108373. [PMID: 34802946 DOI: 10.1016/j.intimp.2021.108373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 11/01/2021] [Accepted: 11/10/2021] [Indexed: 11/23/2022]
Abstract
BACKGROUND AND AIMS Allyl isothiocyanate(AITC) has been shown to play an important role in the improved symptoms of chronic obstructive pulmonary disease(COPD) and the inhibition of inflammation, but the role in COPD lipid metabolism disorder and the molecular mechanism remains unclear. We aimed to explore whether and how AITC affects COPD by regulating lipid metabolism and inflammatory response. METHODS The COPD rat model was established by cigarette smoke exposure. Cigarette smoke extract stimulated 16HBE cells to induce a cell model. The effect of AITC treatment was detected by lung function test, H&E staining, Oil red O staining, immunohistochemistry, ELISA, CCK-8, HPLC, fluorescence efflux test, siRNA, RT-PCR, and Western blotting. Biological analysis was performed to analyze the results. Graphpad Prism 8.0 software was used for statistical analysis. RESULTS AITC can improve lung function and pathological injury in COPD rats. The levels of IL-1 β and TNF- α in the AITC treatment group were significantly lower than those in the model group(P < 0.05), and the lipid metabolism was also improved (P < 0.05). AITC reverses CSE-induced down-regulation of LXR α, ABCA1, and ABCG1 expression and function in a time-and concentration-dependent manner (P < 0.05). AITC regulates the cholesterol metabolism disorder induced by CSE in NR8383 cells and attenuates macrophage inflammation (P < 0.05). In addition, after silencing LXR α with siRNA, the effect of AITC was also inhibited. CONCLUSION These results suggest that AITC improves COPD by promoting RCT process and reducing inflammatory response via activating LXR pathways.
Collapse
|
10
|
Matucci A, Vivarelli E, Nencini F, Maggi E, Vultaggio A. Strategies Targeting Type 2 Inflammation: From Monoclonal Antibodies to JAK-Inhibitors. Biomedicines 2021; 9:biomedicines9101497. [PMID: 34680614 PMCID: PMC8533458 DOI: 10.3390/biomedicines9101497] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/01/2021] [Accepted: 10/11/2021] [Indexed: 12/19/2022] Open
Abstract
Bronchial asthma and its frequent comorbidity chronic rhinosinusitis (CRS), are characterized by an inflammatory process at lower and upper respiratory tract, with a variability in terms of clinical presentations (phenotypes) and distinct underpin pathophysiological mechanisms (endotypes). Based on the characteristics of inflammation, bronchial asthma can be distinguished into type 2 (eosinophilic) or nontype 2 (noneosinophilic) endotypes. In type 2 asthma endotype, the pathogenic mechanism is sustained by an inflammatory process driven by Th2 cells, type 2 innate lymphoid cells (ILC2) and type 2 cytokines, which include interleukin (IL)-4, IL-5, IL-9 and IL-13. The definition of asthma and chronic rhinusinusitis phenotype/endotype is crucial, taking into account the availability of novel biologic agents, such as monoclonal antibodies targeting the classical type 2 cytokines. Recently, new therapeutic strategies have been proposed and analyzed in preliminary clinical trials. Among them Janus kinase (JAK) inhibitors, now largely used for the treatment of other chronic inflammatory diseases such as rheumatoid arthritis and inflammatory bowel diseases, is receiving great relevance. The rationale of this strategy derives from the data that JAK is a tyrosine kinase involved in the signaling of T cell receptor and of several cytokines that play a role in allergic respiratory disease, such as IL-2, IL-4 and IL-9. In this review, we discuss whether treatment with biological agents and JAK inhibitors may be equally effective in controlling type 2 inflammatory process in both asthma and CRS.
Collapse
Affiliation(s)
- Andrea Matucci
- Immunoallergology Unit, Azienda Ospedaliero-Universitaria Careggi, 50134 Florence, Italy
| | - Emanuele Vivarelli
- Immunoallergology Unit, Azienda Ospedaliero-Universitaria Careggi, 50134 Florence, Italy
| | - Francesca Nencini
- Immunoallergology Unit, Azienda Ospedaliero-Universitaria Careggi, 50134 Florence, Italy
| | - Enrico Maggi
- Immunology Department, Bambino Gesù Children's Hospital, IRCCS, 00165 Rome, Italy
| | - Alessandra Vultaggio
- Immunoallergology Unit, Azienda Ospedaliero-Universitaria Careggi, 50134 Florence, Italy
| |
Collapse
|
11
|
Nyandwi JB, Ko YS, Jin H, Yun SP, Park SW, Kim HJ. Rosmarinic Acid Increases Macrophage Cholesterol Efflux through Regulation of ABCA1 and ABCG1 in Different Mechanisms. Int J Mol Sci 2021; 22:8791. [PMID: 34445501 PMCID: PMC8395905 DOI: 10.3390/ijms22168791] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/06/2021] [Accepted: 08/13/2021] [Indexed: 01/12/2023] Open
Abstract
Lipid dysregulation in diabetes mellitus escalates endothelial dysfunction, the initial event in the development and progression of diabetic atherosclerosis. In addition, lipid-laden macrophage accumulation in the arterial wall plays a significant role in the pathology of diabetes-associated atherosclerosis. Therefore, inhibition of endothelial dysfunction and enhancement of macrophage cholesterol efflux is the important antiatherogenic mechanism. Rosmarinic acid (RA) possesses beneficial properties, including its anti-inflammatory, antioxidant, antidiabetic and cardioprotective effects. We previously reported that RA effectively inhibits diabetic endothelial dysfunction by inhibiting inflammasome activation in endothelial cells. However, its effect on cholesterol efflux remains unknown. Therefore, in this study, we aimed to assess the effect of RA on cholesterol efflux and its underlying mechanisms in macrophages. RA effectively reduced oxLDL-induced cholesterol contents under high glucose (HG) conditions in macrophages. RA enhanced ATP-binding cassette transporter A1 (ABCA1) and G1 (ABCG1) expression, promoting macrophage cholesterol efflux. Mechanistically, RA differentially regulated ABCA1 expression through JAK2/STAT3, JNK and PKC-p38 and ABCG1 expression through JAK2/STAT3, JNK and PKC-ERK1/2/p38 in macrophages. Moreover, RA primarily stabilized ABCA1 rather than ABCG1 protein levels by impairing protein degradation. These findings suggest RA as a candidate therapeutic to prevent atherosclerotic cardiovascular disease complications related to diabetes by regulating cholesterol efflux in macrophages.
Collapse
Affiliation(s)
- Jean-Baptiste Nyandwi
- Department of Pharmacology, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Korea; (J.-B.N.); (Y.S.K.); (H.J.); (S.P.Y.); (S.W.P.)
- Department of Convergence Medical Science (BK21 Plus), Gyeongsang National University, Jinju 52727, Korea
- Department of Pharmacy, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Kigali 4285, Rwanda
| | - Young Shin Ko
- Department of Pharmacology, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Korea; (J.-B.N.); (Y.S.K.); (H.J.); (S.P.Y.); (S.W.P.)
| | - Hana Jin
- Department of Pharmacology, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Korea; (J.-B.N.); (Y.S.K.); (H.J.); (S.P.Y.); (S.W.P.)
| | - Seung Pil Yun
- Department of Pharmacology, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Korea; (J.-B.N.); (Y.S.K.); (H.J.); (S.P.Y.); (S.W.P.)
| | - Sang Won Park
- Department of Pharmacology, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Korea; (J.-B.N.); (Y.S.K.); (H.J.); (S.P.Y.); (S.W.P.)
- Department of Convergence Medical Science (BK21 Plus), Gyeongsang National University, Jinju 52727, Korea
| | - Hye Jung Kim
- Department of Pharmacology, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Korea; (J.-B.N.); (Y.S.K.); (H.J.); (S.P.Y.); (S.W.P.)
- Department of Convergence Medical Science (BK21 Plus), Gyeongsang National University, Jinju 52727, Korea
| |
Collapse
|